1 /* SPDX-License-Identifier: GPL-2.0-or-later */
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Definitions for the AF_INET socket handler.
9 * Version: @(#)sock.h 1.0.4 05/13/93
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 #include <linux/sockptr.h>
63 #include <linux/indirect_call_wrapper.h>
64 #include <linux/atomic.h>
65 #include <linux/refcount.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 printk(KERN_DEBUG msg); } while (0)
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
92 /* This is the per-socket lock. The spinlock provides a synchronization
93 * between user contexts and software interrupt processing, whereas the
94 * mini-semaphore synchronizes multiple users amongst themselves.
101 * We express the mutex-alike socket_lock semantics
102 * to the lock validator by explicitly managing
103 * the slock as a lock variant (in addition to
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 struct lockdep_map dep_map;
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
119 * struct sock_common - minimal network layer representation of sockets
120 * @skc_daddr: Foreign IPv4 addr
121 * @skc_rcv_saddr: Bound local IPv4 addr
122 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123 * @skc_hash: hash value used with various protocol lookup tables
124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
125 * @skc_dport: placeholder for inet_dport/tw_dport
126 * @skc_num: placeholder for inet_num/tw_num
127 * @skc_portpair: __u32 union of @skc_dport & @skc_num
128 * @skc_family: network address family
129 * @skc_state: Connection state
130 * @skc_reuse: %SO_REUSEADDR setting
131 * @skc_reuseport: %SO_REUSEPORT setting
132 * @skc_ipv6only: socket is IPV6 only
133 * @skc_net_refcnt: socket is using net ref counting
134 * @skc_bound_dev_if: bound device index if != 0
135 * @skc_bind_node: bind hash linkage for various protocol lookup tables
136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137 * @skc_prot: protocol handlers inside a network family
138 * @skc_net: reference to the network namespace of this socket
139 * @skc_v6_daddr: IPV6 destination address
140 * @skc_v6_rcv_saddr: IPV6 source address
141 * @skc_cookie: socket's cookie value
142 * @skc_node: main hash linkage for various protocol lookup tables
143 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144 * @skc_tx_queue_mapping: tx queue number for this connection
145 * @skc_rx_queue_mapping: rx queue number for this connection
146 * @skc_flags: place holder for sk_flags
147 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149 * @skc_listener: connection request listener socket (aka rsk_listener)
150 * [union with @skc_flags]
151 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152 * [union with @skc_flags]
153 * @skc_incoming_cpu: record/match cpu processing incoming packets
154 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155 * [union with @skc_incoming_cpu]
156 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157 * [union with @skc_incoming_cpu]
158 * @skc_refcnt: reference count
160 * This is the minimal network layer representation of sockets, the header
161 * for struct sock and struct inet_timewait_sock.
164 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
165 * address on 64bit arches : cf INET_MATCH()
168 __addrpair skc_addrpair;
171 __be32 skc_rcv_saddr;
175 unsigned int skc_hash;
176 __u16 skc_u16hashes[2];
178 /* skc_dport && skc_num must be grouped as well */
180 __portpair skc_portpair;
187 unsigned short skc_family;
188 volatile unsigned char skc_state;
189 unsigned char skc_reuse:4;
190 unsigned char skc_reuseport:1;
191 unsigned char skc_ipv6only:1;
192 unsigned char skc_net_refcnt:1;
193 int skc_bound_dev_if;
195 struct hlist_node skc_bind_node;
196 struct hlist_node skc_portaddr_node;
198 struct proto *skc_prot;
199 possible_net_t skc_net;
201 #if IS_ENABLED(CONFIG_IPV6)
202 struct in6_addr skc_v6_daddr;
203 struct in6_addr skc_v6_rcv_saddr;
206 atomic64_t skc_cookie;
208 /* following fields are padding to force
209 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
210 * assuming IPV6 is enabled. We use this padding differently
211 * for different kind of 'sockets'
214 unsigned long skc_flags;
215 struct sock *skc_listener; /* request_sock */
216 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
219 * fields between dontcopy_begin/dontcopy_end
220 * are not copied in sock_copy()
223 int skc_dontcopy_begin[0];
226 struct hlist_node skc_node;
227 struct hlist_nulls_node skc_nulls_node;
229 unsigned short skc_tx_queue_mapping;
230 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
231 unsigned short skc_rx_queue_mapping;
234 int skc_incoming_cpu;
236 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
239 refcount_t skc_refcnt;
241 int skc_dontcopy_end[0];
244 u32 skc_window_clamp;
245 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
250 struct bpf_local_storage;
253 * struct sock - network layer representation of sockets
254 * @__sk_common: shared layout with inet_timewait_sock
255 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
256 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
257 * @sk_lock: synchronizer
258 * @sk_kern_sock: True if sock is using kernel lock classes
259 * @sk_rcvbuf: size of receive buffer in bytes
260 * @sk_wq: sock wait queue and async head
261 * @sk_rx_dst: receive input route used by early demux
262 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
263 * @sk_rx_dst_cookie: cookie for @sk_rx_dst
264 * @sk_dst_cache: destination cache
265 * @sk_dst_pending_confirm: need to confirm neighbour
266 * @sk_policy: flow policy
267 * @sk_receive_queue: incoming packets
268 * @sk_wmem_alloc: transmit queue bytes committed
269 * @sk_tsq_flags: TCP Small Queues flags
270 * @sk_write_queue: Packet sending queue
271 * @sk_omem_alloc: "o" is "option" or "other"
272 * @sk_wmem_queued: persistent queue size
273 * @sk_forward_alloc: space allocated forward
274 * @sk_reserved_mem: space reserved and non-reclaimable for the socket
275 * @sk_napi_id: id of the last napi context to receive data for sk
276 * @sk_ll_usec: usecs to busypoll when there is no data
277 * @sk_allocation: allocation mode
278 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
279 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
280 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
281 * @sk_sndbuf: size of send buffer in bytes
282 * @__sk_flags_offset: empty field used to determine location of bitfield
283 * @sk_padding: unused element for alignment
284 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
285 * @sk_no_check_rx: allow zero checksum in RX packets
286 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
287 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
288 * @sk_route_forced_caps: static, forced route capabilities
289 * (set in tcp_init_sock())
290 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
291 * @sk_gso_max_size: Maximum GSO segment size to build
292 * @sk_gso_max_segs: Maximum number of GSO segments
293 * @sk_pacing_shift: scaling factor for TCP Small Queues
294 * @sk_lingertime: %SO_LINGER l_linger setting
295 * @sk_backlog: always used with the per-socket spinlock held
296 * @sk_callback_lock: used with the callbacks in the end of this struct
297 * @sk_error_queue: rarely used
298 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
299 * IPV6_ADDRFORM for instance)
300 * @sk_err: last error
301 * @sk_err_soft: errors that don't cause failure but are the cause of a
302 * persistent failure not just 'timed out'
303 * @sk_drops: raw/udp drops counter
304 * @sk_ack_backlog: current listen backlog
305 * @sk_max_ack_backlog: listen backlog set in listen()
306 * @sk_uid: user id of owner
307 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
308 * @sk_busy_poll_budget: napi processing budget when busypolling
309 * @sk_priority: %SO_PRIORITY setting
310 * @sk_type: socket type (%SOCK_STREAM, etc)
311 * @sk_protocol: which protocol this socket belongs in this network family
312 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
