3 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5 * Copyright (C) 2005, Intec Automation Inc.
6 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 * This code is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/device.h>
17 #include <linux/mutex.h>
18 #include <linux/math64.h>
20 #include <linux/mtd/cfi.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/of_platform.h>
23 #include <linux/spi/flash.h>
24 #include <linux/mtd/spi-nor.h>
26 /* Define max times to check status register before we give up. */
27 #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
29 #define SPI_NOR_MAX_ID_LEN 6
33 * This array stores the ID bytes.
34 * The first three bytes are the JEDIC ID.
35 * JEDEC ID zero means "no ID" (mostly older chips).
37 u8 id[SPI_NOR_MAX_ID_LEN];
40 /* The size listed here is what works with SPINOR_OP_SE, which isn't
41 * necessarily called a "sector" by the vendor.
50 #define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */
51 #define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */
52 #define SST_WRITE 0x04 /* use SST byte programming */
53 #define SPI_NOR_NO_FR 0x08 /* Can't do fastread */
54 #define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */
55 #define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */
56 #define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */
57 #define USE_FSR 0x80 /* use flag status register */
60 #define JEDEC_MFR(info) ((info)->id[0])
62 static const struct spi_device_id *spi_nor_match_id(const char *name);
65 * Read the status register, returning its value in the location
66 * Return the status register value.
67 * Returns negative if error occurred.
69 static int read_sr(struct spi_nor *nor)
74 ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
76 pr_err("error %d reading SR\n", (int) ret);
84 * Read the flag status register, returning its value in the location
85 * Return the status register value.
86 * Returns negative if error occurred.
88 static int read_fsr(struct spi_nor *nor)
93 ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
95 pr_err("error %d reading FSR\n", ret);
103 * Read configuration register, returning its value in the
104 * location. Return the configuration register value.
105 * Returns negative if error occured.
107 static int read_cr(struct spi_nor *nor)
112 ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
114 dev_err(nor->dev, "error %d reading CR\n", ret);
122 * Dummy Cycle calculation for different type of read.
123 * It can be used to support more commands with
124 * different dummy cycle requirements.
126 static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
128 switch (nor->flash_read) {
140 * Write status register 1 byte
141 * Returns negative if error occurred.
143 static inline int write_sr(struct spi_nor *nor, u8 val)
145 nor->cmd_buf[0] = val;
146 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
150 * Set write enable latch with Write Enable command.
151 * Returns negative if error occurred.
153 static inline int write_enable(struct spi_nor *nor)
155 return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
159 * Send write disble instruction to the chip.
161 static inline int write_disable(struct spi_nor *nor)
163 return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0);
166 static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
171 /* Enable/disable 4-byte addressing mode. */
172 static inline int set_4byte(struct spi_nor *nor, struct flash_info *info,
176 bool need_wren = false;
179 switch (JEDEC_MFR(info)) {
180 case CFI_MFR_ST: /* Micron, actually */
181 /* Some Micron need WREN command; all will accept it */
183 case CFI_MFR_MACRONIX:
184 case 0xEF /* winbond */:
188 cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
189 status = nor->write_reg(nor, cmd, NULL, 0, 0);
196 nor->cmd_buf[0] = enable << 7;
197 return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0);
200 static inline int spi_nor_sr_ready(struct spi_nor *nor)
202 int sr = read_sr(nor);
206 return !(sr & SR_WIP);
209 static inline int spi_nor_fsr_ready(struct spi_nor *nor)
211 int fsr = read_fsr(nor);
215 return fsr & FSR_READY;
218 static int spi_nor_ready(struct spi_nor *nor)
221 sr = spi_nor_sr_ready(nor);
224 fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
231 * Service routine to read status register until ready, or timeout occurs.
232 * Returns non-zero if error.
234 static int spi_nor_wait_till_ready(struct spi_nor *nor)
236 unsigned long deadline;
237 int timeout = 0, ret;
239 deadline = jiffies + MAX_READY_WAIT_JIFFIES;
242 if (time_after_eq(jiffies, deadline))
245 ret = spi_nor_ready(nor);
254 dev_err(nor->dev, "flash operation timed out\n");
260 * Erase the whole flash memory
262 * Returns 0 if successful, non-zero otherwise.
264 static int erase_chip(struct spi_nor *nor)
266 dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10));
268 return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0);
271 static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
275 mutex_lock(&nor->lock);
278 ret = nor->prepare(nor, ops);
280 dev_err(nor->dev, "failed in the preparation.\n");
281 mutex_unlock(&nor->lock);
288 static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
291 nor->unprepare(nor, ops);
292 mutex_unlock(&nor->lock);
296 * Erase an address range on the nor chip. The address range may extend
297 * one or more erase sectors. Return an error is there is a problem erasing.
