1 // SPDX-License-Identifier: GPL-2.0-only
3 // Driver for Cadence QSPI Controller
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of_device.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/reset.h>
29 #include <linux/sched.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi-mem.h>
32 #include <linux/timer.h>
34 #define CQSPI_NAME "cadence-qspi"
35 #define CQSPI_MAX_CHIPSELECT 16
38 #define CQSPI_NEEDS_WR_DELAY BIT(0)
39 #define CQSPI_DISABLE_DAC_MODE BIT(1)
40 #define CQSPI_SUPPORT_EXTERNAL_DMA BIT(2)
41 #define CQSPI_NO_SUPPORT_WR_COMPLETION BIT(3)
42 #define CQSPI_SLOW_SRAM BIT(4)
43 #define CQSPI_NEEDS_APB_AHB_HAZARD_WAR BIT(5)
46 #define CQSPI_SUPPORTS_OCTAL BIT(0)
48 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
52 struct cqspi_flash_pdata {
53 struct cqspi_st *cqspi;
64 struct platform_device *pdev;
65 struct spi_master *master;
70 void __iomem *ahb_base;
71 resource_size_t ahb_size;
72 struct completion transfer_complete;
74 struct dma_chan *rx_chan;
75 struct completion rx_dma_complete;
76 dma_addr_t mmap_phys_base;
79 unsigned long master_ref_clk_hz;
88 bool use_direct_mode_wr;
89 struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
97 struct cqspi_driver_platdata {
100 int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
101 u_char *rxbuf, loff_t from_addr, size_t n_rx);
102 u32 (*get_dma_status)(struct cqspi_st *cqspi);
105 /* Operation timeout value */
106 #define CQSPI_TIMEOUT_MS 500
107 #define CQSPI_READ_TIMEOUT_MS 10
109 #define CQSPI_DUMMY_CLKS_PER_BYTE 8
110 #define CQSPI_DUMMY_BYTES_MAX 4
111 #define CQSPI_DUMMY_CLKS_MAX 31
113 #define CQSPI_STIG_DATA_LEN_MAX 8
116 #define CQSPI_REG_CONFIG 0x00
117 #define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
118 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
119 #define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
120 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
121 #define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
122 #define CQSPI_REG_CONFIG_BAUD_LSB 19
123 #define CQSPI_REG_CONFIG_DTR_PROTO BIT(24)
124 #define CQSPI_REG_CONFIG_DUAL_OPCODE BIT(30)
125 #define CQSPI_REG_CONFIG_IDLE_LSB 31
126 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
127 #define CQSPI_REG_CONFIG_BAUD_MASK 0xF
129 #define CQSPI_REG_RD_INSTR 0x04
130 #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
131 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
132 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
133 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
134 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
135 #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
136 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
137 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
138 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
139 #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
141 #define CQSPI_REG_WR_INSTR 0x08
142 #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
143 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
144 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
146 #define CQSPI_REG_DELAY 0x0C
147 #define CQSPI_REG_DELAY_TSLCH_LSB 0
148 #define CQSPI_REG_DELAY_TCHSH_LSB 8
149 #define CQSPI_REG_DELAY_TSD2D_LSB 16
150 #define CQSPI_REG_DELAY_TSHSL_LSB 24
151 #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
152 #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
153 #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
154 #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
156 #define CQSPI_REG_READCAPTURE 0x10
157 #define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
158 #define CQSPI_REG_READCAPTURE_DELAY_LSB 1
159 #define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
161 #define CQSPI_REG_SIZE 0x14
162 #define CQSPI_REG_SIZE_ADDRESS_LSB 0
163 #define CQSPI_REG_SIZE_PAGE_LSB 4
164 #define CQSPI_REG_SIZE_BLOCK_LSB 16
165 #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
166 #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
167 #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
169 #define CQSPI_REG_SRAMPARTITION 0x18
170 #define CQSPI_REG_INDIRECTTRIGGER 0x1C
172 #define CQSPI_REG_DMA 0x20
173 #define CQSPI_REG_DMA_SINGLE_LSB 0
174 #define CQSPI_REG_DMA_BURST_LSB 8
175 #define CQSPI_REG_DMA_SINGLE_MASK 0xFF
176 #define CQSPI_REG_DMA_BURST_MASK 0xFF
178 #define CQSPI_REG_REMAP 0x24
179 #define CQSPI_REG_MODE_BIT 0x28
181 #define CQSPI_REG_SDRAMLEVEL 0x2C
182 #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
183 #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
184 #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
185 #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
187 #define CQSPI_REG_WR_COMPLETION_CTRL 0x38
188 #define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
190 #define CQSPI_REG_IRQSTATUS 0x40
191 #define CQSPI_REG_IRQMASK 0x44
193 #define CQSPI_REG_INDIRECTRD 0x60
194 #define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
195 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
196 #define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
198 #define CQSPI_REG_INDIRECTRDWATERMARK 0x64
199 #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
200 #define CQSPI_REG_INDIRECTRDBYTES 0x6C
202 #define CQSPI_REG_CMDCTRL 0x90
203 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
204 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
205 #define CQSPI_REG_CMDCTRL_DUMMY_LSB 7
206 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
207 #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
208 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
209 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
210 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
211 #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
212 #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
213 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
214 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
215 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
216 #define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F
218 #define CQSPI_REG_INDIRECTWR 0x70
219 #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
220 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
