2 * Routines having to do with the 'struct sk_buff' memory handlers.
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
46 #include <linux/interrupt.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
66 #include <net/protocol.h>
69 #include <net/checksum.h>
70 #include <net/ip6_checksum.h>
73 #include <asm/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
77 struct kmem_cache *skbuff_head_cache __read_mostly;
78 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
81 * skb_panic - private function for out-of-line support
85 * @msg: skb_over_panic or skb_under_panic
87 * Out-of-line support for skb_put() and skb_push().
88 * Called via the wrapper skb_over_panic() or skb_under_panic().
89 * Keep out of line to prevent kernel bloat.
90 * __builtin_return_address is not used because it is not always reliable.
92 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
95 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
96 msg, addr, skb->len, sz, skb->head, skb->data,
97 (unsigned long)skb->tail, (unsigned long)skb->end,
98 skb->dev ? skb->dev->name : "<NULL>");
102 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
104 skb_panic(skb, sz, addr, __func__);
107 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 skb_panic(skb, sz, addr, __func__);
113 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
114 * the caller if emergency pfmemalloc reserves are being used. If it is and
115 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
116 * may be used. Otherwise, the packet data may be discarded until enough
119 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
120 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
122 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
123 unsigned long ip, bool *pfmemalloc)
126 bool ret_pfmemalloc = false;
129 * Try a regular allocation, when that fails and we're not entitled
130 * to the reserves, fail.
132 obj = kmalloc_node_track_caller(size,
133 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
135 if (obj || !(gfp_pfmemalloc_allowed(flags)))
138 /* Try again but now we are using pfmemalloc reserves */
139 ret_pfmemalloc = true;
140 obj = kmalloc_node_track_caller(size, flags, node);
144 *pfmemalloc = ret_pfmemalloc;
149 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
150 * 'private' fields and also do memory statistics to find all the
155 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
160 skb = kmem_cache_alloc_node(skbuff_head_cache,
161 gfp_mask & ~__GFP_DMA, node);
166 * Only clear those fields we need to clear, not those that we will
167 * actually initialise below. Hence, don't put any more fields after
168 * the tail pointer in struct sk_buff!
170 memset(skb, 0, offsetof(struct sk_buff, tail));
172 skb->truesize = sizeof(struct sk_buff);
173 atomic_set(&skb->users, 1);
175 skb->mac_header = (typeof(skb->mac_header))~0U;
181 * __alloc_skb - allocate a network buffer
182 * @size: size to allocate
183 * @gfp_mask: allocation mask
184 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
185 * instead of head cache and allocate a cloned (child) skb.
186 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
187 * allocations in case the data is required for writeback
188 * @node: numa node to allocate memory on
190 * Allocate a new &sk_buff. The returned buffer has no headroom and a
191 * tail room of at least size bytes. The object has a reference count
192 * of one. The return is the buffer. On a failure the return is %NULL.
194 * Buffers may only be allocated from interrupts using a @gfp_mask of
197 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
200 struct kmem_cache *cache;
201 struct skb_shared_info *shinfo;
206 cache = (flags & SKB_ALLOC_FCLONE)
207 ? skbuff_fclone_cache : skbuff_head_cache;
209 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
210 gfp_mask |= __GFP_MEMALLOC;
213 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
218 /* We do our best to align skb_shared_info on a separate cache
219 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
220 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
221 * Both skb->head and skb_shared_info are cache line aligned.
223 size = SKB_DATA_ALIGN(size);
224 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
225 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
228 /* kmalloc(size) might give us more room than requested.
229 * Put skb_shared_info exactly at the end of allocated zone,
230 * to allow max possible filling before reallocation.
232 size = SKB_WITH_OVERHEAD(ksize(data));
233 prefetchw(data + size);
236 * Only clear those fields we need to clear, not those that we will
237 * actually initialise below. Hence, don't put any more fields after
238 * the tail pointer in struct sk_buff!
240 memset(skb, 0, offsetof(struct sk_buff, tail));
241 /* Account for allocated memory : skb + skb->head */
242 skb->truesize = SKB_TRUESIZE(size);
243 skb->pfmemalloc = pfmemalloc;
244 atomic_set(&skb->users, 1);
247 skb_reset_tail_pointer(skb);
248 skb->end = skb->tail + size;
249 skb->mac_header = (typeof(skb->mac_header))~0U;
250 skb->transport_header = (typeof(skb->transport_header))~0U;
252 /* make sure we initialize shinfo sequentially */
253 shinfo = skb_shinfo(skb);
254 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
255 atomic_set(&shinfo->dataref, 1);
256 kmemcheck_annotate_variable(shinfo->destructor_arg);
258 if (flags & SKB_ALLOC_FCLONE) {
259 struct sk_buff *child = skb + 1;
260 atomic_t *fclone_ref = (atomic_t *) (child + 1);
262 kmemcheck_annotate_bitfield(child, flags1);
263 kmemcheck_annotate_bitfield(child, flags2);
264 skb->fclone = SKB_FCLONE_ORIG;
265 atomic_set(fclone_ref, 1);
267 child->fclone = SKB_FCLONE_UNAVAILABLE;
268 child->pfmemalloc = pfmemalloc;
273 kmem_cache_free(cache, skb);
277 EXPORT_SYMBOL(__alloc_skb);
280 * build_skb - build a network buffer
281 * @data: data buffer provided by caller
282 * @frag_size: size of fragment, or 0 if head was kmalloced
284 * Allocate a new &sk_buff. Caller provides space holding head and
285 * skb_shared_info. @data must have been allocated by kmalloc() only if
286 * @frag_size is 0, otherwise data should come from the page allocator.
287 * The return is the new skb buffer.
288 * On a failure the return is %NULL, and @data is not freed.
290 * Before IO, driver allocates only data buffer where NIC put incoming frame
291 * Driver should add room at head (NET_SKB_PAD) and
292 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
293 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
294 * before giving packet to stack.
295 * RX rings only contains data buffers, not full skbs.
297 struct sk_buff *build_skb(void *data, unsigned int frag_size)
299 struct skb_shared_info *shinfo;
301 unsigned int size = frag_size ? : ksize(data);
303 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
307 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
309 memset(skb, 0, offsetof(struct sk_buff, tail));
310 skb->truesize = SKB_TRUESIZE(size);
311 skb->head_frag = frag_size != 0;
312 atomic_set(&skb->users, 1);
315 skb_reset_tail_pointer(skb);
316 skb->end = skb->tail + size;
317 skb->mac_header = (typeof(skb->mac_header))~0U;
318 skb->transport_header = (typeof(skb->transport_header))~0U;
320 /* make sure we initialize shinfo sequentially */
321 shinfo = skb_shinfo(skb);
322 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
323 atomic_set(&shinfo->dataref, 1);
324 kmemcheck_annotate_variable(shinfo->destructor_arg);
328 EXPORT_SYMBOL(build_skb);
330 struct netdev_alloc_cache {
331 struct page_frag frag;
332 /* we maintain a pagecount bias, so that we dont dirty cache line
333 * containing page->_count every time we allocate a fragment.
335 unsigned int pagecnt_bias;
337 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
339 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
341 struct netdev_alloc_cache *nc;
346 local_irq_save(flags);
347 nc = &__get_cpu_var(netdev_alloc_cache);
348 if (unlikely(!nc->frag.page)) {
350 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
351 gfp_t gfp = gfp_mask;
354 gfp |= __GFP_COMP | __GFP_NOWARN;
355 nc->frag.page = alloc_pages(gfp, order);
356 if (likely(nc->frag.page))
361 nc->frag.size = PAGE_SIZE << order;
363 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
364 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
368 if (nc->frag.offset + fragsz > nc->frag.size) {
369 /* avoid unnecessary locked operations if possible */
370 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
371 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
376 data = page_address(nc->frag.page) + nc->frag.offset;
377 nc->frag.offset += fragsz;
380 local_irq_restore(flags);
385 * netdev_alloc_frag - allocate a page fragment
386 * @fragsz: fragment size
388 * Allocates a frag from a page for receive buffer.
389 * Uses GFP_ATOMIC allocations.
391 void *netdev_alloc_frag(unsigned int fragsz)
393 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
395 EXPORT_SYMBOL(netdev_alloc_frag);
398 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
399 * @dev: network device to receive on
400 * @length: length to allocate
401 * @gfp_mask: get_free_pages mask, passed to alloc_skb
403 * Allocate a new &sk_buff and assign it a usage count of one. The
404 * buffer has unspecified headroom built in. Users should allocate
405 * the headroom they think they need without accounting for the
406 * built in space. The built in space is used for optimisations.
408 * %NULL is returned if there is no free memory.
410 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
411 unsigned int length, gfp_t gfp_mask)
413 struct sk_buff *skb = NULL;
414 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
415 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
417 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
420 if (sk_memalloc_socks())
421 gfp_mask |= __GFP_MEMALLOC;
423 data = __netdev_alloc_frag(fragsz, gfp_mask);
426 skb = build_skb(data, fragsz);
428 put_page(virt_to_head_page(data));
431 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
432 SKB_ALLOC_RX, NUMA_NO_NODE);
435 skb_reserve(skb, NET_SKB_PAD);
440 EXPORT_SYMBOL(__netdev_alloc_skb);
442 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
443 int size, unsigned int truesize)
445 skb_fill_page_desc(skb, i, page, off, size);
447 skb->data_len += size;
448 skb->truesize += truesize;
450 EXPORT_SYMBOL(skb_add_rx_frag);
452 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
453 unsigned int truesize)
455 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
457 skb_frag_size_add(frag, size);
459 skb->data_len += size;
460 skb->truesize += truesize;
462 EXPORT_SYMBOL(skb_coalesce_rx_frag);
464 static void skb_drop_list(struct sk_buff **listp)
466 kfree_skb_list(*listp);
470 static inline void skb_drop_fraglist(struct sk_buff *skb)
472 skb_drop_list(&skb_shinfo(skb)->frag_list);
475 static void skb_clone_fraglist(struct sk_buff *skb)
477 struct sk_buff *list;
479 skb_walk_frags(skb, list)
483 static void skb_free_head(struct sk_buff *skb)
486 put_page(virt_to_head_page(skb->head));
491 static void skb_release_data(struct sk_buff *skb)
494 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
495 &skb_shinfo(skb)->dataref)) {
496 if (skb_shinfo(skb)->nr_frags) {
498 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
499 skb_frag_unref(skb, i);
503 * If skb buf is from userspace, we need to notify the caller
504 * the lower device DMA has done;
506 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
507 struct ubuf_info *uarg;
509 uarg = skb_shinfo(skb)->destructor_arg;
511 uarg->callback(uarg, true);
514 if (skb_has_frag_list(skb))
515 skb_drop_fraglist(skb);
522 * Free an skbuff by memory without cleaning the state.
