1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for Audio DMA Controller (ADMAC) on t8103 (M1) and other Apple chips
5 * Copyright (C) The Asahi Linux Contributors
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/device.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14 #include <linux/of_dma.h>
15 #include <linux/reset.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
19 #include "dmaengine.h"
21 #define NCHANNELS_MAX 64
22 #define IRQ_NOUTPUTS 4
25 * For allocation purposes we split the cache
26 * memory into blocks of fixed size (given in bytes).
28 #define SRAM_BLOCK 2048
30 #define RING_WRITE_SLOT GENMASK(1, 0)
31 #define RING_READ_SLOT GENMASK(5, 4)
32 #define RING_FULL BIT(9)
33 #define RING_EMPTY BIT(8)
34 #define RING_ERR BIT(10)
36 #define STATUS_DESC_DONE BIT(0)
37 #define STATUS_ERR BIT(6)
39 #define FLAG_DESC_NOTIFY BIT(16)
41 #define REG_TX_START 0x0000
42 #define REG_TX_STOP 0x0004
43 #define REG_RX_START 0x0008
44 #define REG_RX_STOP 0x000c
45 #define REG_IMPRINT 0x0090
46 #define REG_TX_SRAM_SIZE 0x0094
47 #define REG_RX_SRAM_SIZE 0x0098
49 #define REG_CHAN_CTL(ch) (0x8000 + (ch) * 0x200)
50 #define REG_CHAN_CTL_RST_RINGS BIT(0)
52 #define REG_DESC_RING(ch) (0x8070 + (ch) * 0x200)
53 #define REG_REPORT_RING(ch) (0x8074 + (ch) * 0x200)
55 #define REG_RESIDUE(ch) (0x8064 + (ch) * 0x200)
57 #define REG_BUS_WIDTH(ch) (0x8040 + (ch) * 0x200)
59 #define BUS_WIDTH_8BIT 0x00
60 #define BUS_WIDTH_16BIT 0x01
61 #define BUS_WIDTH_32BIT 0x02
62 #define BUS_WIDTH_FRAME_2_WORDS 0x10
63 #define BUS_WIDTH_FRAME_4_WORDS 0x20
65 #define REG_CHAN_SRAM_CARVEOUT(ch) (0x8050 + (ch) * 0x200)
66 #define CHAN_SRAM_CARVEOUT_SIZE GENMASK(31, 16)
67 #define CHAN_SRAM_CARVEOUT_BASE GENMASK(15, 0)
69 #define REG_CHAN_FIFOCTL(ch) (0x8054 + (ch) * 0x200)
70 #define CHAN_FIFOCTL_LIMIT GENMASK(31, 16)
71 #define CHAN_FIFOCTL_THRESHOLD GENMASK(15, 0)
73 #define REG_DESC_WRITE(ch) (0x10000 + ((ch) / 2) * 0x4 + ((ch) & 1) * 0x4000)
74 #define REG_REPORT_READ(ch) (0x10100 + ((ch) / 2) * 0x4 + ((ch) & 1) * 0x4000)
76 #define REG_TX_INTSTATE(idx) (0x0030 + (idx) * 4)
77 #define REG_RX_INTSTATE(idx) (0x0040 + (idx) * 4)
78 #define REG_CHAN_INTSTATUS(ch, idx) (0x8010 + (ch) * 0x200 + (idx) * 4)
79 #define REG_CHAN_INTMASK(ch, idx) (0x8020 + (ch) * 0x200 + (idx) * 4)
86 struct admac_data *host;
88 struct tasklet_struct tasklet;
93 struct admac_tx *current_tx;
97 * We maintain a 'submitted' and 'issued' list mainly for interface
98 * correctness. Typical use of the driver (per channel) will be
99 * prepping, submitting and issuing a single cyclic transaction which
100 * will stay current until terminate_all is called.
102 struct list_head submitted;
103 struct list_head issued;
105 struct list_head to_free;
111 * SRAM_CARVEOUT has 16-bit fields, so the SRAM cannot be larger than
112 * 64K and a 32-bit bitfield over 2K blocks covers it.
