1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/file.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * ext4 fs regular file handling primitives
18 * 64-bit file support on 64-bit platforms by Jakub Jelinek
22 #include <linux/time.h>
24 #include <linux/mount.h>
25 #include <linux/path.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/pagevec.h>
29 #include <linux/uio.h>
31 #include "ext4_jbd2.h"
36 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
38 struct inode *inode = file_inode(iocb->ki_filp);
41 if (!inode_trylock_shared(inode)) {
42 if (iocb->ki_flags & IOCB_NOWAIT)
44 inode_lock_shared(inode);
47 * Recheck under inode lock - at this point we are sure it cannot
51 inode_unlock_shared(inode);
52 /* Fallback to buffered IO in case we cannot support DAX */
53 return generic_file_read_iter(iocb, to);
55 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
56 inode_unlock_shared(inode);
58 file_accessed(iocb->ki_filp);
63 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
65 if (unlikely(ext4_forced_shutdown(EXT4_SB(file_inode(iocb->ki_filp)->i_sb))))
68 if (!iov_iter_count(to))
69 return 0; /* skip atime */
72 if (IS_DAX(file_inode(iocb->ki_filp)))
73 return ext4_dax_read_iter(iocb, to);
75 return generic_file_read_iter(iocb, to);
79 * Called when an inode is released. Note that this is different
80 * from ext4_file_open: open gets called at every open, but release
81 * gets called only when /all/ the files are closed.
83 static int ext4_release_file(struct inode *inode, struct file *filp)
85 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
86 ext4_alloc_da_blocks(inode);
87 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
89 /* if we are the last writer on the inode, drop the block reservation */
90 if ((filp->f_mode & FMODE_WRITE) &&
91 (atomic_read(&inode->i_writecount) == 1) &&
92 !EXT4_I(inode)->i_reserved_data_blocks)
94 down_write(&EXT4_I(inode)->i_data_sem);
95 ext4_discard_preallocations(inode);
96 up_write(&EXT4_I(inode)->i_data_sem);
98 if (is_dx(inode) && filp->private_data)
99 ext4_htree_free_dir_info(filp->private_data);
104 static void ext4_unwritten_wait(struct inode *inode)
106 wait_queue_head_t *wq = ext4_ioend_wq(inode);
108 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
112 * This tests whether the IO in question is block-aligned or not.
113 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
114 * are converted to written only after the IO is complete. Until they are
115 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
116 * it needs to zero out portions of the start and/or end block. If 2 AIO
117 * threads are at work on the same unwritten block, they must be synchronized
118 * or one thread will zero the other's data, causing corruption.
121 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
123 struct super_block *sb = inode->i_sb;
124 int blockmask = sb->s_blocksize - 1;
126 if (pos >= i_size_read(inode))
129 if ((pos | iov_iter_alignment(from)) & blockmask)
135 /* Is IO overwriting allocated and initialized blocks? */
136 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
138 struct ext4_map_blocks map;
139 unsigned int blkbits = inode->i_blkbits;
142 if (pos + len > i_size_read(inode))
145 map.m_lblk = pos >> blkbits;
146 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
149 err = ext4_map_blocks(NULL, inode, &map, 0);
151 * 'err==len' means that all of the blocks have been preallocated,
152 * regardless of whether they have been initialized or not. To exclude
153 * unwritten extents, we need to check m_flags.
155 return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
158 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
160 struct inode *inode = file_inode(iocb->ki_filp);
163 ret = generic_write_checks(iocb, from);
167 * If we have encountered a bitmap-format file, the size limit
168 * is smaller than s_maxbytes, which is for extent-mapped files.
170 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
171 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
173 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
175 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
177 return iov_iter_count(from);
182 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
184 struct inode *inode = file_inode(iocb->ki_filp);
187 if (!inode_trylock(inode)) {
188 if (iocb->ki_flags & IOCB_NOWAIT)
192 ret = ext4_write_checks(iocb, from);
195 ret = file_remove_privs(iocb->ki_filp);
198 ret = file_update_time(iocb->ki_filp);
202 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
206 ret = generic_write_sync(iocb, ret);
212 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
214 struct inode *inode = file_inode(iocb->ki_filp);
215 int o_direct = iocb->ki_flags & IOCB_DIRECT;
216 int unaligned_aio = 0;
220 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
225 return ext4_dax_write_iter(iocb, from);
227 if (!o_direct && (iocb->ki_flags & IOCB_NOWAIT))
230 if (!inode_trylock(inode)) {
231 if (iocb->ki_flags & IOCB_NOWAIT)
236 ret = ext4_write_checks(iocb, from);
241 * Unaligned direct AIO must be serialized among each other as zeroing
242 * of partial blocks of two competing unaligned AIOs can result in data
245 if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
246 !is_sync_kiocb(iocb) &&
247 ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
249 ext4_unwritten_wait(inode);
252 iocb->private = &overwrite;
253 /* Check whether we do a DIO overwrite or not */
254 if (o_direct && !unaligned_aio) {
255 if (ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from))) {
256 if (ext4_should_dioread_nolock(inode))
258 } else if (iocb->ki_flags & IOCB_NOWAIT) {
264 ret = __generic_file_write_iter(iocb, from);
268 ret = generic_write_sync(iocb, ret);
278 static int ext4_dax_huge_fault(struct vm_fault *vmf,
279 enum page_entry_size pe_size)
282 handle_t *handle = NULL;
283 struct inode *inode = file_inode(vmf->vma->vm_file);
284 struct super_block *sb = inode->i_sb;
287 * We have to distinguish real writes from writes which will result in a
288 * COW page; COW writes should *not* poke the journal (the file will not
289 * be changed). Doing so would cause unintended failures when mounted
292 * We check for VM_SHARED rather than vmf->cow_page since the latter is
293 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
294 * other sizes, dax_iomap_fault will handle splitting / fallback so that
295 * we eventually come back with a COW page.
