2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/compat.h>
31 #include <linux/slab.h>
32 #include <linux/btrfs.h>
33 #include <linux/uio.h>
34 #include <linux/iversion.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
44 #include "compression.h"
46 static struct kmem_cache *btrfs_inode_defrag_cachep;
48 * when auto defrag is enabled we
49 * queue up these defrag structs to remember which
50 * inodes need defragging passes
53 struct rb_node rb_node;
57 * transid where the defrag was added, we search for
58 * extents newer than this
65 /* last offset we were able to defrag */
68 /* if we've wrapped around back to zero once already */
72 static int __compare_inode_defrag(struct inode_defrag *defrag1,
73 struct inode_defrag *defrag2)
75 if (defrag1->root > defrag2->root)
77 else if (defrag1->root < defrag2->root)
79 else if (defrag1->ino > defrag2->ino)
81 else if (defrag1->ino < defrag2->ino)
87 /* pop a record for an inode into the defrag tree. The lock
88 * must be held already
90 * If you're inserting a record for an older transid than an
91 * existing record, the transid already in the tree is lowered
93 * If an existing record is found the defrag item you
96 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
97 struct inode_defrag *defrag)
99 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
100 struct inode_defrag *entry;
102 struct rb_node *parent = NULL;
105 p = &fs_info->defrag_inodes.rb_node;
108 entry = rb_entry(parent, struct inode_defrag, rb_node);
110 ret = __compare_inode_defrag(defrag, entry);
112 p = &parent->rb_left;
114 p = &parent->rb_right;
116 /* if we're reinserting an entry for
117 * an old defrag run, make sure to
118 * lower the transid of our existing record
120 if (defrag->transid < entry->transid)
121 entry->transid = defrag->transid;
122 if (defrag->last_offset > entry->last_offset)
123 entry->last_offset = defrag->last_offset;
127 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
128 rb_link_node(&defrag->rb_node, parent, p);
129 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
133 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
135 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
138 if (btrfs_fs_closing(fs_info))
145 * insert a defrag record for this inode if auto defrag is
148 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
149 struct btrfs_inode *inode)
151 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
152 struct btrfs_root *root = inode->root;
153 struct inode_defrag *defrag;
157 if (!__need_auto_defrag(fs_info))
160 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
164 transid = trans->transid;
166 transid = inode->root->last_trans;
168 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
172 defrag->ino = btrfs_ino(inode);
173 defrag->transid = transid;
174 defrag->root = root->root_key.objectid;
176 spin_lock(&fs_info->defrag_inodes_lock);
177 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
179 * If we set IN_DEFRAG flag and evict the inode from memory,
180 * and then re-read this inode, this new inode doesn't have
181 * IN_DEFRAG flag. At the case, we may find the existed defrag.
183 ret = __btrfs_add_inode_defrag(inode, defrag);
185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
189 spin_unlock(&fs_info->defrag_inodes_lock);
194 * Requeue the defrag object. If there is a defrag object that points to
195 * the same inode in the tree, we will merge them together (by
196 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
198 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
199 struct inode_defrag *defrag)
201 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
204 if (!__need_auto_defrag(fs_info))
208 * Here we don't check the IN_DEFRAG flag, because we need merge
211 spin_lock(&fs_info->defrag_inodes_lock);
212 ret = __btrfs_add_inode_defrag(inode, defrag);
213 spin_unlock(&fs_info->defrag_inodes_lock);
218 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
222 * pick the defragable inode that we want, if it doesn't exist, we will get
225 static struct inode_defrag *
226 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
228 struct inode_defrag *entry = NULL;
229 struct inode_defrag tmp;
231 struct rb_node *parent = NULL;
237 spin_lock(&fs_info->defrag_inodes_lock);
238 p = fs_info->defrag_inodes.rb_node;
241 entry = rb_entry(parent, struct inode_defrag, rb_node);
243 ret = __compare_inode_defrag(&tmp, entry);
247 p = parent->rb_right;
252 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
253 parent = rb_next(parent);
255 entry = rb_entry(parent, struct inode_defrag, rb_node);
261 rb_erase(parent, &fs_info->defrag_inodes);
262 spin_unlock(&fs_info->defrag_inodes_lock);
266 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
268 struct inode_defrag *defrag;
269 struct rb_node *node;
271 spin_lock(&fs_info->defrag_inodes_lock);
272 node = rb_first(&fs_info->defrag_inodes);
274 rb_erase(node, &fs_info->defrag_inodes);
275 defrag = rb_entry(node, struct inode_defrag, rb_node);
276 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
278 cond_resched_lock(&fs_info->defrag_inodes_lock);
280 node = rb_first(&fs_info->defrag_inodes);
282 spin_unlock(&fs_info->defrag_inodes_lock);
285 #define BTRFS_DEFRAG_BATCH 1024
287 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
288 struct inode_defrag *defrag)
290 struct btrfs_root *inode_root;
292 struct btrfs_key key;
293 struct btrfs_ioctl_defrag_range_args range;
299 key.objectid = defrag->root;
300 key.type = BTRFS_ROOT_ITEM_KEY;
301 key.offset = (u64)-1;
303 index = srcu_read_lock(&fs_info->subvol_srcu);
305 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
306 if (IS_ERR(inode_root)) {
307 ret = PTR_ERR(inode_root);
311 key.objectid = defrag->ino;
312 key.type = BTRFS_INODE_ITEM_KEY;
314 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
316 ret = PTR_ERR(inode);
319 srcu_read_unlock(&fs_info->subvol_srcu, index);
321 /* do a chunk of defrag */
322 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
323 memset(&range, 0, sizeof(range));
325 range.start = defrag->last_offset;
327 sb_start_write(fs_info->sb);
328 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
330 sb_end_write(fs_info->sb);
332 * if we filled the whole defrag batch, there
333 * must be more work to do. Queue this defrag
336 if (num_defrag == BTRFS_DEFRAG_BATCH) {
337 defrag->last_offset = range.start;
338 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
339 } else if (defrag->last_offset && !defrag->cycled) {
341 * we didn't fill our defrag batch, but
342 * we didn't start at zero. Make sure we loop
343 * around to the start of the file.
345 defrag->last_offset = 0;
347 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
349 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
355 srcu_read_unlock(&fs_info->subvol_srcu, index);
356 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
361 * run through the list of inodes in the FS that need
364 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
366 struct inode_defrag *defrag;
368 u64 root_objectid = 0;
370 atomic_inc(&fs_info->defrag_running);
372 /* Pause the auto defragger. */
373 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
377 if (!__need_auto_defrag(fs_info))
380 /* find an inode to defrag */
381 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
384 if (root_objectid || first_ino) {
393 first_ino = defrag->ino + 1;
394 root_objectid = defrag->root;
396 __btrfs_run_defrag_inode(fs_info, defrag);
398 atomic_dec(&fs_info->defrag_running);
401 * during unmount, we use the transaction_wait queue to
402 * wait for the defragger to stop
404 wake_up(&fs_info->transaction_wait);
408 /* simple helper to fault in pages and copy. This should go away
409 * and be replaced with calls into generic code.
411 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
412 struct page **prepared_pages,
416 size_t total_copied = 0;
418 int offset = pos & (PAGE_SIZE - 1);
420 while (write_bytes > 0) {
421 size_t count = min_t(size_t,
422 PAGE_SIZE - offset, write_bytes);
423 struct page *page = prepared_pages[pg];
425 * Copy data from userspace to the current page
427 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
429 /* Flush processor's dcache for this page */
430 flush_dcache_page(page);
433 * if we get a partial write, we can end up with
434 * partially up to date pages. These add
435 * a lot of complexity, so make sure they don't
436 * happen by forcing this copy to be retried.
438 * The rest of the btrfs_file_write code will fall
439 * back to page at a time copies after we return 0.