118 struct dma_device dma;
121 struct reset_control *rstc;
123 struct mutex cache_alloc_lock;
124 struct admac_sram txcache, rxcache;
129 struct admac_chan channels[];
133 struct dma_async_tx_descriptor tx;
140 size_t submitted_pos;
141 size_t reclaimed_pos;
143 struct list_head node;
146 static int admac_alloc_sram_carveout(struct admac_data *ad,
147 enum dma_transfer_direction dir,
150 struct admac_sram *sram;
151 int i, ret = 0, nblocks;
153 if (dir == DMA_MEM_TO_DEV)
158 mutex_lock(&ad->cache_alloc_lock);
160 nblocks = sram->size / SRAM_BLOCK;
161 for (i = 0; i < nblocks; i++)
162 if (!(sram->allocated & BIT(i)))
166 *out = FIELD_PREP(CHAN_SRAM_CARVEOUT_BASE, i * SRAM_BLOCK) |
167 FIELD_PREP(CHAN_SRAM_CARVEOUT_SIZE, SRAM_BLOCK);
168 sram->allocated |= BIT(i);
173 mutex_unlock(&ad->cache_alloc_lock);
178 static void admac_free_sram_carveout(struct admac_data *ad,
179 enum dma_transfer_direction dir,
182 struct admac_sram *sram;
183 u32 base = FIELD_GET(CHAN_SRAM_CARVEOUT_BASE, carveout);
186 if (dir == DMA_MEM_TO_DEV)
191 if (WARN_ON(base >= sram->size))
194 mutex_lock(&ad->cache_alloc_lock);
195 i = base / SRAM_BLOCK;
196 sram->allocated &= ~BIT(i);
197 mutex_unlock(&ad->cache_alloc_lock);
200 static void admac_modify(struct admac_data *ad, int reg, u32 mask, u32 val)
202 void __iomem *addr = ad->base + reg;
203 u32 curr = readl_relaxed(addr);
205 writel_relaxed((curr & ~mask) | (val & mask), addr);
208 static struct admac_chan *to_admac_chan(struct dma_chan *chan)
210 return container_of(chan, struct admac_chan, chan);
213 static struct admac_tx *to_admac_tx(struct dma_async_tx_descriptor *tx)
215 return container_of(tx, struct admac_tx, tx);
218 static enum dma_transfer_direction admac_chan_direction(int channo)
220 /* Channel directions are hardwired */
221 return (channo & 1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
224 static dma_cookie_t admac_tx_submit(struct dma_async_tx_descriptor *tx)
226 struct admac_tx *adtx = to_admac_tx(tx);
227 struct admac_chan *adchan = to_admac_chan(tx->chan);
231 spin_lock_irqsave(&adchan->lock, flags);
232 cookie = dma_cookie_assign(tx);
233 list_add_tail(&adtx->node, &adchan->submitted);
234 spin_unlock_irqrestore(&adchan->lock, flags);
239 static int admac_desc_free(struct dma_async_tx_descriptor *tx)
241 kfree(to_admac_tx(tx));
246 static struct dma_async_tx_descriptor *admac_prep_dma_cyclic(
247 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
248 size_t period_len, enum dma_transfer_direction direction,
251 struct admac_chan *adchan = container_of(chan, struct admac_chan, chan);
252 struct admac_tx *adtx;
254 if (direction != admac_chan_direction(adchan->no))
257 adtx = kzalloc(sizeof(*adtx), GFP_NOWAIT);
263 adtx->buf_addr = buf_addr;
264 adtx->buf_len = buf_len;
265 adtx->buf_end = buf_addr + buf_len;
266 adtx->period_len = period_len;
268 adtx->submitted_pos = 0;
269 adtx->reclaimed_pos = 0;
271 dma_async_tx_descriptor_init(&adtx->tx, chan);
272 adtx->tx.tx_submit = admac_tx_submit;
273 adtx->tx.desc_free = admac_desc_free;
279 * Write one hardware descriptor for a dmaengine cyclic transaction.