297 bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
298 (vmf->vma->vm_flags & VM_SHARED);
301 sb_start_pagefault(sb);
302 file_update_time(vmf->vma->vm_file);
303 down_read(&EXT4_I(inode)->i_mmap_sem);
304 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
305 EXT4_DATA_TRANS_BLOCKS(sb));
307 down_read(&EXT4_I(inode)->i_mmap_sem);
310 result = dax_iomap_fault(vmf, pe_size, &ext4_iomap_ops);
312 result = VM_FAULT_SIGBUS;
315 ext4_journal_stop(handle);
316 up_read(&EXT4_I(inode)->i_mmap_sem);
317 sb_end_pagefault(sb);
319 up_read(&EXT4_I(inode)->i_mmap_sem);
325 static int ext4_dax_fault(struct vm_fault *vmf)
327 return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
330 static const struct vm_operations_struct ext4_dax_vm_ops = {
331 .fault = ext4_dax_fault,
332 .huge_fault = ext4_dax_huge_fault,
333 .page_mkwrite = ext4_dax_fault,
334 .pfn_mkwrite = ext4_dax_fault,
337 #define ext4_dax_vm_ops ext4_file_vm_ops
340 static const struct vm_operations_struct ext4_file_vm_ops = {
341 .fault = ext4_filemap_fault,
342 .map_pages = filemap_map_pages,
343 .page_mkwrite = ext4_page_mkwrite,
346 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
348 struct inode *inode = file->f_mapping->host;
350 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
354 if (IS_DAX(file_inode(file))) {
355 vma->vm_ops = &ext4_dax_vm_ops;
356 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
358 vma->vm_ops = &ext4_file_vm_ops;
363 static int ext4_file_open(struct inode * inode, struct file * filp)
365 struct super_block *sb = inode->i_sb;
366 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
367 struct vfsmount *mnt = filp->f_path.mnt;
373 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
376 if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
378 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
380 * Sample where the filesystem has been mounted and
381 * store it in the superblock for sysadmin convenience
382 * when trying to sort through large numbers of block
383 * devices or filesystem images.
385 memset(buf, 0, sizeof(buf));
387 path.dentry = mnt->mnt_root;
388 cp = d_path(&path, buf, sizeof(buf));
393 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
395 return PTR_ERR(handle);
396 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
397 err = ext4_journal_get_write_access(handle, sbi->s_sbh);
399 ext4_journal_stop(handle);
402 strlcpy(sbi->s_es->s_last_mounted, cp,
403 sizeof(sbi->s_es->s_last_mounted));
404 ext4_handle_dirty_super(handle, sb);
405 ext4_journal_stop(handle);
408 if (ext4_encrypted_inode(inode)) {
409 ret = fscrypt_get_encryption_info(inode);
412 if (!fscrypt_has_encryption_key(inode))
416 dir = dget_parent(file_dentry(filp));
417 if (ext4_encrypted_inode(d_inode(dir)) &&
418 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
419 ext4_warning(inode->i_sb,
420 "Inconsistent encryption contexts: %lu/%lu",
421 (unsigned long) d_inode(dir)->i_ino,
422 (unsigned long) inode->i_ino);
428 * Set up the jbd2_inode if we are opening the inode for
429 * writing and the journal is present
431 if (filp->f_mode & FMODE_WRITE) {
432 ret = ext4_inode_attach_jinode(inode);
437 filp->f_mode |= FMODE_NOWAIT;
438 return dquot_file_open(inode, filp);
442 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
443 * file rather than ext4_ext_walk_space() because we can introduce
444 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
445 * function. When extent status tree has been fully implemented, it will
446 * track all extent status for a file and we can directly use it to
447 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
451 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
452 * lookup page cache to check whether or not there has some data between
453 * [startoff, endoff] because, if this range contains an unwritten extent,
454 * we determine this extent as a data or a hole according to whether the
455 * page cache has data or not.