221 #define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
223 #define CQSPI_REG_INDIRECTWRWATERMARK 0x74
224 #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
225 #define CQSPI_REG_INDIRECTWRBYTES 0x7C
227 #define CQSPI_REG_INDTRIG_ADDRRANGE 0x80
229 #define CQSPI_REG_CMDADDRESS 0x94
230 #define CQSPI_REG_CMDREADDATALOWER 0xA0
231 #define CQSPI_REG_CMDREADDATAUPPER 0xA4
232 #define CQSPI_REG_CMDWRITEDATALOWER 0xA8
233 #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
235 #define CQSPI_REG_POLLING_STATUS 0xB0
236 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB 16
238 #define CQSPI_REG_OP_EXT_LOWER 0xE0
239 #define CQSPI_REG_OP_EXT_READ_LSB 24
240 #define CQSPI_REG_OP_EXT_WRITE_LSB 16
241 #define CQSPI_REG_OP_EXT_STIG_LSB 0
243 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR 0x1000
245 #define CQSPI_REG_VERSAL_DMA_DST_ADDR 0x1800
246 #define CQSPI_REG_VERSAL_DMA_DST_SIZE 0x1804
248 #define CQSPI_REG_VERSAL_DMA_DST_CTRL 0x180C
250 #define CQSPI_REG_VERSAL_DMA_DST_I_STS 0x1814
251 #define CQSPI_REG_VERSAL_DMA_DST_I_EN 0x1818
252 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS 0x181C
253 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK BIT(1)
255 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB 0x1828
257 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL 0xF43FFA00
258 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL 0x6
260 /* Interrupt status bits */
261 #define CQSPI_REG_IRQ_MODE_ERR BIT(0)
262 #define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
263 #define CQSPI_REG_IRQ_IND_COMP BIT(2)
264 #define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
265 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
266 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
267 #define CQSPI_REG_IRQ_WATERMARK BIT(6)
268 #define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
270 #define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
271 CQSPI_REG_IRQ_IND_SRAM_FULL | \
272 CQSPI_REG_IRQ_IND_COMP)
274 #define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
275 CQSPI_REG_IRQ_WATERMARK | \
276 CQSPI_REG_IRQ_UNDERFLOW)
278 #define CQSPI_IRQ_STATUS_MASK 0x1FFFF
279 #define CQSPI_DMA_UNALIGN 0x3
281 #define CQSPI_REG_VERSAL_DMA_VAL 0x602
283 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
287 return readl_relaxed_poll_timeout(reg, val,
288 (((clr ? ~val : val) & mask) == mask),
289 10, CQSPI_TIMEOUT_MS * 1000);
292 static bool cqspi_is_idle(struct cqspi_st *cqspi)
294 u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
296 return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
299 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
301 u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
303 reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
304 return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
307 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
311 dma_status = readl(cqspi->iobase +
312 CQSPI_REG_VERSAL_DMA_DST_I_STS);
313 writel(dma_status, cqspi->iobase +
314 CQSPI_REG_VERSAL_DMA_DST_I_STS);
316 return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
319 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
321 struct cqspi_st *cqspi = dev;
322 unsigned int irq_status;
323 struct device *device = &cqspi->pdev->dev;
324 const struct cqspi_driver_platdata *ddata;
326 ddata = of_device_get_match_data(device);
328 /* Read interrupt status */
329 irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
331 /* Clear interrupt */
332 writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
334 if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
335 if (ddata->get_dma_status(cqspi)) {
336 complete(&cqspi->transfer_complete);
341 else if (!cqspi->slow_sram)
342 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
344 irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
347 complete(&cqspi->transfer_complete);
352 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
356 rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
357 rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
358 rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
363 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
365 unsigned int dummy_clk;
367 if (!op->dummy.nbytes)
370 dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
377 static int cqspi_wait_idle(struct cqspi_st *cqspi)
379 const unsigned int poll_idle_retry = 3;
380 unsigned int count = 0;
381 unsigned long timeout;
383 timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
386 * Read few times in succession to ensure the controller
387 * is indeed idle, that is, the bit does not transition
390 if (cqspi_is_idle(cqspi))
395 if (count >= poll_idle_retry)
398 if (time_after(jiffies, timeout)) {
399 /* Timeout, in busy mode. */
400 dev_err(&cqspi->pdev->dev,
401 "QSPI is still busy after %dms timeout.\n",
410 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
412 void __iomem *reg_base = cqspi->iobase;
415 /* Write the CMDCTRL without start execution. */
416 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
418 reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
419 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
421 /* Polling for completion. */
422 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
423 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
425 dev_err(&cqspi->pdev->dev,
426 "Flash command execution timed out.\n");
430 /* Polling QSPI idle status. */
431 return cqspi_wait_idle(cqspi);
434 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
435 const struct spi_mem_op *op,
438 struct cqspi_st *cqspi = f_pdata->cqspi;
439 void __iomem *reg_base = cqspi->iobase;
443 if (op->cmd.nbytes != 2)
446 /* Opcode extension is the LSB. */
447 ext = op->cmd.opcode & 0xff;
449 reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
450 reg &= ~(0xff << shift);
452 writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
457 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
458 const struct spi_mem_op *op, unsigned int shift)
460 struct cqspi_st *cqspi = f_pdata->cqspi;
461 void __iomem *reg_base = cqspi->iobase;
465 reg = readl(reg_base + CQSPI_REG_CONFIG);
468 * We enable dual byte opcode here. The callers have to set up the
469 * extension opcode based on which type of operation it is.