441 if (!PageUptodate(page) && copied < count)
444 iov_iter_advance(i, copied);
445 write_bytes -= copied;
446 total_copied += copied;
448 /* Return to btrfs_file_write_iter to fault page */
449 if (unlikely(copied == 0))
452 if (copied < PAGE_SIZE - offset) {
463 * unlocks pages after btrfs_file_write is done with them
465 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
468 for (i = 0; i < num_pages; i++) {
469 /* page checked is some magic around finding pages that
470 * have been modified without going through btrfs_set_page_dirty
471 * clear it here. There should be no need to mark the pages
472 * accessed as prepare_pages should have marked them accessed
473 * in prepare_pages via find_or_create_page()
475 ClearPageChecked(pages[i]);
476 unlock_page(pages[i]);
481 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
484 struct extent_state **cached_state)
486 u64 search_start = start;
487 const u64 end = start + len - 1;
489 while (search_start < end) {
490 const u64 search_len = end - search_start + 1;
491 struct extent_map *em;
495 em = btrfs_get_extent(inode, NULL, 0, search_start,
500 if (em->block_start != EXTENT_MAP_HOLE)
504 if (em->start < search_start)
505 em_len -= search_start - em->start;
506 if (em_len > search_len)
509 ret = set_extent_bit(&inode->io_tree, search_start,
510 search_start + em_len - 1,
512 NULL, cached_state, GFP_NOFS);
514 search_start = extent_map_end(em);
523 * after copy_from_user, pages need to be dirtied and we need to make
524 * sure holes are created between the current EOF and the start of
525 * any next extents (if required).
527 * this also makes the decision about creating an inline extent vs
528 * doing real data extents, marking pages dirty and delalloc as required.
530 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
531 size_t num_pages, loff_t pos, size_t write_bytes,
532 struct extent_state **cached)
534 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
539 u64 end_of_last_block;
540 u64 end_pos = pos + write_bytes;
541 loff_t isize = i_size_read(inode);
542 unsigned int extra_bits = 0;
544 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
545 num_bytes = round_up(write_bytes + pos - start_pos,
546 fs_info->sectorsize);
548 end_of_last_block = start_pos + num_bytes - 1;
550 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
551 if (start_pos >= isize &&
552 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
554 * There can't be any extents following eof in this case
555 * so just set the delalloc new bit for the range
558 extra_bits |= EXTENT_DELALLOC_NEW;
560 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
568 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
569 extra_bits, cached, 0);
573 for (i = 0; i < num_pages; i++) {
574 struct page *p = pages[i];
581 * we've only changed i_size in ram, and we haven't updated
582 * the disk i_size. There is no need to log the inode
586 i_size_write(inode, end_pos);
591 * this drops all the extents in the cache that intersect the range
592 * [start, end]. Existing extents are split as required.
594 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
597 struct extent_map *em;
598 struct extent_map *split = NULL;
599 struct extent_map *split2 = NULL;
600 struct extent_map_tree *em_tree = &inode->extent_tree;
601 u64 len = end - start + 1;
609 WARN_ON(end < start);
610 if (end == (u64)-1) {
619 split = alloc_extent_map();
621 split2 = alloc_extent_map();
622 if (!split || !split2)
625 write_lock(&em_tree->lock);
626 em = lookup_extent_mapping(em_tree, start, len);
628 write_unlock(&em_tree->lock);
632 gen = em->generation;
633 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
634 if (testend && em->start + em->len >= start + len) {
636 write_unlock(&em_tree->lock);
639 start = em->start + em->len;
641 len = start + len - (em->start + em->len);
643 write_unlock(&em_tree->lock);
646 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
647 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
648 clear_bit(EXTENT_FLAG_LOGGING, &flags);
649 modified = !list_empty(&em->list);
653 if (em->start < start) {
654 split->start = em->start;
655 split->len = start - em->start;
657 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
658 split->orig_start = em->orig_start;
659 split->block_start = em->block_start;
662 split->block_len = em->block_len;
664 split->block_len = split->len;
665 split->orig_block_len = max(split->block_len,
667 split->ram_bytes = em->ram_bytes;
669 split->orig_start = split->start;
670 split->block_len = 0;
671 split->block_start = em->block_start;
672 split->orig_block_len = 0;
673 split->ram_bytes = split->len;
676 split->generation = gen;
677 split->bdev = em->bdev;
678 split->flags = flags;
679 split->compress_type = em->compress_type;
680 replace_extent_mapping(em_tree, em, split, modified);
681 free_extent_map(split);
685 if (testend && em->start + em->len > start + len) {
686 u64 diff = start + len - em->start;
688 split->start = start + len;
689 split->len = em->start + em->len - (start + len);
690 split->bdev = em->bdev;
691 split->flags = flags;
692 split->compress_type = em->compress_type;
693 split->generation = gen;
695 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
696 split->orig_block_len = max(em->block_len,
699 split->ram_bytes = em->ram_bytes;
701 split->block_len = em->block_len;
702 split->block_start = em->block_start;
703 split->orig_start = em->orig_start;
705 split->block_len = split->len;
706 split->block_start = em->block_start
708 split->orig_start = em->orig_start;
711 split->ram_bytes = split->len;
712 split->orig_start = split->start;
713 split->block_len = 0;
714 split->block_start = em->block_start;
715 split->orig_block_len = 0;
718 if (extent_map_in_tree(em)) {
719 replace_extent_mapping(em_tree, em, split,
722 ret = add_extent_mapping(em_tree, split,
724 ASSERT(ret == 0); /* Logic error */
726 free_extent_map(split);
730 if (extent_map_in_tree(em))
731 remove_extent_mapping(em_tree, em);
732 write_unlock(&em_tree->lock);
736 /* once for the tree*/
740 free_extent_map(split);
742 free_extent_map(split2);
746 * this is very complex, but the basic idea is to drop all extents
747 * in the range start - end. hint_block is filled in with a block number
748 * that would be a good hint to the block allocator for this file.
750 * If an extent intersects the range but is not entirely inside the range
751 * it is either truncated or split. Anything entirely inside the range
752 * is deleted from the tree.
754 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
755 struct btrfs_root *root, struct inode *inode,
756 struct btrfs_path *path, u64 start, u64 end,
757 u64 *drop_end, int drop_cache,
759 u32 extent_item_size,
762 struct btrfs_fs_info *fs_info = root->fs_info;
763 struct extent_buffer *leaf;
764 struct btrfs_file_extent_item *fi;
765 struct btrfs_key key;
766 struct btrfs_key new_key;
767 u64 ino = btrfs_ino(BTRFS_I(inode));
768 u64 search_start = start;
771 u64 extent_offset = 0;
773 u64 last_end = start;
779 int modify_tree = -1;
782 int leafs_visited = 0;
785 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
787 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
790 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
791 root == fs_info->tree_root);
794 ret = btrfs_lookup_file_extent(trans, root, path, ino,
795 search_start, modify_tree);
798 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
799 leaf = path->nodes[0];
800 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
801 if (key.objectid == ino &&
802 key.type == BTRFS_EXTENT_DATA_KEY)
808 leaf = path->nodes[0];
809 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
811 ret = btrfs_next_leaf(root, path);
819 leaf = path->nodes[0];
823 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
825 if (key.objectid > ino)
827 if (WARN_ON_ONCE(key.objectid < ino) ||
828 key.type < BTRFS_EXTENT_DATA_KEY) {
833 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
836 fi = btrfs_item_ptr(leaf, path->slots[0],
837 struct btrfs_file_extent_item);
838 extent_type = btrfs_file_extent_type(leaf, fi);
840 if (extent_type == BTRFS_FILE_EXTENT_REG ||
841 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
842 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
843 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
844 extent_offset = btrfs_file_extent_offset(leaf, fi);
845 extent_end = key.offset +
846 btrfs_file_extent_num_bytes(leaf, fi);
847 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
848 extent_end = key.offset +
849 btrfs_file_extent_inline_len(leaf,
857 * Don't skip extent items representing 0 byte lengths. They
858 * used to be created (bug) if while punching holes we hit
859 * -ENOSPC condition. So if we find one here, just ensure we
860 * delete it, otherwise we would insert a new file extent item
861 * with the same key (offset) as that 0 bytes length file
862 * extent item in the call to setup_items_for_insert() later
865 if (extent_end == key.offset && extent_end >= search_start) {
866 last_end = extent_end;
867 goto delete_extent_item;
870 if (extent_end <= search_start) {
876 search_start = max(key.offset, start);
877 if (recow || !modify_tree) {
879 btrfs_release_path(path);
884 * | - range to drop - |
885 * | -------- extent -------- |
887 if (start > key.offset && end < extent_end) {
889 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
894 memcpy(&new_key, &key, sizeof(new_key));
895 new_key.offset = start;
896 ret = btrfs_duplicate_item(trans, root, path,
898 if (ret == -EAGAIN) {
899 btrfs_release_path(path);
905 leaf = path->nodes[0];
906 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
907 struct btrfs_file_extent_item);
908 btrfs_set_file_extent_num_bytes(leaf, fi,
911 fi = btrfs_item_ptr(leaf, path->slots[0],
912 struct btrfs_file_extent_item);
914 extent_offset += start - key.offset;
915 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
916 btrfs_set_file_extent_num_bytes(leaf, fi,
918 btrfs_mark_buffer_dirty(leaf);
920 if (update_refs && disk_bytenr > 0) {
921 ret = btrfs_inc_extent_ref(trans, root,
922 disk_bytenr, num_bytes, 0,
923 root->root_key.objectid,
925 start - extent_offset);
926 BUG_ON(ret); /* -ENOMEM */
931 * From here on out we will have actually dropped something, so
932 * last_end can be updated.
