1 // SPDX-License-Identifier: GPL-2.0
3 * Test cases for SL[AOU]B/page initialization at alloc/free time.
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/init.h>
8 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/string.h>
13 #include <linux/vmalloc.h>
15 #define GARBAGE_INT (0x09A7BA9E)
16 #define GARBAGE_BYTE (0x9E)
18 #define REPORT_FAILURES_IN_FN() \
21 pr_info("%s failed %d out of %d times\n", \
22 __func__, failures, num_tests); \
24 pr_info("all %d tests in %s passed\n", \
25 num_tests, __func__); \
28 /* Calculate the number of uninitialized bytes in the buffer. */
29 static int __init count_nonzero_bytes(void *ptr, size_t size)
32 unsigned char *p = (unsigned char *)ptr;
34 for (i = 0; i < size; i++)
40 /* Fill a buffer with garbage, skipping |skip| first bytes. */
41 static void __init fill_with_garbage_skip(void *ptr, size_t size, size_t skip)
43 unsigned int *p = (unsigned int *)ptr;
50 while (size >= sizeof(*p)) {
56 memset(&p[i], GARBAGE_BYTE, size);
59 static void __init fill_with_garbage(void *ptr, size_t size)
61 fill_with_garbage_skip(ptr, size, 0);
64 static int __init do_alloc_pages_order(int order, int *total_failures)
68 size_t size = PAGE_SIZE << order;
70 page = alloc_pages(GFP_KERNEL, order);
71 buf = page_address(page);
72 fill_with_garbage(buf, size);
73 __free_pages(page, order);
75 page = alloc_pages(GFP_KERNEL, order);
76 buf = page_address(page);
77 if (count_nonzero_bytes(buf, size))
79 fill_with_garbage(buf, size);
80 __free_pages(page, order);
84 /* Test the page allocator by calling alloc_pages with different orders. */
85 static int __init test_pages(int *total_failures)
87 int failures = 0, num_tests = 0;
90 for (i = 0; i < 10; i++)
91 num_tests += do_alloc_pages_order(i, &failures);
93 REPORT_FAILURES_IN_FN();
94 *total_failures += failures;
98 /* Test kmalloc() with given parameters. */
99 static int __init do_kmalloc_size(size_t size, int *total_failures)
103 buf = kmalloc(size, GFP_KERNEL);
104 fill_with_garbage(buf, size);
107 buf = kmalloc(size, GFP_KERNEL);
108 if (count_nonzero_bytes(buf, size))
110 fill_with_garbage(buf, size);
115 /* Test vmalloc() with given parameters. */
116 static int __init do_vmalloc_size(size_t size, int *total_failures)
121 fill_with_garbage(buf, size);
125 if (count_nonzero_bytes(buf, size))
127 fill_with_garbage(buf, size);
132 /* Test kmalloc()/vmalloc() by allocating objects of different sizes. */
133 static int __init test_kvmalloc(int *total_failures)
135 int failures = 0, num_tests = 0;
138 for (i = 0; i < 20; i++) {
140 num_tests += do_kmalloc_size(size, &failures);
141 num_tests += do_vmalloc_size(size, &failures);
144 REPORT_FAILURES_IN_FN();
145 *total_failures += failures;
149 #define CTOR_BYTES (sizeof(unsigned int))
150 #define CTOR_PATTERN (0x41414141)
151 /* Initialize the first 4 bytes of the object. */
152 static void test_ctor(void *obj)
154 *(unsigned int *)obj = CTOR_PATTERN;
158 * Check the invariants for the buffer allocated from a slab cache.
159 * If the cache has a test constructor, the first 4 bytes of the object must
160 * always remain equal to CTOR_PATTERN.
161 * If the cache isn't an RCU-typesafe one, or if the allocation is done with
162 * __GFP_ZERO, then the object contents must be zeroed after allocation.
163 * If the cache is an RCU-typesafe one, the object contents must never be
164 * zeroed after the first use. This is checked by memcmp() in
165 * do_kmem_cache_size().
167 static bool __init check_buf(void *buf, int size, bool want_ctor,
168 bool want_rcu, bool want_zero)
173 bytes = count_nonzero_bytes(buf, size);
174 WARN_ON(want_ctor && want_zero);
178 if (*(unsigned int *)buf != CTOR_PATTERN)
188 * Test kmem_cache with given parameters:
189 * want_ctor - use a constructor;
190 * want_rcu - use SLAB_TYPESAFE_BY_RCU;
191 * want_zero - use __GFP_ZERO.
