2 * Linux INET6 implementation
3 * Forwarding Information Database
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
17 * Ville Nuorvala: Fixed routing subtrees.
20 #define pr_fmt(fmt) "IPv6: " fmt
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
36 #include <net/ip6_fib.h>
37 #include <net/ip6_route.h>
42 #define RT6_TRACE(x...) pr_debug(x)
44 #define RT6_TRACE(x...) do { ; } while (0)
47 static struct kmem_cache *fib6_node_kmem __read_mostly;
52 int (*func)(struct rt6_info *, void *arg);
57 static DEFINE_RWLOCK(fib6_walker_lock);
59 #ifdef CONFIG_IPV6_SUBTREES
60 #define FWS_INIT FWS_S
62 #define FWS_INIT FWS_L
65 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
66 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
67 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
68 static int fib6_walk(struct fib6_walker *w);
69 static int fib6_walk_continue(struct fib6_walker *w);
72 * A routing update causes an increase of the serial number on the
73 * affected subtree. This allows for cached routes to be asynchronously
74 * tested when modifications are made to the destination cache as a
75 * result of redirects, path MTU changes, etc.
78 static void fib6_gc_timer_cb(unsigned long arg);
80 static LIST_HEAD(fib6_walkers);
81 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
83 static void fib6_walker_link(struct fib6_walker *w)
85 write_lock_bh(&fib6_walker_lock);
86 list_add(&w->lh, &fib6_walkers);
87 write_unlock_bh(&fib6_walker_lock);
90 static void fib6_walker_unlink(struct fib6_walker *w)
92 write_lock_bh(&fib6_walker_lock);
94 write_unlock_bh(&fib6_walker_lock);
97 static int fib6_new_sernum(struct net *net)
102 old = atomic_read(&net->ipv6.fib6_sernum);
103 new = old < INT_MAX ? old + 1 : 1;
104 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
110 FIB6_NO_SERNUM_CHANGE = 0,
114 * Auxiliary address test functions for the radix tree.
116 * These assume a 32bit processor (although it will work on
123 #if defined(__LITTLE_ENDIAN)
124 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
126 # define BITOP_BE32_SWIZZLE 0
129 static __be32 addr_bit_set(const void *token, int fn_bit)
131 const __be32 *addr = token;
134 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
135 * is optimized version of
136 * htonl(1 << ((~fn_bit)&0x1F))
137 * See include/asm-generic/bitops/le.h.
139 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
143 static struct fib6_node *node_alloc(void)
145 struct fib6_node *fn;
147 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
152 static void node_free(struct fib6_node *fn)
154 kmem_cache_free(fib6_node_kmem, fn);
157 static void rt6_release(struct rt6_info *rt)
159 if (atomic_dec_and_test(&rt->rt6i_ref))
163 static void fib6_link_table(struct net *net, struct fib6_table *tb)
168 * Initialize table lock at a single place to give lockdep a key,
169 * tables aren't visible prior to being linked to the list.
171 rwlock_init(&tb->tb6_lock);
173 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
176 * No protection necessary, this is the only list mutatation
177 * operation, tables never disappear once they exist.
179 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
182 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
184 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
186 struct fib6_table *table;
188 table = kzalloc(sizeof(*table), GFP_ATOMIC);
191 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
192 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
193 inet_peer_base_init(&table->tb6_peers);
199 struct fib6_table *fib6_new_table(struct net *net, u32 id)
201 struct fib6_table *tb;
205 tb = fib6_get_table(net, id);
209 tb = fib6_alloc_table(net, id);
211 fib6_link_table(net, tb);
216 struct fib6_table *fib6_get_table(struct net *net, u32 id)
218 struct fib6_table *tb;
219 struct hlist_head *head;
224 h = id & (FIB6_TABLE_HASHSZ - 1);
226 head = &net->ipv6.fib_table_hash[h];
227 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
228 if (tb->tb6_id == id) {
238 static void __net_init fib6_tables_init(struct net *net)
240 fib6_link_table(net, net->ipv6.fib6_main_tbl);
241 fib6_link_table(net, net->ipv6.fib6_local_tbl);
245 struct fib6_table *fib6_new_table(struct net *net, u32 id)
247 return fib6_get_table(net, id);
250 struct fib6_table *fib6_get_table(struct net *net, u32 id)