313 * @sk_peer_pid: &struct pid for this socket's peer
314 * @sk_peer_cred: %SO_PEERCRED setting
315 * @sk_rcvlowat: %SO_RCVLOWAT setting
316 * @sk_rcvtimeo: %SO_RCVTIMEO setting
317 * @sk_sndtimeo: %SO_SNDTIMEO setting
318 * @sk_txhash: computed flow hash for use on transmit
319 * @sk_filter: socket filtering instructions
320 * @sk_timer: sock cleanup timer
321 * @sk_stamp: time stamp of last packet received
322 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
323 * @sk_tsflags: SO_TIMESTAMPING flags
324 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
326 * @sk_tskey: counter to disambiguate concurrent tstamp requests
327 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
328 * @sk_socket: Identd and reporting IO signals
329 * @sk_user_data: RPC layer private data
330 * @sk_frag: cached page frag
331 * @sk_peek_off: current peek_offset value
332 * @sk_send_head: front of stuff to transmit
333 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
334 * @sk_security: used by security modules
335 * @sk_mark: generic packet mark
336 * @sk_cgrp_data: cgroup data for this cgroup
337 * @sk_memcg: this socket's memory cgroup association
338 * @sk_write_pending: a write to stream socket waits to start
339 * @sk_state_change: callback to indicate change in the state of the sock
340 * @sk_data_ready: callback to indicate there is data to be processed
341 * @sk_write_space: callback to indicate there is bf sending space available
342 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
343 * @sk_backlog_rcv: callback to process the backlog
344 * @sk_validate_xmit_skb: ptr to an optional validate function
345 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
346 * @sk_reuseport_cb: reuseport group container
347 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
348 * @sk_rcu: used during RCU grace period
349 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
350 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
351 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
352 * @sk_txtime_unused: unused txtime flags
356 * Now struct inet_timewait_sock also uses sock_common, so please just
357 * don't add nothing before this first member (__sk_common) --acme
359 struct sock_common __sk_common;
360 #define sk_node __sk_common.skc_node
361 #define sk_nulls_node __sk_common.skc_nulls_node
362 #define sk_refcnt __sk_common.skc_refcnt
363 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
364 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
365 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
368 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
369 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
370 #define sk_hash __sk_common.skc_hash
371 #define sk_portpair __sk_common.skc_portpair
372 #define sk_num __sk_common.skc_num
373 #define sk_dport __sk_common.skc_dport
374 #define sk_addrpair __sk_common.skc_addrpair
375 #define sk_daddr __sk_common.skc_daddr
376 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
377 #define sk_family __sk_common.skc_family
378 #define sk_state __sk_common.skc_state
379 #define sk_reuse __sk_common.skc_reuse
380 #define sk_reuseport __sk_common.skc_reuseport
381 #define sk_ipv6only __sk_common.skc_ipv6only
382 #define sk_net_refcnt __sk_common.skc_net_refcnt
383 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
384 #define sk_bind_node __sk_common.skc_bind_node
385 #define sk_prot __sk_common.skc_prot
386 #define sk_net __sk_common.skc_net
387 #define sk_v6_daddr __sk_common.skc_v6_daddr
388 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
389 #define sk_cookie __sk_common.skc_cookie
390 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
391 #define sk_flags __sk_common.skc_flags
392 #define sk_rxhash __sk_common.skc_rxhash
394 socket_lock_t sk_lock;
397 struct sk_buff_head sk_error_queue;
398 struct sk_buff_head sk_receive_queue;
400 * The backlog queue is special, it is always used with
401 * the per-socket spinlock held and requires low latency
402 * access. Therefore we special case it's implementation.
403 * Note : rmem_alloc is in this structure to fill a hole
404 * on 64bit arches, not because its logically part of
410 struct sk_buff *head;
411 struct sk_buff *tail;
413 #define sk_rmem_alloc sk_backlog.rmem_alloc
415 int sk_forward_alloc;
417 #ifdef CONFIG_NET_RX_BUSY_POLL
418 unsigned int sk_ll_usec;
419 /* ===== mostly read cache line ===== */
420 unsigned int sk_napi_id;
424 struct sk_filter __rcu *sk_filter;
426 struct socket_wq __rcu *sk_wq;
428 struct socket_wq *sk_wq_raw;
432 struct xfrm_policy __rcu *sk_policy[2];
434 struct dst_entry *sk_rx_dst;
435 int sk_rx_dst_ifindex;
436 u32 sk_rx_dst_cookie;
438 struct dst_entry __rcu *sk_dst_cache;
439 atomic_t sk_omem_alloc;
442 /* ===== cache line for TX ===== */
444 refcount_t sk_wmem_alloc;
445 unsigned long sk_tsq_flags;
447 struct sk_buff *sk_send_head;
448 struct rb_root tcp_rtx_queue;
450 struct sk_buff_head sk_write_queue;
452 int sk_write_pending;
453 __u32 sk_dst_pending_confirm;
454 u32 sk_pacing_status; /* see enum sk_pacing */
456 struct timer_list sk_timer;
459 unsigned long sk_pacing_rate; /* bytes per second */
460 unsigned long sk_max_pacing_rate;
461 struct page_frag sk_frag;
462 netdev_features_t sk_route_caps;
463 netdev_features_t sk_route_nocaps;
464 netdev_features_t sk_route_forced_caps;
466 unsigned int sk_gso_max_size;
471 * Because of non atomicity rules, all
472 * changes are protected by socket lock.
483 unsigned long sk_lingertime;
484 struct proto *sk_prot_creator;
485 rwlock_t sk_callback_lock;
489 u32 sk_max_ack_backlog;
491 #ifdef CONFIG_NET_RX_BUSY_POLL
492 u8 sk_prefer_busy_poll;
493 u16 sk_busy_poll_budget;
495 spinlock_t sk_peer_lock;
496 struct pid *sk_peer_pid;
497 const struct cred *sk_peer_cred;
501 #if BITS_PER_LONG==32
502 seqlock_t sk_stamp_seq;
511 u8 sk_txtime_deadline_mode : 1,
512 sk_txtime_report_errors : 1,
513 sk_txtime_unused : 6;
515 struct socket *sk_socket;
517 #ifdef CONFIG_SECURITY
520 struct sock_cgroup_data sk_cgrp_data;
521 struct mem_cgroup *sk_memcg;
522 void (*sk_state_change)(struct sock *sk);
523 void (*sk_data_ready)(struct sock *sk);
524 void (*sk_write_space)(struct sock *sk);
525 void (*sk_error_report)(struct sock *sk);
526 int (*sk_backlog_rcv)(struct sock *sk,
527 struct sk_buff *skb);
528 #ifdef CONFIG_SOCK_VALIDATE_XMIT
529 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
530 struct net_device *dev,
531 struct sk_buff *skb);
533 void (*sk_destruct)(struct sock *sk);
534 struct sock_reuseport __rcu *sk_reuseport_cb;
535 #ifdef CONFIG_BPF_SYSCALL
536 struct bpf_local_storage __rcu *sk_bpf_storage;
538 struct rcu_head sk_rcu;
543 SK_PACING_NEEDED = 1,
547 /* Pointer stored in sk_user_data might not be suitable for copying
548 * when cloning the socket. For instance, it can point to a reference
549 * counted object. sk_user_data bottom bit is set if pointer must not
552 #define SK_USER_DATA_NOCOPY 1UL
553 #define SK_USER_DATA_BPF 2UL /* Managed by BPF */
554 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
557 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
560 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
562 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
565 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
567 #define rcu_dereference_sk_user_data(sk) \
569 void *__tmp = rcu_dereference(__sk_user_data((sk))); \
570 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \
572 #define rcu_assign_sk_user_data(sk, ptr) \
574 uintptr_t __tmp = (uintptr_t)(ptr); \
575 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
576 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \
578 #define rcu_assign_sk_user_data_nocopy(sk, ptr) \
580 uintptr_t __tmp = (uintptr_t)(ptr); \
581 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
582 rcu_assign_pointer(__sk_user_data((sk)), \
583 __tmp | SK_USER_DATA_NOCOPY); \
587 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
588 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
589 * on a socket means that the socket will reuse everybody else's port
590 * without looking at the other's sk_reuse value.
