1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
28 #include <linux/uaccess.h>
29 #include <asm/ioctls.h>
34 * The max size that a non-root user is allowed to grow the pipe. Can
35 * be set by root in /proc/sys/fs/pipe-max-size
37 unsigned int pipe_max_size = 1048576;
39 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
40 * matches default values.
42 unsigned long pipe_user_pages_hard;
43 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
46 * We use head and tail indices that aren't masked off, except at the point of
47 * dereference, but rather they're allowed to wrap naturally. This means there
48 * isn't a dead spot in the buffer, but the ring has to be a power of two and
50 * -- David Howells 2019-09-23.
52 * Reads with count = 0 should always return 0.
53 * -- Julian Bradfield 1999-06-07.
55 * FIFOs and Pipes now generate SIGIO for both readers and writers.
58 * pipe_read & write cleanup
62 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
65 mutex_lock_nested(&pipe->mutex, subclass);
68 void pipe_lock(struct pipe_inode_info *pipe)
71 * pipe_lock() nests non-pipe inode locks (for writing to a file)
73 pipe_lock_nested(pipe, I_MUTEX_PARENT);
75 EXPORT_SYMBOL(pipe_lock);
77 void pipe_unlock(struct pipe_inode_info *pipe)
80 mutex_unlock(&pipe->mutex);
82 EXPORT_SYMBOL(pipe_unlock);
84 static inline void __pipe_lock(struct pipe_inode_info *pipe)
86 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
89 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
91 mutex_unlock(&pipe->mutex);
94 void pipe_double_lock(struct pipe_inode_info *pipe1,
95 struct pipe_inode_info *pipe2)
97 BUG_ON(pipe1 == pipe2);
100 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
101 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
103 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
104 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
108 /* Drop the inode semaphore and wait for a pipe event, atomically */
109 void pipe_wait(struct pipe_inode_info *pipe)
115 * Pipes are system-local resources, so sleeping on them
116 * is considered a noninteractive wait:
118 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
119 prepare_to_wait(&pipe->wr_wait, &wrwait, TASK_INTERRUPTIBLE);
122 finish_wait(&pipe->rd_wait, &rdwait);
123 finish_wait(&pipe->wr_wait, &wrwait);
127 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
128 struct pipe_buffer *buf)
130 struct page *page = buf->page;
133 * If nobody else uses this page, and we don't already have a
134 * temporary page, let's keep track of it as a one-deep
135 * allocation cache. (Otherwise just release our reference to it)
137 if (page_count(page) == 1 && !pipe->tmp_page)
138 pipe->tmp_page = page;
143 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
144 struct pipe_buffer *buf)
146 struct page *page = buf->page;
148 if (page_count(page) != 1)
150 memcg_kmem_uncharge_page(page, 0);
151 __SetPageLocked(page);
156 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
157 * @pipe: the pipe that the buffer belongs to
158 * @buf: the buffer to attempt to steal
161 * This function attempts to steal the &struct page attached to
162 * @buf. If successful, this function returns 0 and returns with
163 * the page locked. The caller may then reuse the page for whatever
164 * he wishes; the typical use is insertion into a different file
167 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
168 struct pipe_buffer *buf)
170 struct page *page = buf->page;
173 * A reference of one is golden, that means that the owner of this
174 * page is the only one holding a reference to it. lock the page
177 if (page_count(page) == 1) {
183 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
186 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
187 * @pipe: the pipe that the buffer belongs to
188 * @buf: the buffer to get a reference to
191 * This function grabs an extra reference to @buf. It's used in
192 * in the tee() system call, when we duplicate the buffers in one
195 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
197 return try_get_page(buf->page);
199 EXPORT_SYMBOL(generic_pipe_buf_get);
202 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
203 * @pipe: the pipe that the buffer belongs to
204 * @buf: the buffer to put a reference to
207 * This function releases a reference to @buf.