193 static int __init do_kmem_cache_size(size_t size, bool want_ctor,
194 bool want_rcu, bool want_zero,
197 struct kmem_cache *c;
200 gfp_t alloc_mask = GFP_KERNEL | (want_zero ? __GFP_ZERO : 0);
201 void *buf, *buf_copy;
203 c = kmem_cache_create("test_cache", size, 1,
204 want_rcu ? SLAB_TYPESAFE_BY_RCU : 0,
205 want_ctor ? test_ctor : NULL);
206 for (iter = 0; iter < 10; iter++) {
207 buf = kmem_cache_alloc(c, alloc_mask);
208 /* Check that buf is zeroed, if it must be. */
209 fail = check_buf(buf, size, want_ctor, want_rcu, want_zero);
210 fill_with_garbage_skip(buf, size, want_ctor ? CTOR_BYTES : 0);
212 * If this is an RCU cache, use a critical section to ensure we
213 * can touch objects after they're freed.
218 * Copy the buffer to check that it's not wiped on
221 buf_copy = kmalloc(size, GFP_KERNEL);
223 memcpy(buf_copy, buf, size);
225 kmem_cache_free(c, buf);
228 * Check that |buf| is intact after kmem_cache_free().
229 * |want_zero| is false, because we wrote garbage to
230 * the buffer already.
232 fail |= check_buf(buf, size, want_ctor, want_rcu,
235 fail |= (bool)memcmp(buf, buf_copy, size);
241 kmem_cache_destroy(c);
243 *total_failures += fail;
248 * Check that the data written to an RCU-allocated object survives
251 static int __init do_kmem_cache_rcu_persistent(int size, int *total_failures)
253 struct kmem_cache *c;
254 void *buf, *buf_contents, *saved_ptr;
256 int i, iter, maxiter = 1024;
259 c = kmem_cache_create("test_cache", size, size, SLAB_TYPESAFE_BY_RCU,
261 buf = kmem_cache_alloc(c, GFP_KERNEL);
263 fill_with_garbage(buf, size);
264 buf_contents = kmalloc(size, GFP_KERNEL);
267 used_objects = kmalloc_array(maxiter, sizeof(void *), GFP_KERNEL);
272 memcpy(buf_contents, buf, size);
273 kmem_cache_free(c, buf);
275 * Run for a fixed number of iterations. If we never hit saved_ptr,
276 * assume the test passes.
278 for (iter = 0; iter < maxiter; iter++) {
279 buf = kmem_cache_alloc(c, GFP_KERNEL);
280 used_objects[iter] = buf;
281 if (buf == saved_ptr) {
282 fail = memcmp(buf_contents, buf, size);
283 for (i = 0; i <= iter; i++)
284 kmem_cache_free(c, used_objects[i]);
290 kmem_cache_destroy(c);
294 *total_failures += fail;
299 * Test kmem_cache allocation by creating caches of different sizes, with and
300 * without constructors, with and without SLAB_TYPESAFE_BY_RCU.
302 static int __init test_kmemcache(int *total_failures)
304 int failures = 0, num_tests = 0;
306 bool ctor, rcu, zero;
308 for (i = 0; i < 10; i++) {
310 for (flags = 0; flags < 8; flags++) {
316 num_tests += do_kmem_cache_size(size, ctor, rcu, zero,
320 REPORT_FAILURES_IN_FN();
321 *total_failures += failures;
325 /* Test the behavior of SLAB_TYPESAFE_BY_RCU caches of different sizes. */
326 static int __init test_rcu_persistent(int *total_failures)
328 int failures = 0, num_tests = 0;
331 for (i = 0; i < 10; i++) {
333 num_tests += do_kmem_cache_rcu_persistent(size, &failures);
335 REPORT_FAILURES_IN_FN();
336 *total_failures += failures;
341 * Run the tests. Each test function returns the number of executed tests and
342 * updates |failures| with the number of failed tests.
344 static int __init test_meminit_init(void)
346 int failures = 0, num_tests = 0;
348 num_tests += test_pages(&failures);
349 num_tests += test_kvmalloc(&failures);
350 num_tests += test_kmemcache(&failures);
351 num_tests += test_rcu_persistent(&failures);
354 pr_info("all %d tests passed!\n", num_tests);
356 pr_info("failures: %d out of %d\n", failures, num_tests);
358 return failures ? -EINVAL : 0;
360 module_init(test_meminit_init);
362 MODULE_LICENSE("GPL");