4 #include <linux/errno.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/prio_tree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
26 struct writeback_control;
28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
38 extern int sysctl_legacy_va_layout;
40 #define sysctl_legacy_va_layout 0
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
49 /* to align the pointer to the (next) page boundary */
50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
61 extern struct kmem_cache *vm_area_cachep;
64 extern struct rb_root nommu_region_tree;
65 extern struct rw_semaphore nommu_region_sem;
67 extern unsigned int kobjsize(const void *objp);
71 * vm_flags in vm_area_struct, see mm_types.h.
73 #define VM_READ 0x00000001 /* currently active flags */
74 #define VM_WRITE 0x00000002
75 #define VM_EXEC 0x00000004
76 #define VM_SHARED 0x00000008
78 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
79 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
80 #define VM_MAYWRITE 0x00000020
81 #define VM_MAYEXEC 0x00000040
82 #define VM_MAYSHARE 0x00000080
84 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
85 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
86 #define VM_GROWSUP 0x00000200
88 #define VM_GROWSUP 0x00000000
89 #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
91 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
92 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
94 #define VM_EXECUTABLE 0x00001000
95 #define VM_LOCKED 0x00002000
96 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
98 /* Used by sys_madvise() */
99 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
100 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
102 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
103 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
104 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
105 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
106 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
107 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
108 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
109 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
110 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
112 #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
114 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
115 #define VM_NODUMP 0x04000000 /* Do not include in the core dump */
117 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
118 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
119 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
120 #define VM_PAT 0x40000000 /* PAT reserves whole VMA at once (x86) */
121 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
123 /* Bits set in the VMA until the stack is in its final location */
124 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
126 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
127 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
130 #ifdef CONFIG_STACK_GROWSUP
131 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
133 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
136 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
137 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
138 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
139 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
140 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
143 * Special vmas that are non-mergable, non-mlock()able.
144 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
146 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
149 * mapping from the currently active vm_flags protection bits (the
150 * low four bits) to a page protection mask..
152 extern pgprot_t protection_map[16];
154 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
155 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
156 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
157 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
158 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
159 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
162 * vm_fault is filled by the the pagefault handler and passed to the vma's
163 * ->fault function. The vma's ->fault is responsible for returning a bitmask
164 * of VM_FAULT_xxx flags that give details about how the fault was handled.
166 * pgoff should be used in favour of virtual_address, if possible. If pgoff
167 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
171 unsigned int flags; /* FAULT_FLAG_xxx flags */
172 pgoff_t pgoff; /* Logical page offset based on vma */
173 void __user *virtual_address; /* Faulting virtual address */
175 struct page *page; /* ->fault handlers should return a
176 * page here, unless VM_FAULT_NOPAGE
177 * is set (which is also implied by
183 * These are the virtual MM functions - opening of an area, closing and
184 * unmapping it (needed to keep files on disk up-to-date etc), pointer
185 * to the functions called when a no-page or a wp-page exception occurs.
187 struct vm_operations_struct {
188 void (*open)(struct vm_area_struct * area);
189 void (*close)(struct vm_area_struct * area);
190 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
192 /* notification that a previously read-only page is about to become
193 * writable, if an error is returned it will cause a SIGBUS */
194 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
196 /* called by access_process_vm when get_user_pages() fails, typically
197 * for use by special VMAs that can switch between memory and hardware
199 int (*access)(struct vm_area_struct *vma, unsigned long addr,
200 void *buf, int len, int write);
203 * set_policy() op must add a reference to any non-NULL @new mempolicy
204 * to hold the policy upon return. Caller should pass NULL @new to
205 * remove a policy and fall back to surrounding context--i.e. do not
206 * install a MPOL_DEFAULT policy, nor the task or system default
209 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
212 * get_policy() op must add reference [mpol_get()] to any policy at
213 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
214 * in mm/mempolicy.c will do this automatically.
215 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
216 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
217 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
218 * must return NULL--i.e., do not "fallback" to task or system default
221 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
223 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
224 const nodemask_t *to, unsigned long flags);
231 #define page_private(page) ((page)->private)
232 #define set_page_private(page, v) ((page)->private = (v))
235 * FIXME: take this include out, include page-flags.h in
236 * files which need it (119 of them)
238 #include <linux/page-flags.h>
239 #include <linux/huge_mm.h>
242 * Methods to modify the page usage count.
244 * What counts for a page usage:
245 * - cache mapping (page->mapping)
246 * - private data (page->private)
247 * - page mapped in a task's page tables, each mapping
248 * is counted separately
250 * Also, many kernel routines increase the page count before a critical
251 * routine so they can be sure the page doesn't go away from under them.