281 static void admac_cyclic_write_one_desc(struct admac_data *ad, int channo,
286 addr = tx->buf_addr + (tx->submitted_pos % tx->buf_len);
288 /* If happens means we have buggy code */
289 WARN_ON_ONCE(addr + tx->period_len > tx->buf_end);
291 dev_dbg(ad->dev, "ch%d descriptor: addr=0x%pad len=0x%zx flags=0x%lx\n",
292 channo, &addr, tx->period_len, FLAG_DESC_NOTIFY);
294 writel_relaxed(lower_32_bits(addr), ad->base + REG_DESC_WRITE(channo));
295 writel_relaxed(upper_32_bits(addr), ad->base + REG_DESC_WRITE(channo));
296 writel_relaxed(tx->period_len, ad->base + REG_DESC_WRITE(channo));
297 writel_relaxed(FLAG_DESC_NOTIFY, ad->base + REG_DESC_WRITE(channo));
299 tx->submitted_pos += tx->period_len;
300 tx->submitted_pos %= 2 * tx->buf_len;
304 * Write all the hardware descriptors for a dmaengine cyclic
305 * transaction there is space for.
307 static void admac_cyclic_write_desc(struct admac_data *ad, int channo,
312 for (i = 0; i < 4; i++) {
313 if (readl_relaxed(ad->base + REG_DESC_RING(channo)) & RING_FULL)
315 admac_cyclic_write_one_desc(ad, channo, tx);
319 static int admac_ring_noccupied_slots(int ringval)
321 int wrslot = FIELD_GET(RING_WRITE_SLOT, ringval);
322 int rdslot = FIELD_GET(RING_READ_SLOT, ringval);
324 if (wrslot != rdslot) {
325 return (wrslot + 4 - rdslot) % 4;
327 WARN_ON((ringval & (RING_FULL | RING_EMPTY)) == 0);
329 if (ringval & RING_FULL)
337 * Read from hardware the residue of a cyclic dmaengine transaction.
339 static u32 admac_cyclic_read_residue(struct admac_data *ad, int channo,
340 struct admac_tx *adtx)
343 u32 residue1, residue2;
347 ring1 = readl_relaxed(ad->base + REG_REPORT_RING(channo));
348 residue1 = readl_relaxed(ad->base + REG_RESIDUE(channo));
349 ring2 = readl_relaxed(ad->base + REG_REPORT_RING(channo));
350 residue2 = readl_relaxed(ad->base + REG_RESIDUE(channo));
352 if (residue2 > residue1) {
354 * Controller must have loaded next descriptor between
355 * the two residue reads
357 nreports = admac_ring_noccupied_slots(ring1) + 1;
359 /* No descriptor load between the two reads, ring2 is safe to use */
360 nreports = admac_ring_noccupied_slots(ring2);
363 pos = adtx->reclaimed_pos + adtx->period_len * (nreports + 1) - residue2;
365 return adtx->buf_len - pos % adtx->buf_len;
368 static enum dma_status admac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
369 struct dma_tx_state *txstate)
371 struct admac_chan *adchan = to_admac_chan(chan);
372 struct admac_data *ad = adchan->host;
373 struct admac_tx *adtx;
379 ret = dma_cookie_status(chan, cookie, txstate);
380 if (ret == DMA_COMPLETE || !txstate)
383 spin_lock_irqsave(&adchan->lock, flags);
384 adtx = adchan->current_tx;
386 if (adtx && adtx->tx.cookie == cookie) {
387 ret = DMA_IN_PROGRESS;
388 residue = admac_cyclic_read_residue(ad, adchan->no, adtx);
390 ret = DMA_IN_PROGRESS;