524 static void kfree_skbmem(struct sk_buff *skb)
526 struct sk_buff *other;
527 atomic_t *fclone_ref;
529 switch (skb->fclone) {
530 case SKB_FCLONE_UNAVAILABLE:
531 kmem_cache_free(skbuff_head_cache, skb);
534 case SKB_FCLONE_ORIG:
535 fclone_ref = (atomic_t *) (skb + 2);
536 if (atomic_dec_and_test(fclone_ref))
537 kmem_cache_free(skbuff_fclone_cache, skb);
540 case SKB_FCLONE_CLONE:
541 fclone_ref = (atomic_t *) (skb + 1);
544 /* The clone portion is available for
545 * fast-cloning again.
547 skb->fclone = SKB_FCLONE_UNAVAILABLE;
549 if (atomic_dec_and_test(fclone_ref))
550 kmem_cache_free(skbuff_fclone_cache, other);
555 static void skb_release_head_state(struct sk_buff *skb)
559 secpath_put(skb->sp);
561 if (skb->destructor) {
563 skb->destructor(skb);
565 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
566 nf_conntrack_put(skb->nfct);
568 #ifdef CONFIG_BRIDGE_NETFILTER
569 nf_bridge_put(skb->nf_bridge);
571 /* XXX: IS this still necessary? - JHS */
572 #ifdef CONFIG_NET_SCHED
574 #ifdef CONFIG_NET_CLS_ACT
580 /* Free everything but the sk_buff shell. */
581 static void skb_release_all(struct sk_buff *skb)
583 skb_release_head_state(skb);
584 if (likely(skb->head))
585 skb_release_data(skb);
589 * __kfree_skb - private function
592 * Free an sk_buff. Release anything attached to the buffer.
593 * Clean the state. This is an internal helper function. Users should
594 * always call kfree_skb
597 void __kfree_skb(struct sk_buff *skb)
599 skb_release_all(skb);
602 EXPORT_SYMBOL(__kfree_skb);
605 * kfree_skb - free an sk_buff
606 * @skb: buffer to free
608 * Drop a reference to the buffer and free it if the usage count has
611 void kfree_skb(struct sk_buff *skb)
615 if (likely(atomic_read(&skb->users) == 1))
617 else if (likely(!atomic_dec_and_test(&skb->users)))
619 trace_kfree_skb(skb, __builtin_return_address(0));
622 EXPORT_SYMBOL(kfree_skb);
624 void kfree_skb_list(struct sk_buff *segs)
627 struct sk_buff *next = segs->next;
633 EXPORT_SYMBOL(kfree_skb_list);
636 * skb_tx_error - report an sk_buff xmit error
637 * @skb: buffer that triggered an error
639 * Report xmit error if a device callback is tracking this skb.
640 * skb must be freed afterwards.
642 void skb_tx_error(struct sk_buff *skb)
644 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
645 struct ubuf_info *uarg;
647 uarg = skb_shinfo(skb)->destructor_arg;
649 uarg->callback(uarg, false);
650 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
653 EXPORT_SYMBOL(skb_tx_error);
656 * consume_skb - free an skbuff
657 * @skb: buffer to free
659 * Drop a ref to the buffer and free it if the usage count has hit zero
660 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
661 * is being dropped after a failure and notes that
663 void consume_skb(struct sk_buff *skb)
667 if (likely(atomic_read(&skb->users) == 1))
669 else if (likely(!atomic_dec_and_test(&skb->users)))
671 trace_consume_skb(skb);
674 EXPORT_SYMBOL(consume_skb);
676 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
678 new->tstamp = old->tstamp;
680 new->transport_header = old->transport_header;
681 new->network_header = old->network_header;
682 new->mac_header = old->mac_header;
683 new->inner_protocol = old->inner_protocol;
684 new->inner_transport_header = old->inner_transport_header;
685 new->inner_network_header = old->inner_network_header;
686 new->inner_mac_header = old->inner_mac_header;
687 skb_dst_copy(new, old);
688 skb_copy_hash(new, old);
689 new->ooo_okay = old->ooo_okay;
690 new->no_fcs = old->no_fcs;
691 new->encapsulation = old->encapsulation;
693 new->sp = secpath_get(old->sp);
695 memcpy(new->cb, old->cb, sizeof(old->cb));
696 new->csum = old->csum;
697 new->local_df = old->local_df;
698 new->pkt_type = old->pkt_type;
699 new->ip_summed = old->ip_summed;
700 skb_copy_queue_mapping(new, old);
701 new->priority = old->priority;
702 #if IS_ENABLED(CONFIG_IP_VS)
703 new->ipvs_property = old->ipvs_property;
705 new->pfmemalloc = old->pfmemalloc;
706 new->protocol = old->protocol;
707 new->mark = old->mark;
708 new->skb_iif = old->skb_iif;
710 #ifdef CONFIG_NET_SCHED
711 new->tc_index = old->tc_index;
712 #ifdef CONFIG_NET_CLS_ACT
713 new->tc_verd = old->tc_verd;
716 new->vlan_proto = old->vlan_proto;
717 new->vlan_tci = old->vlan_tci;
719 skb_copy_secmark(new, old);
721 #ifdef CONFIG_NET_RX_BUSY_POLL
722 new->napi_id = old->napi_id;
727 * You should not add any new code to this function. Add it to
728 * __copy_skb_header above instead.
730 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
732 #define C(x) n->x = skb->x
734 n->next = n->prev = NULL;
736 __copy_skb_header(n, skb);
741 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
744 n->destructor = NULL;
751 atomic_set(&n->users, 1);
753 atomic_inc(&(skb_shinfo(skb)->dataref));
761 * skb_morph - morph one skb into another
762 * @dst: the skb to receive the contents
763 * @src: the skb to supply the contents
765 * This is identical to skb_clone except that the target skb is
766 * supplied by the user.
768 * The target skb is returned upon exit.
770 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
772 skb_release_all(dst);
773 return __skb_clone(dst, src);
775 EXPORT_SYMBOL_GPL(skb_morph);
778 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
779 * @skb: the skb to modify
780 * @gfp_mask: allocation priority
782 * This must be called on SKBTX_DEV_ZEROCOPY skb.
783 * It will copy all frags into kernel and drop the reference
784 * to userspace pages.
786 * If this function is called from an interrupt gfp_mask() must be
789 * Returns 0 on success or a negative error code on failure
790 * to allocate kernel memory to copy to.
792 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
795 int num_frags = skb_shinfo(skb)->nr_frags;
796 struct page *page, *head = NULL;
797 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
799 for (i = 0; i < num_frags; i++) {
801 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
803 page = alloc_page(gfp_mask);
806 struct page *next = (struct page *)page_private(head);
812 vaddr = kmap_atomic(skb_frag_page(f));
813 memcpy(page_address(page),
814 vaddr + f->page_offset, skb_frag_size(f));
815 kunmap_atomic(vaddr);
816 set_page_private(page, (unsigned long)head);
820 /* skb frags release userspace buffers */
821 for (i = 0; i < num_frags; i++)
822 skb_frag_unref(skb, i);
824 uarg->callback(uarg, false);
826 /* skb frags point to kernel buffers */
827 for (i = num_frags - 1; i >= 0; i--) {
828 __skb_fill_page_desc(skb, i, head, 0,
829 skb_shinfo(skb)->frags[i].size);
830 head = (struct page *)page_private(head);
833 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
836 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
839 * skb_clone - duplicate an sk_buff
840 * @skb: buffer to clone
841 * @gfp_mask: allocation priority
843 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
844 * copies share the same packet data but not structure. The new
845 * buffer has a reference count of 1. If the allocation fails the
846 * function returns %NULL otherwise the new buffer is returned.
848 * If this function is called from an interrupt gfp_mask() must be
852 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
856 if (skb_orphan_frags(skb, gfp_mask))
860 if (skb->fclone == SKB_FCLONE_ORIG &&
861 n->fclone == SKB_FCLONE_UNAVAILABLE) {
862 atomic_t *fclone_ref = (atomic_t *) (n + 1);
863 n->fclone = SKB_FCLONE_CLONE;
864 atomic_inc(fclone_ref);
866 if (skb_pfmemalloc(skb))
867 gfp_mask |= __GFP_MEMALLOC;
869 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
873 kmemcheck_annotate_bitfield(n, flags1);
874 kmemcheck_annotate_bitfield(n, flags2);
875 n->fclone = SKB_FCLONE_UNAVAILABLE;
878 return __skb_clone(n, skb);
880 EXPORT_SYMBOL(skb_clone);
882 static void skb_headers_offset_update(struct sk_buff *skb, int off)
884 /* Only adjust this if it actually is csum_start rather than csum */
885 if (skb->ip_summed == CHECKSUM_PARTIAL)
886 skb->csum_start += off;
887 /* {transport,network,mac}_header and tail are relative to skb->head */
888 skb->transport_header += off;
889 skb->network_header += off;
890 if (skb_mac_header_was_set(skb))
891 skb->mac_header += off;
892 skb->inner_transport_header += off;
893 skb->inner_network_header += off;
894 skb->inner_mac_header += off;
897 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
899 __copy_skb_header(new, old);
901 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
902 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
903 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
906 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
908 if (skb_pfmemalloc(skb))
914 * skb_copy - create private copy of an sk_buff
915 * @skb: buffer to copy
916 * @gfp_mask: allocation priority
918 * Make a copy of both an &sk_buff and its data. This is used when the
919 * caller wishes to modify the data and needs a private copy of the
920 * data to alter. Returns %NULL on failure or the pointer to the buffer
921 * on success. The returned buffer has a reference count of 1.
923 * As by-product this function converts non-linear &sk_buff to linear
924 * one, so that &sk_buff becomes completely private and caller is allowed
925 * to modify all the data of returned buffer. This means that this
926 * function is not recommended for use in circumstances when only
927 * header is going to be modified. Use pskb_copy() instead.
930 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
932 int headerlen = skb_headroom(skb);
933 unsigned int size = skb_end_offset(skb) + skb->data_len;
934 struct sk_buff *n = __alloc_skb(size, gfp_mask,
935 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
940 /* Set the data pointer */
941 skb_reserve(n, headerlen);
942 /* Set the tail pointer and length */
943 skb_put(n, skb->len);
945 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
948 copy_skb_header(n, skb);
951 EXPORT_SYMBOL(skb_copy);
954 * __pskb_copy - create copy of an sk_buff with private head.
