]> Git Repo - linux.git/blob - drivers/spi/spi-cadence-quadspi.c
Merge tag 'rtc-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[linux.git] / drivers / spi / spi-cadence-quadspi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of_device.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/reset.h>
29 #include <linux/sched.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi-mem.h>
32 #include <linux/timer.h>
33
34 #define CQSPI_NAME                      "cadence-qspi"
35 #define CQSPI_MAX_CHIPSELECT            16
36
37 /* Quirks */
38 #define CQSPI_NEEDS_WR_DELAY            BIT(0)
39 #define CQSPI_DISABLE_DAC_MODE          BIT(1)
40 #define CQSPI_SUPPORT_EXTERNAL_DMA      BIT(2)
41 #define CQSPI_NO_SUPPORT_WR_COMPLETION  BIT(3)
42 #define CQSPI_SLOW_SRAM         BIT(4)
43 #define CQSPI_NEEDS_APB_AHB_HAZARD_WAR  BIT(5)
44
45 /* Capabilities */
46 #define CQSPI_SUPPORTS_OCTAL            BIT(0)
47
48 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
49
50 struct cqspi_st;
51
52 struct cqspi_flash_pdata {
53         struct cqspi_st *cqspi;
54         u32             clk_rate;
55         u32             read_delay;
56         u32             tshsl_ns;
57         u32             tsd2d_ns;
58         u32             tchsh_ns;
59         u32             tslch_ns;
60         u8              cs;
61 };
62
63 struct cqspi_st {
64         struct platform_device  *pdev;
65         struct spi_master       *master;
66         struct clk              *clk;
67         unsigned int            sclk;
68
69         void __iomem            *iobase;
70         void __iomem            *ahb_base;
71         resource_size_t         ahb_size;
72         struct completion       transfer_complete;
73
74         struct dma_chan         *rx_chan;
75         struct completion       rx_dma_complete;
76         dma_addr_t              mmap_phys_base;
77
78         int                     current_cs;
79         unsigned long           master_ref_clk_hz;
80         bool                    is_decoded_cs;
81         u32                     fifo_depth;
82         u32                     fifo_width;
83         u32                     num_chipselect;
84         bool                    rclk_en;
85         u32                     trigger_address;
86         u32                     wr_delay;
87         bool                    use_direct_mode;
88         bool                    use_direct_mode_wr;
89         struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
90         bool                    use_dma_read;
91         u32                     pd_dev_id;
92         bool                    wr_completion;
93         bool                    slow_sram;
94         bool                    apb_ahb_hazard;
95 };
96
97 struct cqspi_driver_platdata {
98         u32 hwcaps_mask;
99         u8 quirks;
100         int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
101                                  u_char *rxbuf, loff_t from_addr, size_t n_rx);
102         u32 (*get_dma_status)(struct cqspi_st *cqspi);
103 };
104
105 /* Operation timeout value */
106 #define CQSPI_TIMEOUT_MS                        500
107 #define CQSPI_READ_TIMEOUT_MS                   10
108
109 #define CQSPI_DUMMY_CLKS_PER_BYTE               8
110 #define CQSPI_DUMMY_BYTES_MAX                   4
111 #define CQSPI_DUMMY_CLKS_MAX                    31
112
113 #define CQSPI_STIG_DATA_LEN_MAX                 8
114
115 /* Register map */
116 #define CQSPI_REG_CONFIG                        0x00
117 #define CQSPI_REG_CONFIG_ENABLE_MASK            BIT(0)
118 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL       BIT(7)
119 #define CQSPI_REG_CONFIG_DECODE_MASK            BIT(9)
120 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB         10
121 #define CQSPI_REG_CONFIG_DMA_MASK               BIT(15)
122 #define CQSPI_REG_CONFIG_BAUD_LSB               19
123 #define CQSPI_REG_CONFIG_DTR_PROTO              BIT(24)
124 #define CQSPI_REG_CONFIG_DUAL_OPCODE            BIT(30)
125 #define CQSPI_REG_CONFIG_IDLE_LSB               31
126 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK        0xF
127 #define CQSPI_REG_CONFIG_BAUD_MASK              0xF
128
129 #define CQSPI_REG_RD_INSTR                      0x04
130 #define CQSPI_REG_RD_INSTR_OPCODE_LSB           0
131 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB       8
132 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB        12
133 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB        16
134 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB          20
135 #define CQSPI_REG_RD_INSTR_DUMMY_LSB            24
136 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK      0x3
137 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK       0x3
138 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK       0x3
139 #define CQSPI_REG_RD_INSTR_DUMMY_MASK           0x1F
140
141 #define CQSPI_REG_WR_INSTR                      0x08
142 #define CQSPI_REG_WR_INSTR_OPCODE_LSB           0
143 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB        12
144 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB        16
145
146 #define CQSPI_REG_DELAY                         0x0C
147 #define CQSPI_REG_DELAY_TSLCH_LSB               0
148 #define CQSPI_REG_DELAY_TCHSH_LSB               8
149 #define CQSPI_REG_DELAY_TSD2D_LSB               16
150 #define CQSPI_REG_DELAY_TSHSL_LSB               24
151 #define CQSPI_REG_DELAY_TSLCH_MASK              0xFF
152 #define CQSPI_REG_DELAY_TCHSH_MASK              0xFF
153 #define CQSPI_REG_DELAY_TSD2D_MASK              0xFF
154 #define CQSPI_REG_DELAY_TSHSL_MASK              0xFF
155
156 #define CQSPI_REG_READCAPTURE                   0x10
157 #define CQSPI_REG_READCAPTURE_BYPASS_LSB        0
158 #define CQSPI_REG_READCAPTURE_DELAY_LSB         1
159 #define CQSPI_REG_READCAPTURE_DELAY_MASK        0xF
160
161 #define CQSPI_REG_SIZE                          0x14
162 #define CQSPI_REG_SIZE_ADDRESS_LSB              0
163 #define CQSPI_REG_SIZE_PAGE_LSB                 4
164 #define CQSPI_REG_SIZE_BLOCK_LSB                16
165 #define CQSPI_REG_SIZE_ADDRESS_MASK             0xF
166 #define CQSPI_REG_SIZE_PAGE_MASK                0xFFF
167 #define CQSPI_REG_SIZE_BLOCK_MASK               0x3F
168
169 #define CQSPI_REG_SRAMPARTITION                 0x18
170 #define CQSPI_REG_INDIRECTTRIGGER               0x1C
171
172 #define CQSPI_REG_DMA                           0x20
173 #define CQSPI_REG_DMA_SINGLE_LSB                0
174 #define CQSPI_REG_DMA_BURST_LSB                 8
175 #define CQSPI_REG_DMA_SINGLE_MASK               0xFF
176 #define CQSPI_REG_DMA_BURST_MASK                0xFF
177
178 #define CQSPI_REG_REMAP                         0x24
179 #define CQSPI_REG_MODE_BIT                      0x28
180
181 #define CQSPI_REG_SDRAMLEVEL                    0x2C
182 #define CQSPI_REG_SDRAMLEVEL_RD_LSB             0
183 #define CQSPI_REG_SDRAMLEVEL_WR_LSB             16
184 #define CQSPI_REG_SDRAMLEVEL_RD_MASK            0xFFFF
185 #define CQSPI_REG_SDRAMLEVEL_WR_MASK            0xFFFF
186
187 #define CQSPI_REG_WR_COMPLETION_CTRL            0x38
188 #define CQSPI_REG_WR_DISABLE_AUTO_POLL          BIT(14)
189
190 #define CQSPI_REG_IRQSTATUS                     0x40
191 #define CQSPI_REG_IRQMASK                       0x44
192
193 #define CQSPI_REG_INDIRECTRD                    0x60
194 #define CQSPI_REG_INDIRECTRD_START_MASK         BIT(0)
195 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK        BIT(1)
196 #define CQSPI_REG_INDIRECTRD_DONE_MASK          BIT(5)
197
198 #define CQSPI_REG_INDIRECTRDWATERMARK           0x64
199 #define CQSPI_REG_INDIRECTRDSTARTADDR           0x68