392 list_for_each_entry(adtx, &adchan->issued, node) {
393 if (adtx->tx.cookie == cookie) {
394 residue = adtx->buf_len;
399 spin_unlock_irqrestore(&adchan->lock, flags);
401 dma_set_residue(txstate, residue);
405 static void admac_start_chan(struct admac_chan *adchan)
407 struct admac_data *ad = adchan->host;
408 u32 startbit = 1 << (adchan->no / 2);
410 writel_relaxed(STATUS_DESC_DONE | STATUS_ERR,
411 ad->base + REG_CHAN_INTSTATUS(adchan->no, ad->irq_index));
412 writel_relaxed(STATUS_DESC_DONE | STATUS_ERR,
413 ad->base + REG_CHAN_INTMASK(adchan->no, ad->irq_index));
415 switch (admac_chan_direction(adchan->no)) {
417 writel_relaxed(startbit, ad->base + REG_TX_START);
420 writel_relaxed(startbit, ad->base + REG_RX_START);
425 dev_dbg(adchan->host->dev, "ch%d start\n", adchan->no);
428 static void admac_stop_chan(struct admac_chan *adchan)
430 struct admac_data *ad = adchan->host;
431 u32 stopbit = 1 << (adchan->no / 2);
433 switch (admac_chan_direction(adchan->no)) {
435 writel_relaxed(stopbit, ad->base + REG_TX_STOP);
438 writel_relaxed(stopbit, ad->base + REG_RX_STOP);
443 dev_dbg(adchan->host->dev, "ch%d stop\n", adchan->no);
446 static void admac_reset_rings(struct admac_chan *adchan)
448 struct admac_data *ad = adchan->host;
450 writel_relaxed(REG_CHAN_CTL_RST_RINGS,
451 ad->base + REG_CHAN_CTL(adchan->no));
452 writel_relaxed(0, ad->base + REG_CHAN_CTL(adchan->no));
455 static void admac_start_current_tx(struct admac_chan *adchan)
457 struct admac_data *ad = adchan->host;
460 admac_reset_rings(adchan);
461 writel_relaxed(0, ad->base + REG_CHAN_CTL(ch));
463 admac_cyclic_write_one_desc(ad, ch, adchan->current_tx);
464 admac_start_chan(adchan);
465 admac_cyclic_write_desc(ad, ch, adchan->current_tx);
468 static void admac_issue_pending(struct dma_chan *chan)
470 struct admac_chan *adchan = to_admac_chan(chan);
474 spin_lock_irqsave(&adchan->lock, flags);
475 list_splice_tail_init(&adchan->submitted, &adchan->issued);
476 if (!list_empty(&adchan->issued) && !adchan->current_tx) {
477 tx = list_first_entry(&adchan->issued, struct admac_tx, node);
480 adchan->current_tx = tx;
481 adchan->nperiod_acks = 0;
482 admac_start_current_tx(adchan);
484 spin_unlock_irqrestore(&adchan->lock, flags);
487 static int admac_pause(struct dma_chan *chan)
489 struct admac_chan *adchan = to_admac_chan(chan);
491 admac_stop_chan(adchan);
496 static int admac_resume(struct dma_chan *chan)
498 struct admac_chan *adchan = to_admac_chan(chan);
500 admac_start_chan(adchan);
505 static int admac_terminate_all(struct dma_chan *chan)
507 struct admac_chan *adchan = to_admac_chan(chan);
510 spin_lock_irqsave(&adchan->lock, flags);
511 admac_stop_chan(adchan);
512 admac_reset_rings(adchan);
514 adchan->current_tx = NULL;
516 * Descriptors can only be freed after the tasklet
517 * has been killed (in admac_synchronize).