955 * @skb: buffer to copy
956 * @headroom: headroom of new skb
957 * @gfp_mask: allocation priority
959 * Make a copy of both an &sk_buff and part of its data, located
960 * in header. Fragmented data remain shared. This is used when
961 * the caller wishes to modify only header of &sk_buff and needs
962 * private copy of the header to alter. Returns %NULL on failure
963 * or the pointer to the buffer on success.
964 * The returned buffer has a reference count of 1.
967 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
969 unsigned int size = skb_headlen(skb) + headroom;
970 struct sk_buff *n = __alloc_skb(size, gfp_mask,
971 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
976 /* Set the data pointer */
977 skb_reserve(n, headroom);
978 /* Set the tail pointer and length */
979 skb_put(n, skb_headlen(skb));
981 skb_copy_from_linear_data(skb, n->data, n->len);
983 n->truesize += skb->data_len;
984 n->data_len = skb->data_len;
987 if (skb_shinfo(skb)->nr_frags) {
990 if (skb_orphan_frags(skb, gfp_mask)) {
995 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
996 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
997 skb_frag_ref(skb, i);
999 skb_shinfo(n)->nr_frags = i;
1002 if (skb_has_frag_list(skb)) {
1003 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1004 skb_clone_fraglist(n);
1007 copy_skb_header(n, skb);
1011 EXPORT_SYMBOL(__pskb_copy);
1014 * pskb_expand_head - reallocate header of &sk_buff
1015 * @skb: buffer to reallocate
1016 * @nhead: room to add at head
1017 * @ntail: room to add at tail
1018 * @gfp_mask: allocation priority
1020 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1021 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1022 * reference count of 1. Returns zero in the case of success or error,
1023 * if expansion failed. In the last case, &sk_buff is not changed.
1025 * All the pointers pointing into skb header may change and must be
1026 * reloaded after call to this function.
1029 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1034 int size = nhead + skb_end_offset(skb) + ntail;
1039 if (skb_shared(skb))
1042 size = SKB_DATA_ALIGN(size);
1044 if (skb_pfmemalloc(skb))
1045 gfp_mask |= __GFP_MEMALLOC;
1046 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1047 gfp_mask, NUMA_NO_NODE, NULL);
1050 size = SKB_WITH_OVERHEAD(ksize(data));
1052 /* Copy only real data... and, alas, header. This should be
1053 * optimized for the cases when header is void.
1055 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1057 memcpy((struct skb_shared_info *)(data + size),
1059 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1062 * if shinfo is shared we must drop the old head gracefully, but if it
1063 * is not we can just drop the old head and let the existing refcount
1064 * be since all we did is relocate the values
1066 if (skb_cloned(skb)) {
1067 /* copy this zero copy skb frags */
1068 if (skb_orphan_frags(skb, gfp_mask))
1070 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1071 skb_frag_ref(skb, i);
1073 if (skb_has_frag_list(skb))
1074 skb_clone_fraglist(skb);
1076 skb_release_data(skb);
1080 off = (data + nhead) - skb->head;
1085 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1089 skb->end = skb->head + size;
1092 skb_headers_offset_update(skb, nhead);
1096 atomic_set(&skb_shinfo(skb)->dataref, 1);
1104 EXPORT_SYMBOL(pskb_expand_head);
1106 /* Make private copy of skb with writable head and some headroom */
1108 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1110 struct sk_buff *skb2;
1111 int delta = headroom - skb_headroom(skb);
1114 skb2 = pskb_copy(skb, GFP_ATOMIC);
1116 skb2 = skb_clone(skb, GFP_ATOMIC);
1117 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1125 EXPORT_SYMBOL(skb_realloc_headroom);
1128 * skb_copy_expand - copy and expand sk_buff
1129 * @skb: buffer to copy
1130 * @newheadroom: new free bytes at head
1131 * @newtailroom: new free bytes at tail
1132 * @gfp_mask: allocation priority
1134 * Make a copy of both an &sk_buff and its data and while doing so
1135 * allocate additional space.
1137 * This is used when the caller wishes to modify the data and needs a
1138 * private copy of the data to alter as well as more space for new fields.
1139 * Returns %NULL on failure or the pointer to the buffer
1140 * on success. The returned buffer has a reference count of 1.
1142 * You must pass %GFP_ATOMIC as the allocation priority if this function
1143 * is called from an interrupt.
1145 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1146 int newheadroom, int newtailroom,
1150 * Allocate the copy buffer
1152 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1153 gfp_mask, skb_alloc_rx_flag(skb),
1155 int oldheadroom = skb_headroom(skb);
1156 int head_copy_len, head_copy_off;
1161 skb_reserve(n, newheadroom);
1163 /* Set the tail pointer and length */
1164 skb_put(n, skb->len);
1166 head_copy_len = oldheadroom;
1168 if (newheadroom <= head_copy_len)
1169 head_copy_len = newheadroom;
1171 head_copy_off = newheadroom - head_copy_len;
1173 /* Copy the linear header and data. */
1174 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1175 skb->len + head_copy_len))
1178 copy_skb_header(n, skb);
1180 skb_headers_offset_update(n, newheadroom - oldheadroom);
1184 EXPORT_SYMBOL(skb_copy_expand);
1187 * skb_pad - zero pad the tail of an skb
1188 * @skb: buffer to pad
1189 * @pad: space to pad
1191 * Ensure that a buffer is followed by a padding area that is zero
1192 * filled. Used by network drivers which may DMA or transfer data
1193 * beyond the buffer end onto the wire.
1195 * May return error in out of memory cases. The skb is freed on error.
1198 int skb_pad(struct sk_buff *skb, int pad)
1203 /* If the skbuff is non linear tailroom is always zero.. */
1204 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1205 memset(skb->data+skb->len, 0, pad);
1209 ntail = skb->data_len + pad - (skb->end - skb->tail);
1210 if (likely(skb_cloned(skb) || ntail > 0)) {
1211 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1216 /* FIXME: The use of this function with non-linear skb's really needs
1219 err = skb_linearize(skb);
1223 memset(skb->data + skb->len, 0, pad);
1230 EXPORT_SYMBOL(skb_pad);
1233 * pskb_put - add data to the tail of a potentially fragmented buffer
1234 * @skb: start of the buffer to use
1235 * @tail: tail fragment of the buffer to use
1236 * @len: amount of data to add
1238 * This function extends the used data area of the potentially
1239 * fragmented buffer. @tail must be the last fragment of @skb -- or
1240 * @skb itself. If this would exceed the total buffer size the kernel
1241 * will panic. A pointer to the first byte of the extra data is
1245 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1248 skb->data_len += len;
1251 return skb_put(tail, len);
1253 EXPORT_SYMBOL_GPL(pskb_put);
1256 * skb_put - add data to a buffer
1257 * @skb: buffer to use
1258 * @len: amount of data to add
1260 * This function extends the used data area of the buffer. If this would
1261 * exceed the total buffer size the kernel will panic. A pointer to the
1262 * first byte of the extra data is returned.
1264 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1266 unsigned char *tmp = skb_tail_pointer(skb);
1267 SKB_LINEAR_ASSERT(skb);
1270 if (unlikely(skb->tail > skb->end))
1271 skb_over_panic(skb, len, __builtin_return_address(0));
1274 EXPORT_SYMBOL(skb_put);
1277 * skb_push - add data to the start of a buffer
1278 * @skb: buffer to use
1279 * @len: amount of data to add
1281 * This function extends the used data area of the buffer at the buffer
1282 * start. If this would exceed the total buffer headroom the kernel will
1283 * panic. A pointer to the first byte of the extra data is returned.
1285 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1289 if (unlikely(skb->data<skb->head))
1290 skb_under_panic(skb, len, __builtin_return_address(0));
1293 EXPORT_SYMBOL(skb_push);
1296 * skb_pull - remove data from the start of a buffer
1297 * @skb: buffer to use
1298 * @len: amount of data to remove
1300 * This function removes data from the start of a buffer, returning
1301 * the memory to the headroom. A pointer to the next data in the buffer
1302 * is returned. Once the data has been pulled future pushes will overwrite
1305 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1307 return skb_pull_inline(skb, len);
1309 EXPORT_SYMBOL(skb_pull);
1312 * skb_trim - remove end from a buffer
1313 * @skb: buffer to alter
1316 * Cut the length of a buffer down by removing data from the tail. If
1317 * the buffer is already under the length specified it is not modified.
1318 * The skb must be linear.
1320 void skb_trim(struct sk_buff *skb, unsigned int len)
1323 __skb_trim(skb, len);
1325 EXPORT_SYMBOL(skb_trim);
1327 /* Trims skb to length len. It can change skb pointers.
1330 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1332 struct sk_buff **fragp;
1333 struct sk_buff *frag;
1334 int offset = skb_headlen(skb);
1335 int nfrags = skb_shinfo(skb)->nr_frags;
1339 if (skb_cloned(skb) &&
1340 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1347 for (; i < nfrags; i++) {
1348 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1355 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1358 skb_shinfo(skb)->nr_frags = i;
1360 for (; i < nfrags; i++)
1361 skb_frag_unref(skb, i);
1363 if (skb_has_frag_list(skb))
1364 skb_drop_fraglist(skb);
1368 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1369 fragp = &frag->next) {
1370 int end = offset + frag->len;
1372 if (skb_shared(frag)) {
1373 struct sk_buff *nfrag;
1375 nfrag = skb_clone(frag, GFP_ATOMIC);
1376 if (unlikely(!nfrag))
1379 nfrag->next = frag->next;
1391 unlikely((err = pskb_trim(frag, len - offset))))
1395 skb_drop_list(&frag->next);
1400 if (len > skb_headlen(skb)) {
1401 skb->data_len -= skb->len - len;
1406 skb_set_tail_pointer(skb, len);
1411 EXPORT_SYMBOL(___pskb_trim);
1414 * __pskb_pull_tail - advance tail of skb header
1415 * @skb: buffer to reallocate
1416 * @delta: number of bytes to advance tail
1418 * The function makes a sense only on a fragmented &sk_buff,
1419 * it expands header moving its tail forward and copying necessary
1420 * data from fragmented part.
1422 * &sk_buff MUST have reference count of 1.
