2 * AES XCBC routines supporting the Power 7+ Nest Accelerators driver
4 * Copyright (C) 2011-2012 International Business Machines Inc.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 only.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <crypto/internal/hash.h>
23 #include <crypto/aes.h>
24 #include <crypto/algapi.h>
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/crypto.h>
30 #include "nx_csbcpb.h"
35 u8 state[AES_BLOCK_SIZE];
37 u8 buffer[AES_BLOCK_SIZE];
40 static int nx_xcbc_set_key(struct crypto_shash *desc,
44 struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);
48 nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
54 memcpy(nx_ctx->priv.xcbc.key, in_key, key_len);
60 * Based on RFC 3566, for a zero-length message:
63 * K1 = E(K, 0x01010101010101010101010101010101)
64 * K3 = E(K, 0x03030303030303030303030303030303)
65 * E[0] = 0x00000000000000000000000000000000
66 * M[1] = 0x80000000000000000000000000000000 (0 length message with padding)
67 * E[1] = (K1, M[1] ^ E[0] ^ K3)
70 static int nx_xcbc_empty(struct shash_desc *desc, u8 *out)
72 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
73 struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
74 struct nx_sg *in_sg, *out_sg;
75 u8 keys[2][AES_BLOCK_SIZE];
80 /* Change to ECB mode */
81 csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
82 memcpy(key, csbcpb->cpb.aes_xcbc.key, AES_BLOCK_SIZE);
83 memcpy(csbcpb->cpb.aes_ecb.key, key, AES_BLOCK_SIZE);
84 NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
86 /* K1 and K3 base patterns */
87 memset(keys[0], 0x01, sizeof(keys[0]));
88 memset(keys[1], 0x03, sizeof(keys[1]));
91 /* Generate K1 and K3 encrypting the patterns */
92 in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, &len,
95 if (len != sizeof(keys))
98 out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, &len,
101 if (len != sizeof(keys))
104 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
105 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
107 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
108 desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
111 atomic_inc(&(nx_ctx->stats->aes_ops));
113 /* XOr K3 with the padding for a 0 length message */
116 len = sizeof(keys[1]);
118 /* Encrypt the final result */
119 memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE);
120 in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], &len,
123 if (len != sizeof(keys[1]))
126 len = AES_BLOCK_SIZE;
127 out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
130 if (len != AES_BLOCK_SIZE)
133 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
134 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
136 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
137 desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
140 atomic_inc(&(nx_ctx->stats->aes_ops));
143 /* Restore XCBC mode */
144 csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
145 memcpy(csbcpb->cpb.aes_xcbc.key, key, AES_BLOCK_SIZE);
146 NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
151 static int nx_xcbc_init(struct shash_desc *desc)
153 struct xcbc_state *sctx = shash_desc_ctx(desc);
154 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
155 struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
156 struct nx_sg *out_sg;
159 nx_ctx_init(nx_ctx, HCOP_FC_AES);
161 memset(sctx, 0, sizeof *sctx);
163 NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
164 csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
166 memcpy(csbcpb->cpb.aes_xcbc.key, nx_ctx->priv.xcbc.key, AES_BLOCK_SIZE);
167 memset(nx_ctx->priv.xcbc.key, 0, sizeof *nx_ctx->priv.xcbc.key);
169 len = AES_BLOCK_SIZE;
170 out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
171 &len, nx_ctx->ap->sglen);
173 if (len != AES_BLOCK_SIZE)
176 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
181 static int nx_xcbc_update(struct shash_desc *desc,
185 struct xcbc_state *sctx = shash_desc_ctx(desc);
186 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
187 struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
189 u32 to_process = 0, leftover, total;
190 unsigned int max_sg_len;
191 unsigned long irq_flags;
195 spin_lock_irqsave(&nx_ctx->lock, irq_flags);
198 total = sctx->count + len;
200 /* 2 cases for total data len:
201 * 1: <= AES_BLOCK_SIZE: copy into state, return 0
202 * 2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
204 if (total <= AES_BLOCK_SIZE) {
205 memcpy(sctx->buffer + sctx->count, data, len);
210 in_sg = nx_ctx->in_sg;
211 max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
213 max_sg_len = min_t(u64, max_sg_len,
214 nx_ctx->ap->databytelen/NX_PAGE_SIZE);
217 to_process = total - to_process;
218 to_process = to_process & ~(AES_BLOCK_SIZE - 1);
220 leftover = total - to_process;
222 /* the hardware will not accept a 0 byte operation for this
223 * algorithm and the operation MUST be finalized to be correct.
