2 * Definitions for the 'struct sk_buff' memory handlers.
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
40 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X) \
42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
48 /* A. Checksumming of received packets by device.
50 * NONE: device failed to checksum this packet.
51 * skb->csum is undefined.
53 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
54 * skb->csum is undefined.
55 * It is bad option, but, unfortunately, many of vendors do this.
56 * Apparently with secret goal to sell you new device, when you
57 * will add new protocol to your host. F.e. IPv6. 8)
59 * COMPLETE: the most generic way. Device supplied checksum of _all_
60 * the packet as seen by netif_rx in skb->csum.
61 * NOTE: Even if device supports only some protocols, but
62 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * PARTIAL: identical to the case for output below. This may occur
66 * on a packet received directly from another Linux OS, e.g.,
67 * a virtualised Linux kernel on the same host. The packet can
68 * be treated in the same way as UNNECESSARY except that on
69 * output (i.e., forwarding) the checksum must be filled in
70 * by the OS or the hardware.
72 * B. Checksumming on output.
74 * NONE: skb is checksummed by protocol or csum is not required.
76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
77 * from skb->csum_start to the end and to record the checksum
78 * at skb->csum_start + skb->csum_offset.
80 * Device must show its capabilities in dev->features, set
81 * at device setup time.
82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
84 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86 * TCP/UDP over IPv4. Sigh. Vendors like this
87 * way by an unknown reason. Though, see comment above
88 * about CHECKSUM_UNNECESSARY. 8)
89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
91 * Any questions? No questions, good. --ANK
96 struct pipe_inode_info;
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
107 struct net_device *physindev;
108 struct net_device *physoutdev;
110 unsigned long data[32 / sizeof(unsigned long)];
114 struct sk_buff_head {
115 /* These two members must be first. */
116 struct sk_buff *next;
117 struct sk_buff *prev;
125 /* To allow 64K frame to be packed as single skb without frag_list. Since
126 * GRO uses frags we allocate at least 16 regardless of page size.
128 #if (65536/PAGE_SIZE + 2) < 16
129 #define MAX_SKB_FRAGS 16UL
131 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
134 typedef struct skb_frag_struct skb_frag_t;
136 struct skb_frag_struct {
138 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
147 #define HAVE_HW_TIME_STAMP
150 * struct skb_shared_hwtstamps - hardware time stamps
151 * @hwtstamp: hardware time stamp transformed into duration
152 * since arbitrary point in time
153 * @syststamp: hwtstamp transformed to system time base
155 * Software time stamps generated by ktime_get_real() are stored in
156 * skb->tstamp. The relation between the different kinds of time
157 * stamps is as follows:
159 * syststamp and tstamp can be compared against each other in
160 * arbitrary combinations. The accuracy of a
161 * syststamp/tstamp/"syststamp from other device" comparison is
162 * limited by the accuracy of the transformation into system time
163 * base. This depends on the device driver and its underlying
166 * hwtstamps can only be compared against other hwtstamps from
169 * This structure is attached to packets as part of the
170 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
172 struct skb_shared_hwtstamps {
177 /* Definitions for tx_flags in struct skb_shared_info */
179 /* generate hardware time stamp */
180 SKBTX_HW_TSTAMP = 1 << 0,
182 /* generate software time stamp */
183 SKBTX_SW_TSTAMP = 1 << 1,
185 /* device driver is going to provide hardware time stamp */
186 SKBTX_IN_PROGRESS = 1 << 2,
188 /* ensure the originating sk reference is available on driver level */
189 SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
191 /* device driver supports TX zero-copy buffers */
192 SKBTX_DEV_ZEROCOPY = 1 << 4,
196 * The callback notifies userspace to release buffers when skb DMA is done in
197 * lower device, the skb last reference should be 0 when calling this.
198 * The desc is used to track userspace buffer index.
201 void (*callback)(void *);
206 /* This data is invariant across clones and lives at
207 * the end of the header data, ie. at skb->end.
209 struct skb_shared_info {
210 unsigned short nr_frags;
211 unsigned short gso_size;
212 /* Warning: this field is not always filled in (UFO)! */
213 unsigned short gso_segs;
214 unsigned short gso_type;
217 struct sk_buff *frag_list;
218 struct skb_shared_hwtstamps hwtstamps;
221 * Warning : all fields before dataref are cleared in __alloc_skb()
225 /* Intermediate layers must ensure that destructor_arg
226 * remains valid until skb destructor */
227 void * destructor_arg;
229 /* must be last field, see pskb_expand_head() */
230 skb_frag_t frags[MAX_SKB_FRAGS];
233 /* We divide dataref into two halves. The higher 16 bits hold references
234 * to the payload part of skb->data. The lower 16 bits hold references to
235 * the entire skb->data. A clone of a headerless skb holds the length of
236 * the header in skb->hdr_len.
238 * All users must obey the rule that the skb->data reference count must be
239 * greater than or equal to the payload reference count.
241 * Holding a reference to the payload part means that the user does not
242 * care about modifications to the header part of skb->data.