252 return net->ipv6.fib6_main_tbl;
255 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
256 int flags, pol_lookup_t lookup)
258 return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
261 static void __net_init fib6_tables_init(struct net *net)
263 fib6_link_table(net, net->ipv6.fib6_main_tbl);
268 static int fib6_dump_node(struct fib6_walker *w)
273 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
274 res = rt6_dump_route(rt, w->args);
276 /* Frame is full, suspend walking */
285 static void fib6_dump_end(struct netlink_callback *cb)
287 struct fib6_walker *w = (void *)cb->args[2];
292 fib6_walker_unlink(w);
297 cb->done = (void *)cb->args[3];
301 static int fib6_dump_done(struct netlink_callback *cb)
304 return cb->done ? cb->done(cb) : 0;
307 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
308 struct netlink_callback *cb)
310 struct fib6_walker *w;
313 w = (void *)cb->args[2];
314 w->root = &table->tb6_root;
316 if (cb->args[4] == 0) {
320 read_lock_bh(&table->tb6_lock);
322 read_unlock_bh(&table->tb6_lock);
325 cb->args[5] = w->root->fn_sernum;
328 if (cb->args[5] != w->root->fn_sernum) {
329 /* Begin at the root if the tree changed */
330 cb->args[5] = w->root->fn_sernum;
337 read_lock_bh(&table->tb6_lock);
338 res = fib6_walk_continue(w);
339 read_unlock_bh(&table->tb6_lock);
341 fib6_walker_unlink(w);
349 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
351 struct net *net = sock_net(skb->sk);
353 unsigned int e = 0, s_e;
354 struct rt6_rtnl_dump_arg arg;
355 struct fib6_walker *w;
356 struct fib6_table *tb;
357 struct hlist_head *head;
363 w = (void *)cb->args[2];
367 * 1. hook callback destructor.
369 cb->args[3] = (long)cb->done;
370 cb->done = fib6_dump_done;
373 * 2. allocate and initialize walker.
375 w = kzalloc(sizeof(*w), GFP_ATOMIC);
378 w->func = fib6_dump_node;
379 cb->args[2] = (long)w;
388 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
390 head = &net->ipv6.fib_table_hash[h];
391 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
394 res = fib6_dump_table(tb, skb, cb);
406 res = res < 0 ? res : skb->len;
415 * return the appropriate node for a routing tree "add" operation
416 * by either creating and inserting or by returning an existing
420 static struct fib6_node *fib6_add_1(struct fib6_node *root,
421 struct in6_addr *addr, int plen,
422 int offset, int allow_create,
423 int replace_required, int sernum)
425 struct fib6_node *fn, *in, *ln;
426 struct fib6_node *pn = NULL;
431 RT6_TRACE("fib6_add_1\n");
433 /* insert node in tree */
438 key = (struct rt6key *)((u8 *)fn->leaf + offset);
443 if (plen < fn->fn_bit ||
444 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
446 if (replace_required) {
447 pr_warn("Can't replace route, no match found\n");
448 return ERR_PTR(-ENOENT);
450 pr_warn("NLM_F_CREATE should be set when creating new route\n");
459 if (plen == fn->fn_bit) {
460 /* clean up an intermediate node */
461 if (!(fn->fn_flags & RTN_RTINFO)) {
462 rt6_release(fn->leaf);
466 fn->fn_sernum = sernum;
472 * We have more bits to go
475 /* Try to walk down on tree. */
476 fn->fn_sernum = sernum;
477 dir = addr_bit_set(addr, fn->fn_bit);
479 fn = dir ? fn->right : fn->left;
483 /* We should not create new node because
484 * NLM_F_REPLACE was specified without NLM_F_CREATE
485 * I assume it is safe to require NLM_F_CREATE when
486 * REPLACE flag is used! Later we may want to remove the
487 * check for replace_required, because according
488 * to netlink specification, NLM_F_CREATE
489 * MUST be specified if new route is created.
490 * That would keep IPv6 consistent with IPv4
492 if (replace_required) {
493 pr_warn("Can't replace route, no match found\n");
494 return ERR_PTR(-ENOENT);
496 pr_warn("NLM_F_CREATE should be set when creating new route\n");
499 * We walked to the bottom of tree.
500 * Create new leaf node without children.
506 return ERR_PTR(-ENOMEM);
510 ln->fn_sernum = sernum;
522 * split since we don't have a common prefix anymore or
523 * we have a less significant route.
524 * we've to insert an intermediate node on the list
525 * this new node will point to the one we need to create
531 /* find 1st bit in difference between the 2 addrs.
533 See comment in __ipv6_addr_diff: bit may be an invalid value,
534 but if it is >= plen, the value is ignored in any case.