255 * Drop a ref, return true if the refcount fell to zero (the page has no users)
257 static inline int put_page_testzero(struct page *page)
259 VM_BUG_ON(atomic_read(&page->_count) == 0);
260 return atomic_dec_and_test(&page->_count);
264 * Try to grab a ref unless the page has a refcount of zero, return false if
267 static inline int get_page_unless_zero(struct page *page)
269 return atomic_inc_not_zero(&page->_count);
272 extern int page_is_ram(unsigned long pfn);
274 /* Support for virtually mapped pages */
275 struct page *vmalloc_to_page(const void *addr);
276 unsigned long vmalloc_to_pfn(const void *addr);
279 * Determine if an address is within the vmalloc range
281 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
282 * is no special casing required.
284 static inline int is_vmalloc_addr(const void *x)
287 unsigned long addr = (unsigned long)x;
289 return addr >= VMALLOC_START && addr < VMALLOC_END;
295 extern int is_vmalloc_or_module_addr(const void *x);
297 static inline int is_vmalloc_or_module_addr(const void *x)
303 static inline void compound_lock(struct page *page)
305 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
306 VM_BUG_ON(PageSlab(page));
307 bit_spin_lock(PG_compound_lock, &page->flags);
311 static inline void compound_unlock(struct page *page)
313 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
314 VM_BUG_ON(PageSlab(page));
315 bit_spin_unlock(PG_compound_lock, &page->flags);
319 static inline unsigned long compound_lock_irqsave(struct page *page)
321 unsigned long uninitialized_var(flags);
322 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
323 local_irq_save(flags);
329 static inline void compound_unlock_irqrestore(struct page *page,
332 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
333 compound_unlock(page);
334 local_irq_restore(flags);
338 static inline struct page *compound_head(struct page *page)
340 if (unlikely(PageTail(page)))
341 return page->first_page;
346 * The atomic page->_mapcount, starts from -1: so that transitions
347 * both from it and to it can be tracked, using atomic_inc_and_test
348 * and atomic_add_negative(-1).
350 static inline void reset_page_mapcount(struct page *page)
352 atomic_set(&(page)->_mapcount, -1);
355 static inline int page_mapcount(struct page *page)
357 return atomic_read(&(page)->_mapcount) + 1;
360 static inline int page_count(struct page *page)
362 return atomic_read(&compound_head(page)->_count);
365 static inline void get_huge_page_tail(struct page *page)
368 * __split_huge_page_refcount() cannot run
371 VM_BUG_ON(page_mapcount(page) < 0);
372 VM_BUG_ON(atomic_read(&page->_count) != 0);
373 atomic_inc(&page->_mapcount);
376 extern bool __get_page_tail(struct page *page);
378 static inline void get_page(struct page *page)
380 if (unlikely(PageTail(page)))
381 if (likely(__get_page_tail(page)))
384 * Getting a normal page or the head of a compound page
385 * requires to already have an elevated page->_count.
387 VM_BUG_ON(atomic_read(&page->_count) <= 0);
388 atomic_inc(&page->_count);
391 static inline struct page *virt_to_head_page(const void *x)
393 struct page *page = virt_to_page(x);
394 return compound_head(page);
398 * Setup the page count before being freed into the page allocator for
399 * the first time (boot or memory hotplug)
401 static inline void init_page_count(struct page *page)
403 atomic_set(&page->_count, 1);
407 * PageBuddy() indicate that the page is free and in the buddy system
408 * (see mm/page_alloc.c).
410 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
411 * -2 so that an underflow of the page_mapcount() won't be mistaken
412 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
413 * efficiently by most CPU architectures.
415 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
417 static inline int PageBuddy(struct page *page)
419 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
422 static inline void __SetPageBuddy(struct page *page)
424 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
425 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
428 static inline void __ClearPageBuddy(struct page *page)
430 VM_BUG_ON(!PageBuddy(page));
431 atomic_set(&page->_mapcount, -1);
434 void put_page(struct page *page);
435 void put_pages_list(struct list_head *pages);
437 void split_page(struct page *page, unsigned int order);
438 int split_free_page(struct page *page);
441 * Compound pages have a destructor function. Provide a
442 * prototype for that function and accessor functions.
443 * These are _only_ valid on the head of a PG_compound page.
445 typedef void compound_page_dtor(struct page *);
447 static inline void set_compound_page_dtor(struct page *page,
448 compound_page_dtor *dtor)
450 page[1].lru.next = (void *)dtor;
453 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
455 return (compound_page_dtor *)page[1].lru.next;
458 static inline int compound_order(struct page *page)
462 return (unsigned long)page[1].lru.prev;
465 static inline int compound_trans_order(struct page *page)
473 flags = compound_lock_irqsave(page);
474 order = compound_order(page);
475 compound_unlock_irqrestore(page, flags);
479 static inline void set_compound_order(struct page *page, unsigned long order)
481 page[1].lru.prev = (void *)order;
486 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
487 * servicing faults for write access. In the normal case, do always want
488 * pte_mkwrite. But get_user_pages can cause write faults for mappings
489 * that do not have writing enabled, when used by access_process_vm.