934 last_end = extent_end;
937 * | ---- range to drop ----- |
938 * | -------- extent -------- |
940 if (start <= key.offset && end < extent_end) {
941 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
946 memcpy(&new_key, &key, sizeof(new_key));
947 new_key.offset = end;
948 btrfs_set_item_key_safe(fs_info, path, &new_key);
950 extent_offset += end - key.offset;
951 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
952 btrfs_set_file_extent_num_bytes(leaf, fi,
954 btrfs_mark_buffer_dirty(leaf);
955 if (update_refs && disk_bytenr > 0)
956 inode_sub_bytes(inode, end - key.offset);
960 search_start = extent_end;
962 * | ---- range to drop ----- |
963 * | -------- extent -------- |
965 if (start > key.offset && end >= extent_end) {
967 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
972 btrfs_set_file_extent_num_bytes(leaf, fi,
974 btrfs_mark_buffer_dirty(leaf);
975 if (update_refs && disk_bytenr > 0)
976 inode_sub_bytes(inode, extent_end - start);
977 if (end == extent_end)
985 * | ---- range to drop ----- |
986 * | ------ extent ------ |
988 if (start <= key.offset && end >= extent_end) {
991 del_slot = path->slots[0];
994 BUG_ON(del_slot + del_nr != path->slots[0]);
999 extent_type == BTRFS_FILE_EXTENT_INLINE) {
1000 inode_sub_bytes(inode,
1001 extent_end - key.offset);
1002 extent_end = ALIGN(extent_end,
1003 fs_info->sectorsize);
1004 } else if (update_refs && disk_bytenr > 0) {
1005 ret = btrfs_free_extent(trans, root,
1006 disk_bytenr, num_bytes, 0,
1007 root->root_key.objectid,
1008 key.objectid, key.offset -
1010 BUG_ON(ret); /* -ENOMEM */
1011 inode_sub_bytes(inode,
1012 extent_end - key.offset);
1015 if (end == extent_end)
1018 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1023 ret = btrfs_del_items(trans, root, path, del_slot,
1026 btrfs_abort_transaction(trans, ret);
1033 btrfs_release_path(path);
1040 if (!ret && del_nr > 0) {
1042 * Set path->slots[0] to first slot, so that after the delete
1043 * if items are move off from our leaf to its immediate left or
1044 * right neighbor leafs, we end up with a correct and adjusted
1045 * path->slots[0] for our insertion (if replace_extent != 0).
1047 path->slots[0] = del_slot;
1048 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1050 btrfs_abort_transaction(trans, ret);
1053 leaf = path->nodes[0];
1055 * If btrfs_del_items() was called, it might have deleted a leaf, in
1056 * which case it unlocked our path, so check path->locks[0] matches a
1059 if (!ret && replace_extent && leafs_visited == 1 &&
1060 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1061 path->locks[0] == BTRFS_WRITE_LOCK) &&
1062 btrfs_leaf_free_space(fs_info, leaf) >=
1063 sizeof(struct btrfs_item) + extent_item_size) {
1066 key.type = BTRFS_EXTENT_DATA_KEY;
1068 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1069 struct btrfs_key slot_key;
1071 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1072 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1075 setup_items_for_insert(root, path, &key,
1078 sizeof(struct btrfs_item) +
1079 extent_item_size, 1);
1083 if (!replace_extent || !(*key_inserted))
1084 btrfs_release_path(path);
1086 *drop_end = found ? min(end, last_end) : end;
1090 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1091 struct btrfs_root *root, struct inode *inode, u64 start,
1092 u64 end, int drop_cache)
1094 struct btrfs_path *path;
1097 path = btrfs_alloc_path();
1100 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1101 drop_cache, 0, 0, NULL);
1102 btrfs_free_path(path);
1106 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1107 u64 objectid, u64 bytenr, u64 orig_offset,
1108 u64 *start, u64 *end)
1110 struct btrfs_file_extent_item *fi;
1111 struct btrfs_key key;
1114 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1117 btrfs_item_key_to_cpu(leaf, &key, slot);
1118 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1121 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1122 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1123 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1124 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1125 btrfs_file_extent_compression(leaf, fi) ||
1126 btrfs_file_extent_encryption(leaf, fi) ||
1127 btrfs_file_extent_other_encoding(leaf, fi))
1130 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1131 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1134 *start = key.offset;
1140 * Mark extent in the range start - end as written.