537 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
542 * (new leaf node)[ln] (old node)[fn]
553 return ERR_PTR(-ENOMEM);
557 * new intermediate node.
559 * be off since that an address that chooses one of
560 * the branches would not match less specific routes
561 * in the other branch
568 atomic_inc(&in->leaf->rt6i_ref);
570 in->fn_sernum = sernum;
572 /* update parent pointer */
583 ln->fn_sernum = sernum;
585 if (addr_bit_set(addr, bit)) {
592 } else { /* plen <= bit */
595 * (new leaf node)[ln]
597 * (old node)[fn] NULL
603 return ERR_PTR(-ENOMEM);
609 ln->fn_sernum = sernum;
616 if (addr_bit_set(&key->addr, plen))
626 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
628 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
632 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
636 for (i = 0; i < RTAX_MAX; i++) {
637 if (test_bit(i, mxc->mx_valid))
642 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
647 if (dst->flags & DST_HOST) {
648 u32 *mp = dst_metrics_write_ptr(dst);
653 fib6_copy_metrics(mp, mxc);
655 dst_init_metrics(dst, mxc->mx, false);
657 /* We've stolen mx now. */
664 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
667 if (atomic_read(&rt->rt6i_ref) != 1) {
668 /* This route is used as dummy address holder in some split
669 * nodes. It is not leaked, but it still holds other resources,
670 * which must be released in time. So, scan ascendant nodes
671 * and replace dummy references to this route with references
672 * to still alive ones.
675 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
676 fn->leaf = fib6_find_prefix(net, fn);
677 atomic_inc(&fn->leaf->rt6i_ref);
682 /* No more references are possible at this point. */
683 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
688 * Insert routing information in a node.
691 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
692 struct nl_info *info, struct mx6_config *mxc)
694 struct rt6_info *iter = NULL;
695 struct rt6_info **ins;
696 int replace = (info->nlh &&
697 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
698 int add = (!info->nlh ||
699 (info->nlh->nlmsg_flags & NLM_F_CREATE));
701 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
706 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
708 * Search for duplicates
711 if (iter->rt6i_metric == rt->rt6i_metric) {
713 * Same priority level
716 (info->nlh->nlmsg_flags & NLM_F_EXCL))
723 if (iter->dst.dev == rt->dst.dev &&
724 iter->rt6i_idev == rt->rt6i_idev &&
725 ipv6_addr_equal(&iter->rt6i_gateway,
726 &rt->rt6i_gateway)) {
727 if (rt->rt6i_nsiblings)
728 rt->rt6i_nsiblings = 0;
729 if (!(iter->rt6i_flags & RTF_EXPIRES))
731 if (!(rt->rt6i_flags & RTF_EXPIRES))
732 rt6_clean_expires(iter);
734 rt6_set_expires(iter, rt->dst.expires);
737 /* If we have the same destination and the same metric,
738 * but not the same gateway, then the route we try to
739 * add is sibling to this route, increment our counter
740 * of siblings, and later we will add our route to the
742 * Only static routes (which don't have flag
743 * RTF_EXPIRES) are used for ECMPv6.
745 * To avoid long list, we only had siblings if the
746 * route have a gateway.
749 rt6_qualify_for_ecmp(iter))
750 rt->rt6i_nsiblings++;
753 if (iter->rt6i_metric > rt->rt6i_metric)
756 ins = &iter->dst.rt6_next;
759 /* Reset round-robin state, if necessary */
760 if (ins == &fn->leaf)
763 /* Link this route to others same route. */
764 if (rt->rt6i_nsiblings) {
765 unsigned int rt6i_nsiblings;
766 struct rt6_info *sibling, *temp_sibling;
768 /* Find the first route that have the same metric */
771 if (sibling->rt6i_metric == rt->rt6i_metric &&
772 rt6_qualify_for_ecmp(sibling)) {
773 list_add_tail(&rt->rt6i_siblings,
774 &sibling->rt6i_siblings);
777 sibling = sibling->dst.rt6_next;
779 /* For each sibling in the list, increment the counter of
780 * siblings. BUG() if counters does not match, list of siblings
784 list_for_each_entry_safe(sibling, temp_sibling,
785 &rt->rt6i_siblings, rt6i_siblings) {
786 sibling->rt6i_nsiblings++;
787 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
790 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
798 pr_warn("NLM_F_CREATE should be set when creating new route\n");
801 err = fib6_commit_metrics(&rt->dst, mxc);
805 rt->dst.rt6_next = iter;
808 atomic_inc(&rt->rt6i_ref);
809 inet6_rt_notify(RTM_NEWROUTE, rt, info);
810 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
812 if (!(fn->fn_flags & RTN_RTINFO)) {
813 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
814 fn->fn_flags |= RTN_RTINFO;
821 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
825 err = fib6_commit_metrics(&rt->dst, mxc);
831 rt->dst.rt6_next = iter->dst.rt6_next;
832 atomic_inc(&rt->rt6i_ref);
833 inet6_rt_notify(RTM_NEWROUTE, rt, info);
834 if (!(fn->fn_flags & RTN_RTINFO)) {
835 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
836 fn->fn_flags |= RTN_RTINFO;
838 fib6_purge_rt(iter, fn, info->nl_net);
845 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
847 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
848 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
849 mod_timer(&net->ipv6.ip6_fib_timer,
850 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
853 void fib6_force_start_gc(struct net *net)
855 if (!timer_pending(&net->ipv6.ip6_fib_timer))
856 mod_timer(&net->ipv6.ip6_fib_timer,
857 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
861 * Add routing information to the routing tree.