200 #define CQSPI_REG_INDIRECTRDBYTES               0x6C
201
202 #define CQSPI_REG_CMDCTRL                       0x90
203 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK          BIT(0)
204 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK       BIT(1)
205 #define CQSPI_REG_CMDCTRL_DUMMY_LSB             7
206 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB          12
207 #define CQSPI_REG_CMDCTRL_WR_EN_LSB             15
208 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB         16
209 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB           19
210 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB          20
211 #define CQSPI_REG_CMDCTRL_RD_EN_LSB             23
212 #define CQSPI_REG_CMDCTRL_OPCODE_LSB            24
213 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK         0x7
214 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK        0x3
215 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK         0x7
216 #define CQSPI_REG_CMDCTRL_DUMMY_MASK            0x1F
217
218 #define CQSPI_REG_INDIRECTWR                    0x70
219 #define CQSPI_REG_INDIRECTWR_START_MASK         BIT(0)
220 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK        BIT(1)
221 #define CQSPI_REG_INDIRECTWR_DONE_MASK          BIT(5)
222
223 #define CQSPI_REG_INDIRECTWRWATERMARK           0x74
224 #define CQSPI_REG_INDIRECTWRSTARTADDR           0x78
225 #define CQSPI_REG_INDIRECTWRBYTES               0x7C
226
227 #define CQSPI_REG_INDTRIG_ADDRRANGE             0x80
228
229 #define CQSPI_REG_CMDADDRESS                    0x94
230 #define CQSPI_REG_CMDREADDATALOWER              0xA0
231 #define CQSPI_REG_CMDREADDATAUPPER              0xA4
232 #define CQSPI_REG_CMDWRITEDATALOWER             0xA8
233 #define CQSPI_REG_CMDWRITEDATAUPPER             0xAC
234
235 #define CQSPI_REG_POLLING_STATUS                0xB0
236 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB      16
237
238 #define CQSPI_REG_OP_EXT_LOWER                  0xE0
239 #define CQSPI_REG_OP_EXT_READ_LSB               24
240 #define CQSPI_REG_OP_EXT_WRITE_LSB              16
241 #define CQSPI_REG_OP_EXT_STIG_LSB               0
242
243 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR           0x1000
244
245 #define CQSPI_REG_VERSAL_DMA_DST_ADDR           0x1800
246 #define CQSPI_REG_VERSAL_DMA_DST_SIZE           0x1804
247
248 #define CQSPI_REG_VERSAL_DMA_DST_CTRL           0x180C
249
250 #define CQSPI_REG_VERSAL_DMA_DST_I_STS          0x1814
251 #define CQSPI_REG_VERSAL_DMA_DST_I_EN           0x1818
252 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS          0x181C
253 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK      BIT(1)
254
255 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB       0x1828
256
257 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL       0xF43FFA00
258 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL    0x6
259
260 /* Interrupt status bits */
261 #define CQSPI_REG_IRQ_MODE_ERR                  BIT(0)
262 #define CQSPI_REG_IRQ_UNDERFLOW                 BIT(1)
263 #define CQSPI_REG_IRQ_IND_COMP                  BIT(2)
264 #define CQSPI_REG_IRQ_IND_RD_REJECT             BIT(3)
265 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR          BIT(4)
266 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR           BIT(5)
267 #define CQSPI_REG_IRQ_WATERMARK                 BIT(6)
268 #define CQSPI_REG_IRQ_IND_SRAM_FULL             BIT(12)
269
270 #define CQSPI_IRQ_MASK_RD               (CQSPI_REG_IRQ_WATERMARK        | \
271                                          CQSPI_REG_IRQ_IND_SRAM_FULL    | \
272                                          CQSPI_REG_IRQ_IND_COMP)
273
274 #define CQSPI_IRQ_MASK_WR               (CQSPI_REG_IRQ_IND_COMP         | \
275                                          CQSPI_REG_IRQ_WATERMARK        | \
276                                          CQSPI_REG_IRQ_UNDERFLOW)
277
278 #define CQSPI_IRQ_STATUS_MASK           0x1FFFF
279 #define CQSPI_DMA_UNALIGN               0x3
280
281 #define CQSPI_REG_VERSAL_DMA_VAL                0x602
282
283 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
284 {
285         u32 val;
286
287         return readl_relaxed_poll_timeout(reg, val,
288                                           (((clr ? ~val : val) & mask) == mask),
289                                           10, CQSPI_TIMEOUT_MS * 1000);
290 }
291
292 static bool cqspi_is_idle(struct cqspi_st *cqspi)
293 {
294         u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
295
296         return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
297 }
298
299 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
300 {
301         u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
302
303         reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
304         return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
305 }
306
307 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
308 {
309         u32 dma_status;
310
311         dma_status = readl(cqspi->iobase +
312                                            CQSPI_REG_VERSAL_DMA_DST_I_STS);
313         writel(dma_status, cqspi->iobase +
314                    CQSPI_REG_VERSAL_DMA_DST_I_STS);
315
316         return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
317 }
318
319 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
320 {
321         struct cqspi_st *cqspi = dev;
322         unsigned int irq_status;
323         struct device *device = &cqspi->pdev->dev;
324         const struct cqspi_driver_platdata *ddata;
325
326         ddata = of_device_get_match_data(device);
327
328         /* Read interrupt status */
329         irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
330
331         /* Clear interrupt */
332         writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
333
334         if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
335                 if (ddata->get_dma_status(cqspi)) {
336                         complete(&cqspi->transfer_complete);
337                         return IRQ_HANDLED;
338                 }
339         }
340
341         else if (!cqspi->slow_sram)
342                 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
343         else
344                 irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
345
346         if (irq_status)
347                 complete(&cqspi->transfer_complete);
348
349         return IRQ_HANDLED;
350 }
351
352 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
353 {
354         u32 rdreg = 0;
355
356         rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
357         rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
358         rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
359
360         return rdreg;
361 }
362
363 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
364 {
365         unsigned int dummy_clk;
366
367         if (!op->dummy.nbytes)
368                 return 0;
369
370         dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
371         if (op->cmd.dtr)
372                 dummy_clk /= 2;
373
374         return dummy_clk;
375 }
376
377 static int cqspi_wait_idle(struct cqspi_st *cqspi)
378 {
379         const unsigned int poll_idle_retry = 3;
380         unsigned int count = 0;
381         unsigned long timeout;
382
383         timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
384         while (1) {
385                 /*
386                  * Read few times in succession to ensure the controller
387                  * is indeed idle, that is, the bit does not transition
388                  * low again.