209 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
210 struct pipe_buffer *buf)
214 EXPORT_SYMBOL(generic_pipe_buf_release);
216 static const struct pipe_buf_operations anon_pipe_buf_ops = {
217 .release = anon_pipe_buf_release,
218 .try_steal = anon_pipe_buf_try_steal,
219 .get = generic_pipe_buf_get,
222 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
223 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
225 unsigned int head = READ_ONCE(pipe->head);
226 unsigned int tail = READ_ONCE(pipe->tail);
227 unsigned int writers = READ_ONCE(pipe->writers);
229 return !pipe_empty(head, tail) || !writers;
233 pipe_read(struct kiocb *iocb, struct iov_iter *to)
235 size_t total_len = iov_iter_count(to);
236 struct file *filp = iocb->ki_filp;
237 struct pipe_inode_info *pipe = filp->private_data;
238 bool was_full, wake_next_reader = false;
241 /* Null read succeeds. */
242 if (unlikely(total_len == 0))
249 * We only wake up writers if the pipe was full when we started
250 * reading in order to avoid unnecessary wakeups.
252 * But when we do wake up writers, we do so using a sync wakeup
253 * (WF_SYNC), because we want them to get going and generate more
256 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
258 unsigned int head = pipe->head;
259 unsigned int tail = pipe->tail;
260 unsigned int mask = pipe->ring_size - 1;
262 if (!pipe_empty(head, tail)) {
263 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
264 size_t chars = buf->len;
268 if (chars > total_len)
271 error = pipe_buf_confirm(pipe, buf);
278 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
279 if (unlikely(written < chars)) {
285 buf->offset += chars;
288 /* Was it a packet buffer? Clean up and exit */
289 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
295 pipe_buf_release(pipe, buf);
296 spin_lock_irq(&pipe->rd_wait.lock);
299 spin_unlock_irq(&pipe->rd_wait.lock);
303 break; /* common path: read succeeded */
304 if (!pipe_empty(head, tail)) /* More to do? */
312 if (filp->f_flags & O_NONBLOCK) {
319 * We only get here if we didn't actually read anything.
321 * However, we could have seen (and removed) a zero-sized
322 * pipe buffer, and might have made space in the buffers
325 * You can't make zero-sized pipe buffers by doing an empty
326 * write (not even in packet mode), but they can happen if
327 * the writer gets an EFAULT when trying to fill a buffer
328 * that already got allocated and inserted in the buffer
331 * So we still need to wake up any pending writers in the
332 * _very_ unlikely case that the pipe was full, but we got
335 if (unlikely(was_full)) {
336 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
337 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
341 * But because we didn't read anything, at this point we can
342 * just return directly with -ERESTARTSYS if we're interrupted,
343 * since we've done any required wakeups and there's no need
344 * to mark anything accessed. And we've dropped the lock.
346 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
350 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
351 wake_next_reader = true;
353 if (pipe_empty(pipe->head, pipe->tail))
354 wake_next_reader = false;
358 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
359 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
361 if (wake_next_reader)
362 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
368 static inline int is_packetized(struct file *file)
370 return (file->f_flags & O_DIRECT) != 0;
373 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
374 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
376 unsigned int head = READ_ONCE(pipe->head);
377 unsigned int tail = READ_ONCE(pipe->tail);
378 unsigned int max_usage = READ_ONCE(pipe->max_usage);
380 return !pipe_full(head, tail, max_usage) ||
381 !READ_ONCE(pipe->readers);
385 pipe_write(struct kiocb *iocb, struct iov_iter *from)
387 struct file *filp = iocb->ki_filp;
388 struct pipe_inode_info *pipe = filp->private_data;
391 size_t total_len = iov_iter_count(from);
393 bool was_empty = false;
394 bool wake_next_writer = false;
396 /* Null write succeeds. */
397 if (unlikely(total_len == 0))
402 if (!pipe->readers) {
403 send_sig(SIGPIPE, current, 0);
409 * Only wake up if the pipe started out empty, since
410 * otherwise there should be no readers waiting.
412 * If it wasn't empty we try to merge new data into
415 * That naturally merges small writes, but it also
416 * page-aligs the rest of the writes for large writes
417 * spanning multiple pages.