862 * <destination addr>/<source addr>
863 * with source addr info in sub-trees
866 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
867 struct nl_info *info, struct mx6_config *mxc)
869 struct fib6_node *fn, *pn = NULL;
871 int allow_create = 1;
872 int replace_required = 0;
873 int sernum = fib6_new_sernum(info->nl_net);
876 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
878 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
879 replace_required = 1;
881 if (!allow_create && !replace_required)
882 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
884 fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
885 offsetof(struct rt6_info, rt6i_dst), allow_create,
886 replace_required, sernum);
895 #ifdef CONFIG_IPV6_SUBTREES
896 if (rt->rt6i_src.plen) {
897 struct fib6_node *sn;
900 struct fib6_node *sfn;
912 /* Create subtree root node */
917 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
918 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
919 sfn->fn_flags = RTN_ROOT;
920 sfn->fn_sernum = sernum;
922 /* Now add the first leaf node to new subtree */
924 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
926 offsetof(struct rt6_info, rt6i_src),
927 allow_create, replace_required, sernum);
930 /* If it is failed, discard just allocated
931 root, and then (in st_failure) stale node
939 /* Now link new subtree to main tree */
943 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
945 offsetof(struct rt6_info, rt6i_src),
946 allow_create, replace_required, sernum);
956 atomic_inc(&rt->rt6i_ref);
962 err = fib6_add_rt2node(fn, rt, info, mxc);
964 fib6_start_gc(info->nl_net, rt);
965 if (!(rt->rt6i_flags & RTF_CACHE))
966 fib6_prune_clones(info->nl_net, pn);
971 #ifdef CONFIG_IPV6_SUBTREES
973 * If fib6_add_1 has cleared the old leaf pointer in the
974 * super-tree leaf node we have to find a new one for it.
976 if (pn != fn && pn->leaf == rt) {
978 atomic_dec(&rt->rt6i_ref);
980 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
981 pn->leaf = fib6_find_prefix(info->nl_net, pn);
984 WARN_ON(pn->leaf == NULL);
985 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
988 atomic_inc(&pn->leaf->rt6i_ref);
995 #ifdef CONFIG_IPV6_SUBTREES
996 /* Subtree creation failed, probably main tree node
997 is orphan. If it is, shoot it.