1142 * This changes extent type from 'pre-allocated' to 'regular'. If only
1143 * part of extent is marked as written, the extent will be split into
1146 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1147 struct btrfs_inode *inode, u64 start, u64 end)
1149 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1150 struct btrfs_root *root = inode->root;
1151 struct extent_buffer *leaf;
1152 struct btrfs_path *path;
1153 struct btrfs_file_extent_item *fi;
1154 struct btrfs_key key;
1155 struct btrfs_key new_key;
1167 u64 ino = btrfs_ino(inode);
1169 path = btrfs_alloc_path();
1176 key.type = BTRFS_EXTENT_DATA_KEY;
1179 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1182 if (ret > 0 && path->slots[0] > 0)
1185 leaf = path->nodes[0];
1186 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1187 if (key.objectid != ino ||
1188 key.type != BTRFS_EXTENT_DATA_KEY) {
1190 btrfs_abort_transaction(trans, ret);
1193 fi = btrfs_item_ptr(leaf, path->slots[0],
1194 struct btrfs_file_extent_item);
1195 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1197 btrfs_abort_transaction(trans, ret);
1200 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1201 if (key.offset > start || extent_end < end) {
1203 btrfs_abort_transaction(trans, ret);
1207 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1208 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1209 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1210 memcpy(&new_key, &key, sizeof(new_key));
1212 if (start == key.offset && end < extent_end) {
1215 if (extent_mergeable(leaf, path->slots[0] - 1,
1216 ino, bytenr, orig_offset,
1217 &other_start, &other_end)) {
1218 new_key.offset = end;
1219 btrfs_set_item_key_safe(fs_info, path, &new_key);
1220 fi = btrfs_item_ptr(leaf, path->slots[0],
1221 struct btrfs_file_extent_item);
1222 btrfs_set_file_extent_generation(leaf, fi,
1224 btrfs_set_file_extent_num_bytes(leaf, fi,
1226 btrfs_set_file_extent_offset(leaf, fi,
1228 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1229 struct btrfs_file_extent_item);
1230 btrfs_set_file_extent_generation(leaf, fi,
1232 btrfs_set_file_extent_num_bytes(leaf, fi,
1234 btrfs_mark_buffer_dirty(leaf);
1239 if (start > key.offset && end == extent_end) {
1242 if (extent_mergeable(leaf, path->slots[0] + 1,
1243 ino, bytenr, orig_offset,
1244 &other_start, &other_end)) {
1245 fi = btrfs_item_ptr(leaf, path->slots[0],
1246 struct btrfs_file_extent_item);
1247 btrfs_set_file_extent_num_bytes(leaf, fi,
1248 start - key.offset);
1249 btrfs_set_file_extent_generation(leaf, fi,
1252 new_key.offset = start;
1253 btrfs_set_item_key_safe(fs_info, path, &new_key);
1255 fi = btrfs_item_ptr(leaf, path->slots[0],
1256 struct btrfs_file_extent_item);
1257 btrfs_set_file_extent_generation(leaf, fi,
1259 btrfs_set_file_extent_num_bytes(leaf, fi,
1261 btrfs_set_file_extent_offset(leaf, fi,
1262 start - orig_offset);
1263 btrfs_mark_buffer_dirty(leaf);
1268 while (start > key.offset || end < extent_end) {
1269 if (key.offset == start)
1272 new_key.offset = split;
1273 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1274 if (ret == -EAGAIN) {
1275 btrfs_release_path(path);
1279 btrfs_abort_transaction(trans, ret);
1283 leaf = path->nodes[0];
1284 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1285 struct btrfs_file_extent_item);
1286 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1287 btrfs_set_file_extent_num_bytes(leaf, fi,
1288 split - key.offset);
1290 fi = btrfs_item_ptr(leaf, path->slots[0],
1291 struct btrfs_file_extent_item);
1293 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1294 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1295 btrfs_set_file_extent_num_bytes(leaf, fi,
1296 extent_end - split);
1297 btrfs_mark_buffer_dirty(leaf);
1299 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
1300 0, root->root_key.objectid,
1303 btrfs_abort_transaction(trans, ret);
1307 if (split == start) {
1310 if (start != key.offset) {
1312 btrfs_abort_transaction(trans, ret);
1323 if (extent_mergeable(leaf, path->slots[0] + 1,
1324 ino, bytenr, orig_offset,
1325 &other_start, &other_end)) {
1327 btrfs_release_path(path);
1330 extent_end = other_end;
1331 del_slot = path->slots[0] + 1;
1333 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1334 0, root->root_key.objectid,
1337 btrfs_abort_transaction(trans, ret);
1343 if (extent_mergeable(leaf, path->slots[0] - 1,
1344 ino, bytenr, orig_offset,
1345 &other_start, &other_end)) {
1347 btrfs_release_path(path);
1350 key.offset = other_start;
1351 del_slot = path->slots[0];
1353 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1354 0, root->root_key.objectid,
1357 btrfs_abort_transaction(trans, ret);
1362 fi = btrfs_item_ptr(leaf, path->slots[0],
1363 struct btrfs_file_extent_item);
1364 btrfs_set_file_extent_type(leaf, fi,
1365 BTRFS_FILE_EXTENT_REG);
1366 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1367 btrfs_mark_buffer_dirty(leaf);
1369 fi = btrfs_item_ptr(leaf, del_slot - 1,
1370 struct btrfs_file_extent_item);
1371 btrfs_set_file_extent_type(leaf, fi,
1372 BTRFS_FILE_EXTENT_REG);
1373 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1374 btrfs_set_file_extent_num_bytes(leaf, fi,
1375 extent_end - key.offset);
1376 btrfs_mark_buffer_dirty(leaf);
1378 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1380 btrfs_abort_transaction(trans, ret);
1385 btrfs_free_path(path);
1390 * on error we return an unlocked page and the error value
1391 * on success we return a locked page and 0
1393 static int prepare_uptodate_page(struct inode *inode,
1394 struct page *page, u64 pos,
1395 bool force_uptodate)
1399 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1400 !PageUptodate(page)) {
1401 ret = btrfs_readpage(NULL, page);
1405 if (!PageUptodate(page)) {
1409 if (page->mapping != inode->i_mapping) {
1418 * this just gets pages into the page cache and locks them down.
1420 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1421 size_t num_pages, loff_t pos,
1422 size_t write_bytes, bool force_uptodate)
1425 unsigned long index = pos >> PAGE_SHIFT;
1426 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1430 for (i = 0; i < num_pages; i++) {
1432 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1433 mask | __GFP_WRITE);
1441 err = prepare_uptodate_page(inode, pages[i], pos,
1443 if (!err && i == num_pages - 1)
1444 err = prepare_uptodate_page(inode, pages[i],
1445 pos + write_bytes, false);
1448 if (err == -EAGAIN) {
1455 wait_on_page_writeback(pages[i]);
1460 while (faili >= 0) {
1461 unlock_page(pages[faili]);
1462 put_page(pages[faili]);
1470 * This function locks the extent and properly waits for data=ordered extents
1471 * to finish before allowing the pages to be modified if need.
1474 * 1 - the extent is locked
1475 * 0 - the extent is not locked, and everything is OK
1476 * -EAGAIN - need re-prepare the pages
1477 * the other < 0 number - Something wrong happens
1480 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1481 size_t num_pages, loff_t pos,
1483 u64 *lockstart, u64 *lockend,
1484 struct extent_state **cached_state)
1486 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1492 start_pos = round_down(pos, fs_info->sectorsize);
1493 last_pos = start_pos
1494 + round_up(pos + write_bytes - start_pos,
1495 fs_info->sectorsize) - 1;
1497 if (start_pos < inode->vfs_inode.i_size) {
1498 struct btrfs_ordered_extent *ordered;
1500 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1502 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1503 last_pos - start_pos + 1);
1505 ordered->file_offset + ordered->len > start_pos &&
1506 ordered->file_offset <= last_pos) {
1507 unlock_extent_cached(&inode->io_tree, start_pos,
1508 last_pos, cached_state);
1509 for (i = 0; i < num_pages; i++) {
1510 unlock_page(pages[i]);
1513 btrfs_start_ordered_extent(&inode->vfs_inode,
1515 btrfs_put_ordered_extent(ordered);
1519 btrfs_put_ordered_extent(ordered);
1520 clear_extent_bit(&inode->io_tree, start_pos, last_pos,
1521 EXTENT_DIRTY | EXTENT_DELALLOC |
1522 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1523 0, 0, cached_state);
1524 *lockstart = start_pos;
1525 *lockend = last_pos;
1529 for (i = 0; i < num_pages; i++) {
1530 if (clear_page_dirty_for_io(pages[i]))
1531 account_page_redirty(pages[i]);
1532 set_page_extent_mapped(pages[i]);
1533 WARN_ON(!PageLocked(pages[i]));
1539 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1540 size_t *write_bytes)
1542 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1543 struct btrfs_root *root = inode->root;
1544 struct btrfs_ordered_extent *ordered;
1545 u64 lockstart, lockend;
1549 ret = btrfs_start_write_no_snapshotting(root);
1553 lockstart = round_down(pos, fs_info->sectorsize);
1554 lockend = round_up(pos + *write_bytes,
1555 fs_info->sectorsize) - 1;
1558 lock_extent(&inode->io_tree, lockstart, lockend);
1559 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1560 lockend - lockstart + 1);
1564 unlock_extent(&inode->io_tree, lockstart, lockend);
1565 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1566 btrfs_put_ordered_extent(ordered);
1569 num_bytes = lockend - lockstart + 1;
1570 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1574 btrfs_end_write_no_snapshotting(root);
1576 *write_bytes = min_t(size_t, *write_bytes ,
1577 num_bytes - pos + lockstart);
1580 unlock_extent(&inode->io_tree, lockstart, lockend);
1585 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1589 struct inode *inode = file_inode(file);
1590 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1591 struct btrfs_root *root = BTRFS_I(inode)->root;
1592 struct page **pages = NULL;
1593 struct extent_state *cached_state = NULL;
1594 struct extent_changeset *data_reserved = NULL;
1595 u64 release_bytes = 0;
1598 size_t num_written = 0;
1601 bool only_release_metadata = false;
1602 bool force_page_uptodate = false;
1604 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1605 PAGE_SIZE / (sizeof(struct page *)));
1606 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1607 nrptrs = max(nrptrs, 8);
1608 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1612 while (iov_iter_count(i) > 0) {
1613 size_t offset = pos & (PAGE_SIZE - 1);
1614 size_t sector_offset;
1615 size_t write_bytes = min(iov_iter_count(i),
1616 nrptrs * (size_t)PAGE_SIZE -
1618 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1620 size_t reserve_bytes;
1623 size_t dirty_sectors;
1627 WARN_ON(num_pages > nrptrs);
1630 * Fault pages before locking them in prepare_pages
1631 * to avoid recursive lock
1633 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1638 sector_offset = pos & (fs_info->sectorsize - 1);
1639 reserve_bytes = round_up(write_bytes + sector_offset,
1640 fs_info->sectorsize);
1642 extent_changeset_release(data_reserved);
1643 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1646 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1647 BTRFS_INODE_PREALLOC)) &&
1648 check_can_nocow(BTRFS_I(inode), pos,
1649 &write_bytes) > 0) {
1651 * For nodata cow case, no need to reserve
1654 only_release_metadata = true;
1656 * our prealloc extent may be smaller than
1657 * write_bytes, so scale down.
