1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * acpi-cpufreq.c - ACPI Processor P-States Driver
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/sched.h>
18 #include <linux/cpufreq.h>
19 #include <linux/compiler.h>
20 #include <linux/dmi.h>
21 #include <linux/slab.h>
22 #include <linux/string_helpers.h>
24 #include <linux/acpi.h>
26 #include <linux/delay.h>
27 #include <linux/uaccess.h>
29 #include <acpi/processor.h>
30 #include <acpi/cppc_acpi.h>
33 #include <asm/processor.h>
34 #include <asm/cpufeature.h>
35 #include <asm/cpu_device_id.h>
37 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
38 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
39 MODULE_LICENSE("GPL");
42 UNDEFINED_CAPABLE = 0,
43 SYSTEM_INTEL_MSR_CAPABLE,
44 SYSTEM_AMD_MSR_CAPABLE,
48 #define INTEL_MSR_RANGE (0xffff)
49 #define AMD_MSR_RANGE (0x7)
50 #define HYGON_MSR_RANGE (0x7)
52 #define MSR_K7_HWCR_CPB_DIS (1ULL << 25)
54 struct acpi_cpufreq_data {
56 unsigned int cpu_feature;
57 unsigned int acpi_perf_cpu;
58 cpumask_var_t freqdomain_cpus;
59 void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
60 u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
63 /* acpi_perf_data is a pointer to percpu data. */
64 static struct acpi_processor_performance __percpu *acpi_perf_data;
66 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
68 return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
71 static struct cpufreq_driver acpi_cpufreq_driver;
73 static unsigned int acpi_pstate_strict;
75 static bool boost_state(unsigned int cpu)
80 switch (boot_cpu_data.x86_vendor) {
81 case X86_VENDOR_INTEL:
82 case X86_VENDOR_CENTAUR:
83 case X86_VENDOR_ZHAOXIN:
84 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
85 msr = lo | ((u64)hi << 32);
86 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
87 case X86_VENDOR_HYGON:
89 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
90 msr = lo | ((u64)hi << 32);
91 return !(msr & MSR_K7_HWCR_CPB_DIS);
96 static int boost_set_msr(bool enable)
101 switch (boot_cpu_data.x86_vendor) {
102 case X86_VENDOR_INTEL:
103 case X86_VENDOR_CENTAUR:
104 case X86_VENDOR_ZHAOXIN:
105 msr_addr = MSR_IA32_MISC_ENABLE;
106 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
108 case X86_VENDOR_HYGON:
110 msr_addr = MSR_K7_HWCR;
111 msr_mask = MSR_K7_HWCR_CPB_DIS;
117 rdmsrl(msr_addr, val);
124 wrmsrl(msr_addr, val);
128 static void boost_set_msr_each(void *p_en)
130 bool enable = (bool) p_en;
132 boost_set_msr(enable);
135 static int set_boost(struct cpufreq_policy *policy, int val)
137 on_each_cpu_mask(policy->cpus, boost_set_msr_each,
138 (void *)(long)val, 1);
139 pr_debug("CPU %*pbl: Core Boosting %s.\n",
140 cpumask_pr_args(policy->cpus), str_enabled_disabled(val));
145 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
147 struct acpi_cpufreq_data *data = policy->driver_data;
152 return cpufreq_show_cpus(data->freqdomain_cpus, buf);
155 cpufreq_freq_attr_ro(freqdomain_cpus);
157 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
158 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
162 unsigned int val = 0;
164 if (!acpi_cpufreq_driver.set_boost)
167 ret = kstrtouint(buf, 10, &val);
172 set_boost(policy, val);
178 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
180 return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
183 cpufreq_freq_attr_rw(cpb);
186 static int check_est_cpu(unsigned int cpuid)
188 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
190 return cpu_has(cpu, X86_FEATURE_EST);
193 static int check_amd_hwpstate_cpu(unsigned int cpuid)
195 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
197 return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
200 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
202 struct acpi_cpufreq_data *data = policy->driver_data;
203 struct acpi_processor_performance *perf;