519 list_splice_tail_init(&adchan->submitted, &adchan->to_free);
520 list_splice_tail_init(&adchan->issued, &adchan->to_free);
521 spin_unlock_irqrestore(&adchan->lock, flags);
526 static void admac_synchronize(struct dma_chan *chan)
528 struct admac_chan *adchan = to_admac_chan(chan);
529 struct admac_tx *adtx, *_adtx;
533 spin_lock_irqsave(&adchan->lock, flags);
534 list_splice_tail_init(&adchan->to_free, &head);
535 spin_unlock_irqrestore(&adchan->lock, flags);
537 tasklet_kill(&adchan->tasklet);
539 list_for_each_entry_safe(adtx, _adtx, &head, node) {
540 list_del(&adtx->node);
541 admac_desc_free(&adtx->tx);
545 static int admac_alloc_chan_resources(struct dma_chan *chan)
547 struct admac_chan *adchan = to_admac_chan(chan);
548 struct admac_data *ad = adchan->host;
551 dma_cookie_init(&adchan->chan);
552 ret = admac_alloc_sram_carveout(ad, admac_chan_direction(adchan->no),
557 writel_relaxed(adchan->carveout,
558 ad->base + REG_CHAN_SRAM_CARVEOUT(adchan->no));
562 static void admac_free_chan_resources(struct dma_chan *chan)
564 struct admac_chan *adchan = to_admac_chan(chan);
566 admac_terminate_all(chan);
567 admac_synchronize(chan);
568 admac_free_sram_carveout(adchan->host, admac_chan_direction(adchan->no),
572 static struct dma_chan *admac_dma_of_xlate(struct of_phandle_args *dma_spec,
573 struct of_dma *ofdma)
575 struct admac_data *ad = (struct admac_data *) ofdma->of_dma_data;
578 if (dma_spec->args_count != 1)
581 index = dma_spec->args[0];
583 if (index >= ad->nchannels) {
584 dev_err(ad->dev, "channel index %u out of bounds\n", index);
588 return dma_get_slave_channel(&ad->channels[index].chan);
591 static int admac_drain_reports(struct admac_data *ad, int channo)
595 for (count = 0; count < 4; count++) {
596 u32 countval_hi, countval_lo, unk1, flags;
598 if (readl_relaxed(ad->base + REG_REPORT_RING(channo)) & RING_EMPTY)
601 countval_lo = readl_relaxed(ad->base + REG_REPORT_READ(channo));
602 countval_hi = readl_relaxed(ad->base + REG_REPORT_READ(channo));
603 unk1 = readl_relaxed(ad->base + REG_REPORT_READ(channo));
604 flags = readl_relaxed(ad->base + REG_REPORT_READ(channo));
606 dev_dbg(ad->dev, "ch%d report: countval=0x%llx unk1=0x%x flags=0x%x\n",
607 channo, ((u64) countval_hi) << 32 | countval_lo, unk1, flags);
613 static void admac_handle_status_err(struct admac_data *ad, int channo)
615 bool handled = false;
617 if (readl_relaxed(ad->base + REG_DESC_RING(channo)) & RING_ERR) {
618 writel_relaxed(RING_ERR, ad->base + REG_DESC_RING(channo));
619 dev_err_ratelimited(ad->dev, "ch%d descriptor ring error\n", channo);
623 if (readl_relaxed(ad->base + REG_REPORT_RING(channo)) & RING_ERR) {
624 writel_relaxed(RING_ERR, ad->base + REG_REPORT_RING(channo));
625 dev_err_ratelimited(ad->dev, "ch%d report ring error\n", channo);
629 if (unlikely(!handled)) {
630 dev_err(ad->dev, "ch%d unknown error, masking errors as cause of IRQs\n", channo);
631 admac_modify(ad, REG_CHAN_INTMASK(channo, ad->irq_index),
636 static void admac_handle_status_desc_done(struct admac_data *ad, int channo)
638 struct admac_chan *adchan = &ad->channels[channo];
642 writel_relaxed(STATUS_DESC_DONE,
643 ad->base + REG_CHAN_INTSTATUS(channo, ad->irq_index));
645 spin_lock_irqsave(&adchan->lock, flags);
646 nreports = admac_drain_reports(ad, channo);
648 if (adchan->current_tx) {
649 struct admac_tx *tx = adchan->current_tx;
651 adchan->nperiod_acks += nreports;
652 tx->reclaimed_pos += nreports * tx->period_len;
653 tx->reclaimed_pos %= 2 * tx->buf_len;
655 admac_cyclic_write_desc(ad, channo, tx);