1659 num_pages = DIV_ROUND_UP(write_bytes + offset,
1661 reserve_bytes = round_up(write_bytes +
1663 fs_info->sectorsize);
1669 WARN_ON(reserve_bytes == 0);
1670 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1673 if (!only_release_metadata)
1674 btrfs_free_reserved_data_space(inode,
1678 btrfs_end_write_no_snapshotting(root);
1682 release_bytes = reserve_bytes;
1685 * This is going to setup the pages array with the number of
1686 * pages we want, so we don't really need to worry about the
1687 * contents of pages from loop to loop
1689 ret = prepare_pages(inode, pages, num_pages,
1691 force_page_uptodate);
1693 btrfs_delalloc_release_extents(BTRFS_I(inode),
1698 extents_locked = lock_and_cleanup_extent_if_need(
1699 BTRFS_I(inode), pages,
1700 num_pages, pos, write_bytes, &lockstart,
1701 &lockend, &cached_state);
1702 if (extents_locked < 0) {
1703 if (extents_locked == -EAGAIN)
1705 btrfs_delalloc_release_extents(BTRFS_I(inode),
1707 ret = extents_locked;
1711 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1713 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1714 dirty_sectors = round_up(copied + sector_offset,
1715 fs_info->sectorsize);
1716 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1719 * if we have trouble faulting in the pages, fall
1720 * back to one page at a time
1722 if (copied < write_bytes)
1726 force_page_uptodate = true;
1730 force_page_uptodate = false;
1731 dirty_pages = DIV_ROUND_UP(copied + offset,
1735 if (num_sectors > dirty_sectors) {
1736 /* release everything except the sectors we dirtied */
1737 release_bytes -= dirty_sectors <<
1738 fs_info->sb->s_blocksize_bits;
1739 if (only_release_metadata) {
1740 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1745 __pos = round_down(pos,
1746 fs_info->sectorsize) +
1747 (dirty_pages << PAGE_SHIFT);
1748 btrfs_delalloc_release_space(inode,
1749 data_reserved, __pos,
1754 release_bytes = round_up(copied + sector_offset,
1755 fs_info->sectorsize);
1758 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1759 pos, copied, &cached_state);
1761 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1762 lockstart, lockend, &cached_state);
1763 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1765 btrfs_drop_pages(pages, num_pages);
1770 if (only_release_metadata)
1771 btrfs_end_write_no_snapshotting(root);
1773 if (only_release_metadata && copied > 0) {
1774 lockstart = round_down(pos,
1775 fs_info->sectorsize);
1776 lockend = round_up(pos + copied,
1777 fs_info->sectorsize) - 1;
1779 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1780 lockend, EXTENT_NORESERVE, NULL,
1782 only_release_metadata = false;
1785 btrfs_drop_pages(pages, num_pages);
1789 balance_dirty_pages_ratelimited(inode->i_mapping);
1790 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1791 btrfs_btree_balance_dirty(fs_info);
1794 num_written += copied;
1799 if (release_bytes) {
1800 if (only_release_metadata) {
1801 btrfs_end_write_no_snapshotting(root);
1802 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1805 btrfs_delalloc_release_space(inode, data_reserved,
1806 round_down(pos, fs_info->sectorsize),
1811 extent_changeset_free(data_reserved);
1812 return num_written ? num_written : ret;
1815 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1817 struct file *file = iocb->ki_filp;
1818 struct inode *inode = file_inode(file);
1819 loff_t pos = iocb->ki_pos;
1821 ssize_t written_buffered;
1825 written = generic_file_direct_write(iocb, from);
1827 if (written < 0 || !iov_iter_count(from))
1831 written_buffered = __btrfs_buffered_write(file, from, pos);
1832 if (written_buffered < 0) {
1833 err = written_buffered;
1837 * Ensure all data is persisted. We want the next direct IO read to be
1838 * able to read what was just written.
1840 endbyte = pos + written_buffered - 1;
1841 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1844 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1847 written += written_buffered;
1848 iocb->ki_pos = pos + written_buffered;
1849 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1850 endbyte >> PAGE_SHIFT);
1852 return written ? written : err;
1855 static void update_time_for_write(struct inode *inode)
1857 struct timespec now;
1859 if (IS_NOCMTIME(inode))
1862 now = current_time(inode);
1863 if (!timespec_equal(&inode->i_mtime, &now))
1864 inode->i_mtime = now;
1866 if (!timespec_equal(&inode->i_ctime, &now))
1867 inode->i_ctime = now;
1869 if (IS_I_VERSION(inode))
1870 inode_inc_iversion(inode);
1873 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1874 struct iov_iter *from)
1876 struct file *file = iocb->ki_filp;
1877 struct inode *inode = file_inode(file);
1878 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1879 struct btrfs_root *root = BTRFS_I(inode)->root;
1882 ssize_t num_written = 0;
1883 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1886 size_t count = iov_iter_count(from);
1890 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1891 (iocb->ki_flags & IOCB_NOWAIT))
1894 if (!inode_trylock(inode)) {
1895 if (iocb->ki_flags & IOCB_NOWAIT)
1900 err = generic_write_checks(iocb, from);
1902 inode_unlock(inode);
1907 if (iocb->ki_flags & IOCB_NOWAIT) {
1909 * We will allocate space in case nodatacow is not set,
1912 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1913 BTRFS_INODE_PREALLOC)) ||
1914 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1915 inode_unlock(inode);
1920 current->backing_dev_info = inode_to_bdi(inode);
1921 err = file_remove_privs(file);
1923 inode_unlock(inode);
1928 * If BTRFS flips readonly due to some impossible error
1929 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1930 * although we have opened a file as writable, we have
1931 * to stop this write operation to ensure FS consistency.
1933 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1934 inode_unlock(inode);
1940 * We reserve space for updating the inode when we reserve space for the
1941 * extent we are going to write, so we will enospc out there. We don't
1942 * need to start yet another transaction to update the inode as we will
1943 * update the inode when we finish writing whatever data we write.
1945 update_time_for_write(inode);
1947 start_pos = round_down(pos, fs_info->sectorsize);
1948 oldsize = i_size_read(inode);
1949 if (start_pos > oldsize) {
1950 /* Expand hole size to cover write data, preventing empty gap */
1951 end_pos = round_up(pos + count,
1952 fs_info->sectorsize);
1953 err = btrfs_cont_expand(inode, oldsize, end_pos);
1955 inode_unlock(inode);
1958 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1963 atomic_inc(&BTRFS_I(inode)->sync_writers);
1965 if (iocb->ki_flags & IOCB_DIRECT) {
1966 num_written = __btrfs_direct_write(iocb, from);
1968 num_written = __btrfs_buffered_write(file, from, pos);
1969 if (num_written > 0)
1970 iocb->ki_pos = pos + num_written;
1972 pagecache_isize_extended(inode, oldsize,
1973 i_size_read(inode));
1976 inode_unlock(inode);
1979 * We also have to set last_sub_trans to the current log transid,
1980 * otherwise subsequent syncs to a file that's been synced in this
1981 * transaction will appear to have already occurred.