206 perf = to_perf_data(data);
208 for (i = 0; i < perf->state_count; i++) {
209 if (value == perf->states[i].status)
210 return policy->freq_table[i].frequency;
215 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
217 struct acpi_cpufreq_data *data = policy->driver_data;
218 struct cpufreq_frequency_table *pos;
219 struct acpi_processor_performance *perf;
221 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
222 msr &= AMD_MSR_RANGE;
223 else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
224 msr &= HYGON_MSR_RANGE;
226 msr &= INTEL_MSR_RANGE;
228 perf = to_perf_data(data);
230 cpufreq_for_each_entry(pos, policy->freq_table)
231 if (msr == perf->states[pos->driver_data].status)
232 return pos->frequency;
233 return policy->freq_table[0].frequency;
236 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
238 struct acpi_cpufreq_data *data = policy->driver_data;
240 switch (data->cpu_feature) {
241 case SYSTEM_INTEL_MSR_CAPABLE:
242 case SYSTEM_AMD_MSR_CAPABLE:
243 return extract_msr(policy, val);
244 case SYSTEM_IO_CAPABLE:
245 return extract_io(policy, val);
251 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
253 u32 val, dummy __always_unused;
255 rdmsr(MSR_IA32_PERF_CTL, val, dummy);
259 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
263 rdmsr(MSR_IA32_PERF_CTL, lo, hi);
264 lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
265 wrmsr(MSR_IA32_PERF_CTL, lo, hi);
268 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
270 u32 val, dummy __always_unused;
272 rdmsr(MSR_AMD_PERF_CTL, val, dummy);
276 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
278 wrmsr(MSR_AMD_PERF_CTL, val, 0);
281 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
285 acpi_os_read_port(reg->address, &val, reg->bit_width);
289 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
291 acpi_os_write_port(reg->address, val, reg->bit_width);
295 struct acpi_pct_register *reg;
298 void (*write)(struct acpi_pct_register *reg, u32 val);
299 u32 (*read)(struct acpi_pct_register *reg);
303 /* Called via smp_call_function_single(), on the target CPU */
304 static void do_drv_read(void *_cmd)
306 struct drv_cmd *cmd = _cmd;
308 cmd->val = cmd->func.read(cmd->reg);
311 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
313 struct acpi_processor_performance *perf = to_perf_data(data);
314 struct drv_cmd cmd = {
315 .reg = &perf->control_register,
316 .func.read = data->cpu_freq_read,
320 err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
321 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
325 /* Called via smp_call_function_many(), on the target CPUs */
326 static void do_drv_write(void *_cmd)
328 struct drv_cmd *cmd = _cmd;
330 cmd->func.write(cmd->reg, cmd->val);
333 static void drv_write(struct acpi_cpufreq_data *data,
334 const struct cpumask *mask, u32 val)
336 struct acpi_processor_performance *perf = to_perf_data(data);
337 struct drv_cmd cmd = {
338 .reg = &perf->control_register,
340 .func.write = data->cpu_freq_write,
344 this_cpu = get_cpu();
345 if (cpumask_test_cpu(this_cpu, mask))
348 smp_call_function_many(mask, do_drv_write, &cmd, 1);
352 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
356 if (unlikely(cpumask_empty(mask)))
359 val = drv_read(data, mask);
361 pr_debug("%s = %u\n", __func__, val);
366 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
368 struct acpi_cpufreq_data *data;
369 struct cpufreq_policy *policy;
371 unsigned int cached_freq;
373 pr_debug("%s (%d)\n", __func__, cpu);
375 policy = cpufreq_cpu_get_raw(cpu);
376 if (unlikely(!policy))
379 data = policy->driver_data;
380 if (unlikely(!data || !policy->freq_table))
383 cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
384 freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
385 if (freq != cached_freq) {
387 * The dreaded BIOS frequency change behind our back.