1000 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1001 fib6_repair_tree(info->nl_net, fn);
1008 * Routing tree lookup
1012 struct lookup_args {
1013 int offset; /* key offset on rt6_info */
1014 const struct in6_addr *addr; /* search key */
1017 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1018 struct lookup_args *args)
1020 struct fib6_node *fn;
1023 if (unlikely(args->offset == 0))
1033 struct fib6_node *next;
1035 dir = addr_bit_set(args->addr, fn->fn_bit);
1037 next = dir ? fn->right : fn->left;
1047 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1050 key = (struct rt6key *) ((u8 *) fn->leaf +
1053 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1054 #ifdef CONFIG_IPV6_SUBTREES
1056 struct fib6_node *sfn;
1057 sfn = fib6_lookup_1(fn->subtree,
1064 if (fn->fn_flags & RTN_RTINFO)
1068 #ifdef CONFIG_IPV6_SUBTREES
1071 if (fn->fn_flags & RTN_ROOT)
1080 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1081 const struct in6_addr *saddr)
1083 struct fib6_node *fn;
1084 struct lookup_args args[] = {
1086 .offset = offsetof(struct rt6_info, rt6i_dst),
1089 #ifdef CONFIG_IPV6_SUBTREES
1091 .offset = offsetof(struct rt6_info, rt6i_src),
1096 .offset = 0, /* sentinel */
1100 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1101 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1108 * Get node with specified destination prefix (and source prefix,
1109 * if subtrees are used)
1113 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1114 const struct in6_addr *addr,
1115 int plen, int offset)
1117 struct fib6_node *fn;
1119 for (fn = root; fn ; ) {
1120 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1125 if (plen < fn->fn_bit ||
1126 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1129 if (plen == fn->fn_bit)
1133 * We have more bits to go
1135 if (addr_bit_set(addr, fn->fn_bit))
1143 struct fib6_node *fib6_locate(struct fib6_node *root,
1144 const struct in6_addr *daddr, int dst_len,
1145 const struct in6_addr *saddr, int src_len)
1147 struct fib6_node *fn;
1149 fn = fib6_locate_1(root, daddr, dst_len,
1150 offsetof(struct rt6_info, rt6i_dst));
1152 #ifdef CONFIG_IPV6_SUBTREES
1154 WARN_ON(saddr == NULL);
1155 if (fn && fn->subtree)
1156 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1157 offsetof(struct rt6_info, rt6i_src));
1161 if (fn && fn->fn_flags & RTN_RTINFO)
1173 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1175 if (fn->fn_flags & RTN_ROOT)
1176 return net->ipv6.ip6_null_entry;
1180 return fn->left->leaf;
1182 return fn->right->leaf;
1184 fn = FIB6_SUBTREE(fn);
1190 * Called to trim the tree of intermediate nodes when possible. "fn"
1191 * is the node we want to try and remove.
1194 static struct fib6_node *fib6_repair_tree(struct net *net,
1195 struct fib6_node *fn)
1199 struct fib6_node *child, *pn;
1200 struct fib6_walker *w;
1204 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1207 WARN_ON(fn->fn_flags & RTN_RTINFO);
1208 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1209 WARN_ON(fn->leaf != NULL);
1214 child = fn->right, children |= 1;
1216 child = fn->left, children |= 2;
1218 if (children == 3 || FIB6_SUBTREE(fn)
1219 #ifdef CONFIG_IPV6_SUBTREES
1220 /* Subtree root (i.e. fn) may have one child */
1221 || (children && fn->fn_flags & RTN_ROOT)
1224 fn->leaf = fib6_find_prefix(net, fn);
1228 fn->leaf = net->ipv6.ip6_null_entry;
1231 atomic_inc(&fn->leaf->rt6i_ref);
1236 #ifdef CONFIG_IPV6_SUBTREES
1237 if (FIB6_SUBTREE(pn) == fn) {
1238 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1239 FIB6_SUBTREE(pn) = NULL;
1242 WARN_ON(fn->fn_flags & RTN_ROOT);
1244 if (pn->right == fn)
1246 else if (pn->left == fn)
1255 #ifdef CONFIG_IPV6_SUBTREES
1259 read_lock(&fib6_walker_lock);
1262 if (w->root == fn) {
1263 w->root = w->node = NULL;
1264 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1265 } else if (w->node == fn) {
1266 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1271 if (w->root == fn) {
1273 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1275 if (w->node == fn) {
1278 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1279 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1281 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1282 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1287 read_unlock(&fib6_walker_lock);
1290 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1293 rt6_release(pn->leaf);
1299 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1300 struct nl_info *info)