389                  */
390                 if (cqspi_is_idle(cqspi))
391                         count++;
392                 else
393                         count = 0;
394
395                 if (count >= poll_idle_retry)
396                         return 0;
397
398                 if (time_after(jiffies, timeout)) {
399                         /* Timeout, in busy mode. */
400                         dev_err(&cqspi->pdev->dev,
401                                 "QSPI is still busy after %dms timeout.\n",
402                                 CQSPI_TIMEOUT_MS);
403                         return -ETIMEDOUT;
404                 }
405
406                 cpu_relax();
407         }
408 }
409
410 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
411 {
412         void __iomem *reg_base = cqspi->iobase;
413         int ret;
414
415         /* Write the CMDCTRL without start execution. */
416         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
417         /* Start execute */
418         reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
419         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
420
421         /* Polling for completion. */
422         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
423                                  CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
424         if (ret) {
425                 dev_err(&cqspi->pdev->dev,
426                         "Flash command execution timed out.\n");
427                 return ret;
428         }
429
430         /* Polling QSPI idle status. */
431         return cqspi_wait_idle(cqspi);
432 }
433
434 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
435                                   const struct spi_mem_op *op,
436                                   unsigned int shift)
437 {
438         struct cqspi_st *cqspi = f_pdata->cqspi;
439         void __iomem *reg_base = cqspi->iobase;
440         unsigned int reg;
441         u8 ext;
442
443         if (op->cmd.nbytes != 2)
444                 return -EINVAL;
445
446         /* Opcode extension is the LSB. */
447         ext = op->cmd.opcode & 0xff;
448
449         reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
450         reg &= ~(0xff << shift);
451         reg |= ext << shift;
452         writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
453
454         return 0;
455 }
456
457 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
458                             const struct spi_mem_op *op, unsigned int shift)
459 {
460         struct cqspi_st *cqspi = f_pdata->cqspi;
461         void __iomem *reg_base = cqspi->iobase;
462         unsigned int reg;
463         int ret;
464
465         reg = readl(reg_base + CQSPI_REG_CONFIG);
466
467         /*
468          * We enable dual byte opcode here. The callers have to set up the
469          * extension opcode based on which type of operation it is.
470          */
471         if (op->cmd.dtr) {
472                 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
473                 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
474
475                 /* Set up command opcode extension. */
476                 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
477                 if (ret)
478                         return ret;
479         } else {
480                 reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
481                 reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
482         }
483
484         writel(reg, reg_base + CQSPI_REG_CONFIG);
485
486         return cqspi_wait_idle(cqspi);
487 }
488
489 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
490                               const struct spi_mem_op *op)
491 {
492         struct cqspi_st *cqspi = f_pdata->cqspi;
493         void __iomem *reg_base = cqspi->iobase;
494         u8 *rxbuf = op->data.buf.in;
495         u8 opcode;
496         size_t n_rx = op->data.nbytes;
497         unsigned int rdreg;
498         unsigned int reg;
499         unsigned int dummy_clk;
500         size_t read_len;
501         int status;
502
503         status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
504         if (status)
505                 return status;
506
507         if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
508                 dev_err(&cqspi->pdev->dev,
509                         "Invalid input argument, len %zu rxbuf 0x%p\n",
510                         n_rx, rxbuf);
511                 return -EINVAL;
512         }
513
514         if (op->cmd.dtr)
515                 opcode = op->cmd.opcode >> 8;
516         else
517                 opcode = op->cmd.opcode;
518
519         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
520
521         rdreg = cqspi_calc_rdreg(op);
522         writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
523
524         dummy_clk = cqspi_calc_dummy(op);
525         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
526                 return -EOPNOTSUPP;
527
528         if (dummy_clk)
529                 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
530                      << CQSPI_REG_CMDCTRL_DUMMY_LSB;
531
532         reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
533
534         /* 0 means 1 byte. */
535         reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
536                 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
537
538         /* setup ADDR BIT field */
539         if (op->addr.nbytes) {
540                 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
541                 reg |= ((op->addr.nbytes - 1) &
542                         CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
543                         << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
544
545                 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
546         }
547
548         status = cqspi_exec_flash_cmd(cqspi, reg);
549         if (status)
550                 return status;
551
552         reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
553
554         /* Put the read value into rx_buf */
555         read_len = (n_rx > 4) ? 4 : n_rx;
556         memcpy(rxbuf, &reg, read_len);
557         rxbuf += read_len;
558
559         if (n_rx > 4) {
560                 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
561
562                 read_len = n_rx - read_len;
563                 memcpy(rxbuf, &reg, read_len);
564         }
565
566         /* Reset CMD_CTRL Reg once command read completes */
567         writel(0, reg_base + CQSPI_REG_CMDCTRL);
568
569         return 0;
570 }
571
572 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
573                                const struct spi_mem_op *op)
574 {
575         struct cqspi_st *cqspi = f_pdata->cqspi;
576         void __iomem *reg_base = cqspi->iobase;
577         u8 opcode;
578         const u8 *txbuf = op->data.buf.out;
579         size_t n_tx = op->data.nbytes;
580         unsigned int reg;
581         unsigned int data;
582         size_t write_len;
583         int ret;
584
585         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
586         if (ret)
587                 return ret;
588
589         if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
590                 dev_err(&cqspi->pdev->dev,
591                         "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
592                         n_tx, txbuf);
593                 return -EINVAL;
594         }
595
596         reg = cqspi_calc_rdreg(op);
597         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
598
599         if (op->cmd.dtr)
600                 opcode = op->cmd.opcode >> 8;
601         else
602                 opcode = op->cmd.opcode;
603
604         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
605
606         if (op->addr.nbytes) {
607                 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
608                 reg |= ((op->addr.nbytes - 1) &
609                         CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
610                         << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
611
612                 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
613         }
614
615         if (n_tx) {
616                 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
617                 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
618                         << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
619                 data = 0;
620                 write_len = (n_tx > 4) ? 4 : n_tx;
621                 memcpy(&data, txbuf, write_len);
622                 txbuf += write_len;
623                 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
624
625                 if (n_tx > 4) {
626                         data = 0;
627                         write_len = n_tx - 4;
628                         memcpy(&data, txbuf, write_len);
629                         writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
630                 }
631         }
632
633         ret = cqspi_exec_flash_cmd(cqspi, reg);
634
635         /* Reset CMD_CTRL Reg once command write completes */
636         writel(0, reg_base + CQSPI_REG_CMDCTRL);
637
638         return ret;
639 }
640
641 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
642                             const struct spi_mem_op *op)
643 {
644         struct cqspi_st *cqspi = f_pdata->cqspi;
645         void __iomem *reg_base = cqspi->iobase;
646         unsigned int dummy_clk = 0;
647         unsigned int reg;
648         int ret;
649         u8 opcode;
650
651         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
652         if (ret)
653                 return ret;
654
655         if (op->cmd.dtr)
656                 opcode = op->cmd.opcode >> 8;
657         else
658                 opcode = op->cmd.opcode;
659
660         reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
661         reg |= cqspi_calc_rdreg(op);
662
663         /* Setup dummy clock cycles */
664         dummy_clk = cqspi_calc_dummy(op);
665
666         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
667                 return -EOPNOTSUPP;
668
669         if (dummy_clk)
670                 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
671                        << CQSPI_REG_RD_INSTR_DUMMY_LSB;
672
673         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
674
675         /* Set address width */
676         reg = readl(reg_base + CQSPI_REG_SIZE);
677         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
678         reg |= (op->addr.nbytes - 1);
679         writel(reg, reg_base + CQSPI_REG_SIZE);
680         return 0;
681 }
682
683 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
684                                        u8 *rxbuf, loff_t from_addr,
685                                        const size_t n_rx)
686 {
687         struct cqspi_st *cqspi = f_pdata->cqspi;
688         struct device *dev = &cqspi->pdev->dev;
689         void __iomem *reg_base = cqspi->iobase;
690         void __iomem *ahb_base = cqspi->ahb_base;
691         unsigned int remaining = n_rx;
692         unsigned int mod_bytes = n_rx % 4;
693         unsigned int bytes_to_read = 0;
694         u8 *rxbuf_end = rxbuf + n_rx;
695         int ret = 0;
696
697         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
698         writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
699
700         /* Clear all interrupts. */
701         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
702
703         /*
704          * On SoCFPGA platform reading the SRAM is slow due to
705          * hardware limitation and causing read interrupt storm to CPU,
706          * so enabling only watermark interrupt to disable all read
707          * interrupts later as we want to run "bytes to read" loop with
708          * all the read interrupts disabled for max performance.