388 * Force set the frequency on next target call.
393 pr_debug("cur freq = %u\n", freq);
398 static unsigned int check_freqs(struct cpufreq_policy *policy,
399 const struct cpumask *mask, unsigned int freq)
401 struct acpi_cpufreq_data *data = policy->driver_data;
402 unsigned int cur_freq;
405 for (i = 0; i < 100; i++) {
406 cur_freq = extract_freq(policy, get_cur_val(mask, data));
407 if (cur_freq == freq)
414 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
417 struct acpi_cpufreq_data *data = policy->driver_data;
418 struct acpi_processor_performance *perf;
419 const struct cpumask *mask;
420 unsigned int next_perf_state = 0; /* Index into perf table */
423 if (unlikely(!data)) {
427 perf = to_perf_data(data);
428 next_perf_state = policy->freq_table[index].driver_data;
429 if (perf->state == next_perf_state) {
430 if (unlikely(data->resume)) {
431 pr_debug("Called after resume, resetting to P%d\n",
435 pr_debug("Already at target state (P%d)\n",
442 * The core won't allow CPUs to go away until the governor has been
443 * stopped, so we can rely on the stability of policy->cpus.
445 mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
446 cpumask_of(policy->cpu) : policy->cpus;
448 drv_write(data, mask, perf->states[next_perf_state].control);
450 if (acpi_pstate_strict) {
451 if (!check_freqs(policy, mask,
452 policy->freq_table[index].frequency)) {
453 pr_debug("%s (%d)\n", __func__, policy->cpu);
459 perf->state = next_perf_state;
464 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
465 unsigned int target_freq)
467 struct acpi_cpufreq_data *data = policy->driver_data;
468 struct acpi_processor_performance *perf;
469 struct cpufreq_frequency_table *entry;
470 unsigned int next_perf_state, next_freq, index;
473 * Find the closest frequency above target_freq.
475 if (policy->cached_target_freq == target_freq)
476 index = policy->cached_resolved_idx;
478 index = cpufreq_table_find_index_dl(policy, target_freq,
481 entry = &policy->freq_table[index];
482 next_freq = entry->frequency;
483 next_perf_state = entry->driver_data;
485 perf = to_perf_data(data);
486 if (perf->state == next_perf_state) {
487 if (unlikely(data->resume))
493 data->cpu_freq_write(&perf->control_register,
494 perf->states[next_perf_state].control);
495 perf->state = next_perf_state;
500 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
502 struct acpi_processor_performance *perf;
504 perf = to_perf_data(data);
506 /* search the closest match to cpu_khz */
509 unsigned long freqn = perf->states[0].core_frequency * 1000;
511 for (i = 0; i < (perf->state_count-1); i++) {
513 freqn = perf->states[i+1].core_frequency * 1000;
514 if ((2 * cpu_khz) > (freqn + freq)) {
519 perf->state = perf->state_count-1;
522 /* assume CPU is at P0... */
524 return perf->states[0].core_frequency * 1000;
528 static void free_acpi_perf_data(void)
532 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
533 for_each_possible_cpu(i)
534 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
536 free_percpu(acpi_perf_data);
539 static int cpufreq_boost_down_prep(unsigned int cpu)
542 * Clear the boost-disable bit on the CPU_DOWN path so that
543 * this cpu cannot block the remaining ones from boosting.
545 return boost_set_msr(1);
549 * acpi_cpufreq_early_init - initialize ACPI P-States library
551 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
552 * in order to determine correct frequency and voltage pairings. We can
553 * do _PDC and _PSD and find out the processor dependency for the
554 * actual init that will happen later...