472 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
473 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
475 /* Set up command opcode extension. */
476 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
480 reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
481 reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
484 writel(reg, reg_base + CQSPI_REG_CONFIG);
486 return cqspi_wait_idle(cqspi);
489 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
490 const struct spi_mem_op *op)
492 struct cqspi_st *cqspi = f_pdata->cqspi;
493 void __iomem *reg_base = cqspi->iobase;
494 u8 *rxbuf = op->data.buf.in;
496 size_t n_rx = op->data.nbytes;
499 unsigned int dummy_clk;
503 status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
507 if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
508 dev_err(&cqspi->pdev->dev,
509 "Invalid input argument, len %zu rxbuf 0x%p\n",
515 opcode = op->cmd.opcode >> 8;
517 opcode = op->cmd.opcode;
519 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
521 rdreg = cqspi_calc_rdreg(op);
522 writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
524 dummy_clk = cqspi_calc_dummy(op);
525 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
529 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
530 << CQSPI_REG_CMDCTRL_DUMMY_LSB;
532 reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
534 /* 0 means 1 byte. */
535 reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
536 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
538 /* setup ADDR BIT field */
539 if (op->addr.nbytes) {
540 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
541 reg |= ((op->addr.nbytes - 1) &
542 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
543 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
545 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
548 status = cqspi_exec_flash_cmd(cqspi, reg);
552 reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
554 /* Put the read value into rx_buf */
555 read_len = (n_rx > 4) ? 4 : n_rx;
556 memcpy(rxbuf, ®, read_len);
560 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
562 read_len = n_rx - read_len;
563 memcpy(rxbuf, ®, read_len);
566 /* Reset CMD_CTRL Reg once command read completes */
567 writel(0, reg_base + CQSPI_REG_CMDCTRL);
572 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
573 const struct spi_mem_op *op)
575 struct cqspi_st *cqspi = f_pdata->cqspi;
576 void __iomem *reg_base = cqspi->iobase;
578 const u8 *txbuf = op->data.buf.out;
579 size_t n_tx = op->data.nbytes;
585 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
589 if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
590 dev_err(&cqspi->pdev->dev,
591 "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
596 reg = cqspi_calc_rdreg(op);
597 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
600 opcode = op->cmd.opcode >> 8;
602 opcode = op->cmd.opcode;
604 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
606 if (op->addr.nbytes) {
607 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
608 reg |= ((op->addr.nbytes - 1) &
609 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
610 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
612 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
616 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
617 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
618 << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
620 write_len = (n_tx > 4) ? 4 : n_tx;
621 memcpy(&data, txbuf, write_len);
623 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
627 write_len = n_tx - 4;
628 memcpy(&data, txbuf, write_len);
629 writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
633 ret = cqspi_exec_flash_cmd(cqspi, reg);
635 /* Reset CMD_CTRL Reg once command write completes */
636 writel(0, reg_base + CQSPI_REG_CMDCTRL);
641 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
642 const struct spi_mem_op *op)
644 struct cqspi_st *cqspi = f_pdata->cqspi;
645 void __iomem *reg_base = cqspi->iobase;
646 unsigned int dummy_clk = 0;
651 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
656 opcode = op->cmd.opcode >> 8;
658 opcode = op->cmd.opcode;
660 reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
661 reg |= cqspi_calc_rdreg(op);
663 /* Setup dummy clock cycles */
664 dummy_clk = cqspi_calc_dummy(op);
666 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
670 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
671 << CQSPI_REG_RD_INSTR_DUMMY_LSB;
673 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
675 /* Set address width */
676 reg = readl(reg_base + CQSPI_REG_SIZE);
677 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
678 reg |= (op->addr.nbytes - 1);
679 writel(reg, reg_base + CQSPI_REG_SIZE);
683 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
684 u8 *rxbuf, loff_t from_addr,
687 struct cqspi_st *cqspi = f_pdata->cqspi;
688 struct device *dev = &cqspi->pdev->dev;
689 void __iomem *reg_base = cqspi->iobase;
690 void __iomem *ahb_base = cqspi->ahb_base;
691 unsigned int remaining = n_rx;
692 unsigned int mod_bytes = n_rx % 4;
693 unsigned int bytes_to_read = 0;
694 u8 *rxbuf_end = rxbuf + n_rx;
697 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
698 writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
700 /* Clear all interrupts. */
701 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
704 * On SoCFPGA platform reading the SRAM is slow due to
705 * hardware limitation and causing read interrupt storm to CPU,
706 * so enabling only watermark interrupt to disable all read
707 * interrupts later as we want to run "bytes to read" loop with
708 * all the read interrupts disabled for max performance.
711 if (!cqspi->slow_sram)
712 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
714 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
716 reinit_completion(&cqspi->transfer_complete);
717 writel(CQSPI_REG_INDIRECTRD_START_MASK,
718 reg_base + CQSPI_REG_INDIRECTRD);
720 while (remaining > 0) {
721 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
722 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
726 * Disable all read interrupts until
727 * we are out of "bytes to read"
729 if (cqspi->slow_sram)
730 writel(0x0, reg_base + CQSPI_REG_IRQMASK);
732 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
734 if (ret && bytes_to_read == 0) {
735 dev_err(dev, "Indirect read timeout, no bytes\n");
739 while (bytes_to_read != 0) {
740 unsigned int word_remain = round_down(remaining, 4);
742 bytes_to_read *= cqspi->fifo_width;
743 bytes_to_read = bytes_to_read > remaining ?