656 tasklet_schedule(&adchan->tasklet);
658 spin_unlock_irqrestore(&adchan->lock, flags);
661 static void admac_handle_chan_int(struct admac_data *ad, int no)
663 u32 cause = readl_relaxed(ad->base + REG_CHAN_INTSTATUS(no, ad->irq_index));
665 if (cause & STATUS_ERR)
666 admac_handle_status_err(ad, no);
668 if (cause & STATUS_DESC_DONE)
669 admac_handle_status_desc_done(ad, no);
672 static irqreturn_t admac_interrupt(int irq, void *devid)
674 struct admac_data *ad = devid;
675 u32 rx_intstate, tx_intstate;
678 rx_intstate = readl_relaxed(ad->base + REG_RX_INTSTATE(ad->irq_index));
679 tx_intstate = readl_relaxed(ad->base + REG_TX_INTSTATE(ad->irq_index));
681 if (!tx_intstate && !rx_intstate)
684 for (i = 0; i < ad->nchannels; i += 2) {
686 admac_handle_chan_int(ad, i);
690 for (i = 1; i < ad->nchannels; i += 2) {
692 admac_handle_chan_int(ad, i);
699 static void admac_chan_tasklet(struct tasklet_struct *t)
701 struct admac_chan *adchan = from_tasklet(adchan, t, tasklet);
702 struct admac_tx *adtx;
703 struct dmaengine_desc_callback cb;
704 struct dmaengine_result tx_result;
707 spin_lock_irq(&adchan->lock);
708 adtx = adchan->current_tx;
709 nacks = adchan->nperiod_acks;
710 adchan->nperiod_acks = 0;
711 spin_unlock_irq(&adchan->lock);
716 tx_result.result = DMA_TRANS_NOERROR;
717 tx_result.residue = 0;
719 dmaengine_desc_get_callback(&adtx->tx, &cb);
721 dmaengine_desc_callback_invoke(&cb, &tx_result);
724 static int admac_device_config(struct dma_chan *chan,
725 struct dma_slave_config *config)
727 struct admac_chan *adchan = to_admac_chan(chan);
728 struct admac_data *ad = adchan->host;
729 bool is_tx = admac_chan_direction(adchan->no) == DMA_MEM_TO_DEV;
733 switch (is_tx ? config->dst_addr_width : config->src_addr_width) {
734 case DMA_SLAVE_BUSWIDTH_1_BYTE:
736 bus_width |= BUS_WIDTH_8BIT;
738 case DMA_SLAVE_BUSWIDTH_2_BYTES:
740 bus_width |= BUS_WIDTH_16BIT;
742 case DMA_SLAVE_BUSWIDTH_4_BYTES:
744 bus_width |= BUS_WIDTH_32BIT;
751 * We take port_window_size to be the number of words in a frame.
753 * The controller has some means of out-of-band signalling, to the peripheral,
754 * of words position in a frame. That's where the importance of this control
757 switch (is_tx ? config->dst_port_window_size : config->src_port_window_size) {
761 bus_width |= BUS_WIDTH_FRAME_2_WORDS;
764 bus_width |= BUS_WIDTH_FRAME_4_WORDS;
770 writel_relaxed(bus_width, ad->base + REG_BUS_WIDTH(adchan->no));
773 * By FIFOCTL_LIMIT we seem to set the maximal number of bytes allowed to be
774 * held in controller's per-channel FIFO. Transfers seem to be triggered
775 * around the time FIFO occupancy touches FIFOCTL_THRESHOLD.
777 * The numbers we set are more or less arbitrary.
779 writel_relaxed(FIELD_PREP(CHAN_FIFOCTL_LIMIT, 0x30 * wordsize)
780 | FIELD_PREP(CHAN_FIFOCTL_THRESHOLD, 0x18 * wordsize),
781 ad->base + REG_CHAN_FIFOCTL(adchan->no));
786 static int admac_probe(struct platform_device *pdev)
788 struct device_node *np = pdev->dev.of_node;
789 struct admac_data *ad;
790 struct dma_device *dma;
794 err = of_property_read_u32(np, "dma-channels", &nchannels);
795 if (err || nchannels > NCHANNELS_MAX) {
796 dev_err(&pdev->dev, "missing or invalid dma-channels property\n");
800 ad = devm_kzalloc(&pdev->dev, struct_size(ad, channels, nchannels), GFP_KERNEL);
804 platform_set_drvdata(pdev, ad);
805 ad->dev = &pdev->dev;
806 ad->nchannels = nchannels;
807 mutex_init(&ad->cache_alloc_lock);
810 * The controller has 4 IRQ outputs. Try them all until
811 * we find one we can use.