491 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
493 if (likely(vma->vm_flags & VM_WRITE))
494 pte = pte_mkwrite(pte);
500 * Multiple processes may "see" the same page. E.g. for untouched
501 * mappings of /dev/null, all processes see the same page full of
502 * zeroes, and text pages of executables and shared libraries have
503 * only one copy in memory, at most, normally.
505 * For the non-reserved pages, page_count(page) denotes a reference count.
506 * page_count() == 0 means the page is free. page->lru is then used for
507 * freelist management in the buddy allocator.
508 * page_count() > 0 means the page has been allocated.
510 * Pages are allocated by the slab allocator in order to provide memory
511 * to kmalloc and kmem_cache_alloc. In this case, the management of the
512 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
513 * unless a particular usage is carefully commented. (the responsibility of
514 * freeing the kmalloc memory is the caller's, of course).
516 * A page may be used by anyone else who does a __get_free_page().
517 * In this case, page_count still tracks the references, and should only
518 * be used through the normal accessor functions. The top bits of page->flags
519 * and page->virtual store page management information, but all other fields
520 * are unused and could be used privately, carefully. The management of this
521 * page is the responsibility of the one who allocated it, and those who have
522 * subsequently been given references to it.
524 * The other pages (we may call them "pagecache pages") are completely
525 * managed by the Linux memory manager: I/O, buffers, swapping etc.
526 * The following discussion applies only to them.
528 * A pagecache page contains an opaque `private' member, which belongs to the
529 * page's address_space. Usually, this is the address of a circular list of
530 * the page's disk buffers. PG_private must be set to tell the VM to call
531 * into the filesystem to release these pages.
533 * A page may belong to an inode's memory mapping. In this case, page->mapping
534 * is the pointer to the inode, and page->index is the file offset of the page,
535 * in units of PAGE_CACHE_SIZE.
537 * If pagecache pages are not associated with an inode, they are said to be
538 * anonymous pages. These may become associated with the swapcache, and in that
539 * case PG_swapcache is set, and page->private is an offset into the swapcache.
541 * In either case (swapcache or inode backed), the pagecache itself holds one
542 * reference to the page. Setting PG_private should also increment the
543 * refcount. The each user mapping also has a reference to the page.
545 * The pagecache pages are stored in a per-mapping radix tree, which is
546 * rooted at mapping->page_tree, and indexed by offset.
547 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
548 * lists, we instead now tag pages as dirty/writeback in the radix tree.
550 * All pagecache pages may be subject to I/O:
551 * - inode pages may need to be read from disk,
552 * - inode pages which have been modified and are MAP_SHARED may need
553 * to be written back to the inode on disk,
554 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
555 * modified may need to be swapped out to swap space and (later) to be read
560 * The zone field is never updated after free_area_init_core()
561 * sets it, so none of the operations on it need to be atomic.
566 * page->flags layout:
568 * There are three possibilities for how page->flags get
569 * laid out. The first is for the normal case, without
570 * sparsemem. The second is for sparsemem when there is
571 * plenty of space for node and section. The last is when
572 * we have run out of space and have to fall back to an
573 * alternate (slower) way of determining the node.
575 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
576 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
577 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
579 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
580 #define SECTIONS_WIDTH SECTIONS_SHIFT
582 #define SECTIONS_WIDTH 0
585 #define ZONES_WIDTH ZONES_SHIFT
587 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
588 #define NODES_WIDTH NODES_SHIFT
590 #ifdef CONFIG_SPARSEMEM_VMEMMAP
591 #error "Vmemmap: No space for nodes field in page flags"
593 #define NODES_WIDTH 0
596 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
597 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
598 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
599 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
602 * We are going to use the flags for the page to node mapping if its in
603 * there. This includes the case where there is no node, so it is implicit.
605 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
606 #define NODE_NOT_IN_PAGE_FLAGS
610 * Define the bit shifts to access each section. For non-existent
611 * sections we define the shift as 0; that plus a 0 mask ensures
612 * the compiler will optimise away reference to them.
614 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
615 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
616 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
618 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
619 #ifdef NODE_NOT_IN_PAGE_FLAGS
620 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
621 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
622 SECTIONS_PGOFF : ZONES_PGOFF)
624 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
625 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
626 NODES_PGOFF : ZONES_PGOFF)
629 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
631 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
632 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
635 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
636 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
637 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
638 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
640 static inline enum zone_type page_zonenum(const struct page *page)
642 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
646 * The identification function is only used by the buddy allocator for
647 * determining if two pages could be buddies. We are not really
648 * identifying a zone since we could be using a the section number
649 * id if we have not node id available in page flags.
650 * We guarantee only that it will return the same value for two
651 * combinable pages in a zone.