744 remaining : bytes_to_read;
745 bytes_to_read = round_down(bytes_to_read, 4);
746 /* Read 4 byte word chunks then single bytes */
748 ioread32_rep(ahb_base, rxbuf,
749 (bytes_to_read / 4));
750 } else if (!word_remain && mod_bytes) {
751 unsigned int temp = ioread32(ahb_base);
753 bytes_to_read = mod_bytes;
754 memcpy(rxbuf, &temp, min((unsigned int)
758 rxbuf += bytes_to_read;
759 remaining -= bytes_to_read;
760 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
764 reinit_completion(&cqspi->transfer_complete);
765 if (cqspi->slow_sram)
766 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
770 /* Check indirect done status */
771 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
772 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
774 dev_err(dev, "Indirect read completion error (%i)\n", ret);
778 /* Disable interrupt */
779 writel(0, reg_base + CQSPI_REG_IRQMASK);
781 /* Clear indirect completion status */
782 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
787 /* Disable interrupt */
788 writel(0, reg_base + CQSPI_REG_IRQMASK);
790 /* Cancel the indirect read */
791 writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
792 reg_base + CQSPI_REG_INDIRECTRD);
796 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
798 void __iomem *reg_base = cqspi->iobase;
801 reg = readl(reg_base + CQSPI_REG_CONFIG);
804 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
806 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
808 writel(reg, reg_base + CQSPI_REG_CONFIG);
811 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
812 u_char *rxbuf, loff_t from_addr,
815 struct cqspi_st *cqspi = f_pdata->cqspi;
816 struct device *dev = &cqspi->pdev->dev;
817 void __iomem *reg_base = cqspi->iobase;
818 u32 reg, bytes_to_dma;
819 loff_t addr = from_addr;
825 bytes_rem = n_rx % 4;
826 bytes_to_dma = (n_rx - bytes_rem);
831 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
835 cqspi_controller_enable(cqspi, 0);
837 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
838 reg |= CQSPI_REG_CONFIG_DMA_MASK;
839 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
841 cqspi_controller_enable(cqspi, 1);
843 dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
844 if (dma_mapping_error(dev, dma_addr)) {
845 dev_err(dev, "dma mapping failed\n");
849 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
850 writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
851 writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
852 reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
854 /* Clear all interrupts. */
855 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
857 /* Enable DMA done interrupt */
858 writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
859 reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
861 /* Default DMA periph configuration */
862 writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
864 /* Configure DMA Dst address */
865 writel(lower_32_bits(dma_addr),
866 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
867 writel(upper_32_bits(dma_addr),
868 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
870 /* Configure DMA Src address */
871 writel(cqspi->trigger_address, reg_base +
872 CQSPI_REG_VERSAL_DMA_SRC_ADDR);
874 /* Set DMA destination size */
875 writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
877 /* Set DMA destination control */
878 writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
879 reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
881 writel(CQSPI_REG_INDIRECTRD_START_MASK,
882 reg_base + CQSPI_REG_INDIRECTRD);
884 reinit_completion(&cqspi->transfer_complete);
886 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
887 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
892 /* Disable DMA interrupt */
893 writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
895 /* Clear indirect completion status */
896 writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
897 cqspi->iobase + CQSPI_REG_INDIRECTRD);
898 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
900 cqspi_controller_enable(cqspi, 0);
902 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
903 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
904 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
906 cqspi_controller_enable(cqspi, 1);
908 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
909 PM_OSPI_MUX_SEL_LINEAR);
915 addr += bytes_to_dma;
917 ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
926 /* Disable DMA interrupt */
927 writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
929 /* Cancel the indirect read */
930 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
931 reg_base + CQSPI_REG_INDIRECTRD);
933 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
935 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
936 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
937 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
939 zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
944 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
945 const struct spi_mem_op *op)
949 struct cqspi_st *cqspi = f_pdata->cqspi;
950 void __iomem *reg_base = cqspi->iobase;
953 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
958 opcode = op->cmd.opcode >> 8;
960 opcode = op->cmd.opcode;
963 reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
964 reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
965 reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
966 writel(reg, reg_base + CQSPI_REG_WR_INSTR);
967 reg = cqspi_calc_rdreg(op);
968 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
971 * SPI NAND flashes require the address of the status register to be
972 * passed in the Read SR command. Also, some SPI NOR flashes like the
973 * cypress Semper flash expect a 4-byte dummy address in the Read SR
974 * command in DTR mode.
976 * But this controller does not support address phase in the Read SR
977 * command when doing auto-HW polling. So, disable write completion
978 * polling on the controller's side. spinand and spi-nor will take
979 * care of polling the status register.
981 if (cqspi->wr_completion) {
982 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
983 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
984 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
986 * DAC mode require auto polling as flash needs to be polled
987 * for write completion in case of bubble in SPI transaction
988 * due to slow CPU/DMA master.