1424 * Returns %NULL (and &sk_buff does not change) if pull failed
1425 * or value of new tail of skb in the case of success.
1427 * All the pointers pointing into skb header may change and must be
1428 * reloaded after call to this function.
1431 /* Moves tail of skb head forward, copying data from fragmented part,
1432 * when it is necessary.
1433 * 1. It may fail due to malloc failure.
1434 * 2. It may change skb pointers.
1436 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1438 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1440 /* If skb has not enough free space at tail, get new one
1441 * plus 128 bytes for future expansions. If we have enough
1442 * room at tail, reallocate without expansion only if skb is cloned.
1444 int i, k, eat = (skb->tail + delta) - skb->end;
1446 if (eat > 0 || skb_cloned(skb)) {
1447 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1452 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1455 /* Optimization: no fragments, no reasons to preestimate
1456 * size of pulled pages. Superb.
1458 if (!skb_has_frag_list(skb))
1461 /* Estimate size of pulled pages. */
1463 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1464 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1471 /* If we need update frag list, we are in troubles.
1472 * Certainly, it possible to add an offset to skb data,
1473 * but taking into account that pulling is expected to
1474 * be very rare operation, it is worth to fight against
1475 * further bloating skb head and crucify ourselves here instead.
1476 * Pure masohism, indeed. 8)8)
1479 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1480 struct sk_buff *clone = NULL;
1481 struct sk_buff *insp = NULL;
1486 if (list->len <= eat) {
1487 /* Eaten as whole. */
1492 /* Eaten partially. */
1494 if (skb_shared(list)) {
1495 /* Sucks! We need to fork list. :-( */
1496 clone = skb_clone(list, GFP_ATOMIC);
1502 /* This may be pulled without
1506 if (!pskb_pull(list, eat)) {
1514 /* Free pulled out fragments. */
1515 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1516 skb_shinfo(skb)->frag_list = list->next;
1519 /* And insert new clone at head. */
1522 skb_shinfo(skb)->frag_list = clone;
1525 /* Success! Now we may commit changes to skb data. */
1530 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1531 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1534 skb_frag_unref(skb, i);
1537 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1539 skb_shinfo(skb)->frags[k].page_offset += eat;
1540 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1546 skb_shinfo(skb)->nr_frags = k;
1549 skb->data_len -= delta;
1551 return skb_tail_pointer(skb);
1553 EXPORT_SYMBOL(__pskb_pull_tail);
1556 * skb_copy_bits - copy bits from skb to kernel buffer
1558 * @offset: offset in source
1559 * @to: destination buffer
1560 * @len: number of bytes to copy
1562 * Copy the specified number of bytes from the source skb to the
1563 * destination buffer.
1566 * If its prototype is ever changed,
1567 * check arch/{*}/net/{*}.S files,
1568 * since it is called from BPF assembly code.
1570 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1572 int start = skb_headlen(skb);
1573 struct sk_buff *frag_iter;
1576 if (offset > (int)skb->len - len)
1580 if ((copy = start - offset) > 0) {
1583 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1584 if ((len -= copy) == 0)
1590 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1592 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1594 WARN_ON(start > offset + len);
1596 end = start + skb_frag_size(f);
1597 if ((copy = end - offset) > 0) {
1603 vaddr = kmap_atomic(skb_frag_page(f));
1605 vaddr + f->page_offset + offset - start,
1607 kunmap_atomic(vaddr);
1609 if ((len -= copy) == 0)
1617 skb_walk_frags(skb, frag_iter) {
1620 WARN_ON(start > offset + len);
1622 end = start + frag_iter->len;
1623 if ((copy = end - offset) > 0) {
1626 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1628 if ((len -= copy) == 0)
1642 EXPORT_SYMBOL(skb_copy_bits);
1645 * Callback from splice_to_pipe(), if we need to release some pages
1646 * at the end of the spd in case we error'ed out in filling the pipe.
1648 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1650 put_page(spd->pages[i]);
1653 static struct page *linear_to_page(struct page *page, unsigned int *len,
1654 unsigned int *offset,
1657 struct page_frag *pfrag = sk_page_frag(sk);
1659 if (!sk_page_frag_refill(sk, pfrag))
1662 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1664 memcpy(page_address(pfrag->page) + pfrag->offset,
1665 page_address(page) + *offset, *len);
1666 *offset = pfrag->offset;
1667 pfrag->offset += *len;
1672 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1674 unsigned int offset)
1676 return spd->nr_pages &&
1677 spd->pages[spd->nr_pages - 1] == page &&
1678 (spd->partial[spd->nr_pages - 1].offset +
1679 spd->partial[spd->nr_pages - 1].len == offset);
1683 * Fill page/offset/length into spd, if it can hold more pages.
1685 static bool spd_fill_page(struct splice_pipe_desc *spd,
1686 struct pipe_inode_info *pipe, struct page *page,
1687 unsigned int *len, unsigned int offset,
1691 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1695 page = linear_to_page(page, len, &offset, sk);
1699 if (spd_can_coalesce(spd, page, offset)) {
1700 spd->partial[spd->nr_pages - 1].len += *len;
1704 spd->pages[spd->nr_pages] = page;
1705 spd->partial[spd->nr_pages].len = *len;
1706 spd->partial[spd->nr_pages].offset = offset;
1712 static bool __splice_segment(struct page *page, unsigned int poff,
1713 unsigned int plen, unsigned int *off,
1715 struct splice_pipe_desc *spd, bool linear,
1717 struct pipe_inode_info *pipe)
1722 /* skip this segment if already processed */
1728 /* ignore any bits we already processed */
1734 unsigned int flen = min(*len, plen);
1736 if (spd_fill_page(spd, pipe, page, &flen, poff,
1742 } while (*len && plen);
1748 * Map linear and fragment data from the skb to spd. It reports true if the
1749 * pipe is full or if we already spliced the requested length.
1751 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1752 unsigned int *offset, unsigned int *len,
1753 struct splice_pipe_desc *spd, struct sock *sk)
1757 /* map the linear part :
1758 * If skb->head_frag is set, this 'linear' part is backed by a
1759 * fragment, and if the head is not shared with any clones then
1760 * we can avoid a copy since we own the head portion of this page.
1762 if (__splice_segment(virt_to_page(skb->data),
1763 (unsigned long) skb->data & (PAGE_SIZE - 1),
1766 skb_head_is_locked(skb),
1771 * then map the fragments
1773 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1774 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1776 if (__splice_segment(skb_frag_page(f),
1777 f->page_offset, skb_frag_size(f),
1778 offset, len, spd, false, sk, pipe))
1786 * Map data from the skb to a pipe. Should handle both the linear part,
1787 * the fragments, and the frag list. It does NOT handle frag lists within
1788 * the frag list, if such a thing exists. We'd probably need to recurse to
1789 * handle that cleanly.
1791 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1792 struct pipe_inode_info *pipe, unsigned int tlen,
1795 struct partial_page partial[MAX_SKB_FRAGS];
1796 struct page *pages[MAX_SKB_FRAGS];
1797 struct splice_pipe_desc spd = {
1800 .nr_pages_max = MAX_SKB_FRAGS,
1802 .ops = &nosteal_pipe_buf_ops,
1803 .spd_release = sock_spd_release,
1805 struct sk_buff *frag_iter;
1806 struct sock *sk = skb->sk;
1810 * __skb_splice_bits() only fails if the output has no room left,
1811 * so no point in going over the frag_list for the error case.
1813 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1819 * now see if we have a frag_list to map
1821 skb_walk_frags(skb, frag_iter) {
1824 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1831 * Drop the socket lock, otherwise we have reverse
1832 * locking dependencies between sk_lock and i_mutex
1833 * here as compared to sendfile(). We enter here
1834 * with the socket lock held, and splice_to_pipe() will
1835 * grab the pipe inode lock. For sendfile() emulation,
1836 * we call into ->sendpage() with the i_mutex lock held
1837 * and networking will grab the socket lock.
1840 ret = splice_to_pipe(pipe, &spd);
1848 * skb_store_bits - store bits from kernel buffer to skb
1849 * @skb: destination buffer
1850 * @offset: offset in destination
1851 * @from: source buffer
1852 * @len: number of bytes to copy
1854 * Copy the specified number of bytes from the source buffer to the
1855 * destination skb. This function handles all the messy bits of
1856 * traversing fragment lists and such.
1859 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1861 int start = skb_headlen(skb);
1862 struct sk_buff *frag_iter;
1865 if (offset > (int)skb->len - len)
1868 if ((copy = start - offset) > 0) {
1871 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1872 if ((len -= copy) == 0)
1878 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1879 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1882 WARN_ON(start > offset + len);
1884 end = start + skb_frag_size(frag);
1885 if ((copy = end - offset) > 0) {
1891 vaddr = kmap_atomic(skb_frag_page(frag));
1892 memcpy(vaddr + frag->page_offset + offset - start,
1894 kunmap_atomic(vaddr);
1896 if ((len -= copy) == 0)
1904 skb_walk_frags(skb, frag_iter) {
1907 WARN_ON(start > offset + len);
1909 end = start + frag_iter->len;
1910 if ((copy = end - offset) > 0) {
1913 if (skb_store_bits(frag_iter, offset - start,
1916 if ((len -= copy) == 0)
1929 EXPORT_SYMBOL(skb_store_bits);
1931 /* Checksum skb data. */
1932 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
1933 __wsum csum, const struct skb_checksum_ops *ops)
1935 int start = skb_headlen(skb);
1936 int i, copy = start - offset;
1937 struct sk_buff *frag_iter;
1940 /* Checksum header. */
1944 csum = ops->update(skb->data + offset, copy, csum);
1945 if ((len -= copy) == 0)
1951 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1953 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1955 WARN_ON(start > offset + len);
1957 end = start + skb_frag_size(frag);
1958 if ((copy = end - offset) > 0) {
1964 vaddr = kmap_atomic(skb_frag_page(frag));
1965 csum2 = ops->update(vaddr + frag->page_offset +
1966 offset - start, copy, 0);
1967 kunmap_atomic(vaddr);
1968 csum = ops->combine(csum, csum2, pos, copy);
1977 skb_walk_frags(skb, frag_iter) {
1980 WARN_ON(start > offset + len);
1982 end = start + frag_iter->len;
1983 if ((copy = end - offset) > 0) {
1987 csum2 = __skb_checksum(frag_iter, offset - start,
1989 csum = ops->combine(csum, csum2, pos, copy);
1990 if ((len -= copy) == 0)
2001 EXPORT_SYMBOL(__skb_checksum);
2003 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2004 int len, __wsum csum)
2006 const struct skb_checksum_ops ops = {
2007 .update = csum_partial_ext,
2008 .combine = csum_block_add_ext,
2011 return __skb_checksum(skb, offset, len, csum, &ops);
2013 EXPORT_SYMBOL(skb_checksum);
2015 /* Both of above in one bottle. */
2017 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2018 u8 *to, int len, __wsum csum)
2020 int start = skb_headlen(skb);
2021 int i, copy = start - offset;
2022 struct sk_buff *frag_iter;
2029 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2031 if ((len -= copy) == 0)
2038 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2041 WARN_ON(start > offset + len);
2043 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2044 if ((copy = end - offset) > 0) {
2047 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2051 vaddr = kmap_atomic(skb_frag_page(frag));
2052 csum2 = csum_partial_copy_nocheck(vaddr +
2056 kunmap_atomic(vaddr);
2057 csum = csum_block_add(csum, csum2, pos);
2067 skb_walk_frags(skb, frag_iter) {
2071 WARN_ON(start > offset + len);
2073 end = start + frag_iter->len;
2074 if ((copy = end - offset) > 0) {
2077 csum2 = skb_copy_and_csum_bits(frag_iter,
2080 csum = csum_block_add(csum, csum2, pos);
2081 if ((len -= copy) == 0)
2092 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2095 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2096 * @from: source buffer
2098 * Calculates the amount of linear headroom needed in the 'to' skb passed
2099 * into skb_zerocopy().