653 static inline int page_zone_id(struct page *page)
655 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
658 static inline int zone_to_nid(struct zone *zone)
667 #ifdef NODE_NOT_IN_PAGE_FLAGS
668 extern int page_to_nid(const struct page *page);
670 static inline int page_to_nid(const struct page *page)
672 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
676 static inline struct zone *page_zone(const struct page *page)
678 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
681 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
682 static inline void set_page_section(struct page *page, unsigned long section)
684 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
685 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
688 static inline unsigned long page_to_section(const struct page *page)
690 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
694 static inline void set_page_zone(struct page *page, enum zone_type zone)
696 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
697 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
700 static inline void set_page_node(struct page *page, unsigned long node)
702 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
703 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
706 static inline void set_page_links(struct page *page, enum zone_type zone,
707 unsigned long node, unsigned long pfn)
709 set_page_zone(page, zone);
710 set_page_node(page, node);
711 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
712 set_page_section(page, pfn_to_section_nr(pfn));
717 * Some inline functions in vmstat.h depend on page_zone()
719 #include <linux/vmstat.h>
721 static __always_inline void *lowmem_page_address(const struct page *page)
723 return __va(PFN_PHYS(page_to_pfn(page)));
726 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
727 #define HASHED_PAGE_VIRTUAL
730 #if defined(WANT_PAGE_VIRTUAL)
731 #define page_address(page) ((page)->virtual)
732 #define set_page_address(page, address) \
734 (page)->virtual = (address); \
736 #define page_address_init() do { } while(0)
739 #if defined(HASHED_PAGE_VIRTUAL)
740 void *page_address(const struct page *page);
741 void set_page_address(struct page *page, void *virtual);
742 void page_address_init(void);
745 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
746 #define page_address(page) lowmem_page_address(page)
747 #define set_page_address(page, address) do { } while(0)
748 #define page_address_init() do { } while(0)
752 * On an anonymous page mapped into a user virtual memory area,
753 * page->mapping points to its anon_vma, not to a struct address_space;
754 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
756 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
757 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
758 * and then page->mapping points, not to an anon_vma, but to a private
759 * structure which KSM associates with that merged page. See ksm.h.
761 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
763 * Please note that, confusingly, "page_mapping" refers to the inode
764 * address_space which maps the page from disk; whereas "page_mapped"
765 * refers to user virtual address space into which the page is mapped.
767 #define PAGE_MAPPING_ANON 1
768 #define PAGE_MAPPING_KSM 2
769 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
771 extern struct address_space swapper_space;
772 static inline struct address_space *page_mapping(struct page *page)
774 struct address_space *mapping = page->mapping;
776 VM_BUG_ON(PageSlab(page));
777 if (unlikely(PageSwapCache(page)))
778 mapping = &swapper_space;
779 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
784 /* Neutral page->mapping pointer to address_space or anon_vma or other */
785 static inline void *page_rmapping(struct page *page)
787 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
790 extern struct address_space *__page_file_mapping(struct page *);
793 struct address_space *page_file_mapping(struct page *page)
795 if (unlikely(PageSwapCache(page)))
796 return __page_file_mapping(page);
798 return page->mapping;
801 static inline int PageAnon(struct page *page)
803 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
807 * Return the pagecache index of the passed page. Regular pagecache pages
808 * use ->index whereas swapcache pages use ->private
810 static inline pgoff_t page_index(struct page *page)
812 if (unlikely(PageSwapCache(page)))
813 return page_private(page);
817 extern pgoff_t __page_file_index(struct page *page);
820 * Return the file index of the page. Regular pagecache pages use ->index
821 * whereas swapcache pages use swp_offset(->private)
823 static inline pgoff_t page_file_index(struct page *page)
825 if (unlikely(PageSwapCache(page)))
826 return __page_file_index(page);
832 * Return true if this page is mapped into pagetables.
834 static inline int page_mapped(struct page *page)
836 return atomic_read(&(page)->_mapcount) >= 0;
840 * Different kinds of faults, as returned by handle_mm_fault().
841 * Used to decide whether a process gets delivered SIGBUS or
842 * just gets major/minor fault counters bumped up.
845 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
847 #define VM_FAULT_OOM 0x0001
848 #define VM_FAULT_SIGBUS 0x0002
849 #define VM_FAULT_MAJOR 0x0004
850 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
851 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
852 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
854 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
855 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
856 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
858 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
860 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
861 VM_FAULT_HWPOISON_LARGE)
863 /* Encode hstate index for a hwpoisoned large page */
864 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
865 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
868 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
870 extern void pagefault_out_of_memory(void);
872 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
875 * Flags passed to show_mem() and show_free_areas() to suppress output in
878 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
880 extern void show_free_areas(unsigned int flags);
881 extern bool skip_free_areas_node(unsigned int flags, int nid);
883 int shmem_zero_setup(struct vm_area_struct *);
885 extern int can_do_mlock(void);
886 extern int user_shm_lock(size_t, struct user_struct *);
887 extern void user_shm_unlock(size_t, struct user_struct *);
890 * Parameter block passed down to zap_pte_range in exceptional cases.