990 cqspi->use_direct_mode_wr = false;
993 reg = readl(reg_base + CQSPI_REG_SIZE);
994 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
995 reg |= (op->addr.nbytes - 1);
996 writel(reg, reg_base + CQSPI_REG_SIZE);
1000 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1001 loff_t to_addr, const u8 *txbuf,
1004 struct cqspi_st *cqspi = f_pdata->cqspi;
1005 struct device *dev = &cqspi->pdev->dev;
1006 void __iomem *reg_base = cqspi->iobase;
1007 unsigned int remaining = n_tx;
1008 unsigned int write_bytes;
1011 writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1012 writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1014 /* Clear all interrupts. */
1015 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1017 writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1019 reinit_completion(&cqspi->transfer_complete);
1020 writel(CQSPI_REG_INDIRECTWR_START_MASK,
1021 reg_base + CQSPI_REG_INDIRECTWR);
1023 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1024 * Controller programming sequence, couple of cycles of
1025 * QSPI_REF_CLK delay is required for the above bit to
1026 * be internally synchronized by the QSPI module. Provide 5
1029 if (cqspi->wr_delay)
1030 ndelay(cqspi->wr_delay);
1033 * If a hazard exists between the APB and AHB interfaces, perform a
1034 * dummy readback from the controller to ensure synchronization.
1036 if (cqspi->apb_ahb_hazard)
1037 readl(reg_base + CQSPI_REG_INDIRECTWR);
1039 while (remaining > 0) {
1040 size_t write_words, mod_bytes;
1042 write_bytes = remaining;
1043 write_words = write_bytes / 4;
1044 mod_bytes = write_bytes % 4;
1045 /* Write 4 bytes at a time then single bytes. */
1047 iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1048 txbuf += (write_words * 4);
1051 unsigned int temp = 0xFFFFFFFF;
1053 memcpy(&temp, txbuf, mod_bytes);
1054 iowrite32(temp, cqspi->ahb_base);
1058 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1059 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1060 dev_err(dev, "Indirect write timeout\n");
1065 remaining -= write_bytes;
1068 reinit_completion(&cqspi->transfer_complete);
1071 /* Check indirect done status */
1072 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1073 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1075 dev_err(dev, "Indirect write completion error (%i)\n", ret);
1079 /* Disable interrupt. */
1080 writel(0, reg_base + CQSPI_REG_IRQMASK);
1082 /* Clear indirect completion status */
1083 writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1085 cqspi_wait_idle(cqspi);
1090 /* Disable interrupt. */
1091 writel(0, reg_base + CQSPI_REG_IRQMASK);
1093 /* Cancel the indirect write */
1094 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1095 reg_base + CQSPI_REG_INDIRECTWR);
1099 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1101 struct cqspi_st *cqspi = f_pdata->cqspi;
1102 void __iomem *reg_base = cqspi->iobase;
1103 unsigned int chip_select = f_pdata->cs;
1106 reg = readl(reg_base + CQSPI_REG_CONFIG);
1107 if (cqspi->is_decoded_cs) {
1108 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1110 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1112 /* Convert CS if without decoder.
1118 chip_select = 0xF & ~(1 << chip_select);
1121 reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1122 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1123 reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1124 << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1125 writel(reg, reg_base + CQSPI_REG_CONFIG);
1128 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1129 const unsigned int ns_val)
1133 ticks = ref_clk_hz / 1000; /* kHz */
1134 ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1139 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1141 struct cqspi_st *cqspi = f_pdata->cqspi;
1142 void __iomem *iobase = cqspi->iobase;
1143 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1144 unsigned int tshsl, tchsh, tslch, tsd2d;
1148 /* calculate the number of ref ticks for one sclk tick */
1149 tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1151 tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1152 /* this particular value must be at least one sclk */
1156 tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1157 tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1158 tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1160 reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1161 << CQSPI_REG_DELAY_TSHSL_LSB;
1162 reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1163 << CQSPI_REG_DELAY_TCHSH_LSB;
1164 reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1165 << CQSPI_REG_DELAY_TSLCH_LSB;
1166 reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1167 << CQSPI_REG_DELAY_TSD2D_LSB;
1168 writel(reg, iobase + CQSPI_REG_DELAY);
1171 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1173 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1174 void __iomem *reg_base = cqspi->iobase;
1177 /* Recalculate the baudrate divisor based on QSPI specification. */
1178 div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1180 /* Maximum baud divisor */
1181 if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1182 div = CQSPI_REG_CONFIG_BAUD_MASK;
1183 dev_warn(&cqspi->pdev->dev,
1184 "Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1185 cqspi->sclk, ref_clk_hz/((div+1)*2));
1188 reg = readl(reg_base + CQSPI_REG_CONFIG);
1189 reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1190 reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1191 writel(reg, reg_base + CQSPI_REG_CONFIG);
1194 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1196 const unsigned int delay)
1198 void __iomem *reg_base = cqspi->iobase;
1201 reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1204 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1206 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1208 reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1209 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1211 reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1212 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1214 writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1217 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1220 struct cqspi_st *cqspi = f_pdata->cqspi;
1221 int switch_cs = (cqspi->current_cs != f_pdata->cs);
1222 int switch_ck = (cqspi->sclk != sclk);
1224 if (switch_cs || switch_ck)
1225 cqspi_controller_enable(cqspi, 0);
1227 /* Switch chip select. */
1229 cqspi->current_cs = f_pdata->cs;
1230 cqspi_chipselect(f_pdata);
1233 /* Setup baudrate divisor and delays */
1236 cqspi_config_baudrate_div(cqspi);
1237 cqspi_delay(f_pdata);
1238 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1239 f_pdata->read_delay);
1242 if (switch_cs || switch_ck)
1243 cqspi_controller_enable(cqspi, 1);
1246 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1247 const struct spi_mem_op *op)
1249 struct cqspi_st *cqspi = f_pdata->cqspi;
1250 loff_t to = op->addr.val;
1251 size_t len = op->data.nbytes;
1252 const u_char *buf = op->data.buf.out;
1255 ret = cqspi_write_setup(f_pdata, op);
1260 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1261 * address (all 0s) with the read status register command in DTR mode.