299 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
301 struct spi_nor *nor = mtd_to_spi_nor(mtd);
306 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
307 (long long)instr->len);
309 div_u64_rem(instr->len, mtd->erasesize, &rem);
316 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
320 /* whole-chip erase? */
321 if (len == mtd->size) {
324 if (erase_chip(nor)) {
329 ret = spi_nor_wait_till_ready(nor);
333 /* REVISIT in some cases we could speed up erasing large regions
334 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
335 * to use "small sector erase", but that's not always optimal.
338 /* "sector"-at-a-time erase */
343 if (nor->erase(nor, addr)) {
348 addr += mtd->erasesize;
349 len -= mtd->erasesize;
351 ret = spi_nor_wait_till_ready(nor);
359 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
361 instr->state = MTD_ERASE_DONE;
362 mtd_erase_callback(instr);
367 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
368 instr->state = MTD_ERASE_FAILED;
372 static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
374 struct spi_nor *nor = mtd_to_spi_nor(mtd);
375 uint32_t offset = ofs;
376 uint8_t status_old, status_new;
379 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
383 status_old = read_sr(nor);
385 if (offset < mtd->size - (mtd->size / 2))
386 status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
387 else if (offset < mtd->size - (mtd->size / 4))
388 status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
389 else if (offset < mtd->size - (mtd->size / 8))
390 status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
391 else if (offset < mtd->size - (mtd->size / 16))
392 status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
393 else if (offset < mtd->size - (mtd->size / 32))
394 status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
395 else if (offset < mtd->size - (mtd->size / 64))
396 status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
398 status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
400 /* Only modify protection if it will not unlock other areas */
401 if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
402 (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
404 ret = write_sr(nor, status_new);
410 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
414 static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
416 struct spi_nor *nor = mtd_to_spi_nor(mtd);
417 uint32_t offset = ofs;
418 uint8_t status_old, status_new;
421 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
425 status_old = read_sr(nor);
427 if (offset+len > mtd->size - (mtd->size / 64))
428 status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
429 else if (offset+len > mtd->size - (mtd->size / 32))
430 status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
431 else if (offset+len > mtd->size - (mtd->size / 16))
432 status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
433 else if (offset+len > mtd->size - (mtd->size / 8))
434 status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
435 else if (offset+len > mtd->size - (mtd->size / 4))
436 status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
437 else if (offset+len > mtd->size - (mtd->size / 2))
438 status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
440 status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
442 /* Only modify protection if it will not lock other areas */
443 if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
444 (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
446 ret = write_sr(nor, status_new);
452 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
456 /* Used when the "_ext_id" is two bytes at most */
457 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
458 ((kernel_ulong_t)&(struct flash_info) { \
460 ((_jedec_id) >> 16) & 0xff, \
461 ((_jedec_id) >> 8) & 0xff, \
462 (_jedec_id) & 0xff, \
463 ((_ext_id) >> 8) & 0xff, \
466 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
467 .sector_size = (_sector_size), \
468 .n_sectors = (_n_sectors), \
473 #define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
474 ((kernel_ulong_t)&(struct flash_info) { \
476 ((_jedec_id) >> 16) & 0xff, \
477 ((_jedec_id) >> 8) & 0xff, \
478 (_jedec_id) & 0xff, \
479 ((_ext_id) >> 16) & 0xff, \
480 ((_ext_id) >> 8) & 0xff, \
484 .sector_size = (_sector_size), \
485 .n_sectors = (_n_sectors), \
490 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
491 ((kernel_ulong_t)&(struct flash_info) { \
492 .sector_size = (_sector_size), \
493 .n_sectors = (_n_sectors), \
494 .page_size = (_page_size), \
495 .addr_width = (_addr_width), \
499 /* NOTE: double check command sets and memory organization when you add
500 * more nor chips. This current list focusses on newer chips, which
501 * have been converging on command sets which including JEDEC ID.
503 static const struct spi_device_id spi_nor_ids[] = {
504 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
505 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
506 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
508 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
509 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
510 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
512 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
513 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
514 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
515 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
517 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
520 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
521 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
522 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
523 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
524 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
525 { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
526 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
529 { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
532 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
533 { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
536 { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
539 { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
540 { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
541 { "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, SECT_4K) },
543 /* Intel/Numonyx -- xxxs33b */
544 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
545 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
546 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
549 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
550 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
551 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
552 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
553 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
554 { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
555 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
556 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
557 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
558 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
559 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
560 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
561 { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
564 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
565 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SPI_NOR_QUAD_READ) },
566 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SPI_NOR_QUAD_READ) },
567 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SPI_NOR_QUAD_READ) },
568 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) },
569 { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
570 { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
571 { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
574 { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
575 { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
576 { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
578 /* Spansion -- single (large) sector size only, at least
579 * for the chips listed here (without boot sectors).