893 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
894 struct address_space *check_mapping; /* Check page->mapping if set */
895 pgoff_t first_index; /* Lowest page->index to unmap */
896 pgoff_t last_index; /* Highest page->index to unmap */
899 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
902 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
904 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
905 unsigned long size, struct zap_details *);
906 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
907 unsigned long start, unsigned long end);
910 * mm_walk - callbacks for walk_page_range
911 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
912 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
913 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
914 * this handler is required to be able to handle
915 * pmd_trans_huge() pmds. They may simply choose to
916 * split_huge_page() instead of handling it explicitly.
917 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
918 * @pte_hole: if set, called for each hole at all levels
919 * @hugetlb_entry: if set, called for each hugetlb entry
920 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
923 * (see walk_page_range for more details)
926 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
927 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
928 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
929 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
930 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
931 int (*hugetlb_entry)(pte_t *, unsigned long,
932 unsigned long, unsigned long, struct mm_walk *);
933 struct mm_struct *mm;
937 int walk_page_range(unsigned long addr, unsigned long end,
938 struct mm_walk *walk);
939 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
940 unsigned long end, unsigned long floor, unsigned long ceiling);
941 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
942 struct vm_area_struct *vma);
943 void unmap_mapping_range(struct address_space *mapping,
944 loff_t const holebegin, loff_t const holelen, int even_cows);
945 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
947 int follow_phys(struct vm_area_struct *vma, unsigned long address,
948 unsigned int flags, unsigned long *prot, resource_size_t *phys);
949 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
950 void *buf, int len, int write);
952 static inline void unmap_shared_mapping_range(struct address_space *mapping,
953 loff_t const holebegin, loff_t const holelen)
955 unmap_mapping_range(mapping, holebegin, holelen, 0);
958 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
959 extern void truncate_setsize(struct inode *inode, loff_t newsize);
960 extern int vmtruncate(struct inode *inode, loff_t offset);
961 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
962 int truncate_inode_page(struct address_space *mapping, struct page *page);
963 int generic_error_remove_page(struct address_space *mapping, struct page *page);
964 int invalidate_inode_page(struct page *page);
967 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
968 unsigned long address, unsigned int flags);
969 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
970 unsigned long address, unsigned int fault_flags);
972 static inline int handle_mm_fault(struct mm_struct *mm,
973 struct vm_area_struct *vma, unsigned long address,
976 /* should never happen if there's no MMU */
978 return VM_FAULT_SIGBUS;
980 static inline int fixup_user_fault(struct task_struct *tsk,
981 struct mm_struct *mm, unsigned long address,
982 unsigned int fault_flags)
984 /* should never happen if there's no MMU */
990 extern int make_pages_present(unsigned long addr, unsigned long end);
991 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
992 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
993 void *buf, int len, int write);
995 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
996 unsigned long start, int len, unsigned int foll_flags,
997 struct page **pages, struct vm_area_struct **vmas,
999 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1000 unsigned long start, int nr_pages, int write, int force,
1001 struct page **pages, struct vm_area_struct **vmas);
1002 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1003 struct page **pages);
1005 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1006 struct page **pages);
1007 int get_kernel_page(unsigned long start, int write, struct page **pages);
1008 struct page *get_dump_page(unsigned long addr);
1010 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1011 extern void do_invalidatepage(struct page *page, unsigned long offset);
1013 int __set_page_dirty_nobuffers(struct page *page);
1014 int __set_page_dirty_no_writeback(struct page *page);
1015 int redirty_page_for_writepage(struct writeback_control *wbc,
1017 void account_page_dirtied(struct page *page, struct address_space *mapping);
1018 void account_page_writeback(struct page *page);
1019 int set_page_dirty(struct page *page);
1020 int set_page_dirty_lock(struct page *page);
1021 int clear_page_dirty_for_io(struct page *page);
1023 /* Is the vma a continuation of the stack vma above it? */
1024 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1026 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1029 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1032 return (vma->vm_flags & VM_GROWSDOWN) &&
1033 (vma->vm_start == addr) &&
1034 !vma_growsdown(vma->vm_prev, addr);
1037 /* Is the vma a continuation of the stack vma below it? */
1038 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1040 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1043 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1046 return (vma->vm_flags & VM_GROWSUP) &&
1047 (vma->vm_end == addr) &&
1048 !vma_growsup(vma->vm_next, addr);
1052 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1054 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1055 unsigned long old_addr, struct vm_area_struct *new_vma,
1056 unsigned long new_addr, unsigned long len);
1057 extern unsigned long do_mremap(unsigned long addr,
1058 unsigned long old_len, unsigned long new_len,
1059 unsigned long flags, unsigned long new_addr);
1060 extern int mprotect_fixup(struct vm_area_struct *vma,
1061 struct vm_area_struct **pprev, unsigned long start,
1062 unsigned long end, unsigned long newflags);
1065 * doesn't attempt to fault and will return short.