1262 * But this controller does not support sending dummy address bytes to
1263 * the flash when it is polling the write completion register in DTR
1264 * mode. So, we can not use direct mode when in DTR mode for writing
1267 if (!op->cmd.dtr && cqspi->use_direct_mode &&
1268 cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1269 memcpy_toio(cqspi->ahb_base + to, buf, len);
1270 return cqspi_wait_idle(cqspi);
1273 return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1276 static void cqspi_rx_dma_callback(void *param)
1278 struct cqspi_st *cqspi = param;
1280 complete(&cqspi->rx_dma_complete);
1283 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1284 u_char *buf, loff_t from, size_t len)
1286 struct cqspi_st *cqspi = f_pdata->cqspi;
1287 struct device *dev = &cqspi->pdev->dev;
1288 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1289 dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1291 struct dma_async_tx_descriptor *tx;
1292 dma_cookie_t cookie;
1294 struct device *ddev;
1296 if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1297 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1301 ddev = cqspi->rx_chan->device->dev;
1302 dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1303 if (dma_mapping_error(ddev, dma_dst)) {
1304 dev_err(dev, "dma mapping failed\n");
1307 tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1310 dev_err(dev, "device_prep_dma_memcpy error\n");
1315 tx->callback = cqspi_rx_dma_callback;
1316 tx->callback_param = cqspi;
1317 cookie = tx->tx_submit(tx);
1318 reinit_completion(&cqspi->rx_dma_complete);
1320 ret = dma_submit_error(cookie);
1322 dev_err(dev, "dma_submit_error %d\n", cookie);
1327 dma_async_issue_pending(cqspi->rx_chan);
1328 if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1329 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1330 dmaengine_terminate_sync(cqspi->rx_chan);
1331 dev_err(dev, "DMA wait_for_completion_timeout\n");
1337 dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1342 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1343 const struct spi_mem_op *op)
1345 struct cqspi_st *cqspi = f_pdata->cqspi;
1346 struct device *dev = &cqspi->pdev->dev;
1347 const struct cqspi_driver_platdata *ddata;
1348 loff_t from = op->addr.val;
1349 size_t len = op->data.nbytes;
1350 u_char *buf = op->data.buf.in;
1351 u64 dma_align = (u64)(uintptr_t)buf;
1354 ddata = of_device_get_match_data(dev);
1356 ret = cqspi_read_setup(f_pdata, op);
1360 if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1361 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1363 if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1364 virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1365 return ddata->indirect_read_dma(f_pdata, buf, from, len);
1367 return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1370 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1372 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1373 struct cqspi_flash_pdata *f_pdata;
1375 f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1376 cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1378 if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1380 * Performing reads in DAC mode forces to read minimum 4 bytes
1381 * which is unsupported on some flash devices during register
1382 * reads, prefer STIG mode for such small reads.
1384 if (!op->addr.nbytes ||
1385 op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX)
1386 return cqspi_command_read(f_pdata, op);
1388 return cqspi_read(f_pdata, op);
1391 if (!op->addr.nbytes || !op->data.buf.out)
1392 return cqspi_command_write(f_pdata, op);
1394 return cqspi_write(f_pdata, op);
1397 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1401 ret = cqspi_mem_process(mem, op);
1403 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1408 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1409 const struct spi_mem_op *op)
1411 bool all_true, all_false;
1414 * op->dummy.dtr is required for converting nbytes into ncycles.
1415 * Also, don't check the dtr field of the op phase having zero nbytes.
1417 all_true = op->cmd.dtr &&
1418 (!op->addr.nbytes || op->addr.dtr) &&
1419 (!op->dummy.nbytes || op->dummy.dtr) &&
1420 (!op->data.nbytes || op->data.dtr);
1422 all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1426 /* Right now we only support 8-8-8 DTR mode. */
1427 if (op->cmd.nbytes && op->cmd.buswidth != 8)
1429 if (op->addr.nbytes && op->addr.buswidth != 8)
1431 if (op->data.nbytes && op->data.buswidth != 8)
1433 } else if (!all_false) {
1434 /* Mixed DTR modes are not supported. */
1438 return spi_mem_default_supports_op(mem, op);
1441 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1442 struct cqspi_flash_pdata *f_pdata,
1443 struct device_node *np)
1445 if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1446 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1450 if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1451 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1455 if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1456 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1460 if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1461 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1465 if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1466 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1470 if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1471 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1478 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1480 struct device *dev = &cqspi->pdev->dev;
1481 struct device_node *np = dev->of_node;
1484 cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1486 if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1487 dev_err(dev, "couldn't determine fifo-depth\n");