224 * So if we happen to get an update that falls on a block sized
225 * boundary, we must save off the last block to finalize with
228 to_process -= AES_BLOCK_SIZE;
229 leftover = AES_BLOCK_SIZE;
233 data_len = sctx->count;
234 in_sg = nx_build_sg_list(nx_ctx->in_sg,
238 if (data_len != sctx->count)
242 data_len = to_process - sctx->count;
243 in_sg = nx_build_sg_list(in_sg,
248 if (data_len != to_process - sctx->count)
251 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
252 sizeof(struct nx_sg);
254 /* we've hit the nx chip previously and we're updating again,
255 * so copy over the partial digest */
256 if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
257 memcpy(csbcpb->cpb.aes_xcbc.cv,
258 csbcpb->cpb.aes_xcbc.out_cv_mac,
262 NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
263 if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
268 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
269 desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
273 atomic_inc(&(nx_ctx->stats->aes_ops));
275 /* everything after the first update is continuation */
276 NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
279 data += to_process - sctx->count;
281 in_sg = nx_ctx->in_sg;
282 } while (leftover > AES_BLOCK_SIZE);
284 /* copy the leftover back into the state struct */
285 memcpy(sctx->buffer, data, leftover);
286 sctx->count = leftover;
289 spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
293 static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
295 struct xcbc_state *sctx = shash_desc_ctx(desc);
296 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
297 struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
298 struct nx_sg *in_sg, *out_sg;
299 unsigned long irq_flags;
303 spin_lock_irqsave(&nx_ctx->lock, irq_flags);
305 if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
306 /* we've hit the nx chip previously, now we're finalizing,
307 * so copy over the partial digest */
308 memcpy(csbcpb->cpb.aes_xcbc.cv,
309 csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
310 } else if (sctx->count == 0) {
312 * we've never seen an update, so this is a 0 byte op. The
313 * hardware cannot handle a 0 byte op, so just ECB to
316 rc = nx_xcbc_empty(desc, out);
320 /* final is represented by continuing the operation and indicating that
321 * this is not an intermediate operation */
322 NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
325 in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
326 &len, nx_ctx->ap->sglen);
328 if (len != sctx->count)
331 len = AES_BLOCK_SIZE;
332 out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
335 if (len != AES_BLOCK_SIZE)
338 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
339 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
341 if (!nx_ctx->op.outlen) {
346 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
347 desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
351 atomic_inc(&(nx_ctx->stats->aes_ops));
353 memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
355 spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
359 struct shash_alg nx_shash_aes_xcbc_alg = {
360 .digestsize = AES_BLOCK_SIZE,
361 .init = nx_xcbc_init,
362 .update = nx_xcbc_update,
363 .final = nx_xcbc_final,
364 .setkey = nx_xcbc_set_key,
365 .descsize = sizeof(struct xcbc_state),
366 .statesize = sizeof(struct xcbc_state),
368 .cra_name = "xcbc(aes)",
369 .cra_driver_name = "xcbc-aes-nx",
371 .cra_flags = CRYPTO_ALG_TYPE_SHASH,
372 .cra_blocksize = AES_BLOCK_SIZE,
373 .cra_module = THIS_MODULE,
374 .cra_ctxsize = sizeof(struct nx_crypto_ctx),
375 .cra_init = nx_crypto_ctx_aes_xcbc_init,
376 .cra_exit = nx_crypto_ctx_exit,