244 #define SKB_DATAREF_SHIFT 16
245 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
249 SKB_FCLONE_UNAVAILABLE,
255 SKB_GSO_TCPV4 = 1 << 0,
256 SKB_GSO_UDP = 1 << 1,
258 /* This indicates the skb is from an untrusted source. */
259 SKB_GSO_DODGY = 1 << 2,
261 /* This indicates the tcp segment has CWR set. */
262 SKB_GSO_TCP_ECN = 1 << 3,
264 SKB_GSO_TCPV6 = 1 << 4,
266 SKB_GSO_FCOE = 1 << 5,
269 #if BITS_PER_LONG > 32
270 #define NET_SKBUFF_DATA_USES_OFFSET 1
273 #ifdef NET_SKBUFF_DATA_USES_OFFSET
274 typedef unsigned int sk_buff_data_t;
276 typedef unsigned char *sk_buff_data_t;
279 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
280 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
281 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
285 * struct sk_buff - socket buffer
286 * @next: Next buffer in list
287 * @prev: Previous buffer in list
288 * @tstamp: Time we arrived
289 * @sk: Socket we are owned by
290 * @dev: Device we arrived on/are leaving by
291 * @cb: Control buffer. Free for use by every layer. Put private vars here
292 * @_skb_refdst: destination entry (with norefcount bit)
293 * @sp: the security path, used for xfrm
294 * @len: Length of actual data
295 * @data_len: Data length
296 * @mac_len: Length of link layer header
297 * @hdr_len: writable header length of cloned skb
298 * @csum: Checksum (must include start/offset pair)
299 * @csum_start: Offset from skb->head where checksumming should start
300 * @csum_offset: Offset from csum_start where checksum should be stored
301 * @priority: Packet queueing priority
302 * @local_df: allow local fragmentation
303 * @cloned: Head may be cloned (check refcnt to be sure)
304 * @ip_summed: Driver fed us an IP checksum
305 * @nohdr: Payload reference only, must not modify header
306 * @nfctinfo: Relationship of this skb to the connection
307 * @pkt_type: Packet class
308 * @fclone: skbuff clone status
309 * @ipvs_property: skbuff is owned by ipvs
310 * @peeked: this packet has been seen already, so stats have been
311 * done for it, don't do them again
312 * @nf_trace: netfilter packet trace flag
313 * @protocol: Packet protocol from driver
314 * @destructor: Destruct function
315 * @nfct: Associated connection, if any
316 * @nfct_reasm: netfilter conntrack re-assembly pointer
317 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
318 * @skb_iif: ifindex of device we arrived on
319 * @tc_index: Traffic control index
320 * @tc_verd: traffic control verdict
321 * @rxhash: the packet hash computed on receive
322 * @queue_mapping: Queue mapping for multiqueue devices
323 * @ndisc_nodetype: router type (from link layer)
324 * @ooo_okay: allow the mapping of a socket to a queue to be changed
325 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
327 * @dma_cookie: a cookie to one of several possible DMA operations
328 * done by skb DMA functions
329 * @secmark: security marking
330 * @mark: Generic packet mark
331 * @dropcount: total number of sk_receive_queue overflows
332 * @vlan_tci: vlan tag control information
333 * @transport_header: Transport layer header
334 * @network_header: Network layer header
335 * @mac_header: Link layer header
336 * @tail: Tail pointer
338 * @head: Head of buffer
339 * @data: Data head pointer
340 * @truesize: Buffer size
341 * @users: User count - see {datagram,tcp}.c
345 /* These two members must be first. */
346 struct sk_buff *next;
347 struct sk_buff *prev;
352 struct net_device *dev;
355 * This is the control buffer. It is free to use for every
356 * layer. Please put your private variables there. If you
357 * want to keep them across layers you have to do a skb_clone()
358 * first. This is owned by whoever has the skb queued ATM.
360 char cb[48] __aligned(8);
362 unsigned long _skb_refdst;
378 kmemcheck_bitfield_begin(flags1);
389 kmemcheck_bitfield_end(flags1);
392 void (*destructor)(struct sk_buff *skb);
393 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
394 struct nf_conntrack *nfct;
396 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
397 struct sk_buff *nfct_reasm;
399 #ifdef CONFIG_BRIDGE_NETFILTER
400 struct nf_bridge_info *nf_bridge;
404 #ifdef CONFIG_NET_SCHED
405 __u16 tc_index; /* traffic control index */
406 #ifdef CONFIG_NET_CLS_ACT
407 __u16 tc_verd; /* traffic control verdict */
414 kmemcheck_bitfield_begin(flags2);
415 #ifdef CONFIG_IPV6_NDISC_NODETYPE
416 __u8 ndisc_nodetype:2;
420 kmemcheck_bitfield_end(flags2);
424 #ifdef CONFIG_NET_DMA
425 dma_cookie_t dma_cookie;
427 #ifdef CONFIG_NETWORK_SECMARK
437 sk_buff_data_t transport_header;
438 sk_buff_data_t network_header;
439 sk_buff_data_t mac_header;
440 /* These elements must be at the end, see alloc_skb() for details. */
445 unsigned int truesize;
451 * Handling routines are only of interest to the kernel
453 #include <linux/slab.h>
455 #include <asm/system.h>
458 * skb might have a dst pointer attached, refcounted or not.
459 * _skb_refdst low order bit is set if refcount was _not_ taken
461 #define SKB_DST_NOREF 1UL
462 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
465 * skb_dst - returns skb dst_entry
468 * Returns skb dst_entry, regardless of reference taken or not.
470 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
472 /* If refdst was not refcounted, check we still are in a
473 * rcu_read_lock section
475 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
476 !rcu_read_lock_held() &&
477 !rcu_read_lock_bh_held());
478 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
482 * skb_dst_set - sets skb dst
486 * Sets skb dst, assuming a reference was taken on dst and should
487 * be released by skb_dst_drop()
489 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
491 skb->_skb_refdst = (unsigned long)dst;
494 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
497 * skb_dst_is_noref - Test if skb dst isn't refcounted
500 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
502 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
505 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
507 return (struct rtable *)skb_dst(skb);
510 extern void kfree_skb(struct sk_buff *skb);
511 extern void consume_skb(struct sk_buff *skb);
512 extern void __kfree_skb(struct sk_buff *skb);
513 extern struct sk_buff *__alloc_skb(unsigned int size,
514 gfp_t priority, int fclone, int node);
515 static inline struct sk_buff *alloc_skb(unsigned int size,
518 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
521 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
524 return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
527 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
529 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
530 extern struct sk_buff *skb_clone(struct sk_buff *skb,
532 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
534 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
536 extern int pskb_expand_head(struct sk_buff *skb,
537 int nhead, int ntail,
539 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
540 unsigned int headroom);
541 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
542 int newheadroom, int newtailroom,
544 extern int skb_to_sgvec(struct sk_buff *skb,
545 struct scatterlist *sg, int offset,
547 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
548 struct sk_buff **trailer);
549 extern int skb_pad(struct sk_buff *skb, int pad);
550 #define dev_kfree_skb(a) consume_skb(a)
552 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
553 int getfrag(void *from, char *to, int offset,
554 int len,int odd, struct sk_buff *skb),
555 void *from, int length);
557 struct skb_seq_state {
561 __u32 stepped_offset;
562 struct sk_buff *root_skb;
563 struct sk_buff *cur_skb;
567 extern void skb_prepare_seq_read(struct sk_buff *skb,
568 unsigned int from, unsigned int to,
569 struct skb_seq_state *st);
570 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
571 struct skb_seq_state *st);
572 extern void skb_abort_seq_read(struct skb_seq_state *st);
574 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
575 unsigned int to, struct ts_config *config,
576 struct ts_state *state);
578 extern void __skb_get_rxhash(struct sk_buff *skb);
579 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
582 __skb_get_rxhash(skb);
587 #ifdef NET_SKBUFF_DATA_USES_OFFSET
588 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
590 return skb->head + skb->end;
593 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
600 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
602 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
604 return &skb_shinfo(skb)->hwtstamps;
608 * skb_queue_empty - check if a queue is empty
611 * Returns true if the queue is empty, false otherwise.