1302 struct fib6_walker *w;
1303 struct rt6_info *rt = *rtp;
1304 struct net *net = info->nl_net;
1306 RT6_TRACE("fib6_del_route\n");
1309 *rtp = rt->dst.rt6_next;
1310 rt->rt6i_node = NULL;
1311 net->ipv6.rt6_stats->fib_rt_entries--;
1312 net->ipv6.rt6_stats->fib_discarded_routes++;
1314 /* Reset round-robin state, if necessary */
1315 if (fn->rr_ptr == rt)
1318 /* Remove this entry from other siblings */
1319 if (rt->rt6i_nsiblings) {
1320 struct rt6_info *sibling, *next_sibling;
1322 list_for_each_entry_safe(sibling, next_sibling,
1323 &rt->rt6i_siblings, rt6i_siblings)
1324 sibling->rt6i_nsiblings--;
1325 rt->rt6i_nsiblings = 0;
1326 list_del_init(&rt->rt6i_siblings);
1329 /* Adjust walkers */
1330 read_lock(&fib6_walker_lock);
1332 if (w->state == FWS_C && w->leaf == rt) {
1333 RT6_TRACE("walker %p adjusted by delroute\n", w);
1334 w->leaf = rt->dst.rt6_next;
1339 read_unlock(&fib6_walker_lock);
1341 rt->dst.rt6_next = NULL;
1343 /* If it was last route, expunge its radix tree node */
1345 fn->fn_flags &= ~RTN_RTINFO;
1346 net->ipv6.rt6_stats->fib_route_nodes--;
1347 fn = fib6_repair_tree(net, fn);
1350 fib6_purge_rt(rt, fn, net);
1352 inet6_rt_notify(RTM_DELROUTE, rt, info);
1356 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1358 struct net *net = info->nl_net;
1359 struct fib6_node *fn = rt->rt6i_node;
1360 struct rt6_info **rtp;
1363 if (rt->dst.obsolete > 0) {
1364 WARN_ON(fn != NULL);
1368 if (!fn || rt == net->ipv6.ip6_null_entry)
1371 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1373 if (!(rt->rt6i_flags & RTF_CACHE)) {
1374 struct fib6_node *pn = fn;
1375 #ifdef CONFIG_IPV6_SUBTREES
1376 /* clones of this route might be in another subtree */
1377 if (rt->rt6i_src.plen) {
1378 while (!(pn->fn_flags & RTN_ROOT))
1383 fib6_prune_clones(info->nl_net, pn);
1387 * Walk the leaf entries looking for ourself
1390 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1392 fib6_del_route(fn, rtp, info);
1400 * Tree traversal function.
1402 * Certainly, it is not interrupt safe.
1403 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1404 * It means, that we can modify tree during walking
1405 * and use this function for garbage collection, clone pruning,
1406 * cleaning tree when a device goes down etc. etc.
1408 * It guarantees that every node will be traversed,
1409 * and that it will be traversed only once.
1411 * Callback function w->func may return:
1412 * 0 -> continue walking.
1413 * positive value -> walking is suspended (used by tree dumps,
1414 * and probably by gc, if it will be split to several slices)
1415 * negative value -> terminate walking.
1417 * The function itself returns:
1418 * 0 -> walk is complete.
1419 * >0 -> walk is incomplete (i.e. suspended)
1420 * <0 -> walk is terminated by an error.
1423 static int fib6_walk_continue(struct fib6_walker *w)
1425 struct fib6_node *fn, *pn;
1432 if (w->prune && fn != w->root &&
1433 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1438 #ifdef CONFIG_IPV6_SUBTREES
1440 if (FIB6_SUBTREE(fn)) {
1441 w->node = FIB6_SUBTREE(fn);
1449 w->state = FWS_INIT;
1455 w->node = fn->right;
1456 w->state = FWS_INIT;
1462 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1484 #ifdef CONFIG_IPV6_SUBTREES
1485 if (FIB6_SUBTREE(pn) == fn) {
1486 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1491 if (pn->left == fn) {
1495 if (pn->right == fn) {
1497 w->leaf = w->node->leaf;
1507 static int fib6_walk(struct fib6_walker *w)
1511 w->state = FWS_INIT;
1514 fib6_walker_link(w);
1515 res = fib6_walk_continue(w);
1517 fib6_walker_unlink(w);
1521 static int fib6_clean_node(struct fib6_walker *w)
1524 struct rt6_info *rt;
1525 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1526 struct nl_info info = {
1530 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1531 w->node->fn_sernum != c->sernum)
1532 w->node->fn_sernum = c->sernum;
1535 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1540 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1541 res = c->func(rt, c->arg);
1544 res = fib6_del(rt, &info);
1547 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1548 __func__, rt, rt->rt6i_node, res);
1561 * Convenient frontend to tree walker.
1563 * func is called on each route.
1564 * It may return -1 -> delete this route.
1565 * 0 -> continue walking
1567 * prune==1 -> only immediate children of node (certainly,
1568 * ignoring pure split nodes) will be scanned.