1067 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1068 struct page **pages);
1070 * per-process(per-mm_struct) statistics.
1072 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1074 long val = atomic_long_read(&mm->rss_stat.count[member]);
1076 #ifdef SPLIT_RSS_COUNTING
1078 * counter is updated in asynchronous manner and may go to minus.
1079 * But it's never be expected number for users.
1084 return (unsigned long)val;
1087 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1089 atomic_long_add(value, &mm->rss_stat.count[member]);
1092 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1094 atomic_long_inc(&mm->rss_stat.count[member]);
1097 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1099 atomic_long_dec(&mm->rss_stat.count[member]);
1102 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1104 return get_mm_counter(mm, MM_FILEPAGES) +
1105 get_mm_counter(mm, MM_ANONPAGES);
1108 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1110 return max(mm->hiwater_rss, get_mm_rss(mm));
1113 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1115 return max(mm->hiwater_vm, mm->total_vm);
1118 static inline void update_hiwater_rss(struct mm_struct *mm)
1120 unsigned long _rss = get_mm_rss(mm);
1122 if ((mm)->hiwater_rss < _rss)
1123 (mm)->hiwater_rss = _rss;
1126 static inline void update_hiwater_vm(struct mm_struct *mm)
1128 if (mm->hiwater_vm < mm->total_vm)
1129 mm->hiwater_vm = mm->total_vm;
1132 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1133 struct mm_struct *mm)
1135 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1137 if (*maxrss < hiwater_rss)
1138 *maxrss = hiwater_rss;
1141 #if defined(SPLIT_RSS_COUNTING)
1142 void sync_mm_rss(struct mm_struct *mm);
1144 static inline void sync_mm_rss(struct mm_struct *mm)
1149 int vma_wants_writenotify(struct vm_area_struct *vma);
1151 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1153 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1157 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1161 #ifdef __PAGETABLE_PUD_FOLDED
1162 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1163 unsigned long address)
1168 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1171 #ifdef __PAGETABLE_PMD_FOLDED
1172 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1173 unsigned long address)
1178 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1181 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1182 pmd_t *pmd, unsigned long address);
1183 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1186 * The following ifdef needed to get the 4level-fixup.h header to work.
1187 * Remove it when 4level-fixup.h has been removed.
1189 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1190 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1192 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1193 NULL: pud_offset(pgd, address);
1196 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1198 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1199 NULL: pmd_offset(pud, address);
1201 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1203 #if USE_SPLIT_PTLOCKS
1205 * We tuck a spinlock to guard each pagetable page into its struct page,
1206 * at page->private, with BUILD_BUG_ON to make sure that this will not
1207 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1208 * When freeing, reset page->mapping so free_pages_check won't complain.
1210 #define __pte_lockptr(page) &((page)->ptl)
1211 #define pte_lock_init(_page) do { \
1212 spin_lock_init(__pte_lockptr(_page)); \
1214 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1215 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1216 #else /* !USE_SPLIT_PTLOCKS */
1218 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1220 #define pte_lock_init(page) do {} while (0)
1221 #define pte_lock_deinit(page) do {} while (0)
1222 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1223 #endif /* USE_SPLIT_PTLOCKS */
1225 static inline void pgtable_page_ctor(struct page *page)
1227 pte_lock_init(page);
1228 inc_zone_page_state(page, NR_PAGETABLE);
1231 static inline void pgtable_page_dtor(struct page *page)
1233 pte_lock_deinit(page);
1234 dec_zone_page_state(page, NR_PAGETABLE);
1237 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1239 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1240 pte_t *__pte = pte_offset_map(pmd, address); \
1246 #define pte_unmap_unlock(pte, ptl) do { \
1251 #define pte_alloc_map(mm, vma, pmd, address) \
1252 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1254 NULL: pte_offset_map(pmd, address))
1256 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1257 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1259 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1261 #define pte_alloc_kernel(pmd, address) \
1262 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1263 NULL: pte_offset_kernel(pmd, address))
1265 extern void free_area_init(unsigned long * zones_size);
1266 extern void free_area_init_node(int nid, unsigned long * zones_size,
1267 unsigned long zone_start_pfn, unsigned long *zholes_size);
1268 extern void free_initmem(void);
1270 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1272 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1273 * zones, allocate the backing mem_map and account for memory holes in a more
1274 * architecture independent manner. This is a substitute for creating the
1275 * zone_sizes[] and zholes_size[] arrays and passing them to
1276 * free_area_init_node()
1278 * An architecture is expected to register range of page frames backed by
1279 * physical memory with memblock_add[_node]() before calling
1280 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1281 * usage, an architecture is expected to do something like
1283 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1285 * for_each_valid_physical_page_range()
1286 * memblock_add_node(base, size, nid)
1287 * free_area_init_nodes(max_zone_pfns);
1289 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1290 * registered physical page range. Similarly
1291 * sparse_memory_present_with_active_regions() calls memory_present() for
1292 * each range when SPARSEMEM is enabled.