420 was_empty = pipe_empty(head, pipe->tail);
421 chars = total_len & (PAGE_SIZE-1);
422 if (chars && !was_empty) {
423 unsigned int mask = pipe->ring_size - 1;
424 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
425 int offset = buf->offset + buf->len;
427 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
428 offset + chars <= PAGE_SIZE) {
429 ret = pipe_buf_confirm(pipe, buf);
433 ret = copy_page_from_iter(buf->page, offset, chars, from);
434 if (unlikely(ret < chars)) {
440 if (!iov_iter_count(from))
446 if (!pipe->readers) {
447 send_sig(SIGPIPE, current, 0);
454 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
455 unsigned int mask = pipe->ring_size - 1;
456 struct pipe_buffer *buf = &pipe->bufs[head & mask];
457 struct page *page = pipe->tmp_page;
461 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
462 if (unlikely(!page)) {
463 ret = ret ? : -ENOMEM;
466 pipe->tmp_page = page;
469 /* Allocate a slot in the ring in advance and attach an
470 * empty buffer. If we fault or otherwise fail to use
471 * it, either the reader will consume it or it'll still
472 * be there for the next write.
474 spin_lock_irq(&pipe->rd_wait.lock);
477 if (pipe_full(head, pipe->tail, pipe->max_usage)) {
478 spin_unlock_irq(&pipe->rd_wait.lock);
482 pipe->head = head + 1;
483 spin_unlock_irq(&pipe->rd_wait.lock);
485 /* Insert it into the buffer array */
486 buf = &pipe->bufs[head & mask];
488 buf->ops = &anon_pipe_buf_ops;
491 if (is_packetized(filp))
492 buf->flags = PIPE_BUF_FLAG_PACKET;
494 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
495 pipe->tmp_page = NULL;
497 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
498 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
507 if (!iov_iter_count(from))
511 if (!pipe_full(head, pipe->tail, pipe->max_usage))
514 /* Wait for buffer space to become available. */
515 if (filp->f_flags & O_NONBLOCK) {
520 if (signal_pending(current)) {
527 * We're going to release the pipe lock and wait for more
528 * space. We wake up any readers if necessary, and then
529 * after waiting we need to re-check whether the pipe
530 * become empty while we dropped the lock.
534 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
535 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
537 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
539 was_empty = pipe_empty(pipe->head, pipe->tail);
540 wake_next_writer = true;
543 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
544 wake_next_writer = false;
548 * If we do do a wakeup event, we do a 'sync' wakeup, because we
549 * want the reader to start processing things asap, rather than
550 * leave the data pending.
552 * This is particularly important for small writes, because of
553 * how (for example) the GNU make jobserver uses small writes to
554 * wake up pending jobs
557 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
558 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
560 if (wake_next_writer)
561 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
562 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
563 int err = file_update_time(filp);
566 sb_end_write(file_inode(filp)->i_sb);
571 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
573 struct pipe_inode_info *pipe = filp->private_data;
574 int count, head, tail, mask;
582 mask = pipe->ring_size - 1;
584 while (tail != head) {
585 count += pipe->bufs[tail & mask].len;
590 return put_user(count, (int __user *)arg);
596 /* No kernel lock held - fine */
598 pipe_poll(struct file *filp, poll_table *wait)
601 struct pipe_inode_info *pipe = filp->private_data;
602 unsigned int head, tail;
605 * Reading pipe state only -- no need for acquiring the semaphore.
607 * But because this is racy, the code has to add the
608 * entry to the poll table _first_ ..
610 if (filp->f_mode & FMODE_READ)
611 poll_wait(filp, &pipe->rd_wait, wait);
612 if (filp->f_mode & FMODE_WRITE)
613 poll_wait(filp, &pipe->wr_wait, wait);
616 * .. and only then can you do the racy tests. That way,
617 * if something changes and you got it wrong, the poll
618 * table entry will wake you up and fix it.
620 head = READ_ONCE(pipe->head);
621 tail = READ_ONCE(pipe->tail);
624 if (filp->f_mode & FMODE_READ) {
625 if (!pipe_empty(head, tail))
626 mask |= EPOLLIN | EPOLLRDNORM;
627 if (!pipe->writers && filp->f_version != pipe->w_counter)
631 if (filp->f_mode & FMODE_WRITE) {
632 if (!pipe_full(head, tail, pipe->max_usage))
633 mask |= EPOLLOUT | EPOLLWRNORM;
635 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
636 * behave exactly like pipes for poll().