2102 skb_zerocopy_headlen(const struct sk_buff *from)
2104 unsigned int hlen = 0;
2106 if (!from->head_frag ||
2107 skb_headlen(from) < L1_CACHE_BYTES ||
2108 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2109 hlen = skb_headlen(from);
2111 if (skb_has_frag_list(from))
2116 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2119 * skb_zerocopy - Zero copy skb to skb
2120 * @to: destination buffer
2121 * @from: source buffer
2122 * @len: number of bytes to copy from source buffer
2123 * @hlen: size of linear headroom in destination buffer
2125 * Copies up to `len` bytes from `from` to `to` by creating references
2126 * to the frags in the source buffer.
2128 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2129 * headroom in the `to` buffer.
2132 * 0: everything is OK
2133 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2134 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2137 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2140 int plen = 0; /* length of skb->head fragment */
2143 unsigned int offset;
2145 BUG_ON(!from->head_frag && !hlen);
2147 /* dont bother with small payloads */
2148 if (len <= skb_tailroom(to))
2149 return skb_copy_bits(from, 0, skb_put(to, len), len);
2152 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2157 plen = min_t(int, skb_headlen(from), len);
2159 page = virt_to_head_page(from->head);
2160 offset = from->data - (unsigned char *)page_address(page);
2161 __skb_fill_page_desc(to, 0, page, offset, plen);
2168 to->truesize += len + plen;
2169 to->len += len + plen;
2170 to->data_len += len + plen;
2172 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2177 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2180 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2181 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2182 len -= skb_shinfo(to)->frags[j].size;
2183 skb_frag_ref(to, j);
2186 skb_shinfo(to)->nr_frags = j;
2190 EXPORT_SYMBOL_GPL(skb_zerocopy);
2192 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2197 if (skb->ip_summed == CHECKSUM_PARTIAL)
2198 csstart = skb_checksum_start_offset(skb);
2200 csstart = skb_headlen(skb);
2202 BUG_ON(csstart > skb_headlen(skb));
2204 skb_copy_from_linear_data(skb, to, csstart);
2207 if (csstart != skb->len)
2208 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2209 skb->len - csstart, 0);
2211 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2212 long csstuff = csstart + skb->csum_offset;
2214 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2217 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2220 * skb_dequeue - remove from the head of the queue
2221 * @list: list to dequeue from
2223 * Remove the head of the list. The list lock is taken so the function
2224 * may be used safely with other locking list functions. The head item is
2225 * returned or %NULL if the list is empty.
2228 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2230 unsigned long flags;
2231 struct sk_buff *result;
2233 spin_lock_irqsave(&list->lock, flags);
2234 result = __skb_dequeue(list);
2235 spin_unlock_irqrestore(&list->lock, flags);
2238 EXPORT_SYMBOL(skb_dequeue);
2241 * skb_dequeue_tail - remove from the tail of the queue
2242 * @list: list to dequeue from
2244 * Remove the tail of the list. The list lock is taken so the function
2245 * may be used safely with other locking list functions. The tail item is
2246 * returned or %NULL if the list is empty.
2248 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2250 unsigned long flags;
2251 struct sk_buff *result;
2253 spin_lock_irqsave(&list->lock, flags);
2254 result = __skb_dequeue_tail(list);
2255 spin_unlock_irqrestore(&list->lock, flags);
2258 EXPORT_SYMBOL(skb_dequeue_tail);
2261 * skb_queue_purge - empty a list
2262 * @list: list to empty
2264 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2265 * the list and one reference dropped. This function takes the list
2266 * lock and is atomic with respect to other list locking functions.
2268 void skb_queue_purge(struct sk_buff_head *list)
2270 struct sk_buff *skb;
2271 while ((skb = skb_dequeue(list)) != NULL)
2274 EXPORT_SYMBOL(skb_queue_purge);
2277 * skb_queue_head - queue a buffer at the list head
2278 * @list: list to use
2279 * @newsk: buffer to queue
2281 * Queue a buffer at the start of the list. This function takes the
2282 * list lock and can be used safely with other locking &sk_buff functions
2285 * A buffer cannot be placed on two lists at the same time.
2287 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2289 unsigned long flags;
2291 spin_lock_irqsave(&list->lock, flags);
2292 __skb_queue_head(list, newsk);
2293 spin_unlock_irqrestore(&list->lock, flags);
2295 EXPORT_SYMBOL(skb_queue_head);
2298 * skb_queue_tail - queue a buffer at the list tail
2299 * @list: list to use
2300 * @newsk: buffer to queue
2302 * Queue a buffer at the tail of the list. This function takes the
2303 * list lock and can be used safely with other locking &sk_buff functions
2306 * A buffer cannot be placed on two lists at the same time.
2308 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2310 unsigned long flags;
2312 spin_lock_irqsave(&list->lock, flags);
2313 __skb_queue_tail(list, newsk);
2314 spin_unlock_irqrestore(&list->lock, flags);
2316 EXPORT_SYMBOL(skb_queue_tail);
2319 * skb_unlink - remove a buffer from a list
2320 * @skb: buffer to remove
2321 * @list: list to use
2323 * Remove a packet from a list. The list locks are taken and this
2324 * function is atomic with respect to other list locked calls
2326 * You must know what list the SKB is on.
2328 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2330 unsigned long flags;
2332 spin_lock_irqsave(&list->lock, flags);
2333 __skb_unlink(skb, list);
2334 spin_unlock_irqrestore(&list->lock, flags);
2336 EXPORT_SYMBOL(skb_unlink);
2339 * skb_append - append a buffer
2340 * @old: buffer to insert after
2341 * @newsk: buffer to insert
2342 * @list: list to use
2344 * Place a packet after a given packet in a list. The list locks are taken
2345 * and this function is atomic with respect to other list locked calls.
2346 * A buffer cannot be placed on two lists at the same time.
2348 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2350 unsigned long flags;
2352 spin_lock_irqsave(&list->lock, flags);
2353 __skb_queue_after(list, old, newsk);
2354 spin_unlock_irqrestore(&list->lock, flags);
2356 EXPORT_SYMBOL(skb_append);
2359 * skb_insert - insert a buffer
2360 * @old: buffer to insert before
2361 * @newsk: buffer to insert
2362 * @list: list to use
2364 * Place a packet before a given packet in a list. The list locks are
2365 * taken and this function is atomic with respect to other list locked
2368 * A buffer cannot be placed on two lists at the same time.
2370 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2372 unsigned long flags;
2374 spin_lock_irqsave(&list->lock, flags);
2375 __skb_insert(newsk, old->prev, old, list);
2376 spin_unlock_irqrestore(&list->lock, flags);
2378 EXPORT_SYMBOL(skb_insert);
2380 static inline void skb_split_inside_header(struct sk_buff *skb,
2381 struct sk_buff* skb1,
2382 const u32 len, const int pos)
2386 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2388 /* And move data appendix as is. */
2389 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2390 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2392 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2393 skb_shinfo(skb)->nr_frags = 0;
2394 skb1->data_len = skb->data_len;
2395 skb1->len += skb1->data_len;
2398 skb_set_tail_pointer(skb, len);
2401 static inline void skb_split_no_header(struct sk_buff *skb,
2402 struct sk_buff* skb1,
2403 const u32 len, int pos)
2406 const int nfrags = skb_shinfo(skb)->nr_frags;
2408 skb_shinfo(skb)->nr_frags = 0;
2409 skb1->len = skb1->data_len = skb->len - len;
2411 skb->data_len = len - pos;
2413 for (i = 0; i < nfrags; i++) {
2414 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2416 if (pos + size > len) {
2417 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2421 * We have two variants in this case:
2422 * 1. Move all the frag to the second
2423 * part, if it is possible. F.e.
2424 * this approach is mandatory for TUX,
2425 * where splitting is expensive.
2426 * 2. Split is accurately. We make this.
2428 skb_frag_ref(skb, i);
2429 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2430 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2431 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2432 skb_shinfo(skb)->nr_frags++;
2436 skb_shinfo(skb)->nr_frags++;
2439 skb_shinfo(skb1)->nr_frags = k;
2443 * skb_split - Split fragmented skb to two parts at length len.
2444 * @skb: the buffer to split
2445 * @skb1: the buffer to receive the second part
2446 * @len: new length for skb
2448 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2450 int pos = skb_headlen(skb);
2452 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2453 if (len < pos) /* Split line is inside header. */
2454 skb_split_inside_header(skb, skb1, len, pos);
2455 else /* Second chunk has no header, nothing to copy. */
2456 skb_split_no_header(skb, skb1, len, pos);
2458 EXPORT_SYMBOL(skb_split);
2460 /* Shifting from/to a cloned skb is a no-go.
2462 * Caller cannot keep skb_shinfo related pointers past calling here!
2464 static int skb_prepare_for_shift(struct sk_buff *skb)
2466 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2470 * skb_shift - Shifts paged data partially from skb to another
2471 * @tgt: buffer into which tail data gets added
2472 * @skb: buffer from which the paged data comes from
2473 * @shiftlen: shift up to this many bytes
2475 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2476 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2477 * It's up to caller to free skb if everything was shifted.