556 static int __init acpi_cpufreq_early_init(void)
559 pr_debug("%s\n", __func__);
561 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
562 if (!acpi_perf_data) {
563 pr_debug("Memory allocation error for acpi_perf_data.\n");
566 for_each_possible_cpu(i) {
567 if (!zalloc_cpumask_var_node(
568 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
569 GFP_KERNEL, cpu_to_node(i))) {
571 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
572 free_acpi_perf_data();
577 /* Do initialization in ACPI core */
578 acpi_processor_preregister_performance(acpi_perf_data);
584 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
585 * or do it in BIOS firmware and won't inform about it to OS. If not
586 * detected, this has a side effect of making CPU run at a different speed
587 * than OS intended it to run at. Detect it and handle it cleanly.
589 static int bios_with_sw_any_bug;
591 static int sw_any_bug_found(const struct dmi_system_id *d)
593 bios_with_sw_any_bug = 1;
597 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
599 .callback = sw_any_bug_found,
600 .ident = "Supermicro Server X6DLP",
602 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
603 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
604 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
610 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
612 /* Intel Xeon Processor 7100 Series Specification Update
613 * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
614 * AL30: A Machine Check Exception (MCE) Occurring during an
615 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
616 * Both Processor Cores to Lock Up. */
617 if (c->x86_vendor == X86_VENDOR_INTEL) {
618 if ((c->x86 == 15) &&
619 (c->x86_model == 6) &&
620 (c->x86_stepping == 8)) {
621 pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
629 #ifdef CONFIG_ACPI_CPPC_LIB
630 static u64 get_max_boost_ratio(unsigned int cpu)
632 struct cppc_perf_caps perf_caps;
633 u64 highest_perf, nominal_perf;
636 if (acpi_pstate_strict)
639 ret = cppc_get_perf_caps(cpu, &perf_caps);
641 pr_debug("CPU%d: Unable to get performance capabilities (%d)\n",
646 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
647 highest_perf = amd_get_highest_perf();
649 highest_perf = perf_caps.highest_perf;
651 nominal_perf = perf_caps.nominal_perf;
653 if (!highest_perf || !nominal_perf) {
654 pr_debug("CPU%d: highest or nominal performance missing\n", cpu);
658 if (highest_perf < nominal_perf) {
659 pr_debug("CPU%d: nominal performance above highest\n", cpu);
663 return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf);
666 static inline u64 get_max_boost_ratio(unsigned int cpu) { return 0; }
669 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
671 struct cpufreq_frequency_table *freq_table;
672 struct acpi_processor_performance *perf;
673 struct acpi_cpufreq_data *data;
674 unsigned int cpu = policy->cpu;
675 struct cpuinfo_x86 *c = &cpu_data(cpu);
676 unsigned int valid_states = 0;
677 unsigned int result = 0;
681 static int blacklisted;
684 pr_debug("%s\n", __func__);
689 blacklisted = acpi_cpufreq_blacklist(c);
694 data = kzalloc(sizeof(*data), GFP_KERNEL);
698 if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
703 perf = per_cpu_ptr(acpi_perf_data, cpu);
704 data->acpi_perf_cpu = cpu;
705 policy->driver_data = data;
707 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
708 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
710 result = acpi_processor_register_performance(perf, cpu);
714 policy->shared_type = perf->shared_type;
717 * Will let policy->cpus know about dependency only when software
718 * coordination is required.