593 #define SK_NO_REUSE 0
594 #define SK_CAN_REUSE 1
595 #define SK_FORCE_REUSE 2
597 int sk_set_peek_off(struct sock *sk, int val);
599 static inline int sk_peek_offset(struct sock *sk, int flags)
601 if (unlikely(flags & MSG_PEEK)) {
602 return READ_ONCE(sk->sk_peek_off);
608 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
610 s32 off = READ_ONCE(sk->sk_peek_off);
612 if (unlikely(off >= 0)) {
613 off = max_t(s32, off - val, 0);
614 WRITE_ONCE(sk->sk_peek_off, off);
618 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
620 sk_peek_offset_bwd(sk, -val);
624 * Hashed lists helper routines
626 static inline struct sock *sk_entry(const struct hlist_node *node)
628 return hlist_entry(node, struct sock, sk_node);
631 static inline struct sock *__sk_head(const struct hlist_head *head)
633 return hlist_entry(head->first, struct sock, sk_node);
636 static inline struct sock *sk_head(const struct hlist_head *head)
638 return hlist_empty(head) ? NULL : __sk_head(head);
641 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
643 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
646 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
648 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
651 static inline struct sock *sk_next(const struct sock *sk)
653 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
656 static inline struct sock *sk_nulls_next(const struct sock *sk)
658 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
659 hlist_nulls_entry(sk->sk_nulls_node.next,
660 struct sock, sk_nulls_node) :
664 static inline bool sk_unhashed(const struct sock *sk)
666 return hlist_unhashed(&sk->sk_node);
669 static inline bool sk_hashed(const struct sock *sk)
671 return !sk_unhashed(sk);
674 static inline void sk_node_init(struct hlist_node *node)
679 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
684 static inline void __sk_del_node(struct sock *sk)
686 __hlist_del(&sk->sk_node);
689 /* NB: equivalent to hlist_del_init_rcu */
690 static inline bool __sk_del_node_init(struct sock *sk)
694 sk_node_init(&sk->sk_node);
700 /* Grab socket reference count. This operation is valid only
701 when sk is ALREADY grabbed f.e. it is found in hash table
702 or a list and the lookup is made under lock preventing hash table
706 static __always_inline void sock_hold(struct sock *sk)
708 refcount_inc(&sk->sk_refcnt);
711 /* Ungrab socket in the context, which assumes that socket refcnt
712 cannot hit zero, f.e. it is true in context of any socketcall.
714 static __always_inline void __sock_put(struct sock *sk)
716 refcount_dec(&sk->sk_refcnt);
719 static inline bool sk_del_node_init(struct sock *sk)
721 bool rc = __sk_del_node_init(sk);
724 /* paranoid for a while -acme */
725 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
730 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
732 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
735 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
741 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
743 bool rc = __sk_nulls_del_node_init_rcu(sk);
746 /* paranoid for a while -acme */
747 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
753 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
755 hlist_add_head(&sk->sk_node, list);
758 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
761 __sk_add_node(sk, list);
764 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
767 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
768 sk->sk_family == AF_INET6)
769 hlist_add_tail_rcu(&sk->sk_node, list);
771 hlist_add_head_rcu(&sk->sk_node, list);
774 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
777 hlist_add_tail_rcu(&sk->sk_node, list);
780 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
782 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
785 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
787 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
790 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
793 __sk_nulls_add_node_rcu(sk, list);
796 static inline void __sk_del_bind_node(struct sock *sk)
798 __hlist_del(&sk->sk_bind_node);
801 static inline void sk_add_bind_node(struct sock *sk,
802 struct hlist_head *list)
804 hlist_add_head(&sk->sk_bind_node, list);
807 #define sk_for_each(__sk, list) \
808 hlist_for_each_entry(__sk, list, sk_node)
809 #define sk_for_each_rcu(__sk, list) \
810 hlist_for_each_entry_rcu(__sk, list, sk_node)
811 #define sk_nulls_for_each(__sk, node, list) \
812 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
813 #define sk_nulls_for_each_rcu(__sk, node, list) \
814 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
815 #define sk_for_each_from(__sk) \
816 hlist_for_each_entry_from(__sk, sk_node)
817 #define sk_nulls_for_each_from(__sk, node) \
818 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
819 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
820 #define sk_for_each_safe(__sk, tmp, list) \
821 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
822 #define sk_for_each_bound(__sk, list) \
823 hlist_for_each_entry(__sk, list, sk_bind_node)
826 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
827 * @tpos: the type * to use as a loop cursor.
828 * @pos: the &struct hlist_node to use as a loop cursor.
829 * @head: the head for your list.
830 * @offset: offset of hlist_node within the struct.
833 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
834 for (pos = rcu_dereference(hlist_first_rcu(head)); \
836 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
837 pos = rcu_dereference(hlist_next_rcu(pos)))
839 static inline struct user_namespace *sk_user_ns(struct sock *sk)
841 /* Careful only use this in a context where these parameters
842 * can not change and must all be valid, such as recvmsg from
845 return sk->sk_socket->file->f_cred->user_ns;
859 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
860 SOCK_DBG, /* %SO_DEBUG setting */
861 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
862 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
863 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
864 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
865 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
866 SOCK_FASYNC, /* fasync() active */
868 SOCK_ZEROCOPY, /* buffers from userspace */
869 SOCK_WIFI_STATUS, /* push wifi status to userspace */
870 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
871 * Will use last 4 bytes of packet sent from
872 * user-space instead.
874 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
875 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
876 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
878 SOCK_XDP, /* XDP is attached */
879 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
882 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
884 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
886 nsk->sk_flags = osk->sk_flags;
889 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
891 __set_bit(flag, &sk->sk_flags);
894 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
896 __clear_bit(flag, &sk->sk_flags);
899 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
903 sock_set_flag(sk, bit);
905 sock_reset_flag(sk, bit);
908 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
910 return test_bit(flag, &sk->sk_flags);
914 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
915 static inline int sk_memalloc_socks(void)
917 return static_branch_unlikely(&memalloc_socks_key);
920 void __receive_sock(struct file *file);
923 static inline int sk_memalloc_socks(void)
928 static inline void __receive_sock(struct file *file)
932 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
934 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
937 static inline void sk_acceptq_removed(struct sock *sk)
939 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
942 static inline void sk_acceptq_added(struct sock *sk)
944 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
947 /* Note: If you think the test should be:
948 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
949 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
951 static inline bool sk_acceptq_is_full(const struct sock *sk)
953 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
957 * Compute minimal free write space needed to queue new packets.
959 static inline int sk_stream_min_wspace(const struct sock *sk)
961 return READ_ONCE(sk->sk_wmem_queued) >> 1;
964 static inline int sk_stream_wspace(const struct sock *sk)
966 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
969 static inline void sk_wmem_queued_add(struct sock *sk, int val)
971 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
974 void sk_stream_write_space(struct sock *sk);
976 /* OOB backlog add */
977 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
979 /* dont let skb dst not refcounted, we are going to leave rcu lock */
982 if (!sk->sk_backlog.tail)
983 WRITE_ONCE(sk->sk_backlog.head, skb);
985 sk->sk_backlog.tail->next = skb;
987 WRITE_ONCE(sk->sk_backlog.tail, skb);
992 * Take into account size of receive queue and backlog queue
993 * Do not take into account this skb truesize,
994 * to allow even a single big packet to come.
996 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
998 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1000 return qsize > limit;
1003 /* The per-socket spinlock must be held here. */
1004 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1007 if (sk_rcvqueues_full(sk, limit))
1011 * If the skb was allocated from pfmemalloc reserves, only
1012 * allow SOCK_MEMALLOC sockets to use it as this socket is
1013 * helping free memory
1015 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1018 __sk_add_backlog(sk, skb);
1019 sk->sk_backlog.len += skb->truesize;
1023 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1025 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1027 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1028 return __sk_backlog_rcv(sk, skb);
1030 return sk->sk_backlog_rcv(sk, skb);
1033 static inline void sk_incoming_cpu_update(struct sock *sk)
1035 int cpu = raw_smp_processor_id();
1037 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1038 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1041 static inline void sock_rps_record_flow_hash(__u32 hash)
1044 struct rps_sock_flow_table *sock_flow_table;
1047 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1048 rps_record_sock_flow(sock_flow_table, hash);
1053 static inline void sock_rps_record_flow(const struct sock *sk)
1056 if (static_branch_unlikely(&rfs_needed)) {
1057 /* Reading sk->sk_rxhash might incur an expensive cache line
1060 * TCP_ESTABLISHED does cover almost all states where RFS
1061 * might be useful, and is cheaper [1] than testing :
1062 * IPv4: inet_sk(sk)->inet_daddr
1063 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1064 * OR an additional socket flag
1065 * [1] : sk_state and sk_prot are in the same cache line.