645 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
649 spin_lock(&inode->i_lock);
650 if (!--pipe->files) {
651 inode->i_pipe = NULL;
654 spin_unlock(&inode->i_lock);
657 free_pipe_info(pipe);
661 pipe_release(struct inode *inode, struct file *file)
663 struct pipe_inode_info *pipe = file->private_data;
666 if (file->f_mode & FMODE_READ)
668 if (file->f_mode & FMODE_WRITE)
671 /* Was that the last reader or writer, but not the other side? */
672 if (!pipe->readers != !pipe->writers) {
673 wake_up_interruptible_all(&pipe->rd_wait);
674 wake_up_interruptible_all(&pipe->wr_wait);
675 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
676 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
680 put_pipe_info(inode, pipe);
685 pipe_fasync(int fd, struct file *filp, int on)
687 struct pipe_inode_info *pipe = filp->private_data;
691 if (filp->f_mode & FMODE_READ)
692 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
693 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
694 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
695 if (retval < 0 && (filp->f_mode & FMODE_READ))
696 /* this can happen only if on == T */
697 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
703 static unsigned long account_pipe_buffers(struct user_struct *user,
704 unsigned long old, unsigned long new)
706 return atomic_long_add_return(new - old, &user->pipe_bufs);
709 static bool too_many_pipe_buffers_soft(unsigned long user_bufs)
711 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
713 return soft_limit && user_bufs > soft_limit;
716 static bool too_many_pipe_buffers_hard(unsigned long user_bufs)
718 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
720 return hard_limit && user_bufs > hard_limit;
723 static bool is_unprivileged_user(void)
725 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
728 struct pipe_inode_info *alloc_pipe_info(void)
730 struct pipe_inode_info *pipe;
731 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
732 struct user_struct *user = get_current_user();
733 unsigned long user_bufs;
734 unsigned int max_size = READ_ONCE(pipe_max_size);
736 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
740 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
741 pipe_bufs = max_size >> PAGE_SHIFT;
743 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
745 if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) {
746 user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
750 if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user())
751 goto out_revert_acct;
753 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
757 init_waitqueue_head(&pipe->rd_wait);
758 init_waitqueue_head(&pipe->wr_wait);
759 pipe->r_counter = pipe->w_counter = 1;
760 pipe->max_usage = pipe_bufs;
761 pipe->ring_size = pipe_bufs;
763 mutex_init(&pipe->mutex);
768 (void) account_pipe_buffers(user, pipe_bufs, 0);
775 void free_pipe_info(struct pipe_inode_info *pipe)
779 (void) account_pipe_buffers(pipe->user, pipe->ring_size, 0);
780 free_uid(pipe->user);
781 for (i = 0; i < pipe->ring_size; i++) {
782 struct pipe_buffer *buf = pipe->bufs + i;
784 pipe_buf_release(pipe, buf);
787 __free_page(pipe->tmp_page);
792 static struct vfsmount *pipe_mnt __read_mostly;
795 * pipefs_dname() is called from d_path().
797 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
799 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
800 d_inode(dentry)->i_ino);
803 static const struct dentry_operations pipefs_dentry_operations = {
804 .d_dname = pipefs_dname,
807 static struct inode * get_pipe_inode(void)
809 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
810 struct pipe_inode_info *pipe;
815 inode->i_ino = get_next_ino();
817 pipe = alloc_pipe_info();
821 inode->i_pipe = pipe;
823 pipe->readers = pipe->writers = 1;
824 inode->i_fop = &pipefifo_fops;
827 * Mark the inode dirty from the very beginning,
828 * that way it will never be moved to the dirty
829 * list because "mark_inode_dirty()" will think
830 * that it already _is_ on the dirty list.
832 inode->i_state = I_DIRTY;
833 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
834 inode->i_uid = current_fsuid();
835 inode->i_gid = current_fsgid();
836 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
847 int create_pipe_files(struct file **res, int flags)
849 struct inode *inode = get_pipe_inode();
855 f = alloc_file_pseudo(inode, pipe_mnt, "",
856 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
859 free_pipe_info(inode->i_pipe);
864 f->private_data = inode->i_pipe;
866 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
868 if (IS_ERR(res[0])) {
869 put_pipe_info(inode, inode->i_pipe);
871 return PTR_ERR(res[0]);
873 res[0]->private_data = inode->i_pipe;
875 stream_open(inode, res[0]);
876 stream_open(inode, res[1]);
880 static int __do_pipe_flags(int *fd, struct file **files, int flags)
885 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
888 error = create_pipe_files(files, flags);
892 error = get_unused_fd_flags(flags);
897 error = get_unused_fd_flags(flags);
902 audit_fd_pair(fdr, fdw);
915 int do_pipe_flags(int *fd, int flags)
917 struct file *files[2];
918 int error = __do_pipe_flags(fd, files, flags);
920 fd_install(fd[0], files[0]);
921 fd_install(fd[1], files[1]);
927 * sys_pipe() is the normal C calling standard for creating
928 * a pipe. It's not the way Unix traditionally does this, though.