709          */
710
711         if (!cqspi->slow_sram)
712                 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
713         else
714                 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
715
716         reinit_completion(&cqspi->transfer_complete);
717         writel(CQSPI_REG_INDIRECTRD_START_MASK,
718                reg_base + CQSPI_REG_INDIRECTRD);
719
720         while (remaining > 0) {
721                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
722                                                  msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
723                         ret = -ETIMEDOUT;
724
725                 /*
726                  * Disable all read interrupts until
727                  * we are out of "bytes to read"
728                  */
729                 if (cqspi->slow_sram)
730                         writel(0x0, reg_base + CQSPI_REG_IRQMASK);
731
732                 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
733
734                 if (ret && bytes_to_read == 0) {
735                         dev_err(dev, "Indirect read timeout, no bytes\n");
736                         goto failrd;
737                 }
738
739                 while (bytes_to_read != 0) {
740                         unsigned int word_remain = round_down(remaining, 4);
741
742                         bytes_to_read *= cqspi->fifo_width;
743                         bytes_to_read = bytes_to_read > remaining ?
744                                         remaining : bytes_to_read;
745                         bytes_to_read = round_down(bytes_to_read, 4);
746                         /* Read 4 byte word chunks then single bytes */
747                         if (bytes_to_read) {
748                                 ioread32_rep(ahb_base, rxbuf,
749                                              (bytes_to_read / 4));
750                         } else if (!word_remain && mod_bytes) {
751                                 unsigned int temp = ioread32(ahb_base);
752
753                                 bytes_to_read = mod_bytes;
754                                 memcpy(rxbuf, &temp, min((unsigned int)
755                                                          (rxbuf_end - rxbuf),
756                                                          bytes_to_read));
757                         }
758                         rxbuf += bytes_to_read;
759                         remaining -= bytes_to_read;
760                         bytes_to_read = cqspi_get_rd_sram_level(cqspi);
761                 }
762
763                 if (remaining > 0) {
764                         reinit_completion(&cqspi->transfer_complete);
765                         if (cqspi->slow_sram)
766                                 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
767                 }
768         }
769
770         /* Check indirect done status */
771         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
772                                  CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
773         if (ret) {
774                 dev_err(dev, "Indirect read completion error (%i)\n", ret);
775                 goto failrd;
776         }
777
778         /* Disable interrupt */
779         writel(0, reg_base + CQSPI_REG_IRQMASK);
780
781         /* Clear indirect completion status */
782         writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
783
784         return 0;
785
786 failrd:
787         /* Disable interrupt */
788         writel(0, reg_base + CQSPI_REG_IRQMASK);
789
790         /* Cancel the indirect read */
791         writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
792                reg_base + CQSPI_REG_INDIRECTRD);
793         return ret;
794 }
795
796 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
797 {
798         void __iomem *reg_base = cqspi->iobase;
799         unsigned int reg;
800
801         reg = readl(reg_base + CQSPI_REG_CONFIG);
802
803         if (enable)
804                 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
805         else
806                 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
807
808         writel(reg, reg_base + CQSPI_REG_CONFIG);
809 }
810
811 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
812                                           u_char *rxbuf, loff_t from_addr,
813                                           size_t n_rx)
814 {
815         struct cqspi_st *cqspi = f_pdata->cqspi;
816         struct device *dev = &cqspi->pdev->dev;
817         void __iomem *reg_base = cqspi->iobase;
818         u32 reg, bytes_to_dma;
819         loff_t addr = from_addr;
820         void *buf = rxbuf;
821         dma_addr_t dma_addr;
822         u8 bytes_rem;
823         int ret = 0;
824
825         bytes_rem = n_rx % 4;
826         bytes_to_dma = (n_rx - bytes_rem);
827
828         if (!bytes_to_dma)
829                 goto nondmard;
830
831         ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
832         if (ret)
833                 return ret;
834
835         cqspi_controller_enable(cqspi, 0);
836
837         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
838         reg |= CQSPI_REG_CONFIG_DMA_MASK;
839         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
840
841         cqspi_controller_enable(cqspi, 1);
842
843         dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
844         if (dma_mapping_error(dev, dma_addr)) {
845                 dev_err(dev, "dma mapping failed\n");
846                 return -ENOMEM;
847         }
848
849         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
850         writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
851         writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
852                reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
853
854         /* Clear all interrupts. */
855         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
856
857         /* Enable DMA done interrupt */
858         writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
859                reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
860
861         /* Default DMA periph configuration */
862         writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
863
864         /* Configure DMA Dst address */
865         writel(lower_32_bits(dma_addr),
866                reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
867         writel(upper_32_bits(dma_addr),
868                reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
869
870         /* Configure DMA Src address */
871         writel(cqspi->trigger_address, reg_base +
872                CQSPI_REG_VERSAL_DMA_SRC_ADDR);
873
874         /* Set DMA destination size */
875         writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
876
877         /* Set DMA destination control */
878         writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
879                reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
880
881         writel(CQSPI_REG_INDIRECTRD_START_MASK,
882                reg_base + CQSPI_REG_INDIRECTRD);
883
884         reinit_completion(&cqspi->transfer_complete);
885
886         if (!wait_for_completion_timeout(&cqspi->transfer_complete,
887                                          msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
888                 ret = -ETIMEDOUT;
889                 goto failrd;
890         }
891
892         /* Disable DMA interrupt */
893         writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
894
895         /* Clear indirect completion status */
896         writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
897                cqspi->iobase + CQSPI_REG_INDIRECTRD);
898         dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
899
900         cqspi_controller_enable(cqspi, 0);
901
902         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
903         reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
904         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
905
906         cqspi_controller_enable(cqspi, 1);
907
908         ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
909                                         PM_OSPI_MUX_SEL_LINEAR);
910         if (ret)
911                 return ret;
912
913 nondmard:
914         if (bytes_rem) {
915                 addr += bytes_to_dma;
916                 buf += bytes_to_dma;
917                 ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
918                                                   bytes_rem);
919                 if (ret)
920                         return ret;
921         }
922
923         return 0;
924
925 failrd:
926         /* Disable DMA interrupt */
927         writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
928
929         /* Cancel the indirect read */
930         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
931                reg_base + CQSPI_REG_INDIRECTRD);
932
933         dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
934
935         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
936         reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
937         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
938
939         zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
940
941         return ret;
942 }
943
944 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
945                              const struct spi_mem_op *op)
946 {
947         unsigned int reg;
948         int ret;
949         struct cqspi_st *cqspi = f_pdata->cqspi;
950         void __iomem *reg_base = cqspi->iobase;
951         u8 opcode;
952
953         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
954         if (ret)
955                 return ret;
956
957         if (op->cmd.dtr)
958                 opcode = op->cmd.opcode >> 8;
959         else
960                 opcode = op->cmd.opcode;
961
962         /* Set opcode. */
963         reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
964         reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
965         reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
966         writel(reg, reg_base + CQSPI_REG_WR_INSTR);
967         reg = cqspi_calc_rdreg(op);
968         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
969
970         /*
971          * SPI NAND flashes require the address of the status register to be
972          * passed in the Read SR command. Also, some SPI NOR flashes like the
973          * cypress Semper flash expect a 4-byte dummy address in the Read SR
974          * command in DTR mode.
975          *
976          * But this controller does not support address phase in the Read SR
977          * command when doing auto-HW polling. So, disable write completion
978          * polling on the controller's side. spinand and spi-nor will take
979          * care of polling the status register.