1067 if (sk->sk_state == TCP_ESTABLISHED)
1068 sock_rps_record_flow_hash(sk->sk_rxhash);
1073 static inline void sock_rps_save_rxhash(struct sock *sk,
1074 const struct sk_buff *skb)
1077 if (unlikely(sk->sk_rxhash != skb->hash))
1078 sk->sk_rxhash = skb->hash;
1082 static inline void sock_rps_reset_rxhash(struct sock *sk)
1089 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1091 release_sock(__sk); \
1092 __rc = __condition; \
1094 *(__timeo) = wait_woken(__wait, \
1095 TASK_INTERRUPTIBLE, \
1098 sched_annotate_sleep(); \
1100 __rc = __condition; \
1104 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1105 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1106 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1107 int sk_stream_error(struct sock *sk, int flags, int err);
1108 void sk_stream_kill_queues(struct sock *sk);
1109 void sk_set_memalloc(struct sock *sk);
1110 void sk_clear_memalloc(struct sock *sk);
1112 void __sk_flush_backlog(struct sock *sk);
1114 static inline bool sk_flush_backlog(struct sock *sk)
1116 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1117 __sk_flush_backlog(sk);
1123 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1125 struct request_sock_ops;
1126 struct timewait_sock_ops;
1127 struct inet_hashinfo;
1128 struct raw_hashinfo;
1129 struct smc_hashinfo;
1134 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1135 * un-modified. Special care is taken when initializing object to zero.
1137 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1139 if (offsetof(struct sock, sk_node.next) != 0)
1140 memset(sk, 0, offsetof(struct sock, sk_node.next));
1141 memset(&sk->sk_node.pprev, 0,
1142 size - offsetof(struct sock, sk_node.pprev));
1145 /* Networking protocol blocks we attach to sockets.
1146 * socket layer -> transport layer interface
1149 void (*close)(struct sock *sk,
1151 int (*pre_connect)(struct sock *sk,
1152 struct sockaddr *uaddr,
1154 int (*connect)(struct sock *sk,
1155 struct sockaddr *uaddr,
1157 int (*disconnect)(struct sock *sk, int flags);
1159 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1162 int (*ioctl)(struct sock *sk, int cmd,
1164 int (*init)(struct sock *sk);
1165 void (*destroy)(struct sock *sk);
1166 void (*shutdown)(struct sock *sk, int how);
1167 int (*setsockopt)(struct sock *sk, int level,
1168 int optname, sockptr_t optval,
1169 unsigned int optlen);
1170 int (*getsockopt)(struct sock *sk, int level,
1171 int optname, char __user *optval,
1172 int __user *option);
1173 void (*keepalive)(struct sock *sk, int valbool);
1174 #ifdef CONFIG_COMPAT
1175 int (*compat_ioctl)(struct sock *sk,
1176 unsigned int cmd, unsigned long arg);
1178 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1180 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1181 size_t len, int noblock, int flags,
1183 int (*sendpage)(struct sock *sk, struct page *page,
1184 int offset, size_t size, int flags);
1185 int (*bind)(struct sock *sk,
1186 struct sockaddr *addr, int addr_len);
1187 int (*bind_add)(struct sock *sk,
1188 struct sockaddr *addr, int addr_len);
1190 int (*backlog_rcv) (struct sock *sk,
1191 struct sk_buff *skb);
1192 bool (*bpf_bypass_getsockopt)(int level,
1195 void (*release_cb)(struct sock *sk);
1197 /* Keeping track of sk's, looking them up, and port selection methods. */
1198 int (*hash)(struct sock *sk);
1199 void (*unhash)(struct sock *sk);
1200 void (*rehash)(struct sock *sk);
1201 int (*get_port)(struct sock *sk, unsigned short snum);
1202 #ifdef CONFIG_BPF_SYSCALL
1203 int (*psock_update_sk_prot)(struct sock *sk,
1204 struct sk_psock *psock,
1208 /* Keeping track of sockets in use */
1209 #ifdef CONFIG_PROC_FS
1210 unsigned int inuse_idx;
1213 int (*forward_alloc_get)(const struct sock *sk);
1215 bool (*stream_memory_free)(const struct sock *sk, int wake);
1216 bool (*sock_is_readable)(struct sock *sk);
1217 /* Memory pressure */
1218 void (*enter_memory_pressure)(struct sock *sk);
1219 void (*leave_memory_pressure)(struct sock *sk);
1220 atomic_long_t *memory_allocated; /* Current allocated memory. */
1221 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1224 * Pressure flag: try to collapse.
1225 * Technical note: it is used by multiple contexts non atomically.
1226 * All the __sk_mem_schedule() is of this nature: accounting
1227 * is strict, actions are advisory and have some latency.
1229 unsigned long *memory_pressure;
1234 u32 sysctl_wmem_offset;
1235 u32 sysctl_rmem_offset;
1240 struct kmem_cache *slab;
1241 unsigned int obj_size;
1242 slab_flags_t slab_flags;
1243 unsigned int useroffset; /* Usercopy region offset */
1244 unsigned int usersize; /* Usercopy region size */
1246 unsigned int __percpu *orphan_count;
1248 struct request_sock_ops *rsk_prot;
1249 struct timewait_sock_ops *twsk_prot;
1252 struct inet_hashinfo *hashinfo;
1253 struct udp_table *udp_table;
1254 struct raw_hashinfo *raw_hash;
1255 struct smc_hashinfo *smc_hash;
1258 struct module *owner;
1262 struct list_head node;
1263 #ifdef SOCK_REFCNT_DEBUG
1266 int (*diag_destroy)(struct sock *sk, int err);
1267 } __randomize_layout;
1269 int proto_register(struct proto *prot, int alloc_slab);
1270 void proto_unregister(struct proto *prot);
1271 int sock_load_diag_module(int family, int protocol);
1273 #ifdef SOCK_REFCNT_DEBUG
1274 static inline void sk_refcnt_debug_inc(struct sock *sk)
1276 atomic_inc(&sk->sk_prot->socks);
1279 static inline void sk_refcnt_debug_dec(struct sock *sk)
1281 atomic_dec(&sk->sk_prot->socks);
1282 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1283 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1286 static inline void sk_refcnt_debug_release(const struct sock *sk)
1288 if (refcount_read(&sk->sk_refcnt) != 1)
1289 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1290 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1292 #else /* SOCK_REFCNT_DEBUG */
1293 #define sk_refcnt_debug_inc(sk) do { } while (0)
1294 #define sk_refcnt_debug_dec(sk) do { } while (0)
1295 #define sk_refcnt_debug_release(sk) do { } while (0)
1296 #endif /* SOCK_REFCNT_DEBUG */
1298 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1300 static inline int sk_forward_alloc_get(const struct sock *sk)
1302 if (!sk->sk_prot->forward_alloc_get)
1303 return sk->sk_forward_alloc;
1305 return sk->sk_prot->forward_alloc_get(sk);
1308 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1310 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1313 return sk->sk_prot->stream_memory_free ?