1491 if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1492 dev_err(dev, "couldn't determine fifo-width\n");
1496 if (of_property_read_u32(np, "cdns,trigger-address",
1497 &cqspi->trigger_address)) {
1498 dev_err(dev, "couldn't determine trigger-address\n");
1502 if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1503 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1505 cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1507 if (!of_property_read_u32_array(np, "power-domains", id,
1509 cqspi->pd_dev_id = id[1];
1514 static void cqspi_controller_init(struct cqspi_st *cqspi)
1518 cqspi_controller_enable(cqspi, 0);
1520 /* Configure the remap address register, no remap */
1521 writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1523 /* Disable all interrupts. */
1524 writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1526 /* Configure the SRAM split to 1:1 . */
1527 writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1529 /* Load indirect trigger address. */
1530 writel(cqspi->trigger_address,
1531 cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1533 /* Program read watermark -- 1/2 of the FIFO. */
1534 writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1535 cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1536 /* Program write watermark -- 1/8 of the FIFO. */
1537 writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1538 cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1540 /* Disable direct access controller */
1541 if (!cqspi->use_direct_mode) {
1542 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1543 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1544 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1547 /* Enable DMA interface */
1548 if (cqspi->use_dma_read) {
1549 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1550 reg |= CQSPI_REG_CONFIG_DMA_MASK;
1551 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1554 cqspi_controller_enable(cqspi, 1);
1557 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1559 dma_cap_mask_t mask;
1562 dma_cap_set(DMA_MEMCPY, mask);
1564 cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1565 if (IS_ERR(cqspi->rx_chan)) {
1566 int ret = PTR_ERR(cqspi->rx_chan);
1568 cqspi->rx_chan = NULL;
1569 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1571 init_completion(&cqspi->rx_dma_complete);
1576 static const char *cqspi_get_name(struct spi_mem *mem)
1578 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1579 struct device *dev = &cqspi->pdev->dev;
1581 return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1582 spi_get_chipselect(mem->spi, 0));
1585 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1586 .exec_op = cqspi_exec_mem_op,
1587 .get_name = cqspi_get_name,
1588 .supports_op = cqspi_supports_mem_op,
1591 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1595 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1597 struct platform_device *pdev = cqspi->pdev;
1598 struct device *dev = &pdev->dev;
1599 struct device_node *np = dev->of_node;
1600 struct cqspi_flash_pdata *f_pdata;
1604 /* Get flash device data */
1605 for_each_available_child_of_node(dev->of_node, np) {
1606 ret = of_property_read_u32(np, "reg", &cs);
1608 dev_err(dev, "Couldn't determine chip select.\n");
1613 if (cs >= CQSPI_MAX_CHIPSELECT) {
1614 dev_err(dev, "Chip select %d out of range.\n", cs);
1619 f_pdata = &cqspi->f_pdata[cs];
1620 f_pdata->cqspi = cqspi;
1623 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1633 static int cqspi_probe(struct platform_device *pdev)
1635 const struct cqspi_driver_platdata *ddata;
1636 struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1637 struct device *dev = &pdev->dev;
1638 struct spi_master *master;
1639 struct resource *res_ahb;
1640 struct cqspi_st *cqspi;
1644 master = devm_spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1646 dev_err(&pdev->dev, "spi_alloc_master failed\n");
1649 master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1650 master->mem_ops = &cqspi_mem_ops;
1651 master->mem_caps = &cqspi_mem_caps;
1652 master->dev.of_node = pdev->dev.of_node;
1654 cqspi = spi_master_get_devdata(master);
1657 cqspi->master = master;
1658 platform_set_drvdata(pdev, cqspi);
1660 /* Obtain configuration from OF. */
1661 ret = cqspi_of_get_pdata(cqspi);
1663 dev_err(dev, "Cannot get mandatory OF data.\n");
1667 /* Obtain QSPI clock. */
1668 cqspi->clk = devm_clk_get(dev, NULL);
1669 if (IS_ERR(cqspi->clk)) {
1670 dev_err(dev, "Cannot claim QSPI clock.\n");
1671 ret = PTR_ERR(cqspi->clk);
1675 /* Obtain and remap controller address. */
1676 cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1677 if (IS_ERR(cqspi->iobase)) {
1678 dev_err(dev, "Cannot remap controller address.\n");
1679 ret = PTR_ERR(cqspi->iobase);
1683 /* Obtain and remap AHB address. */
1684 cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1685 if (IS_ERR(cqspi->ahb_base)) {
1686 dev_err(dev, "Cannot remap AHB address.\n");
1687 ret = PTR_ERR(cqspi->ahb_base);
1690 cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1691 cqspi->ahb_size = resource_size(res_ahb);
1693 init_completion(&cqspi->transfer_complete);
1695 /* Obtain IRQ line. */
1696 irq = platform_get_irq(pdev, 0);
1700 pm_runtime_enable(dev);
1701 ret = pm_runtime_resume_and_get(dev);
1703 goto probe_pm_failed;
1705 ret = clk_prepare_enable(cqspi->clk);
1707 dev_err(dev, "Cannot enable QSPI clock.\n");
1708 goto probe_clk_failed;
1711 /* Obtain QSPI reset control */
1712 rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1714 ret = PTR_ERR(rstc);
1715 dev_err(dev, "Cannot get QSPI reset.\n");
1716 goto probe_reset_failed;
1719 rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1720 if (IS_ERR(rstc_ocp)) {