1294 * See mm/page_alloc.c for more information on each function exposed by
1295 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1297 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1298 unsigned long node_map_pfn_alignment(void);
1299 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1300 unsigned long end_pfn);
1301 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1302 unsigned long end_pfn);
1303 extern void get_pfn_range_for_nid(unsigned int nid,
1304 unsigned long *start_pfn, unsigned long *end_pfn);
1305 extern unsigned long find_min_pfn_with_active_regions(void);
1306 extern void free_bootmem_with_active_regions(int nid,
1307 unsigned long max_low_pfn);
1308 extern void sparse_memory_present_with_active_regions(int nid);
1310 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1312 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1313 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1314 static inline int __early_pfn_to_nid(unsigned long pfn)
1319 /* please see mm/page_alloc.c */
1320 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1321 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1322 /* there is a per-arch backend function. */
1323 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1324 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1327 extern void set_dma_reserve(unsigned long new_dma_reserve);
1328 extern void memmap_init_zone(unsigned long, int, unsigned long,
1329 unsigned long, enum memmap_context);
1330 extern void setup_per_zone_wmarks(void);
1331 extern int __meminit init_per_zone_wmark_min(void);
1332 extern void mem_init(void);
1333 extern void __init mmap_init(void);
1334 extern void show_mem(unsigned int flags);
1335 extern void si_meminfo(struct sysinfo * val);
1336 extern void si_meminfo_node(struct sysinfo *val, int nid);
1337 extern int after_bootmem;
1339 extern __printf(3, 4)
1340 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1342 extern void setup_per_cpu_pageset(void);
1344 extern void zone_pcp_update(struct zone *zone);
1345 extern void zone_pcp_reset(struct zone *zone);
1348 extern atomic_long_t mmap_pages_allocated;
1349 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1352 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1353 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1354 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1355 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1356 struct prio_tree_iter *iter);
1358 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1359 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1360 (vma = vma_prio_tree_next(vma, iter)); )
1362 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1363 struct list_head *list)
1365 vma->shared.vm_set.parent = NULL;
1366 list_add_tail(&vma->shared.vm_set.list, list);
1370 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1371 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1372 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1373 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1374 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1375 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1376 struct mempolicy *);
1377 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1378 extern int split_vma(struct mm_struct *,
1379 struct vm_area_struct *, unsigned long addr, int new_below);
1380 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1381 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1382 struct rb_node **, struct rb_node *);
1383 extern void unlink_file_vma(struct vm_area_struct *);
1384 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1385 unsigned long addr, unsigned long len, pgoff_t pgoff);
1386 extern void exit_mmap(struct mm_struct *);
1388 extern int mm_take_all_locks(struct mm_struct *mm);
1389 extern void mm_drop_all_locks(struct mm_struct *mm);
1391 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1392 extern void added_exe_file_vma(struct mm_struct *mm);
1393 extern void removed_exe_file_vma(struct mm_struct *mm);
1394 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1395 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1397 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1398 extern int install_special_mapping(struct mm_struct *mm,
1399 unsigned long addr, unsigned long len,
1400 unsigned long flags, struct page **pages);
1402 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1404 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1405 unsigned long len, unsigned long flags,
1406 vm_flags_t vm_flags, unsigned long pgoff);
1407 extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
1408 unsigned long, unsigned long,
1409 unsigned long, unsigned long);
1410 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1412 /* These take the mm semaphore themselves */
1413 extern unsigned long vm_brk(unsigned long, unsigned long);
1414 extern int vm_munmap(unsigned long, size_t);
1415 extern unsigned long vm_mmap(struct file *, unsigned long,
1416 unsigned long, unsigned long,
1417 unsigned long, unsigned long);
1420 extern void truncate_inode_pages(struct address_space *, loff_t);
1421 extern void truncate_inode_pages_range(struct address_space *,
1422 loff_t lstart, loff_t lend);
1424 /* generic vm_area_ops exported for stackable file systems */
1425 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1426 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1428 /* mm/page-writeback.c */
1429 int write_one_page(struct page *page, int wait);
1430 void task_dirty_inc(struct task_struct *tsk);
1433 #define VM_MAX_READAHEAD 128 /* kbytes */
1434 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1436 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1437 pgoff_t offset, unsigned long nr_to_read);
1439 void page_cache_sync_readahead(struct address_space *mapping,
1440 struct file_ra_state *ra,
1443 unsigned long size);
1445 void page_cache_async_readahead(struct address_space *mapping,
1446 struct file_ra_state *ra,
1450 unsigned long size);
1452 unsigned long max_sane_readahead(unsigned long nr);
1453 unsigned long ra_submit(struct file_ra_state *ra,
1454 struct address_space *mapping,