1314 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1315 tcp_stream_memory_free, sk, wake) : true;
1318 static inline bool sk_stream_memory_free(const struct sock *sk)
1320 return __sk_stream_memory_free(sk, 0);
1323 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1325 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1326 __sk_stream_memory_free(sk, wake);
1329 static inline bool sk_stream_is_writeable(const struct sock *sk)
1331 return __sk_stream_is_writeable(sk, 0);
1334 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1335 struct cgroup *ancestor)
1337 #ifdef CONFIG_SOCK_CGROUP_DATA
1338 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1345 static inline bool sk_has_memory_pressure(const struct sock *sk)
1347 return sk->sk_prot->memory_pressure != NULL;
1350 static inline bool sk_under_memory_pressure(const struct sock *sk)
1352 if (!sk->sk_prot->memory_pressure)
1355 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1356 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1359 return !!*sk->sk_prot->memory_pressure;
1363 sk_memory_allocated(const struct sock *sk)
1365 return atomic_long_read(sk->sk_prot->memory_allocated);
1369 sk_memory_allocated_add(struct sock *sk, int amt)
1371 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1375 sk_memory_allocated_sub(struct sock *sk, int amt)
1377 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1380 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1382 static inline void sk_sockets_allocated_dec(struct sock *sk)
1384 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1385 SK_ALLOC_PERCPU_COUNTER_BATCH);
1388 static inline void sk_sockets_allocated_inc(struct sock *sk)
1390 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1391 SK_ALLOC_PERCPU_COUNTER_BATCH);
1395 sk_sockets_allocated_read_positive(struct sock *sk)
1397 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1401 proto_sockets_allocated_sum_positive(struct proto *prot)
1403 return percpu_counter_sum_positive(prot->sockets_allocated);
1407 proto_memory_allocated(struct proto *prot)
1409 return atomic_long_read(prot->memory_allocated);
1413 proto_memory_pressure(struct proto *prot)
1415 if (!prot->memory_pressure)
1417 return !!*prot->memory_pressure;
1421 #ifdef CONFIG_PROC_FS
1422 /* Called with local bh disabled */
1423 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1424 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1425 int sock_inuse_get(struct net *net);
1427 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1434 /* With per-bucket locks this operation is not-atomic, so that
1435 * this version is not worse.
1437 static inline int __sk_prot_rehash(struct sock *sk)
1439 sk->sk_prot->unhash(sk);
1440 return sk->sk_prot->hash(sk);
1443 /* About 10 seconds */
1444 #define SOCK_DESTROY_TIME (10*HZ)
1446 /* Sockets 0-1023 can't be bound to unless you are superuser */
1447 #define PROT_SOCK 1024
1449 #define SHUTDOWN_MASK 3
1450 #define RCV_SHUTDOWN 1
1451 #define SEND_SHUTDOWN 2
1453 #define SOCK_BINDADDR_LOCK 4
1454 #define SOCK_BINDPORT_LOCK 8
1456 struct socket_alloc {
1457 struct socket socket;
1458 struct inode vfs_inode;
1461 static inline struct socket *SOCKET_I(struct inode *inode)
1463 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1466 static inline struct inode *SOCK_INODE(struct socket *socket)
1468 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1472 * Functions for memory accounting
1474 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1475 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1476 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1477 void __sk_mem_reclaim(struct sock *sk, int amount);
1479 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1480 * do not necessarily have 16x time more memory than 4KB ones.
1482 #define SK_MEM_QUANTUM 4096
1483 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1484 #define SK_MEM_SEND 0
1485 #define SK_MEM_RECV 1
1487 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1488 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1490 long val = sk->sk_prot->sysctl_mem[index];
1492 #if PAGE_SIZE > SK_MEM_QUANTUM
1493 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1494 #elif PAGE_SIZE < SK_MEM_QUANTUM
1495 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1500 static inline int sk_mem_pages(int amt)
1502 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1505 static inline bool sk_has_account(struct sock *sk)
1507 /* return true if protocol supports memory accounting */
1508 return !!sk->sk_prot->memory_allocated;
1511 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1513 if (!sk_has_account(sk))
1515 return size <= sk->sk_forward_alloc ||
1516 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1520 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1522 if (!sk_has_account(sk))
1524 return size <= sk->sk_forward_alloc ||
1525 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1526 skb_pfmemalloc(skb);
1529 static inline int sk_unused_reserved_mem(const struct sock *sk)
1533 if (likely(!sk->sk_reserved_mem))
1536 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1537 atomic_read(&sk->sk_rmem_alloc);
1539 return unused_mem > 0 ? unused_mem : 0;
1542 static inline void sk_mem_reclaim(struct sock *sk)
1546 if (!sk_has_account(sk))
1549 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1551 if (reclaimable >= SK_MEM_QUANTUM)
1552 __sk_mem_reclaim(sk, reclaimable);
1555 static inline void sk_mem_reclaim_final(struct sock *sk)
1557 sk->sk_reserved_mem = 0;
1561 static inline void sk_mem_reclaim_partial(struct sock *sk)
1565 if (!sk_has_account(sk))
1568 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1570 if (reclaimable > SK_MEM_QUANTUM)
1571 __sk_mem_reclaim(sk, reclaimable - 1);
1574 static inline void sk_mem_charge(struct sock *sk, int size)
1576 if (!sk_has_account(sk))
1578 sk->sk_forward_alloc -= size;
1581 /* the following macros control memory reclaiming in sk_mem_uncharge()
1583 #define SK_RECLAIM_THRESHOLD (1 << 21)
1584 #define SK_RECLAIM_CHUNK (1 << 20)
1586 static inline void sk_mem_uncharge(struct sock *sk, int size)
1590 if (!sk_has_account(sk))
1592 sk->sk_forward_alloc += size;
1593 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1595 /* Avoid a possible overflow.
1596 * TCP send queues can make this happen, if sk_mem_reclaim()
1597 * is not called and more than 2 GBytes are released at once.
1599 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1600 * no need to hold that much forward allocation anyway.
1602 if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD))
1603 __sk_mem_reclaim(sk, SK_RECLAIM_CHUNK);
1606 static inline void sock_release_ownership(struct sock *sk)
1608 if (sk->sk_lock.owned) {
1609 sk->sk_lock.owned = 0;
1611 /* The sk_lock has mutex_unlock() semantics: */
1612 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1617 * Macro so as to not evaluate some arguments when
1618 * lockdep is not enabled.
1620 * Mark both the sk_lock and the sk_lock.slock as a
1621 * per-address-family lock class.
1623 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1625 sk->sk_lock.owned = 0; \
1626 init_waitqueue_head(&sk->sk_lock.wq); \
1627 spin_lock_init(&(sk)->sk_lock.slock); \
1628 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1629 sizeof((sk)->sk_lock)); \
1630 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1632 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1635 static inline bool lockdep_sock_is_held(const struct sock *sk)
1637 return lockdep_is_held(&sk->sk_lock) ||
1638 lockdep_is_held(&sk->sk_lock.slock);
1641 void lock_sock_nested(struct sock *sk, int subclass);
1643 static inline void lock_sock(struct sock *sk)
1645 lock_sock_nested(sk, 0);
1648 void __lock_sock(struct sock *sk);
1649 void __release_sock(struct sock *sk);
1650 void release_sock(struct sock *sk);
1652 /* BH context may only use the following locking interface. */
1653 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1654 #define bh_lock_sock_nested(__sk) \
1655 spin_lock_nested(&((__sk)->sk_lock.slock), \
1656 SINGLE_DEPTH_NESTING)
1657 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1659 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1662 * lock_sock_fast - fast version of lock_sock
1665 * This version should be used for very small section, where process wont block
1666 * return false if fast path is taken:
1668 * sk_lock.slock locked, owned = 0, BH disabled
1670 * return true if slow path is taken:
1672 * sk_lock.slock unlocked, owned = 1, BH enabled
1674 static inline bool lock_sock_fast(struct sock *sk)
1676 /* The sk_lock has mutex_lock() semantics here. */
1677 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1679 return __lock_sock_fast(sk);
1682 /* fast socket lock variant for caller already holding a [different] socket lock */
1683 static inline bool lock_sock_fast_nested(struct sock *sk)
1685 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1687 return __lock_sock_fast(sk);
1691 * unlock_sock_fast - complement of lock_sock_fast
1695 * fast unlock socket for user context.