980          */
981         if (cqspi->wr_completion) {
982                 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
983                 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
984                 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
985                 /*
986                  * DAC mode require auto polling as flash needs to be polled
987                  * for write completion in case of bubble in SPI transaction
988                  * due to slow CPU/DMA master.
989                  */
990                 cqspi->use_direct_mode_wr = false;
991         }
992
993         reg = readl(reg_base + CQSPI_REG_SIZE);
994         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
995         reg |= (op->addr.nbytes - 1);
996         writel(reg, reg_base + CQSPI_REG_SIZE);
997         return 0;
998 }
999
1000 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1001                                         loff_t to_addr, const u8 *txbuf,
1002                                         const size_t n_tx)
1003 {
1004         struct cqspi_st *cqspi = f_pdata->cqspi;
1005         struct device *dev = &cqspi->pdev->dev;
1006         void __iomem *reg_base = cqspi->iobase;
1007         unsigned int remaining = n_tx;
1008         unsigned int write_bytes;
1009         int ret;
1010
1011         writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1012         writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1013
1014         /* Clear all interrupts. */
1015         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1016
1017         writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1018
1019         reinit_completion(&cqspi->transfer_complete);
1020         writel(CQSPI_REG_INDIRECTWR_START_MASK,
1021                reg_base + CQSPI_REG_INDIRECTWR);
1022         /*
1023          * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1024          * Controller programming sequence, couple of cycles of
1025          * QSPI_REF_CLK delay is required for the above bit to
1026          * be internally synchronized by the QSPI module. Provide 5
1027          * cycles of delay.
1028          */
1029         if (cqspi->wr_delay)
1030                 ndelay(cqspi->wr_delay);
1031
1032         /*
1033          * If a hazard exists between the APB and AHB interfaces, perform a
1034          * dummy readback from the controller to ensure synchronization.
1035          */
1036         if (cqspi->apb_ahb_hazard)
1037                 readl(reg_base + CQSPI_REG_INDIRECTWR);
1038
1039         while (remaining > 0) {
1040                 size_t write_words, mod_bytes;
1041
1042                 write_bytes = remaining;
1043                 write_words = write_bytes / 4;
1044                 mod_bytes = write_bytes % 4;
1045                 /* Write 4 bytes at a time then single bytes. */
1046                 if (write_words) {
1047                         iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1048                         txbuf += (write_words * 4);
1049                 }
1050                 if (mod_bytes) {
1051                         unsigned int temp = 0xFFFFFFFF;
1052
1053                         memcpy(&temp, txbuf, mod_bytes);
1054                         iowrite32(temp, cqspi->ahb_base);
1055                         txbuf += mod_bytes;
1056                 }
1057
1058                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1059                                                  msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1060                         dev_err(dev, "Indirect write timeout\n");
1061                         ret = -ETIMEDOUT;
1062                         goto failwr;
1063                 }
1064
1065                 remaining -= write_bytes;
1066
1067                 if (remaining > 0)
1068                         reinit_completion(&cqspi->transfer_complete);
1069         }
1070
1071         /* Check indirect done status */
1072         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1073                                  CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1074         if (ret) {
1075                 dev_err(dev, "Indirect write completion error (%i)\n", ret);
1076                 goto failwr;
1077         }
1078
1079         /* Disable interrupt. */
1080         writel(0, reg_base + CQSPI_REG_IRQMASK);
1081
1082         /* Clear indirect completion status */
1083         writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1084
1085         cqspi_wait_idle(cqspi);
1086
1087         return 0;
1088
1089 failwr:
1090         /* Disable interrupt. */
1091         writel(0, reg_base + CQSPI_REG_IRQMASK);
1092
1093         /* Cancel the indirect write */
1094         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1095                reg_base + CQSPI_REG_INDIRECTWR);
1096         return ret;
1097 }
1098
1099 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1100 {
1101         struct cqspi_st *cqspi = f_pdata->cqspi;
1102         void __iomem *reg_base = cqspi->iobase;
1103         unsigned int chip_select = f_pdata->cs;
1104         unsigned int reg;
1105
1106         reg = readl(reg_base + CQSPI_REG_CONFIG);
1107         if (cqspi->is_decoded_cs) {
1108                 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1109         } else {
1110                 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1111
1112                 /* Convert CS if without decoder.
1113                  * CS0 to 4b'1110
1114                  * CS1 to 4b'1101
1115                  * CS2 to 4b'1011
1116                  * CS3 to 4b'0111
1117                  */
1118                 chip_select = 0xF & ~(1 << chip_select);
1119         }
1120
1121         reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1122                  << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1123         reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1124             << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1125         writel(reg, reg_base + CQSPI_REG_CONFIG);
1126 }
1127
1128 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1129                                            const unsigned int ns_val)
1130 {
1131         unsigned int ticks;
1132
1133         ticks = ref_clk_hz / 1000;      /* kHz */
1134         ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1135
1136         return ticks;
1137 }
1138
1139 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1140 {
1141         struct cqspi_st *cqspi = f_pdata->cqspi;
1142         void __iomem *iobase = cqspi->iobase;
1143         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1144         unsigned int tshsl, tchsh, tslch, tsd2d;
1145         unsigned int reg;
1146         unsigned int tsclk;
1147
1148         /* calculate the number of ref ticks for one sclk tick */
1149         tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1150
1151         tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1152         /* this particular value must be at least one sclk */
1153         if (tshsl < tsclk)
1154                 tshsl = tsclk;
1155
1156         tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1157         tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1158         tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1159
1160         reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1161                << CQSPI_REG_DELAY_TSHSL_LSB;
1162         reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1163                 << CQSPI_REG_DELAY_TCHSH_LSB;
1164         reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1165                 << CQSPI_REG_DELAY_TSLCH_LSB;
1166         reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1167                 << CQSPI_REG_DELAY_TSD2D_LSB;
1168         writel(reg, iobase + CQSPI_REG_DELAY);
1169 }
1170
1171 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1172 {
1173         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1174         void __iomem *reg_base = cqspi->iobase;
1175         u32 reg, div;
1176
1177         /* Recalculate the baudrate divisor based on QSPI specification. */
1178         div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1179
1180         /* Maximum baud divisor */
1181         if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1182                 div = CQSPI_REG_CONFIG_BAUD_MASK;
1183                 dev_warn(&cqspi->pdev->dev,
1184                         "Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1185                         cqspi->sclk, ref_clk_hz/((div+1)*2));
1186         }
1187
1188         reg = readl(reg_base + CQSPI_REG_CONFIG);
1189         reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1190         reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1191         writel(reg, reg_base + CQSPI_REG_CONFIG);
1192 }
1193
1194 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1195                                    const bool bypass,
1196                                    const unsigned int delay)
1197 {
1198         void __iomem *reg_base = cqspi->iobase;
1199         unsigned int reg;
1200
1201         reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1202
1203         if (bypass)
1204                 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1205         else
1206                 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1207
1208         reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1209                  << CQSPI_REG_READCAPTURE_DELAY_LSB);
1210
1211         reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1212                 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1213
1214         writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1215 }
1216
1217 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1218                             unsigned long sclk)
1219 {
1220         struct cqspi_st *cqspi = f_pdata->cqspi;
1221         int switch_cs = (cqspi->current_cs != f_pdata->cs);
1222         int switch_ck = (cqspi->sclk != sclk);
1223
1224         if (switch_cs || switch_ck)
1225                 cqspi_controller_enable(cqspi, 0);
1226
1227         /* Switch chip select. */
1228         if (switch_cs) {
1229                 cqspi->current_cs = f_pdata->cs;
1230                 cqspi_chipselect(f_pdata);
1231         }
1232
1233         /* Setup baudrate divisor and delays */
1234         if (switch_ck) {
1235                 cqspi->sclk = sclk;
1236                 cqspi_config_baudrate_div(cqspi);
1237                 cqspi_delay(f_pdata);
1238                 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1239                                        f_pdata->read_delay);
1240         }
1241
1242         if (switch_cs || switch_ck)
1243                 cqspi_controller_enable(cqspi, 1);
1244 }
1245
1246 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1247                            const struct spi_mem_op *op)
1248 {
1249         struct cqspi_st *cqspi = f_pdata->cqspi;
1250         loff_t to = op->addr.val;
1251         size_t len = op->data.nbytes;
1252         const u_char *buf = op->data.buf.out;
1253         int ret;
1254
1255         ret = cqspi_write_setup(f_pdata, op);
1256         if (ret)
1257                 return ret;
1258
1259         /*
1260          * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1261          * address (all 0s) with the read status register command in DTR mode.