930 static int do_pipe2(int __user *fildes, int flags)
932 struct file *files[2];
936 error = __do_pipe_flags(fd, files, flags);
938 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
941 put_unused_fd(fd[0]);
942 put_unused_fd(fd[1]);
945 fd_install(fd[0], files[0]);
946 fd_install(fd[1], files[1]);
952 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
954 return do_pipe2(fildes, flags);
957 SYSCALL_DEFINE1(pipe, int __user *, fildes)
959 return do_pipe2(fildes, 0);
962 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
966 while (cur == *cnt) {
968 if (signal_pending(current))
971 return cur == *cnt ? -ERESTARTSYS : 0;
974 static void wake_up_partner(struct pipe_inode_info *pipe)
976 wake_up_interruptible_all(&pipe->rd_wait);
977 wake_up_interruptible_all(&pipe->wr_wait);
980 static int fifo_open(struct inode *inode, struct file *filp)
982 struct pipe_inode_info *pipe;
983 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
988 spin_lock(&inode->i_lock);
990 pipe = inode->i_pipe;
992 spin_unlock(&inode->i_lock);
994 spin_unlock(&inode->i_lock);
995 pipe = alloc_pipe_info();
999 spin_lock(&inode->i_lock);
1000 if (unlikely(inode->i_pipe)) {
1001 inode->i_pipe->files++;
1002 spin_unlock(&inode->i_lock);
1003 free_pipe_info(pipe);
1004 pipe = inode->i_pipe;
1006 inode->i_pipe = pipe;
1007 spin_unlock(&inode->i_lock);
1010 filp->private_data = pipe;
1011 /* OK, we have a pipe and it's pinned down */
1015 /* We can only do regular read/write on fifos */
1016 stream_open(inode, filp);
1018 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1022 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1023 * opened, even when there is no process writing the FIFO.
1026 if (pipe->readers++ == 0)
1027 wake_up_partner(pipe);
1029 if (!is_pipe && !pipe->writers) {
1030 if ((filp->f_flags & O_NONBLOCK)) {
1031 /* suppress EPOLLHUP until we have
1033 filp->f_version = pipe->w_counter;
1035 if (wait_for_partner(pipe, &pipe->w_counter))
1044 * POSIX.1 says that O_NONBLOCK means return -1 with
1045 * errno=ENXIO when there is no process reading the FIFO.
1048 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1052 if (!pipe->writers++)
1053 wake_up_partner(pipe);
1055 if (!is_pipe && !pipe->readers) {
1056 if (wait_for_partner(pipe, &pipe->r_counter))
1061 case FMODE_READ | FMODE_WRITE:
1064 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1065 * This implementation will NEVER block on a O_RDWR open, since
1066 * the process can at least talk to itself.
1073 if (pipe->readers == 1 || pipe->writers == 1)
1074 wake_up_partner(pipe);
1083 __pipe_unlock(pipe);
1087 if (!--pipe->readers)
1088 wake_up_interruptible(&pipe->wr_wait);
1093 if (!--pipe->writers)
1094 wake_up_interruptible_all(&pipe->rd_wait);
1099 __pipe_unlock(pipe);
1101 put_pipe_info(inode, pipe);
1105 const struct file_operations pipefifo_fops = {
1107 .llseek = no_llseek,
1108 .read_iter = pipe_read,
1109 .write_iter = pipe_write,
1111 .unlocked_ioctl = pipe_ioctl,
1112 .release = pipe_release,
1113 .fasync = pipe_fasync,
1117 * Currently we rely on the pipe array holding a power-of-2 number
1118 * of pages. Returns 0 on error.