1696 * If slow mode is on, we call regular release_sock()
1698 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1699 __releases(&sk->sk_lock.slock)
1703 __release(&sk->sk_lock.slock);
1705 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1706 spin_unlock_bh(&sk->sk_lock.slock);
1710 /* Used by processes to "lock" a socket state, so that
1711 * interrupts and bottom half handlers won't change it
1712 * from under us. It essentially blocks any incoming
1713 * packets, so that we won't get any new data or any
1714 * packets that change the state of the socket.
1716 * While locked, BH processing will add new packets to
1717 * the backlog queue. This queue is processed by the
1718 * owner of the socket lock right before it is released.
1720 * Since ~2.3.5 it is also exclusive sleep lock serializing
1721 * accesses from user process context.
1724 static inline void sock_owned_by_me(const struct sock *sk)
1726 #ifdef CONFIG_LOCKDEP
1727 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1731 static inline bool sock_owned_by_user(const struct sock *sk)
1733 sock_owned_by_me(sk);
1734 return sk->sk_lock.owned;
1737 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1739 return sk->sk_lock.owned;
1742 /* no reclassification while locks are held */
1743 static inline bool sock_allow_reclassification(const struct sock *csk)
1745 struct sock *sk = (struct sock *)csk;
1747 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1750 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1751 struct proto *prot, int kern);
1752 void sk_free(struct sock *sk);
1753 void sk_destruct(struct sock *sk);
1754 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1755 void sk_free_unlock_clone(struct sock *sk);
1757 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1759 void __sock_wfree(struct sk_buff *skb);
1760 void sock_wfree(struct sk_buff *skb);
1761 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1763 void skb_orphan_partial(struct sk_buff *skb);
1764 void sock_rfree(struct sk_buff *skb);
1765 void sock_efree(struct sk_buff *skb);
1767 void sock_edemux(struct sk_buff *skb);
1768 void sock_pfree(struct sk_buff *skb);
1770 #define sock_edemux sock_efree
1773 int sock_setsockopt(struct socket *sock, int level, int op,
1774 sockptr_t optval, unsigned int optlen);
1776 int sock_getsockopt(struct socket *sock, int level, int op,
1777 char __user *optval, int __user *optlen);
1778 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1779 bool timeval, bool time32);
1780 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1781 int noblock, int *errcode);
1782 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1783 unsigned long data_len, int noblock,
1784 int *errcode, int max_page_order);
1785 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1786 void sock_kfree_s(struct sock *sk, void *mem, int size);
1787 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1788 void sk_send_sigurg(struct sock *sk);
1790 struct sockcm_cookie {
1796 static inline void sockcm_init(struct sockcm_cookie *sockc,
1797 const struct sock *sk)
1799 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1802 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1803 struct sockcm_cookie *sockc);
1804 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1805 struct sockcm_cookie *sockc);
1808 * Functions to fill in entries in struct proto_ops when a protocol
1809 * does not implement a particular function.
1811 int sock_no_bind(struct socket *, struct sockaddr *, int);
1812 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1813 int sock_no_socketpair(struct socket *, struct socket *);
1814 int sock_no_accept(struct socket *, struct socket *, int, bool);
1815 int sock_no_getname(struct socket *, struct sockaddr *, int);
1816 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1817 int sock_no_listen(struct socket *, int);
1818 int sock_no_shutdown(struct socket *, int);
1819 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1820 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1821 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1822 int sock_no_mmap(struct file *file, struct socket *sock,
1823 struct vm_area_struct *vma);
1824 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1825 size_t size, int flags);
1826 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1827 int offset, size_t size, int flags);
1830 * Functions to fill in entries in struct proto_ops when a protocol
1831 * uses the inet style.
1833 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1834 char __user *optval, int __user *optlen);
1835 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1837 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1838 sockptr_t optval, unsigned int optlen);
1840 void sk_common_release(struct sock *sk);
1843 * Default socket callbacks and setup code
1846 /* Initialise core socket variables */
1847 void sock_init_data(struct socket *sock, struct sock *sk);
1850 * Socket reference counting postulates.
1852 * * Each user of socket SHOULD hold a reference count.
1853 * * Each access point to socket (an hash table bucket, reference from a list,
1854 * running timer, skb in flight MUST hold a reference count.
1855 * * When reference count hits 0, it means it will never increase back.
1856 * * When reference count hits 0, it means that no references from
1857 * outside exist to this socket and current process on current CPU
1858 * is last user and may/should destroy this socket.
1859 * * sk_free is called from any context: process, BH, IRQ. When
1860 * it is called, socket has no references from outside -> sk_free
1861 * may release descendant resources allocated by the socket, but
1862 * to the time when it is called, socket is NOT referenced by any
1863 * hash tables, lists etc.
1864 * * Packets, delivered from outside (from network or from another process)
1865 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1866 * when they sit in queue. Otherwise, packets will leak to hole, when
1867 * socket is looked up by one cpu and unhasing is made by another CPU.
1868 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1869 * (leak to backlog). Packet socket does all the processing inside
1870 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1871 * use separate SMP lock, so that they are prone too.
1874 /* Ungrab socket and destroy it, if it was the last reference. */
1875 static inline void sock_put(struct sock *sk)
1877 if (refcount_dec_and_test(&sk->sk_refcnt))
1880 /* Generic version of sock_put(), dealing with all sockets
1881 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1883 void sock_gen_put(struct sock *sk);
1885 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1886 unsigned int trim_cap, bool refcounted);
1887 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1890 return __sk_receive_skb(sk, skb, nested, 1, true);
1893 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1895 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1896 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1898 sk->sk_tx_queue_mapping = tx_queue;
1901 #define NO_QUEUE_MAPPING USHRT_MAX
1903 static inline void sk_tx_queue_clear(struct sock *sk)
1905 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1908 static inline int sk_tx_queue_get(const struct sock *sk)
1910 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1911 return sk->sk_tx_queue_mapping;
1916 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1918 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1919 if (skb_rx_queue_recorded(skb)) {
1920 u16 rx_queue = skb_get_rx_queue(skb);
1922 if (unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
1923 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
1928 static inline void sk_rx_queue_clear(struct sock *sk)
1930 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1931 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
1935 static inline int sk_rx_queue_get(const struct sock *sk)
1937 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1939 int res = READ_ONCE(sk->sk_rx_queue_mapping);
1941 if (res != NO_QUEUE_MAPPING)
1949 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1951 sk->sk_socket = sock;
1954 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1956 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1957 return &rcu_dereference_raw(sk->sk_wq)->wait;
1959 /* Detach socket from process context.
1960 * Announce socket dead, detach it from wait queue and inode.
1961 * Note that parent inode held reference count on this struct sock,
1962 * we do not release it in this function, because protocol
1963 * probably wants some additional cleanups or even continuing
1964 * to work with this socket (TCP).