1262          * But this controller does not support sending dummy address bytes to
1263          * the flash when it is polling the write completion register in DTR
1264          * mode. So, we can not use direct mode when in DTR mode for writing
1265          * data.
1266          */
1267         if (!op->cmd.dtr && cqspi->use_direct_mode &&
1268             cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1269                 memcpy_toio(cqspi->ahb_base + to, buf, len);
1270                 return cqspi_wait_idle(cqspi);
1271         }
1272
1273         return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1274 }
1275
1276 static void cqspi_rx_dma_callback(void *param)
1277 {
1278         struct cqspi_st *cqspi = param;
1279
1280         complete(&cqspi->rx_dma_complete);
1281 }
1282
1283 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1284                                      u_char *buf, loff_t from, size_t len)
1285 {
1286         struct cqspi_st *cqspi = f_pdata->cqspi;
1287         struct device *dev = &cqspi->pdev->dev;
1288         enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1289         dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1290         int ret = 0;
1291         struct dma_async_tx_descriptor *tx;
1292         dma_cookie_t cookie;
1293         dma_addr_t dma_dst;
1294         struct device *ddev;
1295
1296         if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1297                 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1298                 return 0;
1299         }
1300
1301         ddev = cqspi->rx_chan->device->dev;
1302         dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1303         if (dma_mapping_error(ddev, dma_dst)) {
1304                 dev_err(dev, "dma mapping failed\n");
1305                 return -ENOMEM;
1306         }
1307         tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1308                                        len, flags);
1309         if (!tx) {
1310                 dev_err(dev, "device_prep_dma_memcpy error\n");
1311                 ret = -EIO;
1312                 goto err_unmap;
1313         }
1314
1315         tx->callback = cqspi_rx_dma_callback;
1316         tx->callback_param = cqspi;
1317         cookie = tx->tx_submit(tx);
1318         reinit_completion(&cqspi->rx_dma_complete);
1319
1320         ret = dma_submit_error(cookie);
1321         if (ret) {
1322                 dev_err(dev, "dma_submit_error %d\n", cookie);
1323                 ret = -EIO;
1324                 goto err_unmap;
1325         }
1326
1327         dma_async_issue_pending(cqspi->rx_chan);
1328         if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1329                                          msecs_to_jiffies(max_t(size_t, len, 500)))) {
1330                 dmaengine_terminate_sync(cqspi->rx_chan);
1331                 dev_err(dev, "DMA wait_for_completion_timeout\n");
1332                 ret = -ETIMEDOUT;
1333                 goto err_unmap;
1334         }
1335
1336 err_unmap:
1337         dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1338
1339         return ret;
1340 }
1341
1342 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1343                           const struct spi_mem_op *op)
1344 {
1345         struct cqspi_st *cqspi = f_pdata->cqspi;
1346         struct device *dev = &cqspi->pdev->dev;
1347         const struct cqspi_driver_platdata *ddata;
1348         loff_t from = op->addr.val;
1349         size_t len = op->data.nbytes;
1350         u_char *buf = op->data.buf.in;
1351         u64 dma_align = (u64)(uintptr_t)buf;
1352         int ret;
1353
1354         ddata = of_device_get_match_data(dev);
1355
1356         ret = cqspi_read_setup(f_pdata, op);
1357         if (ret)
1358                 return ret;
1359
1360         if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1361                 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1362
1363         if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1364             virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1365                 return ddata->indirect_read_dma(f_pdata, buf, from, len);
1366
1367         return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1368 }
1369
1370 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1371 {
1372         struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1373         struct cqspi_flash_pdata *f_pdata;
1374
1375         f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1376         cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1377
1378         if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1379         /*
1380          * Performing reads in DAC mode forces to read minimum 4 bytes
1381          * which is unsupported on some flash devices during register
1382          * reads, prefer STIG mode for such small reads.
1383          */
1384                 if (!op->addr.nbytes ||
1385                     op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX)
1386                         return cqspi_command_read(f_pdata, op);
1387
1388                 return cqspi_read(f_pdata, op);
1389         }
1390
1391         if (!op->addr.nbytes || !op->data.buf.out)
1392                 return cqspi_command_write(f_pdata, op);
1393
1394         return cqspi_write(f_pdata, op);
1395 }
1396
1397 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1398 {
1399         int ret;
1400
1401         ret = cqspi_mem_process(mem, op);
1402         if (ret)
1403                 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1404
1405         return ret;
1406 }
1407
1408 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1409                                   const struct spi_mem_op *op)
1410 {
1411         bool all_true, all_false;
1412
1413         /*
1414          * op->dummy.dtr is required for converting nbytes into ncycles.
1415          * Also, don't check the dtr field of the op phase having zero nbytes.