1983 spin_lock(&BTRFS_I(inode)->lock);
1984 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1985 spin_unlock(&BTRFS_I(inode)->lock);
1986 if (num_written > 0)
1987 num_written = generic_write_sync(iocb, num_written);
1990 atomic_dec(&BTRFS_I(inode)->sync_writers);
1992 current->backing_dev_info = NULL;
1993 return num_written ? num_written : err;
1996 int btrfs_release_file(struct inode *inode, struct file *filp)
1998 struct btrfs_file_private *private = filp->private_data;
2000 if (private && private->trans)
2001 btrfs_ioctl_trans_end(filp);
2002 if (private && private->filldir_buf)
2003 kfree(private->filldir_buf);
2005 filp->private_data = NULL;
2008 * ordered_data_close is set by settattr when we are about to truncate
2009 * a file from a non-zero size to a zero size. This tries to
2010 * flush down new bytes that may have been written if the
2011 * application were using truncate to replace a file in place.
2013 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2014 &BTRFS_I(inode)->runtime_flags))
2015 filemap_flush(inode->i_mapping);
2019 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2022 struct blk_plug plug;
2025 * This is only called in fsync, which would do synchronous writes, so
2026 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2027 * multiple disks using raid profile, a large IO can be split to
2028 * several segments of stripe length (currently 64K).
2030 blk_start_plug(&plug);
2031 atomic_inc(&BTRFS_I(inode)->sync_writers);
2032 ret = btrfs_fdatawrite_range(inode, start, end);
2033 atomic_dec(&BTRFS_I(inode)->sync_writers);
2034 blk_finish_plug(&plug);
2040 * fsync call for both files and directories. This logs the inode into
2041 * the tree log instead of forcing full commits whenever possible.
2043 * It needs to call filemap_fdatawait so that all ordered extent updates are
2044 * in the metadata btree are up to date for copying to the log.
2046 * It drops the inode mutex before doing the tree log commit. This is an
2047 * important optimization for directories because holding the mutex prevents
2048 * new operations on the dir while we write to disk.
2050 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2052 struct dentry *dentry = file_dentry(file);
2053 struct inode *inode = d_inode(dentry);
2054 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2055 struct btrfs_root *root = BTRFS_I(inode)->root;
2056 struct btrfs_trans_handle *trans;
2057 struct btrfs_log_ctx ctx;
2059 bool full_sync = false;
2063 * The range length can be represented by u64, we have to do the typecasts
2064 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2066 len = (u64)end - (u64)start + 1;
2067 trace_btrfs_sync_file(file, datasync);
2069 btrfs_init_log_ctx(&ctx, inode);
2072 * We write the dirty pages in the range and wait until they complete
2073 * out of the ->i_mutex. If so, we can flush the dirty pages by
2074 * multi-task, and make the performance up. See
2075 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2077 ret = start_ordered_ops(inode, start, end);
2082 atomic_inc(&root->log_batch);
2083 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2084 &BTRFS_I(inode)->runtime_flags);
2086 * We might have have had more pages made dirty after calling
2087 * start_ordered_ops and before acquiring the inode's i_mutex.
2091 * For a full sync, we need to make sure any ordered operations
2092 * start and finish before we start logging the inode, so that
2093 * all extents are persisted and the respective file extent
2094 * items are in the fs/subvol btree.
2096 ret = btrfs_wait_ordered_range(inode, start, len);
2099 * Start any new ordered operations before starting to log the
2100 * inode. We will wait for them to finish in btrfs_sync_log().
2102 * Right before acquiring the inode's mutex, we might have new
2103 * writes dirtying pages, which won't immediately start the
2104 * respective ordered operations - that is done through the
2105 * fill_delalloc callbacks invoked from the writepage and
2106 * writepages address space operations. So make sure we start
2107 * all ordered operations before starting to log our inode. Not
2108 * doing this means that while logging the inode, writeback
2109 * could start and invoke writepage/writepages, which would call
2110 * the fill_delalloc callbacks (cow_file_range,
2111 * submit_compressed_extents). These callbacks add first an
2112 * extent map to the modified list of extents and then create
2113 * the respective ordered operation, which means in
2114 * tree-log.c:btrfs_log_inode() we might capture all existing
2115 * ordered operations (with btrfs_get_logged_extents()) before
2116 * the fill_delalloc callback adds its ordered operation, and by
2117 * the time we visit the modified list of extent maps (with
2118 * btrfs_log_changed_extents()), we see and process the extent
2119 * map they created. We then use the extent map to construct a
2120 * file extent item for logging without waiting for the
2121 * respective ordered operation to finish - this file extent
2122 * item points to a disk location that might not have yet been
2123 * written to, containing random data - so after a crash a log
2124 * replay will make our inode have file extent items that point
2125 * to disk locations containing invalid data, as we returned
2126 * success to userspace without waiting for the respective
2127 * ordered operation to finish, because it wasn't captured by
2128 * btrfs_get_logged_extents().
2130 ret = start_ordered_ops(inode, start, end);
2133 inode_unlock(inode);
2136 atomic_inc(&root->log_batch);
2139 * If the last transaction that changed this file was before the current
2140 * transaction and we have the full sync flag set in our inode, we can
2141 * bail out now without any syncing.
2143 * Note that we can't bail out if the full sync flag isn't set. This is
2144 * because when the full sync flag is set we start all ordered extents
2145 * and wait for them to fully complete - when they complete they update
2146 * the inode's last_trans field through:
2148 * btrfs_finish_ordered_io() ->
2149 * btrfs_update_inode_fallback() ->
2150 * btrfs_update_inode() ->
2151 * btrfs_set_inode_last_trans()
2153 * So we are sure that last_trans is up to date and can do this check to
2154 * bail out safely. For the fast path, when the full sync flag is not
2155 * set in our inode, we can not do it because we start only our ordered
2156 * extents and don't wait for them to complete (that is when
2157 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2158 * value might be less than or equals to fs_info->last_trans_committed,
2159 * and setting a speculative last_trans for an inode when a buffered
2160 * write is made (such as fs_info->generation + 1 for example) would not
2161 * be reliable since after setting the value and before fsync is called
2162 * any number of transactions can start and commit (transaction kthread
2163 * commits the current transaction periodically), and a transaction
2164 * commit does not start nor waits for ordered extents to complete.
2167 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2168 (full_sync && BTRFS_I(inode)->last_trans <=
2169 fs_info->last_trans_committed) ||
2170 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2171 BTRFS_I(inode)->last_trans
2172 <= fs_info->last_trans_committed)) {
2174 * We've had everything committed since the last time we were
2175 * modified so clear this flag in case it was set for whatever
2176 * reason, it's no longer relevant.
2178 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2179 &BTRFS_I(inode)->runtime_flags);
2181 * An ordered extent might have started before and completed
2182 * already with io errors, in which case the inode was not
2183 * updated and we end up here. So check the inode's mapping
2184 * for any errors that might have happened since we last
2185 * checked called fsync.
2187 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2188 inode_unlock(inode);
2193 * ok we haven't committed the transaction yet, lets do a commit
2195 if (file->private_data)
2196 btrfs_ioctl_trans_end(file);
2199 * We use start here because we will need to wait on the IO to complete
2200 * in btrfs_sync_log, which could require joining a transaction (for
2201 * example checking cross references in the nocow path). If we use join
2202 * here we could get into a situation where we're waiting on IO to
2203 * happen that is blocked on a transaction trying to commit. With start
2204 * we inc the extwriter counter, so we wait for all extwriters to exit
2205 * before we start blocking join'ers. This comment is to keep somebody
2206 * from thinking they are super smart and changing this to
2207 * btrfs_join_transaction *cough*Josef*cough*.