1966 static inline void sock_orphan(struct sock *sk)
1968 write_lock_bh(&sk->sk_callback_lock);
1969 sock_set_flag(sk, SOCK_DEAD);
1970 sk_set_socket(sk, NULL);
1972 write_unlock_bh(&sk->sk_callback_lock);
1975 static inline void sock_graft(struct sock *sk, struct socket *parent)
1977 WARN_ON(parent->sk);
1978 write_lock_bh(&sk->sk_callback_lock);
1979 rcu_assign_pointer(sk->sk_wq, &parent->wq);
1981 sk_set_socket(sk, parent);
1982 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1983 security_sock_graft(sk, parent);
1984 write_unlock_bh(&sk->sk_callback_lock);
1987 kuid_t sock_i_uid(struct sock *sk);
1988 unsigned long sock_i_ino(struct sock *sk);
1990 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1992 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1995 static inline u32 net_tx_rndhash(void)
1997 u32 v = prandom_u32();
2002 static inline void sk_set_txhash(struct sock *sk)
2004 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2005 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2008 static inline bool sk_rethink_txhash(struct sock *sk)
2010 if (sk->sk_txhash) {
2017 static inline struct dst_entry *
2018 __sk_dst_get(struct sock *sk)
2020 return rcu_dereference_check(sk->sk_dst_cache,
2021 lockdep_sock_is_held(sk));
2024 static inline struct dst_entry *
2025 sk_dst_get(struct sock *sk)
2027 struct dst_entry *dst;
2030 dst = rcu_dereference(sk->sk_dst_cache);
2031 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2037 static inline void __dst_negative_advice(struct sock *sk)
2039 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2041 if (dst && dst->ops->negative_advice) {
2042 ndst = dst->ops->negative_advice(dst);
2045 rcu_assign_pointer(sk->sk_dst_cache, ndst);
2046 sk_tx_queue_clear(sk);
2047 sk->sk_dst_pending_confirm = 0;
2052 static inline void dst_negative_advice(struct sock *sk)
2054 sk_rethink_txhash(sk);
2055 __dst_negative_advice(sk);
2059 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2061 struct dst_entry *old_dst;
2063 sk_tx_queue_clear(sk);
2064 sk->sk_dst_pending_confirm = 0;
2065 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2066 lockdep_sock_is_held(sk));
2067 rcu_assign_pointer(sk->sk_dst_cache, dst);
2068 dst_release(old_dst);
2072 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2074 struct dst_entry *old_dst;
2076 sk_tx_queue_clear(sk);
2077 sk->sk_dst_pending_confirm = 0;
2078 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2079 dst_release(old_dst);
2083 __sk_dst_reset(struct sock *sk)
2085 __sk_dst_set(sk, NULL);
2089 sk_dst_reset(struct sock *sk)
2091 sk_dst_set(sk, NULL);
2094 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2096 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2098 static inline void sk_dst_confirm(struct sock *sk)
2100 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2101 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2104 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2106 if (skb_get_dst_pending_confirm(skb)) {
2107 struct sock *sk = skb->sk;
2108 unsigned long now = jiffies;
2110 /* avoid dirtying neighbour */
2111 if (READ_ONCE(n->confirmed) != now)
2112 WRITE_ONCE(n->confirmed, now);
2113 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2114 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2118 bool sk_mc_loop(struct sock *sk);
2120 static inline bool sk_can_gso(const struct sock *sk)
2122 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2125 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2127 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2129 sk->sk_route_nocaps |= flags;
2130 sk->sk_route_caps &= ~flags;
2133 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2134 struct iov_iter *from, char *to,
2135 int copy, int offset)
2137 if (skb->ip_summed == CHECKSUM_NONE) {
2139 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2141 skb->csum = csum_block_add(skb->csum, csum, offset);
2142 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2143 if (!copy_from_iter_full_nocache(to, copy, from))
2145 } else if (!copy_from_iter_full(to, copy, from))
2151 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2152 struct iov_iter *from, int copy)
2154 int err, offset = skb->len;
2156 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2159 __skb_trim(skb, offset);
2164 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2165 struct sk_buff *skb,
2171 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2177 skb->data_len += copy;
2178 skb->truesize += copy;
2179 sk_wmem_queued_add(sk, copy);
2180 sk_mem_charge(sk, copy);
2185 * sk_wmem_alloc_get - returns write allocations
2188 * Return: sk_wmem_alloc minus initial offset of one
2190 static inline int sk_wmem_alloc_get(const struct sock *sk)
2192 return refcount_read(&sk->sk_wmem_alloc) - 1;
2196 * sk_rmem_alloc_get - returns read allocations
2199 * Return: sk_rmem_alloc
2201 static inline int sk_rmem_alloc_get(const struct sock *sk)
2203 return atomic_read(&sk->sk_rmem_alloc);
2207 * sk_has_allocations - check if allocations are outstanding
2210 * Return: true if socket has write or read allocations
2212 static inline bool sk_has_allocations(const struct sock *sk)
2214 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2218 * skwq_has_sleeper - check if there are any waiting processes
2219 * @wq: struct socket_wq
2221 * Return: true if socket_wq has waiting processes
2223 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2224 * barrier call. They were added due to the race found within the tcp code.
2226 * Consider following tcp code paths::
2229 * sys_select receive packet
2231 * __add_wait_queue update tp->rcv_nxt
2233 * tp->rcv_nxt check sock_def_readable
2235 * schedule rcu_read_lock();
2236 * wq = rcu_dereference(sk->sk_wq);
2237 * if (wq && waitqueue_active(&wq->wait))
2238 * wake_up_interruptible(&wq->wait)
2242 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2243 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2244 * could then endup calling schedule and sleep forever if there are no more
2245 * data on the socket.
2248 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2250 return wq && wq_has_sleeper(&wq->wait);
2254 * sock_poll_wait - place memory barrier behind the poll_wait call.
2256 * @sock: socket to wait on
2259 * See the comments in the wq_has_sleeper function.
2261 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2264 if (!poll_does_not_wait(p)) {
2265 poll_wait(filp, &sock->wq.wait, p);
2266 /* We need to be sure we are in sync with the
2267 * socket flags modification.
2269 * This memory barrier is paired in the wq_has_sleeper.
2275 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2277 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2278 u32 txhash = READ_ONCE(sk->sk_txhash);
2286 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2289 * Queue a received datagram if it will fit. Stream and sequenced
2290 * protocols can't normally use this as they need to fit buffers in
2291 * and play with them.
2293 * Inlined as it's very short and called for pretty much every
2294 * packet ever received.
2296 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2300 skb->destructor = sock_rfree;
2301 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2302 sk_mem_charge(sk, skb->truesize);
2305 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2307 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2309 skb->destructor = sock_efree;
2316 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2318 if (skb->destructor != sock_wfree) {
2325 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2326 unsigned long expires);
2328 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2330 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2332 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2333 struct sk_buff *skb, unsigned int flags,
2334 void (*destructor)(struct sock *sk,
2335 struct sk_buff *skb));
2336 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2337 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2339 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2340 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2343 * Recover an error report and clear atomically
2346 static inline int sock_error(struct sock *sk)
2350 /* Avoid an atomic operation for the common case.
2351 * This is racy since another cpu/thread can change sk_err under us.
2353 if (likely(data_race(!sk->sk_err)))
2356 err = xchg(&sk->sk_err, 0);
2360 void sk_error_report(struct sock *sk);
2362 static inline unsigned long sock_wspace(struct sock *sk)
2366 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2367 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2375 * We use sk->sk_wq_raw, from contexts knowing this
2376 * pointer is not NULL and cannot disappear/change.
2378 static inline void sk_set_bit(int nr, struct sock *sk)
2380 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2381 !sock_flag(sk, SOCK_FASYNC))
2384 set_bit(nr, &sk->sk_wq_raw->flags);
2387 static inline void sk_clear_bit(int nr, struct sock *sk)
2389 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2390 !sock_flag(sk, SOCK_FASYNC))
2393 clear_bit(nr, &sk->sk_wq_raw->flags);
2396 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2398 if (sock_flag(sk, SOCK_FASYNC)) {
2400 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2405 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2406 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2407 * Note: for send buffers, TCP works better if we can build two skbs at
2410 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2412 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2413 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2415 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2419 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2422 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2423 val = max_t(u32, val, sk_unused_reserved_mem(sk));
2425 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2429 * sk_page_frag - return an appropriate page_frag
2432 * Use the per task page_frag instead of the per socket one for
2433 * optimization when we know that we're in the normal context and owns
2434 * everything that's associated with %current.
2436 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2437 * inside other socket operations and end up recursing into sk_page_frag()
2438 * while it's already in use.
2440 * Return: a per task page_frag if context allows that,
2441 * otherwise a per socket one.