1416          */
1417         all_true = op->cmd.dtr &&
1418                    (!op->addr.nbytes || op->addr.dtr) &&
1419                    (!op->dummy.nbytes || op->dummy.dtr) &&
1420                    (!op->data.nbytes || op->data.dtr);
1421
1422         all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1423                     !op->data.dtr;
1424
1425         if (all_true) {
1426                 /* Right now we only support 8-8-8 DTR mode. */
1427                 if (op->cmd.nbytes && op->cmd.buswidth != 8)
1428                         return false;
1429                 if (op->addr.nbytes && op->addr.buswidth != 8)
1430                         return false;
1431                 if (op->data.nbytes && op->data.buswidth != 8)
1432                         return false;
1433         } else if (!all_false) {
1434                 /* Mixed DTR modes are not supported. */
1435                 return false;
1436         }
1437
1438         return spi_mem_default_supports_op(mem, op);
1439 }
1440
1441 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1442                                     struct cqspi_flash_pdata *f_pdata,
1443                                     struct device_node *np)
1444 {
1445         if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1446                 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1447                 return -ENXIO;
1448         }
1449
1450         if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1451                 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1452                 return -ENXIO;
1453         }
1454
1455         if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1456                 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1457                 return -ENXIO;
1458         }
1459
1460         if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1461                 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1462                 return -ENXIO;
1463         }
1464
1465         if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1466                 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1467                 return -ENXIO;
1468         }
1469
1470         if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1471                 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1472                 return -ENXIO;
1473         }
1474
1475         return 0;
1476 }
1477
1478 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1479 {
1480         struct device *dev = &cqspi->pdev->dev;
1481         struct device_node *np = dev->of_node;
1482         u32 id[2];
1483
1484         cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1485
1486         if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1487                 dev_err(dev, "couldn't determine fifo-depth\n");
1488                 return -ENXIO;
1489         }
1490
1491         if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1492                 dev_err(dev, "couldn't determine fifo-width\n");
1493                 return -ENXIO;
1494         }
1495
1496         if (of_property_read_u32(np, "cdns,trigger-address",
1497                                  &cqspi->trigger_address)) {
1498                 dev_err(dev, "couldn't determine trigger-address\n");
1499                 return -ENXIO;
1500         }
1501
1502         if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1503                 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1504
1505         cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1506
1507         if (!of_property_read_u32_array(np, "power-domains", id,
1508                                         ARRAY_SIZE(id)))
1509                 cqspi->pd_dev_id = id[1];
1510
1511         return 0;
1512 }
1513
1514 static void cqspi_controller_init(struct cqspi_st *cqspi)
1515 {
1516         u32 reg;
1517
1518         cqspi_controller_enable(cqspi, 0);
1519
1520         /* Configure the remap address register, no remap */
1521         writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1522
1523         /* Disable all interrupts. */
1524         writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1525
1526         /* Configure the SRAM split to 1:1 . */
1527         writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1528
1529         /* Load indirect trigger address. */
1530         writel(cqspi->trigger_address,
1531                cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1532
1533         /* Program read watermark -- 1/2 of the FIFO. */
1534         writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1535                cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1536         /* Program write watermark -- 1/8 of the FIFO. */
1537         writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1538                cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1539
1540         /* Disable direct access controller */
1541         if (!cqspi->use_direct_mode) {
1542                 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1543                 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1544                 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1545         }
1546
1547         /* Enable DMA interface */
1548         if (cqspi->use_dma_read) {
1549                 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1550                 reg |= CQSPI_REG_CONFIG_DMA_MASK;
1551                 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1552         }
1553
1554         cqspi_controller_enable(cqspi, 1);
1555 }
1556
1557 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1558 {
1559         dma_cap_mask_t mask;
1560
1561         dma_cap_zero(mask);
1562         dma_cap_set(DMA_MEMCPY, mask);
1563
1564         cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1565         if (IS_ERR(cqspi->rx_chan)) {
1566                 int ret = PTR_ERR(cqspi->rx_chan);
1567
1568                 cqspi->rx_chan = NULL;
1569                 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1570         }
1571         init_completion(&cqspi->rx_dma_complete);
1572
1573         return 0;
1574 }
1575
1576 static const char *cqspi_get_name(struct spi_mem *mem)
1577 {
1578         struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1579         struct device *dev = &cqspi->pdev->dev;
1580
1581         return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1582                               spi_get_chipselect(mem->spi, 0));
1583 }
1584
1585 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1586         .exec_op = cqspi_exec_mem_op,
1587         .get_name = cqspi_get_name,
1588         .supports_op = cqspi_supports_mem_op,
1589 };
1590
1591 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1592         .dtr = true,
1593 };
1594
1595 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1596 {
1597         struct platform_device *pdev = cqspi->pdev;
1598         struct device *dev = &pdev->dev;
1599         struct device_node *np = dev->of_node;
1600         struct cqspi_flash_pdata *f_pdata;
1601         unsigned int cs;
1602         int ret;
1603
1604         /* Get flash device data */
1605         for_each_available_child_of_node(dev->of_node, np) {
1606                 ret = of_property_read_u32(np, "reg", &cs);
1607                 if (ret) {
1608                         dev_err(dev, "Couldn't determine chip select.\n");
1609                         of_node_put(np);
1610                         return ret;
1611                 }
1612
1613                 if (cs >= CQSPI_MAX_CHIPSELECT) {
1614                         dev_err(dev, "Chip select %d out of range.\n", cs);
1615                         of_node_put(np);
1616                         return -EINVAL;
1617                 }
1618
1619                 f_pdata = &cqspi->f_pdata[cs];
1620                 f_pdata->cqspi = cqspi;
1621                 f_pdata->cs = cs;
1622
1623                 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1624                 if (ret) {
1625                         of_node_put(np);
1626                         return ret;
1627                 }
1628         }
1629
1630         return 0;
1631 }
1632
1633 static int cqspi_probe(struct platform_device *pdev)
1634 {
1635         const struct cqspi_driver_platdata *ddata;
1636         struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1637         struct device *dev = &pdev->dev;
1638         struct spi_master *master;
1639         struct resource *res_ahb;
1640         struct cqspi_st *cqspi;
1641         int ret;
1642         int irq;
1643
1644         master = devm_spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1645         if (!master) {
1646                 dev_err(&pdev->dev, "spi_alloc_master failed\n");
1647                 return -ENOMEM;
1648         }
1649         master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1650         master->mem_ops = &cqspi_mem_ops;
1651         master->mem_caps = &cqspi_mem_caps;
1652         master->dev.of_node = pdev->dev.of_node;
1653
1654         cqspi = spi_master_get_devdata(master);
1655
1656         cqspi->pdev = pdev;
1657         cqspi->master = master;
1658         platform_set_drvdata(pdev, cqspi);
1659
1660         /* Obtain configuration from OF. */
1661         ret = cqspi_of_get_pdata(cqspi);
1662         if (ret) {
1663                 dev_err(dev, "Cannot get mandatory OF data.\n");
1664                 return -ENODEV;
1665         }
1666
1667         /* Obtain QSPI clock. */
1668         cqspi->clk = devm_clk_get(dev, NULL);
1669         if (IS_ERR(cqspi->clk)) {
1670                 dev_err(dev, "Cannot claim QSPI clock.\n");
1671                 ret = PTR_ERR(cqspi->clk);
1672                 return ret;
1673         }
1674
1675         /* Obtain and remap controller address. */
1676         cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1677         if (IS_ERR(cqspi->iobase)) {
1678                 dev_err(dev, "Cannot remap controller address.\n");
1679                 ret = PTR_ERR(cqspi->iobase);
1680                 return ret;
1681         }
1682
1683         /* Obtain and remap AHB address. */
1684         cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1685         if (IS_ERR(cqspi->ahb_base)) {