457 static int ext4_find_unwritten_pgoff(struct inode *inode,
463 unsigned int blkbits;
471 blkbits = inode->i_sb->s_blocksize_bits;
474 endoff = (loff_t)end_blk << blkbits;
476 index = startoff >> PAGE_SHIFT;
477 end = (endoff - 1) >> PAGE_SHIFT;
479 pagevec_init(&pvec, 0);
482 unsigned long nr_pages;
484 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
489 for (i = 0; i < nr_pages; i++) {
490 struct page *page = pvec.pages[i];
491 struct buffer_head *bh, *head;
494 * If current offset is smaller than the page offset,
495 * there is a hole at this offset.
497 if (whence == SEEK_HOLE && lastoff < endoff &&
498 lastoff < page_offset(pvec.pages[i])) {
506 if (unlikely(page->mapping != inode->i_mapping)) {
511 if (!page_has_buffers(page)) {
516 if (page_has_buffers(page)) {
517 lastoff = page_offset(page);
518 bh = head = page_buffers(page);
520 if (lastoff + bh->b_size <= startoff)
522 if (buffer_uptodate(bh) ||
523 buffer_unwritten(bh)) {
524 if (whence == SEEK_DATA)
527 if (whence == SEEK_HOLE)
531 *offset = max_t(loff_t,
537 lastoff += bh->b_size;
538 bh = bh->b_this_page;
539 } while (bh != head);
542 lastoff = page_offset(page) + PAGE_SIZE;
546 pagevec_release(&pvec);
547 } while (index <= end);
549 /* There are no pages upto endoff - that would be a hole in there. */
550 if (whence == SEEK_HOLE && lastoff < endoff) {
555 pagevec_release(&pvec);
560 * ext4_seek_data() retrieves the offset for SEEK_DATA.
562 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
564 struct inode *inode = file->f_mapping->host;
565 struct extent_status es;
566 ext4_lblk_t start, last, end;
567 loff_t dataoff, isize;
573 isize = i_size_read(inode);
574 if (offset < 0 || offset >= isize) {
579 blkbits = inode->i_sb->s_blocksize_bits;
580 start = offset >> blkbits;
582 end = isize >> blkbits;
586 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
588 /* No extent found -> no data */
597 dataoff = (loff_t)last << blkbits;
598 if (!ext4_es_is_unwritten(&es))
602 * If there is a unwritten extent at this offset,
603 * it will be as a data or a hole according to page
604 * cache that has data or not.
606 if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
607 es.es_lblk + es.es_len, &dataoff))
610 dataoff = (loff_t)last << blkbits;
612 } while (last <= end);
619 return vfs_setpos(file, dataoff, maxsize);
623 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
625 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
627 struct inode *inode = file->f_mapping->host;
628 struct extent_status es;
629 ext4_lblk_t start, last, end;
630 loff_t holeoff, isize;
636 isize = i_size_read(inode);
637 if (offset < 0 || offset >= isize) {
642 blkbits = inode->i_sb->s_blocksize_bits;
643 start = offset >> blkbits;
645 end = isize >> blkbits;
649 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
655 if (ret == 0 || es.es_lblk > last) {
657 holeoff = (loff_t)last << blkbits;
661 * If there is a unwritten extent at this offset,
662 * it will be as a data or a hole according to page
663 * cache that has data or not.
665 if (ext4_es_is_unwritten(&es) &&
666 ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
667 last + es.es_len, &holeoff))
671 holeoff = (loff_t)last << blkbits;
673 } while (last <= end);
680 return vfs_setpos(file, holeoff, maxsize);
684 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
685 * by calling generic_file_llseek_size() with the appropriate maxbytes
688 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
690 struct inode *inode = file->f_mapping->host;
693 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
694 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
696 maxbytes = inode->i_sb->s_maxbytes;
702 return generic_file_llseek_size(file, offset, whence,
703 maxbytes, i_size_read(inode));
705 return ext4_seek_data(file, offset, maxbytes);
707 return ext4_seek_hole(file, offset, maxbytes);
713 const struct file_operations ext4_file_operations = {
714 .llseek = ext4_llseek,
715 .read_iter = ext4_file_read_iter,
716 .write_iter = ext4_file_write_iter,
717 .unlocked_ioctl = ext4_ioctl,
719 .compat_ioctl = ext4_compat_ioctl,
721 .mmap = ext4_file_mmap,
722 .open = ext4_file_open,
723 .release = ext4_release_file,
724 .fsync = ext4_sync_file,
725 .get_unmapped_area = thp_get_unmapped_area,
726 .splice_read = generic_file_splice_read,
727 .splice_write = iter_file_splice_write,
728 .fallocate = ext4_fallocate,
731 const struct inode_operations ext4_file_inode_operations = {
732 .setattr = ext4_setattr,
733 .getattr = ext4_file_getattr,
734 .listxattr = ext4_listxattr,
735 .get_acl = ext4_get_acl,
736 .set_acl = ext4_set_acl,
737 .fiemap = ext4_fiemap,