1120 unsigned int round_pipe_size(unsigned long size)
1122 if (size > (1U << 31))
1125 /* Minimum pipe size, as required by POSIX */
1126 if (size < PAGE_SIZE)
1129 return roundup_pow_of_two(size);
1133 * Allocate a new array of pipe buffers and copy the info over. Returns the
1134 * pipe size if successful, or return -ERROR on error.
1136 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1138 struct pipe_buffer *bufs;
1139 unsigned int size, nr_slots, head, tail, mask, n;
1140 unsigned long user_bufs;
1143 size = round_pipe_size(arg);
1144 nr_slots = size >> PAGE_SHIFT;
1150 * If trying to increase the pipe capacity, check that an
1151 * unprivileged user is not trying to exceed various limits
1152 * (soft limit check here, hard limit check just below).
1153 * Decreasing the pipe capacity is always permitted, even
1154 * if the user is currently over a limit.
1156 if (nr_slots > pipe->ring_size &&
1157 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1160 user_bufs = account_pipe_buffers(pipe->user, pipe->ring_size, nr_slots);
1162 if (nr_slots > pipe->ring_size &&
1163 (too_many_pipe_buffers_hard(user_bufs) ||
1164 too_many_pipe_buffers_soft(user_bufs)) &&
1165 is_unprivileged_user()) {
1167 goto out_revert_acct;
1171 * We can shrink the pipe, if arg is greater than the ring occupancy.
1172 * Since we don't expect a lot of shrink+grow operations, just free and
1173 * allocate again like we would do for growing. If the pipe currently
1174 * contains more buffers than arg, then return busy.
1176 mask = pipe->ring_size - 1;
1179 n = pipe_occupancy(pipe->head, pipe->tail);
1182 goto out_revert_acct;
1185 bufs = kcalloc(nr_slots, sizeof(*bufs),
1186 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1187 if (unlikely(!bufs)) {
1189 goto out_revert_acct;
1193 * The pipe array wraps around, so just start the new one at zero
1194 * and adjust the indices.
1197 unsigned int h = head & mask;
1198 unsigned int t = tail & mask;
1200 memcpy(bufs, pipe->bufs + t,
1201 n * sizeof(struct pipe_buffer));
1203 unsigned int tsize = pipe->ring_size - t;
1205 memcpy(bufs + tsize, pipe->bufs,
1206 h * sizeof(struct pipe_buffer));
1207 memcpy(bufs, pipe->bufs + t,
1208 tsize * sizeof(struct pipe_buffer));
1217 pipe->ring_size = nr_slots;
1218 pipe->max_usage = nr_slots;
1222 /* This might have made more room for writers */
1223 wake_up_interruptible(&pipe->wr_wait);
1224 return pipe->max_usage * PAGE_SIZE;
1227 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->ring_size);
1232 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1233 * location, so checking ->i_pipe is not enough to verify that this is a
1236 struct pipe_inode_info *get_pipe_info(struct file *file)
1238 return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1241 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1243 struct pipe_inode_info *pipe;
1246 pipe = get_pipe_info(file);
1254 ret = pipe_set_size(pipe, arg);
1257 ret = pipe->max_usage * PAGE_SIZE;
1264 __pipe_unlock(pipe);
1268 static const struct super_operations pipefs_ops = {
1269 .destroy_inode = free_inode_nonrcu,
1270 .statfs = simple_statfs,
1274 * pipefs should _never_ be mounted by userland - too much of security hassle,
1275 * no real gain from having the whole whorehouse mounted. So we don't need
1276 * any operations on the root directory. However, we need a non-trivial
1277 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1280 static int pipefs_init_fs_context(struct fs_context *fc)
1282 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1285 ctx->ops = &pipefs_ops;
1286 ctx->dops = &pipefs_dentry_operations;
1290 static struct file_system_type pipe_fs_type = {
1292 .init_fs_context = pipefs_init_fs_context,
1293 .kill_sb = kill_anon_super,
1296 static int __init init_pipe_fs(void)
1298 int err = register_filesystem(&pipe_fs_type);
1301 pipe_mnt = kern_mount(&pipe_fs_type);
1302 if (IS_ERR(pipe_mnt)) {
1303 err = PTR_ERR(pipe_mnt);
1304 unregister_filesystem(&pipe_fs_type);
1310 fs_initcall(init_pipe_fs);