613 static inline int skb_queue_empty(const struct sk_buff_head *list)
615 return list->next == (struct sk_buff *)list;
619 * skb_queue_is_last - check if skb is the last entry in the queue
623 * Returns true if @skb is the last buffer on the list.
625 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
626 const struct sk_buff *skb)
628 return skb->next == (struct sk_buff *)list;
632 * skb_queue_is_first - check if skb is the first entry in the queue
636 * Returns true if @skb is the first buffer on the list.
638 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
639 const struct sk_buff *skb)
641 return skb->prev == (struct sk_buff *)list;
645 * skb_queue_next - return the next packet in the queue
647 * @skb: current buffer
649 * Return the next packet in @list after @skb. It is only valid to
650 * call this if skb_queue_is_last() evaluates to false.
652 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
653 const struct sk_buff *skb)
655 /* This BUG_ON may seem severe, but if we just return then we
656 * are going to dereference garbage.
658 BUG_ON(skb_queue_is_last(list, skb));
663 * skb_queue_prev - return the prev packet in the queue
665 * @skb: current buffer
667 * Return the prev packet in @list before @skb. It is only valid to
668 * call this if skb_queue_is_first() evaluates to false.
670 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
671 const struct sk_buff *skb)
673 /* This BUG_ON may seem severe, but if we just return then we
674 * are going to dereference garbage.
676 BUG_ON(skb_queue_is_first(list, skb));
681 * skb_get - reference buffer
682 * @skb: buffer to reference
684 * Makes another reference to a socket buffer and returns a pointer
687 static inline struct sk_buff *skb_get(struct sk_buff *skb)
689 atomic_inc(&skb->users);
694 * If users == 1, we are the only owner and are can avoid redundant
699 * skb_cloned - is the buffer a clone
700 * @skb: buffer to check
702 * Returns true if the buffer was generated with skb_clone() and is
703 * one of multiple shared copies of the buffer. Cloned buffers are
704 * shared data so must not be written to under normal circumstances.
706 static inline int skb_cloned(const struct sk_buff *skb)
708 return skb->cloned &&
709 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
713 * skb_header_cloned - is the header a clone
714 * @skb: buffer to check
716 * Returns true if modifying the header part of the buffer requires
717 * the data to be copied.
719 static inline int skb_header_cloned(const struct sk_buff *skb)
726 dataref = atomic_read(&skb_shinfo(skb)->dataref);
727 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
732 * skb_header_release - release reference to header
733 * @skb: buffer to operate on
735 * Drop a reference to the header part of the buffer. This is done
736 * by acquiring a payload reference. You must not read from the header
737 * part of skb->data after this.
739 static inline void skb_header_release(struct sk_buff *skb)
743 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
747 * skb_shared - is the buffer shared
748 * @skb: buffer to check
750 * Returns true if more than one person has a reference to this
753 static inline int skb_shared(const struct sk_buff *skb)
755 return atomic_read(&skb->users) != 1;
759 * skb_share_check - check if buffer is shared and if so clone it
760 * @skb: buffer to check
761 * @pri: priority for memory allocation
763 * If the buffer is shared the buffer is cloned and the old copy
764 * drops a reference. A new clone with a single reference is returned.
765 * If the buffer is not shared the original buffer is returned. When
766 * being called from interrupt status or with spinlocks held pri must
769 * NULL is returned on a memory allocation failure.
771 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
774 might_sleep_if(pri & __GFP_WAIT);
775 if (skb_shared(skb)) {
776 struct sk_buff *nskb = skb_clone(skb, pri);
784 * Copy shared buffers into a new sk_buff. We effectively do COW on
785 * packets to handle cases where we have a local reader and forward
786 * and a couple of other messy ones. The normal one is tcpdumping
787 * a packet thats being forwarded.
791 * skb_unshare - make a copy of a shared buffer
792 * @skb: buffer to check
793 * @pri: priority for memory allocation
795 * If the socket buffer is a clone then this function creates a new
796 * copy of the data, drops a reference count on the old copy and returns
797 * the new copy with the reference count at 1. If the buffer is not a clone
798 * the original buffer is returned. When called with a spinlock held or
799 * from interrupt state @pri must be %GFP_ATOMIC
801 * %NULL is returned on a memory allocation failure.
803 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
806 might_sleep_if(pri & __GFP_WAIT);
807 if (skb_cloned(skb)) {
808 struct sk_buff *nskb = skb_copy(skb, pri);
809 kfree_skb(skb); /* Free our shared copy */
816 * skb_peek - peek at the head of an &sk_buff_head
817 * @list_: list to peek at
819 * Peek an &sk_buff. Unlike most other operations you _MUST_
820 * be careful with this one. A peek leaves the buffer on the
821 * list and someone else may run off with it. You must hold
822 * the appropriate locks or have a private queue to do this.