2209 trans = btrfs_start_transaction(root, 0);
2210 if (IS_ERR(trans)) {
2211 ret = PTR_ERR(trans);
2212 inode_unlock(inode);
2217 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2219 /* Fallthrough and commit/free transaction. */
2223 /* we've logged all the items and now have a consistent
2224 * version of the file in the log. It is possible that
2225 * someone will come in and modify the file, but that's
2226 * fine because the log is consistent on disk, and we
2227 * have references to all of the file's extents
2229 * It is possible that someone will come in and log the
2230 * file again, but that will end up using the synchronization
2231 * inside btrfs_sync_log to keep things safe.
2233 inode_unlock(inode);
2236 * If any of the ordered extents had an error, just return it to user
2237 * space, so that the application knows some writes didn't succeed and
2238 * can take proper action (retry for e.g.). Blindly committing the
2239 * transaction in this case, would fool userspace that everything was
2240 * successful. And we also want to make sure our log doesn't contain
2241 * file extent items pointing to extents that weren't fully written to -
2242 * just like in the non fast fsync path, where we check for the ordered
2243 * operation's error flag before writing to the log tree and return -EIO
2244 * if any of them had this flag set (btrfs_wait_ordered_range) -
2245 * therefore we need to check for errors in the ordered operations,
2246 * which are indicated by ctx.io_err.
2249 btrfs_end_transaction(trans);
2254 if (ret != BTRFS_NO_LOG_SYNC) {
2256 ret = btrfs_sync_log(trans, root, &ctx);
2258 ret = btrfs_end_transaction(trans);
2263 ret = btrfs_wait_ordered_range(inode, start, len);
2265 btrfs_end_transaction(trans);
2269 ret = btrfs_commit_transaction(trans);
2271 ret = btrfs_end_transaction(trans);
2274 ASSERT(list_empty(&ctx.list));
2275 err = file_check_and_advance_wb_err(file);
2278 return ret > 0 ? -EIO : ret;
2281 static const struct vm_operations_struct btrfs_file_vm_ops = {
2282 .fault = filemap_fault,
2283 .map_pages = filemap_map_pages,
2284 .page_mkwrite = btrfs_page_mkwrite,
2287 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2289 struct address_space *mapping = filp->f_mapping;
2291 if (!mapping->a_ops->readpage)
2294 file_accessed(filp);
2295 vma->vm_ops = &btrfs_file_vm_ops;
2300 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2301 int slot, u64 start, u64 end)
2303 struct btrfs_file_extent_item *fi;
2304 struct btrfs_key key;
2306 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2309 btrfs_item_key_to_cpu(leaf, &key, slot);
2310 if (key.objectid != btrfs_ino(inode) ||
2311 key.type != BTRFS_EXTENT_DATA_KEY)
2314 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2316 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2319 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2322 if (key.offset == end)
2324 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2329 static int fill_holes(struct btrfs_trans_handle *trans,
2330 struct btrfs_inode *inode,
2331 struct btrfs_path *path, u64 offset, u64 end)
2333 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
2334 struct btrfs_root *root = inode->root;
2335 struct extent_buffer *leaf;
2336 struct btrfs_file_extent_item *fi;
2337 struct extent_map *hole_em;
2338 struct extent_map_tree *em_tree = &inode->extent_tree;
2339 struct btrfs_key key;
2342 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2345 key.objectid = btrfs_ino(inode);
2346 key.type = BTRFS_EXTENT_DATA_KEY;
2347 key.offset = offset;
2349 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2352 * We should have dropped this offset, so if we find it then
2353 * something has gone horribly wrong.
2360 leaf = path->nodes[0];
2361 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2365 fi = btrfs_item_ptr(leaf, path->slots[0],
2366 struct btrfs_file_extent_item);
2367 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2369 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2370 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2371 btrfs_set_file_extent_offset(leaf, fi, 0);
2372 btrfs_mark_buffer_dirty(leaf);
2376 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2379 key.offset = offset;
2380 btrfs_set_item_key_safe(fs_info, path, &key);
2381 fi = btrfs_item_ptr(leaf, path->slots[0],
2382 struct btrfs_file_extent_item);
2383 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2385 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2386 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2387 btrfs_set_file_extent_offset(leaf, fi, 0);
2388 btrfs_mark_buffer_dirty(leaf);
2391 btrfs_release_path(path);
2393 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2394 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2399 btrfs_release_path(path);
2401 hole_em = alloc_extent_map();
2403 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2404 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2406 hole_em->start = offset;
2407 hole_em->len = end - offset;
2408 hole_em->ram_bytes = hole_em->len;
2409 hole_em->orig_start = offset;
2411 hole_em->block_start = EXTENT_MAP_HOLE;
2412 hole_em->block_len = 0;
2413 hole_em->orig_block_len = 0;
2414 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2415 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2416 hole_em->generation = trans->transid;
2419 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2420 write_lock(&em_tree->lock);
2421 ret = add_extent_mapping(em_tree, hole_em, 1);
2422 write_unlock(&em_tree->lock);
2423 } while (ret == -EEXIST);
2424 free_extent_map(hole_em);
2426 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2427 &inode->runtime_flags);
2434 * Find a hole extent on given inode and change start/len to the end of hole
2435 * extent.(hole/vacuum extent whose em->start <= start &&
2436 * em->start + em->len > start)
2437 * When a hole extent is found, return 1 and modify start/len.
2439 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2441 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2442 struct extent_map *em;
2445 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2446 round_down(*start, fs_info->sectorsize),
2447 round_up(*len, fs_info->sectorsize), 0);
2451 /* Hole or vacuum extent(only exists in no-hole mode) */
2452 if (em->block_start == EXTENT_MAP_HOLE) {
2454 *len = em->start + em->len > *start + *len ?
2455 0 : *start + *len - em->start - em->len;
2456 *start = em->start + em->len;
2458 free_extent_map(em);
2462 static int btrfs_punch_hole_lock_range(struct inode *inode,
2463 const u64 lockstart,
2465 struct extent_state **cached_state)
2468 struct btrfs_ordered_extent *ordered;
2471 truncate_pagecache_range(inode, lockstart, lockend);
2473 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2475 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2478 * We need to make sure we have no ordered extents in this range
2479 * and nobody raced in and read a page in this range, if we did
2480 * we need to try again.
2483 (ordered->file_offset + ordered->len <= lockstart ||
2484 ordered->file_offset > lockend)) &&
2485 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2487 btrfs_put_ordered_extent(ordered);
2491 btrfs_put_ordered_extent(ordered);
2492 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2493 lockend, cached_state);
2494 ret = btrfs_wait_ordered_range(inode, lockstart,
2495 lockend - lockstart + 1);
2502 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2504 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2505 struct btrfs_root *root = BTRFS_I(inode)->root;
2506 struct extent_state *cached_state = NULL;
2507 struct btrfs_path *path;
2508 struct btrfs_block_rsv *rsv;
2509 struct btrfs_trans_handle *trans;
2514 u64 orig_start = offset;
2516 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2520 unsigned int rsv_count;
2522 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2524 bool truncated_block = false;
2525 bool updated_inode = false;
2527 ret = btrfs_wait_ordered_range(inode, offset, len);
2532 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2533 ret = find_first_non_hole(inode, &offset, &len);
2535 goto out_only_mutex;
2537 /* Already in a large hole */
2539 goto out_only_mutex;
2542 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2543 lockend = round_down(offset + len,
2544 btrfs_inode_sectorsize(inode)) - 1;
2545 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2546 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2548 * We needn't truncate any block which is beyond the end of the file
2549 * because we are sure there is no data there.