2479 * If @tgt runs out of frags, the whole operation is aborted.
2481 * Skb cannot include anything else but paged data while tgt is allowed
2482 * to have non-paged data as well.
2484 * TODO: full sized shift could be optimized but that would need
2485 * specialized skb free'er to handle frags without up-to-date nr_frags.
2487 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2489 int from, to, merge, todo;
2490 struct skb_frag_struct *fragfrom, *fragto;
2492 BUG_ON(shiftlen > skb->len);
2493 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2497 to = skb_shinfo(tgt)->nr_frags;
2498 fragfrom = &skb_shinfo(skb)->frags[from];
2500 /* Actual merge is delayed until the point when we know we can
2501 * commit all, so that we don't have to undo partial changes
2504 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2505 fragfrom->page_offset)) {
2510 todo -= skb_frag_size(fragfrom);
2512 if (skb_prepare_for_shift(skb) ||
2513 skb_prepare_for_shift(tgt))
2516 /* All previous frag pointers might be stale! */
2517 fragfrom = &skb_shinfo(skb)->frags[from];
2518 fragto = &skb_shinfo(tgt)->frags[merge];
2520 skb_frag_size_add(fragto, shiftlen);
2521 skb_frag_size_sub(fragfrom, shiftlen);
2522 fragfrom->page_offset += shiftlen;
2530 /* Skip full, not-fitting skb to avoid expensive operations */
2531 if ((shiftlen == skb->len) &&
2532 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2535 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2538 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2539 if (to == MAX_SKB_FRAGS)
2542 fragfrom = &skb_shinfo(skb)->frags[from];
2543 fragto = &skb_shinfo(tgt)->frags[to];
2545 if (todo >= skb_frag_size(fragfrom)) {
2546 *fragto = *fragfrom;
2547 todo -= skb_frag_size(fragfrom);
2552 __skb_frag_ref(fragfrom);
2553 fragto->page = fragfrom->page;
2554 fragto->page_offset = fragfrom->page_offset;
2555 skb_frag_size_set(fragto, todo);
2557 fragfrom->page_offset += todo;
2558 skb_frag_size_sub(fragfrom, todo);
2566 /* Ready to "commit" this state change to tgt */
2567 skb_shinfo(tgt)->nr_frags = to;
2570 fragfrom = &skb_shinfo(skb)->frags[0];
2571 fragto = &skb_shinfo(tgt)->frags[merge];
2573 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2574 __skb_frag_unref(fragfrom);
2577 /* Reposition in the original skb */
2579 while (from < skb_shinfo(skb)->nr_frags)
2580 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2581 skb_shinfo(skb)->nr_frags = to;
2583 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2586 /* Most likely the tgt won't ever need its checksum anymore, skb on
2587 * the other hand might need it if it needs to be resent
2589 tgt->ip_summed = CHECKSUM_PARTIAL;
2590 skb->ip_summed = CHECKSUM_PARTIAL;
2592 /* Yak, is it really working this way? Some helper please? */
2593 skb->len -= shiftlen;
2594 skb->data_len -= shiftlen;
2595 skb->truesize -= shiftlen;
2596 tgt->len += shiftlen;
2597 tgt->data_len += shiftlen;
2598 tgt->truesize += shiftlen;
2604 * skb_prepare_seq_read - Prepare a sequential read of skb data
2605 * @skb: the buffer to read
2606 * @from: lower offset of data to be read
2607 * @to: upper offset of data to be read
2608 * @st: state variable
2610 * Initializes the specified state variable. Must be called before
2611 * invoking skb_seq_read() for the first time.
2613 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2614 unsigned int to, struct skb_seq_state *st)
2616 st->lower_offset = from;
2617 st->upper_offset = to;
2618 st->root_skb = st->cur_skb = skb;
2619 st->frag_idx = st->stepped_offset = 0;
2620 st->frag_data = NULL;
2622 EXPORT_SYMBOL(skb_prepare_seq_read);
2625 * skb_seq_read - Sequentially read skb data
2626 * @consumed: number of bytes consumed by the caller so far
2627 * @data: destination pointer for data to be returned
2628 * @st: state variable
2630 * Reads a block of skb data at @consumed relative to the
2631 * lower offset specified to skb_prepare_seq_read(). Assigns
2632 * the head of the data block to @data and returns the length
2633 * of the block or 0 if the end of the skb data or the upper
2634 * offset has been reached.
2636 * The caller is not required to consume all of the data
2637 * returned, i.e. @consumed is typically set to the number
2638 * of bytes already consumed and the next call to
2639 * skb_seq_read() will return the remaining part of the block.
2641 * Note 1: The size of each block of data returned can be arbitrary,
2642 * this limitation is the cost for zerocopy seqeuental
2643 * reads of potentially non linear data.
2645 * Note 2: Fragment lists within fragments are not implemented
2646 * at the moment, state->root_skb could be replaced with
2647 * a stack for this purpose.
2649 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2650 struct skb_seq_state *st)
2652 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2655 if (unlikely(abs_offset >= st->upper_offset)) {
2656 if (st->frag_data) {
2657 kunmap_atomic(st->frag_data);
2658 st->frag_data = NULL;
2664 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2666 if (abs_offset < block_limit && !st->frag_data) {
2667 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2668 return block_limit - abs_offset;
2671 if (st->frag_idx == 0 && !st->frag_data)
2672 st->stepped_offset += skb_headlen(st->cur_skb);
2674 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2675 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2676 block_limit = skb_frag_size(frag) + st->stepped_offset;
2678 if (abs_offset < block_limit) {
2680 st->frag_data = kmap_atomic(skb_frag_page(frag));
2682 *data = (u8 *) st->frag_data + frag->page_offset +
2683 (abs_offset - st->stepped_offset);
2685 return block_limit - abs_offset;
2688 if (st->frag_data) {
2689 kunmap_atomic(st->frag_data);
2690 st->frag_data = NULL;
2694 st->stepped_offset += skb_frag_size(frag);
2697 if (st->frag_data) {
2698 kunmap_atomic(st->frag_data);
2699 st->frag_data = NULL;
2702 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2703 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2706 } else if (st->cur_skb->next) {
2707 st->cur_skb = st->cur_skb->next;
2714 EXPORT_SYMBOL(skb_seq_read);
2717 * skb_abort_seq_read - Abort a sequential read of skb data
2718 * @st: state variable
2720 * Must be called if skb_seq_read() was not called until it
2723 void skb_abort_seq_read(struct skb_seq_state *st)
2726 kunmap_atomic(st->frag_data);
2728 EXPORT_SYMBOL(skb_abort_seq_read);
2730 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2732 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2733 struct ts_config *conf,
2734 struct ts_state *state)
2736 return skb_seq_read(offset, text, TS_SKB_CB(state));
2739 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2741 skb_abort_seq_read(TS_SKB_CB(state));
2745 * skb_find_text - Find a text pattern in skb data
2746 * @skb: the buffer to look in
2747 * @from: search offset
2749 * @config: textsearch configuration
2750 * @state: uninitialized textsearch state variable
2752 * Finds a pattern in the skb data according to the specified
2753 * textsearch configuration. Use textsearch_next() to retrieve
2754 * subsequent occurrences of the pattern. Returns the offset
2755 * to the first occurrence or UINT_MAX if no match was found.
2757 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2758 unsigned int to, struct ts_config *config,
2759 struct ts_state *state)
2763 config->get_next_block = skb_ts_get_next_block;
2764 config->finish = skb_ts_finish;
2766 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2768 ret = textsearch_find(config, state);
2769 return (ret <= to - from ? ret : UINT_MAX);
2771 EXPORT_SYMBOL(skb_find_text);
2774 * skb_append_datato_frags - append the user data to a skb
2775 * @sk: sock structure
2776 * @skb: skb structure to be appened with user data.
2777 * @getfrag: call back function to be used for getting the user data
2778 * @from: pointer to user message iov
2779 * @length: length of the iov message
2781 * Description: This procedure append the user data in the fragment part
2782 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2784 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2785 int (*getfrag)(void *from, char *to, int offset,
2786 int len, int odd, struct sk_buff *skb),
2787 void *from, int length)
2789 int frg_cnt = skb_shinfo(skb)->nr_frags;
2793 struct page_frag *pfrag = ¤t->task_frag;
2796 /* Return error if we don't have space for new frag */
2797 if (frg_cnt >= MAX_SKB_FRAGS)
2800 if (!sk_page_frag_refill(sk, pfrag))
2803 /* copy the user data to page */
2804 copy = min_t(int, length, pfrag->size - pfrag->offset);
2806 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2807 offset, copy, 0, skb);
2811 /* copy was successful so update the size parameters */
2812 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2815 pfrag->offset += copy;
2816 get_page(pfrag->page);
2818 skb->truesize += copy;
2819 atomic_add(copy, &sk->sk_wmem_alloc);
2821 skb->data_len += copy;
2825 } while (length > 0);
2829 EXPORT_SYMBOL(skb_append_datato_frags);
2832 * skb_pull_rcsum - pull skb and update receive checksum
2833 * @skb: buffer to update
2834 * @len: length of data pulled
2836 * This function performs an skb_pull on the packet and updates
2837 * the CHECKSUM_COMPLETE checksum. It should be used on
2838 * receive path processing instead of skb_pull unless you know
2839 * that the checksum difference is zero (e.g., a valid IP header)
2840 * or you are setting ip_summed to CHECKSUM_NONE.
2842 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2844 BUG_ON(len > skb->len);
2846 BUG_ON(skb->len < skb->data_len);
2847 skb_postpull_rcsum(skb, skb->data, len);
2848 return skb->data += len;
2850 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2853 * skb_segment - Perform protocol segmentation on skb.
2854 * @head_skb: buffer to segment
2855 * @features: features for the output path (see dev->features)
2857 * This function performs segmentation on the given skb. It returns
2858 * a pointer to the first in a list of new skbs for the segments.
2859 * In case of error it returns ERR_PTR(err).