581 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
582 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
583 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
584 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
585 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
586 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
587 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
588 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
589 { "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_QUAD_READ) },
590 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
591 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
592 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
593 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
594 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
595 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
596 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
597 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
598 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
599 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
600 { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, 0) },
602 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
603 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
604 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
605 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
606 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
607 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
608 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
609 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
610 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
611 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
612 { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
614 /* ST Microelectronics -- newer production may have feature updates */
615 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
616 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
617 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
618 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
619 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
620 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
621 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
622 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
623 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
625 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
626 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
627 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
628 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
629 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
630 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
631 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
632 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
633 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
635 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
636 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
637 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
639 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
640 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
641 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
643 { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
644 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
645 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
646 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
647 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
648 { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
650 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
651 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
652 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
653 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
654 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
655 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
656 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
657 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
658 { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
659 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
660 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
661 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
662 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
663 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
664 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
666 /* Catalyst / On Semiconductor -- non-JEDEC */
667 { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
668 { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
669 { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
670 { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
671 { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
675 static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor)
678 u8 id[SPI_NOR_MAX_ID_LEN];
679 struct flash_info *info;
681 tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
683 dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
687 for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
688 info = (void *)spi_nor_ids[tmp].driver_data;
690 if (!memcmp(info->id, id, info->id_len))
691 return &spi_nor_ids[tmp];
694 dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %2x, %2x\n",
695 id[0], id[1], id[2]);
696 return ERR_PTR(-ENODEV);
699 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
700 size_t *retlen, u_char *buf)
702 struct spi_nor *nor = mtd_to_spi_nor(mtd);
705 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
707 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
711 ret = nor->read(nor, from, len, retlen, buf);
713 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
717 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
718 size_t *retlen, const u_char *buf)
720 struct spi_nor *nor = mtd_to_spi_nor(mtd);
724 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
726 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
732 nor->sst_write_second = false;
735 /* Start write from odd address. */
737 nor->program_opcode = SPINOR_OP_BP;
739 /* write one byte. */
740 nor->write(nor, to, 1, retlen, buf);
741 ret = spi_nor_wait_till_ready(nor);
747 /* Write out most of the data here. */
748 for (; actual < len - 1; actual += 2) {
749 nor->program_opcode = SPINOR_OP_AAI_WP;
751 /* write two bytes. */
752 nor->write(nor, to, 2, retlen, buf + actual);
753 ret = spi_nor_wait_till_ready(nor);
757 nor->sst_write_second = true;
759 nor->sst_write_second = false;
762 ret = spi_nor_wait_till_ready(nor);
766 /* Write out trailing byte if it exists. */
770 nor->program_opcode = SPINOR_OP_BP;
771 nor->write(nor, to, 1, retlen, buf + actual);
773 ret = spi_nor_wait_till_ready(nor);
779 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
784 * Write an address range to the nor chip. Data must be written in
785 * FLASH_PAGESIZE chunks. The address range may be any size provided
786 * it is within the physical boundaries.
788 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
789 size_t *retlen, const u_char *buf)
791 struct spi_nor *nor = mtd_to_spi_nor(mtd);
792 u32 page_offset, page_size, i;
795 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
797 ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
803 page_offset = to & (nor->page_size - 1);
805 /* do all the bytes fit onto one page? */
806 if (page_offset + len <= nor->page_size) {
807 nor->write(nor, to, len, retlen, buf);
809 /* the size of data remaining on the first page */
810 page_size = nor->page_size - page_offset;
811 nor->write(nor, to, page_size, retlen, buf);
813 /* write everything in nor->page_size chunks */
814 for (i = page_size; i < len; i += page_size) {
816 if (page_size > nor->page_size)
817 page_size = nor->page_size;
819 ret = spi_nor_wait_till_ready(nor);
825 nor->write(nor, to + i, page_size, retlen, buf + i);
829 ret = spi_nor_wait_till_ready(nor);
831 spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
835 static int macronix_quad_enable(struct spi_nor *nor)
842 nor->cmd_buf[0] = val | SR_QUAD_EN_MX;
843 nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
845 if (spi_nor_wait_till_ready(nor))
849 if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
850 dev_err(nor->dev, "Macronix Quad bit not set\n");
858 * Write status Register and configuration register with 2 bytes
859 * The first byte will be written to the status register, while the
860 * second byte will be written to the configuration register.