813 for (i = 0; i < IRQ_NOUTPUTS; i++) {
814 irq = platform_get_irq_optional(pdev, i);
822 return dev_err_probe(&pdev->dev, irq, "no usable interrupt\n");
825 ad->base = devm_platform_ioremap_resource(pdev, 0);
826 if (IS_ERR(ad->base))
827 return dev_err_probe(&pdev->dev, PTR_ERR(ad->base),
828 "unable to obtain MMIO resource\n");
830 ad->rstc = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
831 if (IS_ERR(ad->rstc))
832 return PTR_ERR(ad->rstc);
836 dma_cap_set(DMA_PRIVATE, dma->cap_mask);
837 dma_cap_set(DMA_CYCLIC, dma->cap_mask);
839 dma->dev = &pdev->dev;
840 dma->device_alloc_chan_resources = admac_alloc_chan_resources;
841 dma->device_free_chan_resources = admac_free_chan_resources;
842 dma->device_tx_status = admac_tx_status;
843 dma->device_issue_pending = admac_issue_pending;
844 dma->device_terminate_all = admac_terminate_all;
845 dma->device_synchronize = admac_synchronize;
846 dma->device_prep_dma_cyclic = admac_prep_dma_cyclic;
847 dma->device_config = admac_device_config;
848 dma->device_pause = admac_pause;
849 dma->device_resume = admac_resume;
851 dma->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
852 dma->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
853 dma->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
854 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
855 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
857 INIT_LIST_HEAD(&dma->channels);
858 for (i = 0; i < nchannels; i++) {
859 struct admac_chan *adchan = &ad->channels[i];
863 adchan->chan.device = &ad->dma;
864 spin_lock_init(&adchan->lock);
865 INIT_LIST_HEAD(&adchan->submitted);
866 INIT_LIST_HEAD(&adchan->issued);
867 INIT_LIST_HEAD(&adchan->to_free);
868 list_add_tail(&adchan->chan.device_node, &dma->channels);
869 tasklet_setup(&adchan->tasklet, admac_chan_tasklet);
872 err = reset_control_reset(ad->rstc);
874 return dev_err_probe(&pdev->dev, err,
875 "unable to trigger reset\n");
877 err = request_irq(irq, admac_interrupt, 0, dev_name(&pdev->dev), ad);
879 dev_err_probe(&pdev->dev, err,
880 "unable to register interrupt\n");
884 err = dma_async_device_register(&ad->dma);
886 dev_err_probe(&pdev->dev, err, "failed to register DMA device\n");
890 err = of_dma_controller_register(pdev->dev.of_node, admac_dma_of_xlate, ad);
892 dma_async_device_unregister(&ad->dma);
893 dev_err_probe(&pdev->dev, err, "failed to register with OF\n");
897 ad->txcache.size = readl_relaxed(ad->base + REG_TX_SRAM_SIZE);
898 ad->rxcache.size = readl_relaxed(ad->base + REG_RX_SRAM_SIZE);
900 dev_info(&pdev->dev, "Audio DMA Controller\n");
901 dev_info(&pdev->dev, "imprint %x TX cache %u RX cache %u\n",
902 readl_relaxed(ad->base + REG_IMPRINT), ad->txcache.size, ad->rxcache.size);
907 free_irq(ad->irq, ad);
909 reset_control_rearm(ad->rstc);
913 static int admac_remove(struct platform_device *pdev)
915 struct admac_data *ad = platform_get_drvdata(pdev);
917 of_dma_controller_free(pdev->dev.of_node);
918 dma_async_device_unregister(&ad->dma);
919 free_irq(ad->irq, ad);
920 reset_control_rearm(ad->rstc);
925 static const struct of_device_id admac_of_match[] = {
926 { .compatible = "apple,admac", },
929 MODULE_DEVICE_TABLE(of, admac_of_match);
931 static struct platform_driver apple_admac_driver = {
933 .name = "apple-admac",
934 .of_match_table = admac_of_match,
936 .probe = admac_probe,
937 .remove = admac_remove,
939 module_platform_driver(apple_admac_driver);
942 MODULE_DESCRIPTION("Driver for Audio DMA Controller (ADMAC) on Apple SoCs");
943 MODULE_LICENSE("GPL");