1686                 dev_err(dev, "Cannot remap AHB address.\n");
1687                 ret = PTR_ERR(cqspi->ahb_base);
1688                 return ret;
1689         }
1690         cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1691         cqspi->ahb_size = resource_size(res_ahb);
1692
1693         init_completion(&cqspi->transfer_complete);
1694
1695         /* Obtain IRQ line. */
1696         irq = platform_get_irq(pdev, 0);
1697         if (irq < 0)
1698                 return -ENXIO;
1699
1700         pm_runtime_enable(dev);
1701         ret = pm_runtime_resume_and_get(dev);
1702         if (ret < 0)
1703                 goto probe_pm_failed;
1704
1705         ret = clk_prepare_enable(cqspi->clk);
1706         if (ret) {
1707                 dev_err(dev, "Cannot enable QSPI clock.\n");
1708                 goto probe_clk_failed;
1709         }
1710
1711         /* Obtain QSPI reset control */
1712         rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1713         if (IS_ERR(rstc)) {
1714                 ret = PTR_ERR(rstc);
1715                 dev_err(dev, "Cannot get QSPI reset.\n");
1716                 goto probe_reset_failed;
1717         }
1718
1719         rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1720         if (IS_ERR(rstc_ocp)) {
1721                 ret = PTR_ERR(rstc_ocp);
1722                 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1723                 goto probe_reset_failed;
1724         }
1725
1726         if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1727                 rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1728                 if (IS_ERR(rstc_ref)) {
1729                         ret = PTR_ERR(rstc_ref);
1730                         dev_err(dev, "Cannot get QSPI REF reset.\n");
1731                         goto probe_reset_failed;
1732                 }
1733                 reset_control_assert(rstc_ref);
1734                 reset_control_deassert(rstc_ref);
1735         }
1736
1737         reset_control_assert(rstc);
1738         reset_control_deassert(rstc);
1739
1740         reset_control_assert(rstc_ocp);
1741         reset_control_deassert(rstc_ocp);
1742
1743         cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1744         master->max_speed_hz = cqspi->master_ref_clk_hz;
1745
1746         /* write completion is supported by default */
1747         cqspi->wr_completion = true;
1748
1749         ddata  = of_device_get_match_data(dev);
1750         if (ddata) {
1751                 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1752                         cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1753                                                 cqspi->master_ref_clk_hz);
1754                 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1755                         master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1756                 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1757                         cqspi->use_direct_mode = true;
1758                         cqspi->use_direct_mode_wr = true;
1759                 }
1760                 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1761                         cqspi->use_dma_read = true;
1762                 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1763                         cqspi->wr_completion = false;
1764                 if (ddata->quirks & CQSPI_SLOW_SRAM)
1765                         cqspi->slow_sram = true;
1766                 if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1767                         cqspi->apb_ahb_hazard = true;
1768
1769                 if (of_device_is_compatible(pdev->dev.of_node,
1770                                             "xlnx,versal-ospi-1.0")) {
1771                         ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1772                         if (ret)
1773                                 goto probe_reset_failed;
1774                 }
1775         }
1776
1777         ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1778                                pdev->name, cqspi);
1779         if (ret) {
1780                 dev_err(dev, "Cannot request IRQ.\n");
1781                 goto probe_reset_failed;
1782         }
1783
1784         cqspi_wait_idle(cqspi);
1785         cqspi_controller_init(cqspi);
1786         cqspi->current_cs = -1;
1787         cqspi->sclk = 0;
1788
1789         master->num_chipselect = cqspi->num_chipselect;
1790
1791         ret = cqspi_setup_flash(cqspi);
1792         if (ret) {
1793                 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1794                 goto probe_setup_failed;
1795         }
1796
1797         if (cqspi->use_direct_mode) {
1798                 ret = cqspi_request_mmap_dma(cqspi);
1799                 if (ret == -EPROBE_DEFER)
1800                         goto probe_setup_failed;
1801         }
1802
1803         ret = spi_register_master(master);
1804         if (ret) {
1805                 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1806                 goto probe_setup_failed;
1807         }
1808
1809         return 0;
1810 probe_setup_failed:
1811         cqspi_controller_enable(cqspi, 0);
1812 probe_reset_failed:
1813         clk_disable_unprepare(cqspi->clk);
1814 probe_clk_failed:
1815         pm_runtime_put_sync(dev);
1816 probe_pm_failed:
1817         pm_runtime_disable(dev);
1818         return ret;
1819 }
1820
1821 static void cqspi_remove(struct platform_device *pdev)
1822 {
1823         struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1824
1825         spi_unregister_master(cqspi->master);
1826         cqspi_controller_enable(cqspi, 0);
1827
1828         if (cqspi->rx_chan)
1829                 dma_release_channel(cqspi->rx_chan);
1830
1831         clk_disable_unprepare(cqspi->clk);
1832
1833         pm_runtime_put_sync(&pdev->dev);
1834         pm_runtime_disable(&pdev->dev);
1835 }
1836
1837 static int cqspi_suspend(struct device *dev)
1838 {
1839         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1840         struct spi_master *master = dev_get_drvdata(dev);
1841         int ret;
1842
1843         ret = spi_master_suspend(master);
1844         cqspi_controller_enable(cqspi, 0);
1845
1846         clk_disable_unprepare(cqspi->clk);
1847
1848         return ret;
1849 }
1850
1851 static int cqspi_resume(struct device *dev)
1852 {
1853         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1854         struct spi_master *master = dev_get_drvdata(dev);
1855
1856         clk_prepare_enable(cqspi->clk);
1857         cqspi_wait_idle(cqspi);
1858         cqspi_controller_init(cqspi);
1859
1860         cqspi->current_cs = -1;
1861         cqspi->sclk = 0;
1862
1863         return spi_master_resume(master);
1864 }
1865
1866 static DEFINE_SIMPLE_DEV_PM_OPS(cqspi_dev_pm_ops, cqspi_suspend, cqspi_resume);
1867
1868 static const struct cqspi_driver_platdata cdns_qspi = {
1869         .quirks = CQSPI_DISABLE_DAC_MODE,
1870 };
1871
1872 static const struct cqspi_driver_platdata k2g_qspi = {
1873         .quirks = CQSPI_NEEDS_WR_DELAY,
1874 };
1875
1876 static const struct cqspi_driver_platdata am654_ospi = {
1877         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1878         .quirks = CQSPI_NEEDS_WR_DELAY,
1879 };
1880
1881 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1882         .quirks = CQSPI_DISABLE_DAC_MODE,
1883 };
1884
1885 static const struct cqspi_driver_platdata socfpga_qspi = {
1886         .quirks = CQSPI_DISABLE_DAC_MODE
1887                         | CQSPI_NO_SUPPORT_WR_COMPLETION
1888                         | CQSPI_SLOW_SRAM,
1889 };
1890
1891 static const struct cqspi_driver_platdata versal_ospi = {
1892         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1893         .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1894         .indirect_read_dma = cqspi_versal_indirect_read_dma,
1895         .get_dma_status = cqspi_get_versal_dma_status,
1896 };
1897
1898 static const struct cqspi_driver_platdata jh7110_qspi = {
1899         .quirks = CQSPI_DISABLE_DAC_MODE,
1900 };
1901
1902 static const struct cqspi_driver_platdata pensando_cdns_qspi = {
1903         .quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
1904 };
1905
1906 static const struct of_device_id cqspi_dt_ids[] = {
1907         {
1908                 .compatible = "cdns,qspi-nor",
1909                 .data = &cdns_qspi,
1910         },
1911         {
1912                 .compatible = "ti,k2g-qspi",
1913                 .data = &k2g_qspi,
1914         },
1915         {
1916                 .compatible = "ti,am654-ospi",
1917                 .data = &am654_ospi,
1918         },
1919         {
1920                 .compatible = "intel,lgm-qspi",
1921                 .data = &intel_lgm_qspi,
1922         },
1923         {
1924                 .compatible = "xlnx,versal-ospi-1.0",
1925                 .data = &versal_ospi,
1926         },
1927         {
1928                 .compatible = "intel,socfpga-qspi",
1929                 .data = &socfpga_qspi,
1930         },
1931         {
1932                 .compatible = "starfive,jh7110-qspi",
1933                 .data = &jh7110_qspi,
1934         },
1935         {
1936                 .compatible = "amd,pensando-elba-qspi",
1937                 .data = &pensando_cdns_qspi,
1938         },
1939         { /* end of table */ }
1940 };
1941
1942 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1943
1944 static struct platform_driver cqspi_platform_driver = {
1945         .probe = cqspi_probe,
1946         .remove_new = cqspi_remove,
1947         .driver = {
1948                 .name = CQSPI_NAME,
1949                 .pm = &cqspi_dev_pm_ops,
1950                 .of_match_table = cqspi_dt_ids,
1951         },
1952 };
1953
1954 module_platform_driver(cqspi_platform_driver);
1955
1956 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1957 MODULE_LICENSE("GPL v2");
1958 MODULE_ALIAS("platform:" CQSPI_NAME);
1959 MODULE_AUTHOR("Ley Foon Tan <[email protected]>");
1960 MODULE_AUTHOR("Graham Moore <[email protected]>");
1961 MODULE_AUTHOR("Vadivel Murugan R <[email protected]>");
1962 MODULE_AUTHOR("Vignesh Raghavendra <[email protected]>");
1963 MODULE_AUTHOR("Pratyush Yadav <[email protected]>");
This page took 0.154674 seconds and 4 git commands to generate.