2443 static inline struct page_frag *sk_page_frag(struct sock *sk)
2445 if (gfpflags_normal_context(sk->sk_allocation))
2446 return ¤t->task_frag;
2448 return &sk->sk_frag;
2451 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2454 * Default write policy as shown to user space via poll/select/SIGIO
2456 static inline bool sock_writeable(const struct sock *sk)
2458 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2461 static inline gfp_t gfp_any(void)
2463 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2466 static inline gfp_t gfp_memcg_charge(void)
2468 return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2471 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2473 return noblock ? 0 : sk->sk_rcvtimeo;
2476 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2478 return noblock ? 0 : sk->sk_sndtimeo;
2481 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2483 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2488 /* Alas, with timeout socket operations are not restartable.
2489 * Compare this to poll().
2491 static inline int sock_intr_errno(long timeo)
2493 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2496 struct sock_skb_cb {
2500 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2501 * using skb->cb[] would keep using it directly and utilize its
2502 * alignement guarantee.
2504 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2505 sizeof(struct sock_skb_cb)))
2507 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2508 SOCK_SKB_CB_OFFSET))
2510 #define sock_skb_cb_check_size(size) \
2511 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2514 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2516 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2517 atomic_read(&sk->sk_drops) : 0;
2520 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2522 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2524 atomic_add(segs, &sk->sk_drops);
2527 static inline ktime_t sock_read_timestamp(struct sock *sk)
2529 #if BITS_PER_LONG==32
2534 seq = read_seqbegin(&sk->sk_stamp_seq);
2536 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2540 return READ_ONCE(sk->sk_stamp);
2544 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2546 #if BITS_PER_LONG==32
2547 write_seqlock(&sk->sk_stamp_seq);
2549 write_sequnlock(&sk->sk_stamp_seq);
2551 WRITE_ONCE(sk->sk_stamp, kt);
2555 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2556 struct sk_buff *skb);
2557 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2558 struct sk_buff *skb);
2561 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2563 ktime_t kt = skb->tstamp;
2564 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2567 * generate control messages if
2568 * - receive time stamping in software requested
2569 * - software time stamp available and wanted
2570 * - hardware time stamps available and wanted
2572 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2573 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2574 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2575 (hwtstamps->hwtstamp &&
2576 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2577 __sock_recv_timestamp(msg, sk, skb);
2579 sock_write_timestamp(sk, kt);
2581 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2582 __sock_recv_wifi_status(msg, sk, skb);
2585 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2586 struct sk_buff *skb);
2588 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2589 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2590 struct sk_buff *skb)
2592 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2593 (1UL << SOCK_RCVTSTAMP))
2594 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2595 SOF_TIMESTAMPING_RAW_HARDWARE)
2597 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2598 __sock_recv_ts_and_drops(msg, sk, skb);
2599 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2600 sock_write_timestamp(sk, skb->tstamp);
2601 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2602 sock_write_timestamp(sk, 0);
2605 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2608 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2609 * @sk: socket sending this packet
2610 * @tsflags: timestamping flags to use
2611 * @tx_flags: completed with instructions for time stamping
2612 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2614 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2616 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2617 __u8 *tx_flags, __u32 *tskey)
2619 if (unlikely(tsflags)) {
2620 __sock_tx_timestamp(tsflags, tx_flags);
2621 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2622 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2623 *tskey = sk->sk_tskey++;
2625 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2626 *tx_flags |= SKBTX_WIFI_STATUS;
2629 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2632 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2635 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2637 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2638 &skb_shinfo(skb)->tskey);
2642 * sk_eat_skb - Release a skb if it is no longer needed
2643 * @sk: socket to eat this skb from
2644 * @skb: socket buffer to eat
2646 * This routine must be called with interrupts disabled or with the socket
2647 * locked so that the sk_buff queue operation is ok.
2649 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2651 __skb_unlink(skb, &sk->sk_receive_queue);
2656 struct net *sock_net(const struct sock *sk)
2658 return read_pnet(&sk->sk_net);
2662 void sock_net_set(struct sock *sk, struct net *net)
2664 write_pnet(&sk->sk_net, net);
2668 skb_sk_is_prefetched(struct sk_buff *skb)
2671 return skb->destructor == sock_pfree;
2674 #endif /* CONFIG_INET */
2677 /* This helper checks if a socket is a full socket,
2678 * ie _not_ a timewait or request socket.
2680 static inline bool sk_fullsock(const struct sock *sk)
2682 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2686 sk_is_refcounted(struct sock *sk)
2688 /* Only full sockets have sk->sk_flags. */
2689 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2693 * skb_steal_sock - steal a socket from an sk_buff
2694 * @skb: sk_buff to steal the socket from
2695 * @refcounted: is set to true if the socket is reference-counted
2697 static inline struct sock *
2698 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2701 struct sock *sk = skb->sk;
2704 if (skb_sk_is_prefetched(skb))
2705 *refcounted = sk_is_refcounted(sk);
2706 skb->destructor = NULL;
2710 *refcounted = false;
2714 /* Checks if this SKB belongs to an HW offloaded socket
2715 * and whether any SW fallbacks are required based on dev.
2716 * Check decrypted mark in case skb_orphan() cleared socket.
2718 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2719 struct net_device *dev)
2721 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2722 struct sock *sk = skb->sk;
2724 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2725 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2726 #ifdef CONFIG_TLS_DEVICE
2727 } else if (unlikely(skb->decrypted)) {
2728 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2738 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2739 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2741 static inline bool sk_listener(const struct sock *sk)
2743 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2746 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2747 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2750 bool sk_ns_capable(const struct sock *sk,
2751 struct user_namespace *user_ns, int cap);
2752 bool sk_capable(const struct sock *sk, int cap);
2753 bool sk_net_capable(const struct sock *sk, int cap);
2755 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2757 /* Take into consideration the size of the struct sk_buff overhead in the
2758 * determination of these values, since that is non-constant across
2759 * platforms. This makes socket queueing behavior and performance
2760 * not depend upon such differences.
2762 #define _SK_MEM_PACKETS 256
2763 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2764 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2765 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2767 extern __u32 sysctl_wmem_max;
2768 extern __u32 sysctl_rmem_max;
2770 extern int sysctl_tstamp_allow_data;
2771 extern int sysctl_optmem_max;
2773 extern __u32 sysctl_wmem_default;
2774 extern __u32 sysctl_rmem_default;
2776 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2777 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2779 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2781 /* Does this proto have per netns sysctl_wmem ? */
2782 if (proto->sysctl_wmem_offset)
2783 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2785 return *proto->sysctl_wmem;
2788 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2790 /* Does this proto have per netns sysctl_rmem ? */
2791 if (proto->sysctl_rmem_offset)
2792 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2794 return *proto->sysctl_rmem;
2797 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2798 * Some wifi drivers need to tweak it to get more chunks.
2799 * They can use this helper from their ndo_start_xmit()
2801 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2803 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2805 WRITE_ONCE(sk->sk_pacing_shift, val);
2808 /* if a socket is bound to a device, check that the given device
2809 * index is either the same or that the socket is bound to an L3
2810 * master device and the given device index is also enslaved to
2813 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2817 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2820 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2821 if (mdif && mdif == sk->sk_bound_dev_if)
2827 void sock_def_readable(struct sock *sk);
2829 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2830 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2831 int sock_set_timestamping(struct sock *sk, int optname,
2832 struct so_timestamping timestamping);
2834 void sock_enable_timestamps(struct sock *sk);
2835 void sock_no_linger(struct sock *sk);
2836 void sock_set_keepalive(struct sock *sk);
2837 void sock_set_priority(struct sock *sk, u32 priority);
2838 void sock_set_rcvbuf(struct sock *sk, int val);
2839 void sock_set_mark(struct sock *sk, u32 val);
2840 void sock_set_reuseaddr(struct sock *sk);
2841 void sock_set_reuseport(struct sock *sk);
2842 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2844 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2846 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2847 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2848 sockptr_t optval, int optlen, bool old_timeval);
2850 static inline bool sk_is_readable(struct sock *sk)
2852 if (sk->sk_prot->sock_is_readable)
2853 return sk->sk_prot->sock_is_readable(sk);
2856 #endif /* _SOCK_H */