1721 ret = PTR_ERR(rstc_ocp);
1722 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1723 goto probe_reset_failed;
1726 if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1727 rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1728 if (IS_ERR(rstc_ref)) {
1729 ret = PTR_ERR(rstc_ref);
1730 dev_err(dev, "Cannot get QSPI REF reset.\n");
1731 goto probe_reset_failed;
1733 reset_control_assert(rstc_ref);
1734 reset_control_deassert(rstc_ref);
1737 reset_control_assert(rstc);
1738 reset_control_deassert(rstc);
1740 reset_control_assert(rstc_ocp);
1741 reset_control_deassert(rstc_ocp);
1743 cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1744 master->max_speed_hz = cqspi->master_ref_clk_hz;
1746 /* write completion is supported by default */
1747 cqspi->wr_completion = true;
1749 ddata = of_device_get_match_data(dev);
1751 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1752 cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1753 cqspi->master_ref_clk_hz);
1754 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1755 master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1756 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1757 cqspi->use_direct_mode = true;
1758 cqspi->use_direct_mode_wr = true;
1760 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1761 cqspi->use_dma_read = true;
1762 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1763 cqspi->wr_completion = false;
1764 if (ddata->quirks & CQSPI_SLOW_SRAM)
1765 cqspi->slow_sram = true;
1766 if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1767 cqspi->apb_ahb_hazard = true;
1769 if (of_device_is_compatible(pdev->dev.of_node,
1770 "xlnx,versal-ospi-1.0")) {
1771 ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1773 goto probe_reset_failed;
1777 ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1780 dev_err(dev, "Cannot request IRQ.\n");
1781 goto probe_reset_failed;
1784 cqspi_wait_idle(cqspi);
1785 cqspi_controller_init(cqspi);
1786 cqspi->current_cs = -1;
1789 master->num_chipselect = cqspi->num_chipselect;
1791 ret = cqspi_setup_flash(cqspi);
1793 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1794 goto probe_setup_failed;
1797 if (cqspi->use_direct_mode) {
1798 ret = cqspi_request_mmap_dma(cqspi);
1799 if (ret == -EPROBE_DEFER)
1800 goto probe_setup_failed;
1803 ret = spi_register_master(master);
1805 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1806 goto probe_setup_failed;
1811 cqspi_controller_enable(cqspi, 0);
1813 clk_disable_unprepare(cqspi->clk);
1815 pm_runtime_put_sync(dev);
1817 pm_runtime_disable(dev);
1821 static void cqspi_remove(struct platform_device *pdev)
1823 struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1825 spi_unregister_master(cqspi->master);
1826 cqspi_controller_enable(cqspi, 0);
1829 dma_release_channel(cqspi->rx_chan);
1831 clk_disable_unprepare(cqspi->clk);
1833 pm_runtime_put_sync(&pdev->dev);
1834 pm_runtime_disable(&pdev->dev);
1837 static int cqspi_suspend(struct device *dev)
1839 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1840 struct spi_master *master = dev_get_drvdata(dev);
1843 ret = spi_master_suspend(master);
1844 cqspi_controller_enable(cqspi, 0);
1846 clk_disable_unprepare(cqspi->clk);
1851 static int cqspi_resume(struct device *dev)
1853 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1854 struct spi_master *master = dev_get_drvdata(dev);
1856 clk_prepare_enable(cqspi->clk);
1857 cqspi_wait_idle(cqspi);
1858 cqspi_controller_init(cqspi);
1860 cqspi->current_cs = -1;
1863 return spi_master_resume(master);
1866 static DEFINE_SIMPLE_DEV_PM_OPS(cqspi_dev_pm_ops, cqspi_suspend, cqspi_resume);
1868 static const struct cqspi_driver_platdata cdns_qspi = {
1869 .quirks = CQSPI_DISABLE_DAC_MODE,
1872 static const struct cqspi_driver_platdata k2g_qspi = {
1873 .quirks = CQSPI_NEEDS_WR_DELAY,
1876 static const struct cqspi_driver_platdata am654_ospi = {
1877 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1878 .quirks = CQSPI_NEEDS_WR_DELAY,
1881 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1882 .quirks = CQSPI_DISABLE_DAC_MODE,
1885 static const struct cqspi_driver_platdata socfpga_qspi = {
1886 .quirks = CQSPI_DISABLE_DAC_MODE
1887 | CQSPI_NO_SUPPORT_WR_COMPLETION
1891 static const struct cqspi_driver_platdata versal_ospi = {
1892 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1893 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1894 .indirect_read_dma = cqspi_versal_indirect_read_dma,
1895 .get_dma_status = cqspi_get_versal_dma_status,
1898 static const struct cqspi_driver_platdata jh7110_qspi = {
1899 .quirks = CQSPI_DISABLE_DAC_MODE,
1902 static const struct cqspi_driver_platdata pensando_cdns_qspi = {
1903 .quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
1906 static const struct of_device_id cqspi_dt_ids[] = {
1908 .compatible = "cdns,qspi-nor",
1912 .compatible = "ti,k2g-qspi",
1916 .compatible = "ti,am654-ospi",
1917 .data = &am654_ospi,
1920 .compatible = "intel,lgm-qspi",
1921 .data = &intel_lgm_qspi,
1924 .compatible = "xlnx,versal-ospi-1.0",
1925 .data = &versal_ospi,
1928 .compatible = "intel,socfpga-qspi",
1929 .data = &socfpga_qspi,
1932 .compatible = "starfive,jh7110-qspi",
1933 .data = &jh7110_qspi,
1936 .compatible = "amd,pensando-elba-qspi",
1937 .data = &pensando_cdns_qspi,
1939 { /* end of table */ }
1942 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1944 static struct platform_driver cqspi_platform_driver = {
1945 .probe = cqspi_probe,
1946 .remove_new = cqspi_remove,
1949 .pm = &cqspi_dev_pm_ops,
1950 .of_match_table = cqspi_dt_ids,
1954 module_platform_driver(cqspi_platform_driver);
1956 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1957 MODULE_LICENSE("GPL v2");
1958 MODULE_ALIAS("platform:" CQSPI_NAME);