720 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
721 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
722 cpumask_copy(policy->cpus, perf->shared_cpu_map);
724 cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
727 dmi_check_system(sw_any_bug_dmi_table);
728 if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
729 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
730 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
733 if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
734 !acpi_pstate_strict) {
735 cpumask_clear(policy->cpus);
736 cpumask_set_cpu(cpu, policy->cpus);
737 cpumask_copy(data->freqdomain_cpus,
738 topology_sibling_cpumask(cpu));
739 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
740 pr_info_once("overriding BIOS provided _PSD data\n");
744 /* capability check */
745 if (perf->state_count <= 1) {
746 pr_debug("No P-States\n");
751 if (perf->control_register.space_id != perf->status_register.space_id) {
756 switch (perf->control_register.space_id) {
757 case ACPI_ADR_SPACE_SYSTEM_IO:
758 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
759 boot_cpu_data.x86 == 0xf) {
760 pr_debug("AMD K8 systems must use native drivers.\n");
764 pr_debug("SYSTEM IO addr space\n");
765 data->cpu_feature = SYSTEM_IO_CAPABLE;
766 data->cpu_freq_read = cpu_freq_read_io;
767 data->cpu_freq_write = cpu_freq_write_io;
769 case ACPI_ADR_SPACE_FIXED_HARDWARE:
770 pr_debug("HARDWARE addr space\n");
771 if (check_est_cpu(cpu)) {
772 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
773 data->cpu_freq_read = cpu_freq_read_intel;
774 data->cpu_freq_write = cpu_freq_write_intel;
777 if (check_amd_hwpstate_cpu(cpu)) {
778 data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
779 data->cpu_freq_read = cpu_freq_read_amd;
780 data->cpu_freq_write = cpu_freq_write_amd;
786 pr_debug("Unknown addr space %d\n",
787 (u32) (perf->control_register.space_id));
792 freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
799 /* detect transition latency */
800 policy->cpuinfo.transition_latency = 0;
801 for (i = 0; i < perf->state_count; i++) {
802 if ((perf->states[i].transition_latency * 1000) >
803 policy->cpuinfo.transition_latency)
804 policy->cpuinfo.transition_latency =
805 perf->states[i].transition_latency * 1000;
808 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
809 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
810 policy->cpuinfo.transition_latency > 20 * 1000) {
811 policy->cpuinfo.transition_latency = 20 * 1000;
812 pr_info_once("P-state transition latency capped at 20 uS\n");
816 for (i = 0; i < perf->state_count; i++) {
817 if (i > 0 && perf->states[i].core_frequency >=
818 freq_table[valid_states-1].frequency / 1000)
821 freq_table[valid_states].driver_data = i;
822 freq_table[valid_states].frequency =
823 perf->states[i].core_frequency * 1000;
826 freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
828 max_boost_ratio = get_max_boost_ratio(cpu);
829 if (max_boost_ratio) {
830 unsigned int freq = freq_table[0].frequency;
833 * Because the loop above sorts the freq_table entries in the
834 * descending order, freq is the maximum frequency in the table.
835 * Assume that it corresponds to the CPPC nominal frequency and
836 * use it to set cpuinfo.max_freq.
838 policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT;
841 * If the maximum "boost" frequency is unknown, ask the arch
842 * scale-invariance code to use the "nominal" performance for
843 * CPU utilization scaling so as to prevent the schedutil
844 * governor from selecting inadequate CPU frequencies.
846 arch_set_max_freq_ratio(true);
849 policy->freq_table = freq_table;
852 switch (perf->control_register.space_id) {
853 case ACPI_ADR_SPACE_SYSTEM_IO:
855 * The core will not set policy->cur, because
856 * cpufreq_driver->get is NULL, so we need to set it here.
857 * However, we have to guess it, because the current speed is
858 * unknown and not detectable via IO ports.
860 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
862 case ACPI_ADR_SPACE_FIXED_HARDWARE:
863 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
869 /* notify BIOS that we exist */
870 acpi_processor_notify_smm(THIS_MODULE);
872 pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
873 for (i = 0; i < perf->state_count; i++)
874 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n",
875 (i == perf->state ? '*' : ' '), i,
876 (u32) perf->states[i].core_frequency,
877 (u32) perf->states[i].power,
878 (u32) perf->states[i].transition_latency);
881 * the first call to ->target() should result in us actually
882 * writing something to the appropriate registers.