861 * Return negative if error occured.
863 static int write_sr_cr(struct spi_nor *nor, u16 val)
865 nor->cmd_buf[0] = val & 0xff;
866 nor->cmd_buf[1] = (val >> 8);
868 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0);
871 static int spansion_quad_enable(struct spi_nor *nor)
874 int quad_en = CR_QUAD_EN_SPAN << 8;
878 ret = write_sr_cr(nor, quad_en);
881 "error while writing configuration register\n");
885 /* read back and check it */
887 if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
888 dev_err(nor->dev, "Spansion Quad bit not set\n");
895 static int micron_quad_enable(struct spi_nor *nor)
900 ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
902 dev_err(nor->dev, "error %d reading EVCR\n", ret);
908 /* set EVCR, enable quad I/O */
909 nor->cmd_buf[0] = val & ~EVCR_QUAD_EN_MICRON;
910 ret = nor->write_reg(nor, SPINOR_OP_WD_EVCR, nor->cmd_buf, 1, 0);
912 dev_err(nor->dev, "error while writing EVCR register\n");
916 ret = spi_nor_wait_till_ready(nor);
920 /* read EVCR and check it */
921 ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
923 dev_err(nor->dev, "error %d reading EVCR\n", ret);
926 if (val & EVCR_QUAD_EN_MICRON) {
927 dev_err(nor->dev, "Micron EVCR Quad bit not clear\n");
934 static int set_quad_mode(struct spi_nor *nor, struct flash_info *info)
938 switch (JEDEC_MFR(info)) {
939 case CFI_MFR_MACRONIX:
940 status = macronix_quad_enable(nor);
942 dev_err(nor->dev, "Macronix quad-read not enabled\n");
947 status = micron_quad_enable(nor);
949 dev_err(nor->dev, "Micron quad-read not enabled\n");
954 status = spansion_quad_enable(nor);
956 dev_err(nor->dev, "Spansion quad-read not enabled\n");
963 static int spi_nor_check(struct spi_nor *nor)
965 if (!nor->dev || !nor->read || !nor->write ||
966 !nor->read_reg || !nor->write_reg || !nor->erase) {
967 pr_err("spi-nor: please fill all the necessary fields!\n");
974 int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
976 const struct spi_device_id *id = NULL;
977 struct flash_info *info;
978 struct device *dev = nor->dev;
979 struct mtd_info *mtd = nor->mtd;
980 struct device_node *np = dev->of_node;
984 ret = spi_nor_check(nor);
988 /* Try to auto-detect if chip name wasn't specified */
990 id = spi_nor_read_id(nor);
992 id = spi_nor_match_id(name);
993 if (IS_ERR_OR_NULL(id))
996 info = (void *)id->driver_data;
999 * If caller has specified name of flash model that can normally be
1000 * detected using JEDEC, let's verify it.
1002 if (name && info->id_len) {
1003 const struct spi_device_id *jid;
1005 jid = spi_nor_read_id(nor);
1007 return PTR_ERR(jid);
1008 } else if (jid != id) {
1010 * JEDEC knows better, so overwrite platform ID. We
1011 * can't trust partitions any longer, but we'll let
1012 * mtd apply them anyway, since some partitions may be
1013 * marked read-only, and we don't want to lose that
1014 * information, even if it's not 100% accurate.