824 * Returns %NULL for an empty list or a pointer to the head element.
825 * The reference count is not incremented and the reference is therefore
826 * volatile. Use with caution.
828 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
830 struct sk_buff *list = ((struct sk_buff *)list_)->next;
831 if (list == (struct sk_buff *)list_)
837 * skb_peek_tail - peek at the tail of an &sk_buff_head
838 * @list_: list to peek at
840 * Peek an &sk_buff. Unlike most other operations you _MUST_
841 * be careful with this one. A peek leaves the buffer on the
842 * list and someone else may run off with it. You must hold
843 * the appropriate locks or have a private queue to do this.
845 * Returns %NULL for an empty list or a pointer to the tail element.
846 * The reference count is not incremented and the reference is therefore
847 * volatile. Use with caution.
849 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
851 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
852 if (list == (struct sk_buff *)list_)
858 * skb_queue_len - get queue length
859 * @list_: list to measure
861 * Return the length of an &sk_buff queue.
863 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
869 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
870 * @list: queue to initialize
872 * This initializes only the list and queue length aspects of
873 * an sk_buff_head object. This allows to initialize the list
874 * aspects of an sk_buff_head without reinitializing things like
875 * the spinlock. It can also be used for on-stack sk_buff_head
876 * objects where the spinlock is known to not be used.
878 static inline void __skb_queue_head_init(struct sk_buff_head *list)
880 list->prev = list->next = (struct sk_buff *)list;
885 * This function creates a split out lock class for each invocation;
886 * this is needed for now since a whole lot of users of the skb-queue
887 * infrastructure in drivers have different locking usage (in hardirq)
888 * than the networking core (in softirq only). In the long run either the
889 * network layer or drivers should need annotation to consolidate the
890 * main types of usage into 3 classes.
892 static inline void skb_queue_head_init(struct sk_buff_head *list)
894 spin_lock_init(&list->lock);
895 __skb_queue_head_init(list);
898 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
899 struct lock_class_key *class)
901 skb_queue_head_init(list);
902 lockdep_set_class(&list->lock, class);
906 * Insert an sk_buff on a list.
908 * The "__skb_xxxx()" functions are the non-atomic ones that
909 * can only be called with interrupts disabled.
911 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
912 static inline void __skb_insert(struct sk_buff *newsk,
913 struct sk_buff *prev, struct sk_buff *next,
914 struct sk_buff_head *list)
918 next->prev = prev->next = newsk;
922 static inline void __skb_queue_splice(const struct sk_buff_head *list,
923 struct sk_buff *prev,
924 struct sk_buff *next)
926 struct sk_buff *first = list->next;
927 struct sk_buff *last = list->prev;
937 * skb_queue_splice - join two skb lists, this is designed for stacks
938 * @list: the new list to add
939 * @head: the place to add it in the first list
941 static inline void skb_queue_splice(const struct sk_buff_head *list,
942 struct sk_buff_head *head)
944 if (!skb_queue_empty(list)) {
945 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
946 head->qlen += list->qlen;
951 * skb_queue_splice - join two skb lists and reinitialise the emptied list
952 * @list: the new list to add
953 * @head: the place to add it in the first list
955 * The list at @list is reinitialised
957 static inline void skb_queue_splice_init(struct sk_buff_head *list,
958 struct sk_buff_head *head)
960 if (!skb_queue_empty(list)) {
961 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
962 head->qlen += list->qlen;
963 __skb_queue_head_init(list);
968 * skb_queue_splice_tail - join two skb lists, each list being a queue
969 * @list: the new list to add
970 * @head: the place to add it in the first list
972 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
973 struct sk_buff_head *head)
975 if (!skb_queue_empty(list)) {
976 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
977 head->qlen += list->qlen;
982 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
983 * @list: the new list to add
984 * @head: the place to add it in the first list
986 * Each of the lists is a queue.
987 * The list at @list is reinitialised
989 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
990 struct sk_buff_head *head)
992 if (!skb_queue_empty(list)) {
993 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
994 head->qlen += list->qlen;
995 __skb_queue_head_init(list);
1000 * __skb_queue_after - queue a buffer at the list head
1001 * @list: list to use
1002 * @prev: place after this buffer
1003 * @newsk: buffer to queue
1005 * Queue a buffer int the middle of a list. This function takes no locks
1006 * and you must therefore hold required locks before calling it.
1008 * A buffer cannot be placed on two lists at the same time.
1010 static inline void __skb_queue_after(struct sk_buff_head *list,
1011 struct sk_buff *prev,
1012 struct sk_buff *newsk)
1014 __skb_insert(newsk, prev, prev->next, list);
1017 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1018 struct sk_buff_head *list);
1020 static inline void __skb_queue_before(struct sk_buff_head *list,
1021 struct sk_buff *next,
1022 struct sk_buff *newsk)
1024 __skb_insert(newsk, next->prev, next, list);
1028 * __skb_queue_head - queue a buffer at the list head
1029 * @list: list to use
1030 * @newsk: buffer to queue
1032 * Queue a buffer at the start of a list. This function takes no locks
1033 * and you must therefore hold required locks before calling it.
1035 * A buffer cannot be placed on two lists at the same time.
1037 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1038 static inline void __skb_queue_head(struct sk_buff_head *list,
1039 struct sk_buff *newsk)
1041 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1045 * __skb_queue_tail - queue a buffer at the list tail
1046 * @list: list to use
1047 * @newsk: buffer to queue
1049 * Queue a buffer at the end of a list. This function takes no locks
1050 * and you must therefore hold required locks before calling it.
1052 * A buffer cannot be placed on two lists at the same time.
1054 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1055 static inline void __skb_queue_tail(struct sk_buff_head *list,
1056 struct sk_buff *newsk)
1058 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1062 * remove sk_buff from list. _Must_ be called atomically, and with
1065 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1066 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1068 struct sk_buff *next, *prev;
1073 skb->next = skb->prev = NULL;
1079 * __skb_dequeue - remove from the head of the queue
1080 * @list: list to dequeue from
1082 * Remove the head of the list. This function does not take any locks
1083 * so must be used with appropriate locks held only. The head item is
1084 * returned or %NULL if the list is empty.