1457 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1458 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1460 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1461 extern int expand_downwards(struct vm_area_struct *vma,
1462 unsigned long address);
1464 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1466 #define expand_upwards(vma, address) do { } while (0)
1469 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1470 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1471 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1472 struct vm_area_struct **pprev);
1474 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1475 NULL if none. Assume start_addr < end_addr. */
1476 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1478 struct vm_area_struct * vma = find_vma(mm,start_addr);
1480 if (vma && end_addr <= vma->vm_start)
1485 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1487 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1490 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1491 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1492 unsigned long vm_start, unsigned long vm_end)
1494 struct vm_area_struct *vma = find_vma(mm, vm_start);
1496 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1503 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1505 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1511 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1512 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1513 unsigned long pfn, unsigned long size, pgprot_t);
1514 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1515 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1517 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1520 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1521 unsigned int foll_flags);
1522 #define FOLL_WRITE 0x01 /* check pte is writable */
1523 #define FOLL_TOUCH 0x02 /* mark page accessed */
1524 #define FOLL_GET 0x04 /* do get_page on page */
1525 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1526 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1527 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1528 * and return without waiting upon it */
1529 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1530 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1531 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1533 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1535 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1536 unsigned long size, pte_fn_t fn, void *data);
1538 #ifdef CONFIG_PROC_FS
1539 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1541 static inline void vm_stat_account(struct mm_struct *mm,
1542 unsigned long flags, struct file *file, long pages)
1544 mm->total_vm += pages;
1546 #endif /* CONFIG_PROC_FS */
1548 #ifdef CONFIG_DEBUG_PAGEALLOC
1549 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1550 #ifdef CONFIG_HIBERNATION
1551 extern bool kernel_page_present(struct page *page);
1552 #endif /* CONFIG_HIBERNATION */
1555 kernel_map_pages(struct page *page, int numpages, int enable) {}
1556 #ifdef CONFIG_HIBERNATION
1557 static inline bool kernel_page_present(struct page *page) { return true; }
1558 #endif /* CONFIG_HIBERNATION */
1561 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1562 #ifdef __HAVE_ARCH_GATE_AREA
1563 int in_gate_area_no_mm(unsigned long addr);
1564 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1566 int in_gate_area_no_mm(unsigned long addr);
1567 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1568 #endif /* __HAVE_ARCH_GATE_AREA */
1570 int drop_caches_sysctl_handler(struct ctl_table *, int,
1571 void __user *, size_t *, loff_t *);
1572 unsigned long shrink_slab(struct shrink_control *shrink,
1573 unsigned long nr_pages_scanned,
1574 unsigned long lru_pages);
1577 #define randomize_va_space 0
1579 extern int randomize_va_space;
1582 const char * arch_vma_name(struct vm_area_struct *vma);
1583 void print_vma_addr(char *prefix, unsigned long rip);
1585 void sparse_mem_maps_populate_node(struct page **map_map,
1586 unsigned long pnum_begin,
1587 unsigned long pnum_end,
1588 unsigned long map_count,
1591 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1592 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1593 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1594 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1595 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1596 void *vmemmap_alloc_block(unsigned long size, int node);
1597 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1598 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1599 int vmemmap_populate_basepages(struct page *start_page,
1600 unsigned long pages, int node);
1601 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1602 void vmemmap_populate_print_last(void);
1606 MF_COUNT_INCREASED = 1 << 0,
1607 MF_ACTION_REQUIRED = 1 << 1,
1608 MF_MUST_KILL = 1 << 2,
1610 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1611 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1612 extern int unpoison_memory(unsigned long pfn);
1613 extern int sysctl_memory_failure_early_kill;
1614 extern int sysctl_memory_failure_recovery;
1615 extern void shake_page(struct page *p, int access);
1616 extern atomic_long_t mce_bad_pages;
1617 extern int soft_offline_page(struct page *page, int flags);
1619 extern void dump_page(struct page *page);
1621 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1622 extern void clear_huge_page(struct page *page,
1624 unsigned int pages_per_huge_page);
1625 extern void copy_user_huge_page(struct page *dst, struct page *src,
1626 unsigned long addr, struct vm_area_struct *vma,
1627 unsigned int pages_per_huge_page);
1628 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1630 #ifdef CONFIG_DEBUG_PAGEALLOC
1631 extern unsigned int _debug_guardpage_minorder;
1633 static inline unsigned int debug_guardpage_minorder(void)
1635 return _debug_guardpage_minorder;
1638 static inline bool page_is_guard(struct page *page)
1640 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1643 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1644 static inline bool page_is_guard(struct page *page) { return false; }
1645 #endif /* CONFIG_DEBUG_PAGEALLOC */
1647 #endif /* __KERNEL__ */
1648 #endif /* _LINUX_MM_H */