2861 struct sk_buff *skb_segment(struct sk_buff *head_skb,
2862 netdev_features_t features)
2864 struct sk_buff *segs = NULL;
2865 struct sk_buff *tail = NULL;
2866 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
2867 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
2868 unsigned int mss = skb_shinfo(head_skb)->gso_size;
2869 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
2870 struct sk_buff *frag_skb = head_skb;
2871 unsigned int offset = doffset;
2872 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
2873 unsigned int headroom;
2877 int sg = !!(features & NETIF_F_SG);
2878 int nfrags = skb_shinfo(head_skb)->nr_frags;
2884 proto = skb_network_protocol(head_skb, &dummy);
2885 if (unlikely(!proto))
2886 return ERR_PTR(-EINVAL);
2888 csum = !!can_checksum_protocol(features, proto);
2889 __skb_push(head_skb, doffset);
2890 headroom = skb_headroom(head_skb);
2891 pos = skb_headlen(head_skb);
2894 struct sk_buff *nskb;
2895 skb_frag_t *nskb_frag;
2899 len = head_skb->len - offset;
2903 hsize = skb_headlen(head_skb) - offset;
2906 if (hsize > len || !sg)
2909 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
2910 (skb_headlen(list_skb) == len || sg)) {
2911 BUG_ON(skb_headlen(list_skb) > len);
2914 nfrags = skb_shinfo(list_skb)->nr_frags;
2915 frag = skb_shinfo(list_skb)->frags;
2916 frag_skb = list_skb;
2917 pos += skb_headlen(list_skb);
2919 while (pos < offset + len) {
2920 BUG_ON(i >= nfrags);
2922 size = skb_frag_size(frag);
2923 if (pos + size > offset + len)
2931 nskb = skb_clone(list_skb, GFP_ATOMIC);
2932 list_skb = list_skb->next;
2934 if (unlikely(!nskb))
2937 if (unlikely(pskb_trim(nskb, len))) {
2942 hsize = skb_end_offset(nskb);
2943 if (skb_cow_head(nskb, doffset + headroom)) {
2948 nskb->truesize += skb_end_offset(nskb) - hsize;
2949 skb_release_head_state(nskb);
2950 __skb_push(nskb, doffset);
2952 nskb = __alloc_skb(hsize + doffset + headroom,
2953 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
2956 if (unlikely(!nskb))
2959 skb_reserve(nskb, headroom);
2960 __skb_put(nskb, doffset);
2969 __copy_skb_header(nskb, head_skb);
2970 nskb->mac_len = head_skb->mac_len;
2972 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
2974 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
2975 nskb->data - tnl_hlen,
2976 doffset + tnl_hlen);
2978 if (nskb->len == len + doffset)
2979 goto perform_csum_check;
2982 nskb->ip_summed = CHECKSUM_NONE;
2983 nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
2989 nskb_frag = skb_shinfo(nskb)->frags;
2991 skb_copy_from_linear_data_offset(head_skb, offset,
2992 skb_put(nskb, hsize), hsize);
2994 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
2997 while (pos < offset + len) {
2999 BUG_ON(skb_headlen(list_skb));
3002 nfrags = skb_shinfo(list_skb)->nr_frags;
3003 frag = skb_shinfo(list_skb)->frags;
3004 frag_skb = list_skb;
3008 list_skb = list_skb->next;
3011 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3013 net_warn_ratelimited(
3014 "skb_segment: too many frags: %u %u\n",
3019 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3023 __skb_frag_ref(nskb_frag);
3024 size = skb_frag_size(nskb_frag);
3027 nskb_frag->page_offset += offset - pos;
3028 skb_frag_size_sub(nskb_frag, offset - pos);
3031 skb_shinfo(nskb)->nr_frags++;
3033 if (pos + size <= offset + len) {
3038 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3046 nskb->data_len = len - hsize;
3047 nskb->len += nskb->data_len;
3048 nskb->truesize += nskb->data_len;
3052 nskb->csum = skb_checksum(nskb, doffset,
3053 nskb->len - doffset, 0);
3054 nskb->ip_summed = CHECKSUM_NONE;
3056 } while ((offset += len) < head_skb->len);
3061 kfree_skb_list(segs);
3062 return ERR_PTR(err);
3064 EXPORT_SYMBOL_GPL(skb_segment);
3066 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3068 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3069 unsigned int offset = skb_gro_offset(skb);
3070 unsigned int headlen = skb_headlen(skb);
3071 struct sk_buff *nskb, *lp, *p = *head;
3072 unsigned int len = skb_gro_len(skb);
3073 unsigned int delta_truesize;
3074 unsigned int headroom;
3076 if (unlikely(p->len + len >= 65536))
3079 lp = NAPI_GRO_CB(p)->last ?: p;
3080 pinfo = skb_shinfo(lp);
3082 if (headlen <= offset) {
3085 int i = skbinfo->nr_frags;
3086 int nr_frags = pinfo->nr_frags + i;
3088 if (nr_frags > MAX_SKB_FRAGS)
3092 pinfo->nr_frags = nr_frags;
3093 skbinfo->nr_frags = 0;
3095 frag = pinfo->frags + nr_frags;
3096 frag2 = skbinfo->frags + i;
3101 frag->page_offset += offset;
3102 skb_frag_size_sub(frag, offset);
3104 /* all fragments truesize : remove (head size + sk_buff) */
3105 delta_truesize = skb->truesize -
3106 SKB_TRUESIZE(skb_end_offset(skb));
3108 skb->truesize -= skb->data_len;
3109 skb->len -= skb->data_len;
3112 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3114 } else if (skb->head_frag) {
3115 int nr_frags = pinfo->nr_frags;
3116 skb_frag_t *frag = pinfo->frags + nr_frags;
3117 struct page *page = virt_to_head_page(skb->head);
3118 unsigned int first_size = headlen - offset;
3119 unsigned int first_offset;
3121 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3124 first_offset = skb->data -
3125 (unsigned char *)page_address(page) +
3128 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3130 frag->page.p = page;
3131 frag->page_offset = first_offset;
3132 skb_frag_size_set(frag, first_size);
3134 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3135 /* We dont need to clear skbinfo->nr_frags here */
3137 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3138 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3141 if (pinfo->frag_list)
3143 if (skb_gro_len(p) != pinfo->gso_size)
3146 headroom = skb_headroom(p);
3147 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3148 if (unlikely(!nskb))
3151 __copy_skb_header(nskb, p);
3152 nskb->mac_len = p->mac_len;
3154 skb_reserve(nskb, headroom);
3155 __skb_put(nskb, skb_gro_offset(p));
3157 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3158 skb_set_network_header(nskb, skb_network_offset(p));
3159 skb_set_transport_header(nskb, skb_transport_offset(p));
3161 __skb_pull(p, skb_gro_offset(p));
3162 memcpy(skb_mac_header(nskb), skb_mac_header(p),
3163 p->data - skb_mac_header(p));
3165 skb_shinfo(nskb)->frag_list = p;
3166 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3167 pinfo->gso_size = 0;
3168 skb_header_release(p);
3169 NAPI_GRO_CB(nskb)->last = p;
3171 nskb->data_len += p->len;
3172 nskb->truesize += p->truesize;
3173 nskb->len += p->len;
3176 nskb->next = p->next;
3182 delta_truesize = skb->truesize;
3183 if (offset > headlen) {
3184 unsigned int eat = offset - headlen;
3186 skbinfo->frags[0].page_offset += eat;
3187 skb_frag_size_sub(&skbinfo->frags[0], eat);
3188 skb->data_len -= eat;
3193 __skb_pull(skb, offset);
3195 if (!NAPI_GRO_CB(p)->last)
3196 skb_shinfo(p)->frag_list = skb;
3198 NAPI_GRO_CB(p)->last->next = skb;
3199 NAPI_GRO_CB(p)->last = skb;
3200 skb_header_release(skb);
3204 NAPI_GRO_CB(p)->count++;
3206 p->truesize += delta_truesize;
3209 lp->data_len += len;
3210 lp->truesize += delta_truesize;
3213 NAPI_GRO_CB(skb)->same_flow = 1;
3216 EXPORT_SYMBOL_GPL(skb_gro_receive);
3218 void __init skb_init(void)
3220 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3221 sizeof(struct sk_buff),
3223 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3225 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3226 (2*sizeof(struct sk_buff)) +
3229 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3234 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3235 * @skb: Socket buffer containing the buffers to be mapped
3236 * @sg: The scatter-gather list to map into
3237 * @offset: The offset into the buffer's contents to start mapping
3238 * @len: Length of buffer space to be mapped
3240 * Fill the specified scatter-gather list with mappings/pointers into a
3241 * region of the buffer space attached to a socket buffer.
3244 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3246 int start = skb_headlen(skb);
3247 int i, copy = start - offset;
3248 struct sk_buff *frag_iter;
3254 sg_set_buf(sg, skb->data + offset, copy);
3256 if ((len -= copy) == 0)
3261 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3264 WARN_ON(start > offset + len);
3266 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3267 if ((copy = end - offset) > 0) {
3268 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3272 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3273 frag->page_offset+offset-start);
3282 skb_walk_frags(skb, frag_iter) {
3285 WARN_ON(start > offset + len);
3287 end = start + frag_iter->len;
3288 if ((copy = end - offset) > 0) {
3291 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3293 if ((len -= copy) == 0)
3303 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3305 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3307 sg_mark_end(&sg[nsg - 1]);
3311 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3314 * skb_cow_data - Check that a socket buffer's data buffers are writable
3315 * @skb: The socket buffer to check.
3316 * @tailbits: Amount of trailing space to be added
3317 * @trailer: Returned pointer to the skb where the @tailbits space begins
3319 * Make sure that the data buffers attached to a socket buffer are
3320 * writable. If they are not, private copies are made of the data buffers
3321 * and the socket buffer is set to use these instead.
3323 * If @tailbits is given, make sure that there is space to write @tailbits
3324 * bytes of data beyond current end of socket buffer. @trailer will be
3325 * set to point to the skb in which this space begins.
3327 * The number of scatterlist elements required to completely map the
3328 * COW'd and extended socket buffer will be returned.
3330 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3334 struct sk_buff *skb1, **skb_p;
3336 /* If skb is cloned or its head is paged, reallocate
3337 * head pulling out all the pages (pages are considered not writable
3338 * at the moment even if they are anonymous).
3340 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3341 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3344 /* Easy case. Most of packets will go this way. */
3345 if (!skb_has_frag_list(skb)) {
3346 /* A little of trouble, not enough of space for trailer.