1086 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1087 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1089 struct sk_buff *skb = skb_peek(list);
1091 __skb_unlink(skb, list);
1096 * __skb_dequeue_tail - remove from the tail of the queue
1097 * @list: list to dequeue from
1099 * Remove the tail of the list. This function does not take any locks
1100 * so must be used with appropriate locks held only. The tail item is
1101 * returned or %NULL if the list is empty.
1103 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1104 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1106 struct sk_buff *skb = skb_peek_tail(list);
1108 __skb_unlink(skb, list);
1113 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1115 return skb->data_len;
1118 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1120 return skb->len - skb->data_len;
1123 static inline int skb_pagelen(const struct sk_buff *skb)
1127 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1128 len += skb_shinfo(skb)->frags[i].size;
1129 return len + skb_headlen(skb);
1132 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1133 struct page *page, int off, int size)
1135 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1138 frag->page_offset = off;
1140 skb_shinfo(skb)->nr_frags = i + 1;
1143 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1146 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1147 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1148 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1150 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1151 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1153 return skb->head + skb->tail;
1156 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1158 skb->tail = skb->data - skb->head;
1161 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1163 skb_reset_tail_pointer(skb);
1164 skb->tail += offset;
1166 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1167 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1172 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1174 skb->tail = skb->data;
1177 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1179 skb->tail = skb->data + offset;
1182 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1185 * Add data to an sk_buff
1187 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1188 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1190 unsigned char *tmp = skb_tail_pointer(skb);
1191 SKB_LINEAR_ASSERT(skb);
1197 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1198 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1205 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1206 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1209 BUG_ON(skb->len < skb->data_len);
1210 return skb->data += len;
1213 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1215 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1218 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1220 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1222 if (len > skb_headlen(skb) &&
1223 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1226 return skb->data += len;
1229 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1231 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1234 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1236 if (likely(len <= skb_headlen(skb)))
1238 if (unlikely(len > skb->len))
1240 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1244 * skb_headroom - bytes at buffer head
1245 * @skb: buffer to check
1247 * Return the number of bytes of free space at the head of an &sk_buff.
1249 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1251 return skb->data - skb->head;
1255 * skb_tailroom - bytes at buffer end
1256 * @skb: buffer to check
1258 * Return the number of bytes of free space at the tail of an sk_buff
1260 static inline int skb_tailroom(const struct sk_buff *skb)
1262 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1266 * skb_reserve - adjust headroom
1267 * @skb: buffer to alter
1268 * @len: bytes to move
1270 * Increase the headroom of an empty &sk_buff by reducing the tail
1271 * room. This is only allowed for an empty buffer.
1273 static inline void skb_reserve(struct sk_buff *skb, int len)
1279 static inline void skb_reset_mac_len(struct sk_buff *skb)
1281 skb->mac_len = skb->network_header - skb->mac_header;
1284 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1285 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1287 return skb->head + skb->transport_header;
1290 static inline void skb_reset_transport_header(struct sk_buff *skb)
1292 skb->transport_header = skb->data - skb->head;
1295 static inline void skb_set_transport_header(struct sk_buff *skb,
1298 skb_reset_transport_header(skb);
1299 skb->transport_header += offset;
1302 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1304 return skb->head + skb->network_header;
1307 static inline void skb_reset_network_header(struct sk_buff *skb)
1309 skb->network_header = skb->data - skb->head;
1312 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1314 skb_reset_network_header(skb);
1315 skb->network_header += offset;
1318 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1320 return skb->head + skb->mac_header;
1323 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1325 return skb->mac_header != ~0U;
1328 static inline void skb_reset_mac_header(struct sk_buff *skb)
1330 skb->mac_header = skb->data - skb->head;
1333 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1335 skb_reset_mac_header(skb);
1336 skb->mac_header += offset;
1339 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1341 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1343 return skb->transport_header;
1346 static inline void skb_reset_transport_header(struct sk_buff *skb)
1348 skb->transport_header = skb->data;
1351 static inline void skb_set_transport_header(struct sk_buff *skb,
1354 skb->transport_header = skb->data + offset;
1357 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1359 return skb->network_header;
1362 static inline void skb_reset_network_header(struct sk_buff *skb)
1364 skb->network_header = skb->data;
1367 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1369 skb->network_header = skb->data + offset;
1372 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1374 return skb->mac_header;
1377 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1379 return skb->mac_header != NULL;
1382 static inline void skb_reset_mac_header(struct sk_buff *skb)
1384 skb->mac_header = skb->data;
1387 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1389 skb->mac_header = skb->data + offset;
1391 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1393 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1395 return skb->csum_start - skb_headroom(skb);
1398 static inline int skb_transport_offset(const struct sk_buff *skb)
1400 return skb_transport_header(skb) - skb->data;
1403 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1405 return skb->transport_header - skb->network_header;
1408 static inline int skb_network_offset(const struct sk_buff *skb)
1410 return skb_network_header(skb) - skb->data;
1413 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1415 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1419 * CPUs often take a performance hit when accessing unaligned memory
1420 * locations. The actual performance hit varies, it can be small if the
1421 * hardware handles it or large if we have to take an exception and fix it
1424 * Since an ethernet header is 14 bytes network drivers often end up with
1425 * the IP header at an unaligned offset. The IP header can be aligned by
1426 * shifting the start of the packet by 2 bytes. Drivers should do this
1429 * skb_reserve(skb, NET_IP_ALIGN);
1431 * The downside to this alignment of the IP header is that the DMA is now
1432 * unaligned. On some architectures the cost of an unaligned DMA is high
1433 * and this cost outweighs the gains made by aligning the IP header.
1435 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1438 #ifndef NET_IP_ALIGN
1439 #define NET_IP_ALIGN 2
1443 * The networking layer reserves some headroom in skb data (via
1444 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1445 * the header has to grow. In the default case, if the header has to grow
1446 * 32 bytes or less we avoid the reallocation.