1571 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1572 int (*func)(struct rt6_info *, void *arg),
1573 bool prune, int sernum, void *arg)
1575 struct fib6_cleaner c;
1578 c.w.func = fib6_clean_node;
1590 static void __fib6_clean_all(struct net *net,
1591 int (*func)(struct rt6_info *, void *),
1592 int sernum, void *arg)
1594 struct fib6_table *table;
1595 struct hlist_head *head;
1599 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1600 head = &net->ipv6.fib_table_hash[h];
1601 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1602 write_lock_bh(&table->tb6_lock);
1603 fib6_clean_tree(net, &table->tb6_root,
1604 func, false, sernum, arg);
1605 write_unlock_bh(&table->tb6_lock);
1611 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1614 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1617 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1619 if (rt->rt6i_flags & RTF_CACHE) {
1620 RT6_TRACE("pruning clone %p\n", rt);
1627 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1629 fib6_clean_tree(net, fn, fib6_prune_clone, true,
1630 FIB6_NO_SERNUM_CHANGE, NULL);
1633 static void fib6_flush_trees(struct net *net)
1635 int new_sernum = fib6_new_sernum(net);
1637 __fib6_clean_all(net, NULL, new_sernum, NULL);
1641 * Garbage collection
1644 static struct fib6_gc_args
1650 static int fib6_age(struct rt6_info *rt, void *arg)
1652 unsigned long now = jiffies;
1655 * check addrconf expiration here.
1656 * Routes are expired even if they are in use.
1658 * Also age clones. Note, that clones are aged out
1659 * only if they are not in use now.
1662 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1663 if (time_after(now, rt->dst.expires)) {
1664 RT6_TRACE("expiring %p\n", rt);
1668 } else if (rt->rt6i_flags & RTF_CACHE) {
1669 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1670 time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1671 RT6_TRACE("aging clone %p\n", rt);
1673 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1674 struct neighbour *neigh;
1675 __u8 neigh_flags = 0;
1677 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1679 neigh_flags = neigh->flags;
1680 neigh_release(neigh);
1682 if (!(neigh_flags & NTF_ROUTER)) {
1683 RT6_TRACE("purging route %p via non-router but gateway\n",
1694 static DEFINE_SPINLOCK(fib6_gc_lock);
1696 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1701 spin_lock_bh(&fib6_gc_lock);
1702 } else if (!spin_trylock_bh(&fib6_gc_lock)) {
1703 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1706 gc_args.timeout = expires ? (int)expires :
1707 net->ipv6.sysctl.ip6_rt_gc_interval;
1709 gc_args.more = icmp6_dst_gc();
1711 fib6_clean_all(net, fib6_age, NULL);
1713 net->ipv6.ip6_rt_last_gc = now;
1716 mod_timer(&net->ipv6.ip6_fib_timer,
1718 + net->ipv6.sysctl.ip6_rt_gc_interval));
1720 del_timer(&net->ipv6.ip6_fib_timer);
1721 spin_unlock_bh(&fib6_gc_lock);
1724 static void fib6_gc_timer_cb(unsigned long arg)
1726 fib6_run_gc(0, (struct net *)arg, true);
1729 static int __net_init fib6_net_init(struct net *net)
1731 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1733 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1735 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1736 if (!net->ipv6.rt6_stats)
1739 /* Avoid false sharing : Use at least a full cache line */
1740 size = max_t(size_t, size, L1_CACHE_BYTES);
1742 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1743 if (!net->ipv6.fib_table_hash)
1746 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1748 if (!net->ipv6.fib6_main_tbl)
1749 goto out_fib_table_hash;
1751 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1752 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1753 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1754 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1755 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1757 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1758 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1760 if (!net->ipv6.fib6_local_tbl)
1761 goto out_fib6_main_tbl;
1762 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1763 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1764 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1765 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1766 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1768 fib6_tables_init(net);
1772 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1774 kfree(net->ipv6.fib6_main_tbl);
1777 kfree(net->ipv6.fib_table_hash);
1779 kfree(net->ipv6.rt6_stats);
1784 static void fib6_net_exit(struct net *net)
1786 rt6_ifdown(net, NULL);
1787 del_timer_sync(&net->ipv6.ip6_fib_timer);
1789 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1790 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1791 kfree(net->ipv6.fib6_local_tbl);