886 policy->fast_switch_possible = !acpi_pstate_strict &&
887 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
889 if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency)
890 pr_warn(FW_WARN "P-state 0 is not max freq\n");
892 if (acpi_cpufreq_driver.set_boost)
893 set_boost(policy, acpi_cpufreq_driver.boost_enabled);
898 acpi_processor_unregister_performance(cpu);
900 free_cpumask_var(data->freqdomain_cpus);
903 policy->driver_data = NULL;
908 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
910 struct acpi_cpufreq_data *data = policy->driver_data;
912 pr_debug("%s\n", __func__);
914 cpufreq_boost_down_prep(policy->cpu);
915 policy->fast_switch_possible = false;
916 policy->driver_data = NULL;
917 acpi_processor_unregister_performance(data->acpi_perf_cpu);
918 free_cpumask_var(data->freqdomain_cpus);
919 kfree(policy->freq_table);
925 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
927 struct acpi_cpufreq_data *data = policy->driver_data;
929 pr_debug("%s\n", __func__);
936 static struct freq_attr *acpi_cpufreq_attr[] = {
937 &cpufreq_freq_attr_scaling_available_freqs,
939 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
945 static struct cpufreq_driver acpi_cpufreq_driver = {
946 .verify = cpufreq_generic_frequency_table_verify,
947 .target_index = acpi_cpufreq_target,
948 .fast_switch = acpi_cpufreq_fast_switch,
949 .bios_limit = acpi_processor_get_bios_limit,
950 .init = acpi_cpufreq_cpu_init,
951 .exit = acpi_cpufreq_cpu_exit,
952 .resume = acpi_cpufreq_resume,
953 .name = "acpi-cpufreq",
954 .attr = acpi_cpufreq_attr,
957 static void __init acpi_cpufreq_boost_init(void)
959 if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
960 pr_debug("Boost capabilities not present in the processor\n");
964 acpi_cpufreq_driver.set_boost = set_boost;
965 acpi_cpufreq_driver.boost_enabled = boost_state(0);
968 static int __init acpi_cpufreq_init(void)
975 /* don't keep reloading if cpufreq_driver exists */
976 if (cpufreq_get_current_driver())
979 pr_debug("%s\n", __func__);
981 ret = acpi_cpufreq_early_init();
985 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
986 /* this is a sysfs file with a strange name and an even stranger
987 * semantic - per CPU instantiation, but system global effect.
988 * Lets enable it only on AMD CPUs for compatibility reasons and
989 * only if configured. This is considered legacy code, which
990 * will probably be removed at some point in the future.
992 if (!check_amd_hwpstate_cpu(0)) {
993 struct freq_attr **attr;
995 pr_debug("CPB unsupported, do not expose it\n");
997 for (attr = acpi_cpufreq_attr; *attr; attr++)
1004 acpi_cpufreq_boost_init();
1006 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1008 free_acpi_perf_data();
1013 static void __exit acpi_cpufreq_exit(void)
1015 pr_debug("%s\n", __func__);
1017 cpufreq_unregister_driver(&acpi_cpufreq_driver);
1019 free_acpi_perf_data();
1022 module_param(acpi_pstate_strict, uint, 0644);
1023 MODULE_PARM_DESC(acpi_pstate_strict,
1024 "value 0 or non-zero. non-zero -> strict ACPI checks are "
1025 "performed during frequency changes.");
1027 late_initcall(acpi_cpufreq_init);
1028 module_exit(acpi_cpufreq_exit);
1030 static const struct x86_cpu_id __maybe_unused acpi_cpufreq_ids[] = {
1031 X86_MATCH_FEATURE(X86_FEATURE_ACPI, NULL),
1032 X86_MATCH_FEATURE(X86_FEATURE_HW_PSTATE, NULL),
1035 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1037 static const struct acpi_device_id __maybe_unused processor_device_ids[] = {
1038 {ACPI_PROCESSOR_OBJECT_HID, },
1039 {ACPI_PROCESSOR_DEVICE_HID, },
1042 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1044 MODULE_ALIAS("acpi");