1448 * Unfortunately this headroom changes the DMA alignment of the resulting
1449 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1450 * on some architectures. An architecture can override this value,
1451 * perhaps setting it to a cacheline in size (since that will maintain
1452 * cacheline alignment of the DMA). It must be a power of 2.
1454 * Various parts of the networking layer expect at least 32 bytes of
1455 * headroom, you should not reduce this.
1457 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1458 * to reduce average number of cache lines per packet.
1459 * get_rps_cpus() for example only access one 64 bytes aligned block :
1460 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1463 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1466 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1468 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1470 if (unlikely(skb_is_nonlinear(skb))) {
1475 skb_set_tail_pointer(skb, len);
1478 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1480 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1483 return ___pskb_trim(skb, len);
1484 __skb_trim(skb, len);
1488 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1490 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1494 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1495 * @skb: buffer to alter
1498 * This is identical to pskb_trim except that the caller knows that
1499 * the skb is not cloned so we should never get an error due to out-
1502 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1504 int err = pskb_trim(skb, len);
1509 * skb_orphan - orphan a buffer
1510 * @skb: buffer to orphan
1512 * If a buffer currently has an owner then we call the owner's
1513 * destructor function and make the @skb unowned. The buffer continues
1514 * to exist but is no longer charged to its former owner.
1516 static inline void skb_orphan(struct sk_buff *skb)
1518 if (skb->destructor)
1519 skb->destructor(skb);
1520 skb->destructor = NULL;
1525 * __skb_queue_purge - empty a list
1526 * @list: list to empty
1528 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1529 * the list and one reference dropped. This function does not take the
1530 * list lock and the caller must hold the relevant locks to use it.
1532 extern void skb_queue_purge(struct sk_buff_head *list);
1533 static inline void __skb_queue_purge(struct sk_buff_head *list)
1535 struct sk_buff *skb;
1536 while ((skb = __skb_dequeue(list)) != NULL)
1541 * __dev_alloc_skb - allocate an skbuff for receiving
1542 * @length: length to allocate
1543 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1545 * Allocate a new &sk_buff and assign it a usage count of one. The
1546 * buffer has unspecified headroom built in. Users should allocate
1547 * the headroom they think they need without accounting for the
1548 * built in space. The built in space is used for optimisations.
1550 * %NULL is returned if there is no free memory.
1552 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1555 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1557 skb_reserve(skb, NET_SKB_PAD);
1561 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1563 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1564 unsigned int length, gfp_t gfp_mask);
1567 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1568 * @dev: network device to receive on
1569 * @length: length to allocate
1571 * Allocate a new &sk_buff and assign it a usage count of one. The
1572 * buffer has unspecified headroom built in. Users should allocate
1573 * the headroom they think they need without accounting for the
1574 * built in space. The built in space is used for optimisations.
1576 * %NULL is returned if there is no free memory. Although this function
1577 * allocates memory it can be called from an interrupt.
1579 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1580 unsigned int length)
1582 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1585 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1586 unsigned int length, gfp_t gfp)
1588 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1590 if (NET_IP_ALIGN && skb)
1591 skb_reserve(skb, NET_IP_ALIGN);
1595 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1596 unsigned int length)
1598 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1602 * __netdev_alloc_page - allocate a page for ps-rx on a specific device
1603 * @dev: network device to receive on
1604 * @gfp_mask: alloc_pages_node mask
1606 * Allocate a new page. dev currently unused.
1608 * %NULL is returned if there is no free memory.
1610 static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
1612 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
1616 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1617 * @dev: network device to receive on
1619 * Allocate a new page. dev currently unused.
1621 * %NULL is returned if there is no free memory.
1623 static inline struct page *netdev_alloc_page(struct net_device *dev)
1625 return __netdev_alloc_page(dev, GFP_ATOMIC);
1628 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1634 * skb_clone_writable - is the header of a clone writable
1635 * @skb: buffer to check
1636 * @len: length up to which to write
1638 * Returns true if modifying the header part of the cloned buffer
1639 * does not requires the data to be copied.
1641 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1643 return !skb_header_cloned(skb) &&
1644 skb_headroom(skb) + len <= skb->hdr_len;
1647 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1652 if (headroom < NET_SKB_PAD)
1653 headroom = NET_SKB_PAD;
1654 if (headroom > skb_headroom(skb))
1655 delta = headroom - skb_headroom(skb);
1657 if (delta || cloned)
1658 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1664 * skb_cow - copy header of skb when it is required
1665 * @skb: buffer to cow
1666 * @headroom: needed headroom
1668 * If the skb passed lacks sufficient headroom or its data part
1669 * is shared, data is reallocated. If reallocation fails, an error
1670 * is returned and original skb is not changed.
1672 * The result is skb with writable area skb->head...skb->tail
1673 * and at least @headroom of space at head.
1675 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1677 return __skb_cow(skb, headroom, skb_cloned(skb));
1681 * skb_cow_head - skb_cow but only making the head writable
1682 * @skb: buffer to cow
1683 * @headroom: needed headroom
1685 * This function is identical to skb_cow except that we replace the
1686 * skb_cloned check by skb_header_cloned. It should be used when
1687 * you only need to push on some header and do not need to modify
1690 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1692 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1696 * skb_padto - pad an skbuff up to a minimal size
1697 * @skb: buffer to pad
1698 * @len: minimal length
1700 * Pads up a buffer to ensure the trailing bytes exist and are
1701 * blanked. If the buffer already contains sufficient data it
1702 * is untouched. Otherwise it is extended. Returns zero on
1703 * success. The skb is freed on error.