1793 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1794 kfree(net->ipv6.fib6_main_tbl);
1795 kfree(net->ipv6.fib_table_hash);
1796 kfree(net->ipv6.rt6_stats);
1799 static struct pernet_operations fib6_net_ops = {
1800 .init = fib6_net_init,
1801 .exit = fib6_net_exit,
1804 int __init fib6_init(void)
1808 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1809 sizeof(struct fib6_node),
1810 0, SLAB_HWCACHE_ALIGN,
1812 if (!fib6_node_kmem)
1815 ret = register_pernet_subsys(&fib6_net_ops);
1817 goto out_kmem_cache_create;
1819 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1822 goto out_unregister_subsys;
1824 __fib6_flush_trees = fib6_flush_trees;
1828 out_unregister_subsys:
1829 unregister_pernet_subsys(&fib6_net_ops);
1830 out_kmem_cache_create:
1831 kmem_cache_destroy(fib6_node_kmem);
1835 void fib6_gc_cleanup(void)
1837 unregister_pernet_subsys(&fib6_net_ops);
1838 kmem_cache_destroy(fib6_node_kmem);
1841 #ifdef CONFIG_PROC_FS
1843 struct ipv6_route_iter {
1844 struct seq_net_private p;
1845 struct fib6_walker w;
1847 struct fib6_table *tbl;
1851 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1853 struct rt6_info *rt = v;
1854 struct ipv6_route_iter *iter = seq->private;
1856 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1858 #ifdef CONFIG_IPV6_SUBTREES
1859 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1861 seq_puts(seq, "00000000000000000000000000000000 00 ");
1863 if (rt->rt6i_flags & RTF_GATEWAY)
1864 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1866 seq_puts(seq, "00000000000000000000000000000000");
1868 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1869 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1870 rt->dst.__use, rt->rt6i_flags,
1871 rt->dst.dev ? rt->dst.dev->name : "");
1872 iter->w.leaf = NULL;
1876 static int ipv6_route_yield(struct fib6_walker *w)
1878 struct ipv6_route_iter *iter = w->args;
1884 iter->w.leaf = iter->w.leaf->dst.rt6_next;
1886 if (!iter->skip && iter->w.leaf)
1888 } while (iter->w.leaf);
1893 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter)
1895 memset(&iter->w, 0, sizeof(iter->w));
1896 iter->w.func = ipv6_route_yield;
1897 iter->w.root = &iter->tbl->tb6_root;
1898 iter->w.state = FWS_INIT;
1899 iter->w.node = iter->w.root;
1900 iter->w.args = iter;
1901 iter->sernum = iter->w.root->fn_sernum;
1902 INIT_LIST_HEAD(&iter->w.lh);
1903 fib6_walker_link(&iter->w);
1906 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1910 struct hlist_node *node;
1913 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
1914 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
1920 while (!node && h < FIB6_TABLE_HASHSZ) {
1921 node = rcu_dereference_bh(
1922 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
1924 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
1927 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
1929 if (iter->sernum != iter->w.root->fn_sernum) {
1930 iter->sernum = iter->w.root->fn_sernum;
1931 iter->w.state = FWS_INIT;
1932 iter->w.node = iter->w.root;
1933 WARN_ON(iter->w.skip);
1934 iter->w.skip = iter->w.count;
1938 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1942 struct net *net = seq_file_net(seq);
1943 struct ipv6_route_iter *iter = seq->private;
1948 n = ((struct rt6_info *)v)->dst.rt6_next;
1955 ipv6_route_check_sernum(iter);
1956 read_lock(&iter->tbl->tb6_lock);
1957 r = fib6_walk_continue(&iter->w);
1958 read_unlock(&iter->tbl->tb6_lock);
1962 return iter->w.leaf;
1964 fib6_walker_unlink(&iter->w);
1967 fib6_walker_unlink(&iter->w);
1969 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
1973 ipv6_route_seq_setup_walk(iter);
1977 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
1980 struct net *net = seq_file_net(seq);
1981 struct ipv6_route_iter *iter = seq->private;
1984 iter->tbl = ipv6_route_seq_next_table(NULL, net);
1988 ipv6_route_seq_setup_walk(iter);
1989 return ipv6_route_seq_next(seq, NULL, pos);
1995 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
1997 struct fib6_walker *w = &iter->w;
1998 return w->node && !(w->state == FWS_U && w->node == w->root);
2001 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2004 struct ipv6_route_iter *iter = seq->private;
2006 if (ipv6_route_iter_active(iter))
2007 fib6_walker_unlink(&iter->w);
2009 rcu_read_unlock_bh();
2012 static const struct seq_operations ipv6_route_seq_ops = {
2013 .start = ipv6_route_seq_start,
2014 .next = ipv6_route_seq_next,
2015 .stop = ipv6_route_seq_stop,
2016 .show = ipv6_route_seq_show
2019 int ipv6_route_open(struct inode *inode, struct file *file)
2021 return seq_open_net(inode, file, &ipv6_route_seq_ops,
2022 sizeof(struct ipv6_route_iter));
2025 #endif /* CONFIG_PROC_FS */