1016 dev_warn(dev, "found %s, expected %s\n",
1017 jid->name, id->name);
1019 info = (void *)jid->driver_data;
1023 mutex_init(&nor->lock);
1026 * Atmel, SST and Intel/Numonyx serial nor tend to power
1027 * up with the software protection bits set
1030 if (JEDEC_MFR(info) == CFI_MFR_ATMEL ||
1031 JEDEC_MFR(info) == CFI_MFR_INTEL ||
1032 JEDEC_MFR(info) == CFI_MFR_SST) {
1038 mtd->name = dev_name(dev);
1039 mtd->type = MTD_NORFLASH;
1041 mtd->flags = MTD_CAP_NORFLASH;
1042 mtd->size = info->sector_size * info->n_sectors;
1043 mtd->_erase = spi_nor_erase;
1044 mtd->_read = spi_nor_read;
1046 /* nor protection support for STmicro chips */
1047 if (JEDEC_MFR(info) == CFI_MFR_ST) {
1048 mtd->_lock = spi_nor_lock;
1049 mtd->_unlock = spi_nor_unlock;
1052 /* sst nor chips use AAI word program */
1053 if (info->flags & SST_WRITE)
1054 mtd->_write = sst_write;
1056 mtd->_write = spi_nor_write;
1058 if (info->flags & USE_FSR)
1059 nor->flags |= SNOR_F_USE_FSR;
1061 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
1062 /* prefer "small sector" erase if possible */
1063 if (info->flags & SECT_4K) {
1064 nor->erase_opcode = SPINOR_OP_BE_4K;
1065 mtd->erasesize = 4096;
1066 } else if (info->flags & SECT_4K_PMC) {
1067 nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
1068 mtd->erasesize = 4096;
1072 nor->erase_opcode = SPINOR_OP_SE;
1073 mtd->erasesize = info->sector_size;
1076 if (info->flags & SPI_NOR_NO_ERASE)
1077 mtd->flags |= MTD_NO_ERASE;
1079 mtd->dev.parent = dev;
1080 nor->page_size = info->page_size;
1081 mtd->writebufsize = nor->page_size;
1084 /* If we were instantiated by DT, use it */
1085 if (of_property_read_bool(np, "m25p,fast-read"))
1086 nor->flash_read = SPI_NOR_FAST;
1088 nor->flash_read = SPI_NOR_NORMAL;
1090 /* If we weren't instantiated by DT, default to fast-read */
1091 nor->flash_read = SPI_NOR_FAST;
1094 /* Some devices cannot do fast-read, no matter what DT tells us */
1095 if (info->flags & SPI_NOR_NO_FR)
1096 nor->flash_read = SPI_NOR_NORMAL;
1098 /* Quad/Dual-read mode takes precedence over fast/normal */
1099 if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
1100 ret = set_quad_mode(nor, info);
1102 dev_err(dev, "quad mode not supported\n");
1105 nor->flash_read = SPI_NOR_QUAD;
1106 } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
1107 nor->flash_read = SPI_NOR_DUAL;
1110 /* Default commands */
1111 switch (nor->flash_read) {
1113 nor->read_opcode = SPINOR_OP_READ_1_1_4;
1116 nor->read_opcode = SPINOR_OP_READ_1_1_2;
1119 nor->read_opcode = SPINOR_OP_READ_FAST;
1121 case SPI_NOR_NORMAL:
1122 nor->read_opcode = SPINOR_OP_READ;
1125 dev_err(dev, "No Read opcode defined\n");
1129 nor->program_opcode = SPINOR_OP_PP;
1131 if (info->addr_width)
1132 nor->addr_width = info->addr_width;
1133 else if (mtd->size > 0x1000000) {
1134 /* enable 4-byte addressing if the device exceeds 16MiB */
1135 nor->addr_width = 4;
1136 if (JEDEC_MFR(info) == CFI_MFR_AMD) {
1137 /* Dedicated 4-byte command set */
1138 switch (nor->flash_read) {
1140 nor->read_opcode = SPINOR_OP_READ4_1_1_4;
1143 nor->read_opcode = SPINOR_OP_READ4_1_1_2;
1146 nor->read_opcode = SPINOR_OP_READ4_FAST;
1148 case SPI_NOR_NORMAL:
1149 nor->read_opcode = SPINOR_OP_READ4;
1152 nor->program_opcode = SPINOR_OP_PP_4B;
1153 /* No small sector erase for 4-byte command set */
1154 nor->erase_opcode = SPINOR_OP_SE_4B;
1155 mtd->erasesize = info->sector_size;
1157 set_4byte(nor, info, 1);
1159 nor->addr_width = 3;
1162 nor->read_dummy = spi_nor_read_dummy_cycles(nor);
1164 dev_info(dev, "%s (%lld Kbytes)\n", id->name,
1165 (long long)mtd->size >> 10);
1168 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
1169 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1170 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
1171 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
1173 if (mtd->numeraseregions)
1174 for (i = 0; i < mtd->numeraseregions; i++)
1176 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
1177 ".erasesize = 0x%.8x (%uKiB), "
1178 ".numblocks = %d }\n",
1179 i, (long long)mtd->eraseregions[i].offset,
1180 mtd->eraseregions[i].erasesize,
1181 mtd->eraseregions[i].erasesize / 1024,
1182 mtd->eraseregions[i].numblocks);
1185 EXPORT_SYMBOL_GPL(spi_nor_scan);
1187 static const struct spi_device_id *spi_nor_match_id(const char *name)
1189 const struct spi_device_id *id = spi_nor_ids;
1191 while (id->name[0]) {
1192 if (!strcmp(name, id->name))
1199 MODULE_LICENSE("GPL");
1201 MODULE_AUTHOR("Mike Lavender");
1202 MODULE_DESCRIPTION("framework for SPI NOR");