1706 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1708 unsigned int size = skb->len;
1709 if (likely(size >= len))
1711 return skb_pad(skb, len - size);
1714 static inline int skb_add_data(struct sk_buff *skb,
1715 char __user *from, int copy)
1717 const int off = skb->len;
1719 if (skb->ip_summed == CHECKSUM_NONE) {
1721 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1724 skb->csum = csum_block_add(skb->csum, csum, off);
1727 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1730 __skb_trim(skb, off);
1734 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1735 struct page *page, int off)
1738 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1740 return page == frag->page &&
1741 off == frag->page_offset + frag->size;
1746 static inline int __skb_linearize(struct sk_buff *skb)
1748 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1752 * skb_linearize - convert paged skb to linear one
1753 * @skb: buffer to linarize
1755 * If there is no free memory -ENOMEM is returned, otherwise zero
1756 * is returned and the old skb data released.
1758 static inline int skb_linearize(struct sk_buff *skb)
1760 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1764 * skb_linearize_cow - make sure skb is linear and writable
1765 * @skb: buffer to process
1767 * If there is no free memory -ENOMEM is returned, otherwise zero
1768 * is returned and the old skb data released.
1770 static inline int skb_linearize_cow(struct sk_buff *skb)
1772 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1773 __skb_linearize(skb) : 0;
1777 * skb_postpull_rcsum - update checksum for received skb after pull
1778 * @skb: buffer to update
1779 * @start: start of data before pull
1780 * @len: length of data pulled
1782 * After doing a pull on a received packet, you need to call this to
1783 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1784 * CHECKSUM_NONE so that it can be recomputed from scratch.
1787 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1788 const void *start, unsigned int len)
1790 if (skb->ip_summed == CHECKSUM_COMPLETE)
1791 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1794 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1797 * pskb_trim_rcsum - trim received skb and update checksum
1798 * @skb: buffer to trim
1801 * This is exactly the same as pskb_trim except that it ensures the
1802 * checksum of received packets are still valid after the operation.
1805 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1807 if (likely(len >= skb->len))
1809 if (skb->ip_summed == CHECKSUM_COMPLETE)
1810 skb->ip_summed = CHECKSUM_NONE;
1811 return __pskb_trim(skb, len);
1814 #define skb_queue_walk(queue, skb) \
1815 for (skb = (queue)->next; \
1816 skb != (struct sk_buff *)(queue); \
1819 #define skb_queue_walk_safe(queue, skb, tmp) \
1820 for (skb = (queue)->next, tmp = skb->next; \
1821 skb != (struct sk_buff *)(queue); \
1822 skb = tmp, tmp = skb->next)
1824 #define skb_queue_walk_from(queue, skb) \
1825 for (; skb != (struct sk_buff *)(queue); \
1828 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1829 for (tmp = skb->next; \
1830 skb != (struct sk_buff *)(queue); \
1831 skb = tmp, tmp = skb->next)
1833 #define skb_queue_reverse_walk(queue, skb) \
1834 for (skb = (queue)->prev; \
1835 skb != (struct sk_buff *)(queue); \
1838 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
1839 for (skb = (queue)->prev, tmp = skb->prev; \
1840 skb != (struct sk_buff *)(queue); \
1841 skb = tmp, tmp = skb->prev)
1843 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
1844 for (tmp = skb->prev; \
1845 skb != (struct sk_buff *)(queue); \
1846 skb = tmp, tmp = skb->prev)
1848 static inline bool skb_has_frag_list(const struct sk_buff *skb)
1850 return skb_shinfo(skb)->frag_list != NULL;
1853 static inline void skb_frag_list_init(struct sk_buff *skb)
1855 skb_shinfo(skb)->frag_list = NULL;
1858 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1860 frag->next = skb_shinfo(skb)->frag_list;
1861 skb_shinfo(skb)->frag_list = frag;
1864 #define skb_walk_frags(skb, iter) \
1865 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1867 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1868 int *peeked, int *err);
1869 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1870 int noblock, int *err);
1871 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1872 struct poll_table_struct *wait);
1873 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1874 int offset, struct iovec *to,
1876 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1879 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
1881 const struct iovec *from,
1884 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
1886 const struct iovec *to,
1889 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1890 extern void skb_free_datagram_locked(struct sock *sk,
1891 struct sk_buff *skb);
1892 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1893 unsigned int flags);
1894 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1895 int len, __wsum csum);
1896 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1898 extern int skb_store_bits(struct sk_buff *skb, int offset,
1899 const void *from, int len);
1900 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1901 int offset, u8 *to, int len,
1903 extern int skb_splice_bits(struct sk_buff *skb,
1904 unsigned int offset,
1905 struct pipe_inode_info *pipe,
1907 unsigned int flags);
1908 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1909 extern void skb_split(struct sk_buff *skb,
1910 struct sk_buff *skb1, const u32 len);
1911 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1914 extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features);
1916 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1917 int len, void *buffer)
1919 int hlen = skb_headlen(skb);
1921 if (hlen - offset >= len)
1922 return skb->data + offset;
1924 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1930 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1932 const unsigned int len)
1934 memcpy(to, skb->data, len);
1937 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1938 const int offset, void *to,
1939 const unsigned int len)
1941 memcpy(to, skb->data + offset, len);
1944 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1946 const unsigned int len)
1948 memcpy(skb->data, from, len);
1951 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1954 const unsigned int len)
1956 memcpy(skb->data + offset, from, len);
1959 extern void skb_init(void);
1961 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1967 * skb_get_timestamp - get timestamp from a skb
1968 * @skb: skb to get stamp from
1969 * @stamp: pointer to struct timeval to store stamp in
1971 * Timestamps are stored in the skb as offsets to a base timestamp.