3347 * This should not happen, when stack is tuned to generate
3348 * good frames. OK, on miss we reallocate and reserve even more
3349 * space, 128 bytes is fair. */
3351 if (skb_tailroom(skb) < tailbits &&
3352 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3360 /* Misery. We are in troubles, going to mincer fragments... */
3363 skb_p = &skb_shinfo(skb)->frag_list;
3366 while ((skb1 = *skb_p) != NULL) {
3369 /* The fragment is partially pulled by someone,
3370 * this can happen on input. Copy it and everything
3373 if (skb_shared(skb1))
3376 /* If the skb is the last, worry about trailer. */
3378 if (skb1->next == NULL && tailbits) {
3379 if (skb_shinfo(skb1)->nr_frags ||
3380 skb_has_frag_list(skb1) ||
3381 skb_tailroom(skb1) < tailbits)
3382 ntail = tailbits + 128;
3388 skb_shinfo(skb1)->nr_frags ||
3389 skb_has_frag_list(skb1)) {
3390 struct sk_buff *skb2;
3392 /* Fuck, we are miserable poor guys... */
3394 skb2 = skb_copy(skb1, GFP_ATOMIC);
3396 skb2 = skb_copy_expand(skb1,
3400 if (unlikely(skb2 == NULL))
3404 skb_set_owner_w(skb2, skb1->sk);
3406 /* Looking around. Are we still alive?
3407 * OK, link new skb, drop old one */
3409 skb2->next = skb1->next;
3416 skb_p = &skb1->next;
3421 EXPORT_SYMBOL_GPL(skb_cow_data);
3423 static void sock_rmem_free(struct sk_buff *skb)
3425 struct sock *sk = skb->sk;
3427 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3431 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3433 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3437 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3438 (unsigned int)sk->sk_rcvbuf)
3443 skb->destructor = sock_rmem_free;
3444 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3446 /* before exiting rcu section, make sure dst is refcounted */
3449 skb_queue_tail(&sk->sk_error_queue, skb);
3450 if (!sock_flag(sk, SOCK_DEAD))
3451 sk->sk_data_ready(sk, len);
3454 EXPORT_SYMBOL(sock_queue_err_skb);
3456 void skb_tstamp_tx(struct sk_buff *orig_skb,
3457 struct skb_shared_hwtstamps *hwtstamps)
3459 struct sock *sk = orig_skb->sk;
3460 struct sock_exterr_skb *serr;
3461 struct sk_buff *skb;
3468 *skb_hwtstamps(orig_skb) =
3472 * no hardware time stamps available,
3473 * so keep the shared tx_flags and only
3474 * store software time stamp
3476 orig_skb->tstamp = ktime_get_real();
3479 skb = skb_clone(orig_skb, GFP_ATOMIC);
3483 serr = SKB_EXT_ERR(skb);
3484 memset(serr, 0, sizeof(*serr));
3485 serr->ee.ee_errno = ENOMSG;
3486 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3488 err = sock_queue_err_skb(sk, skb);
3493 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3495 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3497 struct sock *sk = skb->sk;
3498 struct sock_exterr_skb *serr;
3501 skb->wifi_acked_valid = 1;
3502 skb->wifi_acked = acked;
3504 serr = SKB_EXT_ERR(skb);
3505 memset(serr, 0, sizeof(*serr));
3506 serr->ee.ee_errno = ENOMSG;
3507 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3509 err = sock_queue_err_skb(sk, skb);
3513 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3517 * skb_partial_csum_set - set up and verify partial csum values for packet
3518 * @skb: the skb to set
3519 * @start: the number of bytes after skb->data to start checksumming.
3520 * @off: the offset from start to place the checksum.
3522 * For untrusted partially-checksummed packets, we need to make sure the values
3523 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3525 * This function checks and sets those values and skb->ip_summed: if this
3526 * returns false you should drop the packet.
3528 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3530 if (unlikely(start > skb_headlen(skb)) ||
3531 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3532 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3533 start, off, skb_headlen(skb));
3536 skb->ip_summed = CHECKSUM_PARTIAL;
3537 skb->csum_start = skb_headroom(skb) + start;
3538 skb->csum_offset = off;
3539 skb_set_transport_header(skb, start);
3542 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3544 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3547 if (skb_headlen(skb) >= len)
3550 /* If we need to pullup then pullup to the max, so we
3551 * won't need to do it again.
3556 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3559 if (skb_headlen(skb) < len)
3565 /* This value should be large enough to cover a tagged ethernet header plus
3566 * maximally sized IP and TCP or UDP headers.
3568 #define MAX_IP_HDR_LEN 128
3570 static int skb_checksum_setup_ip(struct sk_buff *skb, bool recalculate)
3578 err = skb_maybe_pull_tail(skb,
3579 sizeof(struct iphdr),
3584 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3587 off = ip_hdrlen(skb);
3594 switch (ip_hdr(skb)->protocol) {
3596 err = skb_maybe_pull_tail(skb,
3597 off + sizeof(struct tcphdr),
3602 if (!skb_partial_csum_set(skb, off,
3603 offsetof(struct tcphdr, check))) {
3609 tcp_hdr(skb)->check =
3610 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3616 err = skb_maybe_pull_tail(skb,
3617 off + sizeof(struct udphdr),
3622 if (!skb_partial_csum_set(skb, off,
3623 offsetof(struct udphdr, check))) {
3629 udp_hdr(skb)->check =
3630 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3645 /* This value should be large enough to cover a tagged ethernet header plus
3646 * an IPv6 header, all options, and a maximal TCP or UDP header.
3648 #define MAX_IPV6_HDR_LEN 256
3650 #define OPT_HDR(type, skb, off) \
3651 (type *)(skb_network_header(skb) + (off))
3653 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3665 off = sizeof(struct ipv6hdr);
3667 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3671 nexthdr = ipv6_hdr(skb)->nexthdr;
3673 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3674 while (off <= len && !done) {
3676 case IPPROTO_DSTOPTS:
3677 case IPPROTO_HOPOPTS:
3678 case IPPROTO_ROUTING: {
3679 struct ipv6_opt_hdr *hp;
3681 err = skb_maybe_pull_tail(skb,
3683 sizeof(struct ipv6_opt_hdr),
3688 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3689 nexthdr = hp->nexthdr;
3690 off += ipv6_optlen(hp);
3694 struct ip_auth_hdr *hp;
3696 err = skb_maybe_pull_tail(skb,
3698 sizeof(struct ip_auth_hdr),
3703 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3704 nexthdr = hp->nexthdr;
3705 off += ipv6_authlen(hp);
3708 case IPPROTO_FRAGMENT: {
3709 struct frag_hdr *hp;
3711 err = skb_maybe_pull_tail(skb,
3713 sizeof(struct frag_hdr),
3718 hp = OPT_HDR(struct frag_hdr, skb, off);
3720 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3723 nexthdr = hp->nexthdr;
3724 off += sizeof(struct frag_hdr);
3735 if (!done || fragment)
3740 err = skb_maybe_pull_tail(skb,
3741 off + sizeof(struct tcphdr),
3746 if (!skb_partial_csum_set(skb, off,
3747 offsetof(struct tcphdr, check))) {
3753 tcp_hdr(skb)->check =
3754 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3755 &ipv6_hdr(skb)->daddr,
3760 err = skb_maybe_pull_tail(skb,
3761 off + sizeof(struct udphdr),
3766 if (!skb_partial_csum_set(skb, off,
3767 offsetof(struct udphdr, check))) {
3773 udp_hdr(skb)->check =
3774 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3775 &ipv6_hdr(skb)->daddr,
3790 * skb_checksum_setup - set up partial checksum offset
3791 * @skb: the skb to set up
3792 * @recalculate: if true the pseudo-header checksum will be recalculated
3794 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
3798 switch (skb->protocol) {
3799 case htons(ETH_P_IP):
3800 err = skb_checksum_setup_ip(skb, recalculate);
3803 case htons(ETH_P_IPV6):
3804 err = skb_checksum_setup_ipv6(skb, recalculate);
3814 EXPORT_SYMBOL(skb_checksum_setup);
3816 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3818 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3821 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3823 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3826 skb_release_head_state(skb);
3827 kmem_cache_free(skbuff_head_cache, skb);
3832 EXPORT_SYMBOL(kfree_skb_partial);
3835 * skb_try_coalesce - try to merge skb to prior one
3837 * @from: buffer to add
3838 * @fragstolen: pointer to boolean
3839 * @delta_truesize: how much more was allocated than was requested
3841 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3842 bool *fragstolen, int *delta_truesize)
3844 int i, delta, len = from->len;
3846 *fragstolen = false;
3851 if (len <= skb_tailroom(to)) {
3852 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3853 *delta_truesize = 0;
3857 if (skb_has_frag_list(to) || skb_has_frag_list(from))
3860 if (skb_headlen(from) != 0) {
3862 unsigned int offset;
3864 if (skb_shinfo(to)->nr_frags +
3865 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3868 if (skb_head_is_locked(from))
3871 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3873 page = virt_to_head_page(from->head);
3874 offset = from->data - (unsigned char *)page_address(page);
3876 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3877 page, offset, skb_headlen(from));
3880 if (skb_shinfo(to)->nr_frags +
3881 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3884 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3887 WARN_ON_ONCE(delta < len);
3889 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3890 skb_shinfo(from)->frags,
3891 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3892 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3894 if (!skb_cloned(from))
3895 skb_shinfo(from)->nr_frags = 0;
3897 /* if the skb is not cloned this does nothing
3898 * since we set nr_frags to 0.
3900 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3901 skb_frag_ref(from, i);
3903 to->truesize += delta;
3905 to->data_len += len;
3907 *delta_truesize = delta;
3910 EXPORT_SYMBOL(skb_try_coalesce);
3913 * skb_scrub_packet - scrub an skb
3915 * @skb: buffer to clean
3916 * @xnet: packet is crossing netns
3918 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
3919 * into/from a tunnel. Some information have to be cleared during these
3921 * skb_scrub_packet can also be used to clean a skb before injecting it in
3922 * another namespace (@xnet == true). We have to clear all information in the
3923 * skb that could impact namespace isolation.
3925 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
3929 skb->tstamp.tv64 = 0;
3930 skb->pkt_type = PACKET_HOST;
3937 nf_reset_trace(skb);
3939 EXPORT_SYMBOL_GPL(skb_scrub_packet);
3942 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
3946 * skb_gso_transport_seglen is used to determine the real size of the
3947 * individual segments, including Layer4 headers (TCP/UDP).
3949 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
3951 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
3953 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3954 unsigned int hdr_len;
3956 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3957 hdr_len = tcp_hdrlen(skb);
3959 hdr_len = sizeof(struct udphdr);
3960 return hdr_len + shinfo->gso_size;
3962 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);