1972 * This function converts the offset back to a struct timeval and stores
1975 static inline void skb_get_timestamp(const struct sk_buff *skb,
1976 struct timeval *stamp)
1978 *stamp = ktime_to_timeval(skb->tstamp);
1981 static inline void skb_get_timestampns(const struct sk_buff *skb,
1982 struct timespec *stamp)
1984 *stamp = ktime_to_timespec(skb->tstamp);
1987 static inline void __net_timestamp(struct sk_buff *skb)
1989 skb->tstamp = ktime_get_real();
1992 static inline ktime_t net_timedelta(ktime_t t)
1994 return ktime_sub(ktime_get_real(), t);
1997 static inline ktime_t net_invalid_timestamp(void)
1999 return ktime_set(0, 0);
2002 extern void skb_timestamping_init(void);
2004 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2006 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2007 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2009 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2011 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2015 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2020 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2023 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2025 * @skb: clone of the the original outgoing packet
2026 * @hwtstamps: hardware time stamps
2029 void skb_complete_tx_timestamp(struct sk_buff *skb,
2030 struct skb_shared_hwtstamps *hwtstamps);
2033 * skb_tstamp_tx - queue clone of skb with send time stamps
2034 * @orig_skb: the original outgoing packet
2035 * @hwtstamps: hardware time stamps, may be NULL if not available
2037 * If the skb has a socket associated, then this function clones the
2038 * skb (thus sharing the actual data and optional structures), stores
2039 * the optional hardware time stamping information (if non NULL) or
2040 * generates a software time stamp (otherwise), then queues the clone
2041 * to the error queue of the socket. Errors are silently ignored.
2043 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2044 struct skb_shared_hwtstamps *hwtstamps);
2046 static inline void sw_tx_timestamp(struct sk_buff *skb)
2048 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2049 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2050 skb_tstamp_tx(skb, NULL);
2054 * skb_tx_timestamp() - Driver hook for transmit timestamping
2056 * Ethernet MAC Drivers should call this function in their hard_xmit()
2057 * function immediately before giving the sk_buff to the MAC hardware.
2059 * @skb: A socket buffer.
2061 static inline void skb_tx_timestamp(struct sk_buff *skb)
2063 skb_clone_tx_timestamp(skb);
2064 sw_tx_timestamp(skb);
2067 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2068 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2070 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2072 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2076 * skb_checksum_complete - Calculate checksum of an entire packet
2077 * @skb: packet to process
2079 * This function calculates the checksum over the entire packet plus
2080 * the value of skb->csum. The latter can be used to supply the
2081 * checksum of a pseudo header as used by TCP/UDP. It returns the
2084 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2085 * this function can be used to verify that checksum on received
2086 * packets. In that case the function should return zero if the
2087 * checksum is correct. In particular, this function will return zero
2088 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2089 * hardware has already verified the correctness of the checksum.
2091 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2093 return skb_csum_unnecessary(skb) ?
2094 0 : __skb_checksum_complete(skb);
2097 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2098 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2099 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2101 if (nfct && atomic_dec_and_test(&nfct->use))
2102 nf_conntrack_destroy(nfct);
2104 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2107 atomic_inc(&nfct->use);
2110 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2111 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2114 atomic_inc(&skb->users);
2116 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2122 #ifdef CONFIG_BRIDGE_NETFILTER
2123 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2125 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2128 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2131 atomic_inc(&nf_bridge->use);
2133 #endif /* CONFIG_BRIDGE_NETFILTER */
2134 static inline void nf_reset(struct sk_buff *skb)
2136 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2137 nf_conntrack_put(skb->nfct);
2140 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2141 nf_conntrack_put_reasm(skb->nfct_reasm);
2142 skb->nfct_reasm = NULL;
2144 #ifdef CONFIG_BRIDGE_NETFILTER
2145 nf_bridge_put(skb->nf_bridge);
2146 skb->nf_bridge = NULL;
2150 /* Note: This doesn't put any conntrack and bridge info in dst. */
2151 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2153 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2154 dst->nfct = src->nfct;
2155 nf_conntrack_get(src->nfct);
2156 dst->nfctinfo = src->nfctinfo;
2158 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2159 dst->nfct_reasm = src->nfct_reasm;
2160 nf_conntrack_get_reasm(src->nfct_reasm);
2162 #ifdef CONFIG_BRIDGE_NETFILTER
2163 dst->nf_bridge = src->nf_bridge;
2164 nf_bridge_get(src->nf_bridge);
2168 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2170 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2171 nf_conntrack_put(dst->nfct);
2173 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2174 nf_conntrack_put_reasm(dst->nfct_reasm);
2176 #ifdef CONFIG_BRIDGE_NETFILTER
2177 nf_bridge_put(dst->nf_bridge);
2179 __nf_copy(dst, src);
2182 #ifdef CONFIG_NETWORK_SECMARK
2183 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2185 to->secmark = from->secmark;
2188 static inline void skb_init_secmark(struct sk_buff *skb)
2193 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2196 static inline void skb_init_secmark(struct sk_buff *skb)
2200 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2202 skb->queue_mapping = queue_mapping;
2205 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2207 return skb->queue_mapping;
2210 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2212 to->queue_mapping = from->queue_mapping;
2215 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2217 skb->queue_mapping = rx_queue + 1;
2220 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2222 return skb->queue_mapping - 1;
2225 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2227 return skb->queue_mapping != 0;
2230 extern u16 __skb_tx_hash(const struct net_device *dev,
2231 const struct sk_buff *skb,
2232 unsigned int num_tx_queues);
2235 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2240 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2246 static inline int skb_is_gso(const struct sk_buff *skb)
2248 return skb_shinfo(skb)->gso_size;
2251 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2253 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2256 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2258 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2260 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2261 * wanted then gso_type will be set. */
2262 struct skb_shared_info *shinfo = skb_shinfo(skb);
2263 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2264 unlikely(shinfo->gso_type == 0)) {
2265 __skb_warn_lro_forwarding(skb);
2271 static inline void skb_forward_csum(struct sk_buff *skb)
2273 /* Unfortunately we don't support this one. Any brave souls? */
2274 if (skb->ip_summed == CHECKSUM_COMPLETE)
2275 skb->ip_summed = CHECKSUM_NONE;
2279 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2280 * @skb: skb to check
2282 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2283 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2284 * use this helper, to document places where we make this assertion.
2286 static inline void skb_checksum_none_assert(struct sk_buff *skb)
2289 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2293 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2295 #endif /* __KERNEL__ */
2296 #endif /* _LINUX_SKBUFF_H */