2552 * Only do this if we are in the same block and we aren't doing the
2555 if (same_block && len < fs_info->sectorsize) {
2556 if (offset < ino_size) {
2557 truncated_block = true;
2558 ret = btrfs_truncate_block(inode, offset, len, 0);
2562 goto out_only_mutex;
2565 /* zero back part of the first block */
2566 if (offset < ino_size) {
2567 truncated_block = true;
2568 ret = btrfs_truncate_block(inode, offset, 0, 0);
2570 inode_unlock(inode);
2575 /* Check the aligned pages after the first unaligned page,
2576 * if offset != orig_start, which means the first unaligned page
2577 * including several following pages are already in holes,
2578 * the extra check can be skipped */
2579 if (offset == orig_start) {
2580 /* after truncate page, check hole again */
2581 len = offset + len - lockstart;
2583 ret = find_first_non_hole(inode, &offset, &len);
2585 goto out_only_mutex;
2588 goto out_only_mutex;
2593 /* Check the tail unaligned part is in a hole */
2594 tail_start = lockend + 1;
2595 tail_len = offset + len - tail_start;
2597 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2598 if (unlikely(ret < 0))
2599 goto out_only_mutex;
2601 /* zero the front end of the last page */
2602 if (tail_start + tail_len < ino_size) {
2603 truncated_block = true;
2604 ret = btrfs_truncate_block(inode,
2605 tail_start + tail_len,
2608 goto out_only_mutex;
2613 if (lockend < lockstart) {
2615 goto out_only_mutex;
2618 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2621 inode_unlock(inode);
2622 goto out_only_mutex;
2625 path = btrfs_alloc_path();
2631 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2636 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2640 * 1 - update the inode
2641 * 1 - removing the extents in the range
2642 * 1 - adding the hole extent if no_holes isn't set
2644 rsv_count = no_holes ? 2 : 3;
2645 trans = btrfs_start_transaction(root, rsv_count);
2646 if (IS_ERR(trans)) {
2647 err = PTR_ERR(trans);
2651 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2654 trans->block_rsv = rsv;
2656 cur_offset = lockstart;
2657 len = lockend - cur_offset;
2658 while (cur_offset < lockend) {
2659 ret = __btrfs_drop_extents(trans, root, inode, path,
2660 cur_offset, lockend + 1,
2661 &drop_end, 1, 0, 0, NULL);
2665 trans->block_rsv = &fs_info->trans_block_rsv;
2667 if (cur_offset < drop_end && cur_offset < ino_size) {
2668 ret = fill_holes(trans, BTRFS_I(inode), path,
2669 cur_offset, drop_end);
2672 * If we failed then we didn't insert our hole
2673 * entries for the area we dropped, so now the
2674 * fs is corrupted, so we must abort the
2677 btrfs_abort_transaction(trans, ret);
2683 cur_offset = drop_end;
2685 ret = btrfs_update_inode(trans, root, inode);
2691 btrfs_end_transaction(trans);
2692 btrfs_btree_balance_dirty(fs_info);
2694 trans = btrfs_start_transaction(root, rsv_count);
2695 if (IS_ERR(trans)) {
2696 ret = PTR_ERR(trans);
2701 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2703 BUG_ON(ret); /* shouldn't happen */
2704 trans->block_rsv = rsv;
2706 ret = find_first_non_hole(inode, &cur_offset, &len);
2707 if (unlikely(ret < 0))
2720 trans->block_rsv = &fs_info->trans_block_rsv;
2722 * If we are using the NO_HOLES feature we might have had already an
2723 * hole that overlaps a part of the region [lockstart, lockend] and
2724 * ends at (or beyond) lockend. Since we have no file extent items to
2725 * represent holes, drop_end can be less than lockend and so we must
2726 * make sure we have an extent map representing the existing hole (the
2727 * call to __btrfs_drop_extents() might have dropped the existing extent
2728 * map representing the existing hole), otherwise the fast fsync path
2729 * will not record the existence of the hole region
2730 * [existing_hole_start, lockend].
2732 if (drop_end <= lockend)
2733 drop_end = lockend + 1;
2735 * Don't insert file hole extent item if it's for a range beyond eof
2736 * (because it's useless) or if it represents a 0 bytes range (when
2737 * cur_offset == drop_end).
2739 if (cur_offset < ino_size && cur_offset < drop_end) {
2740 ret = fill_holes(trans, BTRFS_I(inode), path,
2741 cur_offset, drop_end);
2743 /* Same comment as above. */
2744 btrfs_abort_transaction(trans, ret);
2754 inode_inc_iversion(inode);
2755 inode->i_mtime = inode->i_ctime = current_time(inode);
2757 trans->block_rsv = &fs_info->trans_block_rsv;
2758 ret = btrfs_update_inode(trans, root, inode);
2759 updated_inode = true;
2760 btrfs_end_transaction(trans);
2761 btrfs_btree_balance_dirty(fs_info);
2763 btrfs_free_path(path);
2764 btrfs_free_block_rsv(fs_info, rsv);
2766 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2769 if (!updated_inode && truncated_block && !ret && !err) {
2771 * If we only end up zeroing part of a page, we still need to
2772 * update the inode item, so that all the time fields are
2773 * updated as well as the necessary btrfs inode in memory fields
2774 * for detecting, at fsync time, if the inode isn't yet in the
2775 * log tree or it's there but not up to date.
2777 trans = btrfs_start_transaction(root, 1);
2778 if (IS_ERR(trans)) {
2779 err = PTR_ERR(trans);
2781 err = btrfs_update_inode(trans, root, inode);
2782 ret = btrfs_end_transaction(trans);
2785 inode_unlock(inode);
2791 /* Helper structure to record which range is already reserved */
2792 struct falloc_range {
2793 struct list_head list;
2799 * Helper function to add falloc range
2801 * Caller should have locked the larger range of extent containing
2804 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2806 struct falloc_range *prev = NULL;
2807 struct falloc_range *range = NULL;
2809 if (list_empty(head))
2813 * As fallocate iterate by bytenr order, we only need to check
2816 prev = list_entry(head->prev, struct falloc_range, list);
2817 if (prev->start + prev->len == start) {
2822 range = kmalloc(sizeof(*range), GFP_KERNEL);
2825 range->start = start;
2827 list_add_tail(&range->list, head);
2831 static int btrfs_fallocate_update_isize(struct inode *inode,
2835 struct btrfs_trans_handle *trans;
2836 struct btrfs_root *root = BTRFS_I(inode)->root;
2840 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2843 trans = btrfs_start_transaction(root, 1);
2845 return PTR_ERR(trans);
2847 inode->i_ctime = current_time(inode);
2848 i_size_write(inode, end);
2849 btrfs_ordered_update_i_size(inode, end, NULL);
2850 ret = btrfs_update_inode(trans, root, inode);
2851 ret2 = btrfs_end_transaction(trans);
2853 return ret ? ret : ret2;
2857 RANGE_BOUNDARY_WRITTEN_EXTENT = 0,
2858 RANGE_BOUNDARY_PREALLOC_EXTENT = 1,
2859 RANGE_BOUNDARY_HOLE = 2,
2862 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2865 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2866 struct extent_map *em;
2869 offset = round_down(offset, sectorsize);
2870 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2874 if (em->block_start == EXTENT_MAP_HOLE)
2875 ret = RANGE_BOUNDARY_HOLE;
2876 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2877 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2879 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2881 free_extent_map(em);
2885 static int btrfs_zero_range(struct inode *inode,
2890 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2891 struct extent_map *em;
2892 struct extent_changeset *data_reserved = NULL;
2895 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2896 u64 alloc_start = round_down(offset, sectorsize);
2897 u64 alloc_end = round_up(offset + len, sectorsize);
2898 u64 bytes_to_reserve = 0;
2899 bool space_reserved = false;
2901 inode_dio_wait(inode);
2903 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2904 alloc_start, alloc_end - alloc_start, 0);
2911 * Avoid hole punching and extent allocation for some cases. More cases
2912 * could be considered, but these are unlikely common and we keep things
2913 * as simple as possible for now. Also, intentionally, if the target
2914 * range contains one or more prealloc extents together with regular
2915 * extents and holes, we drop all the existing extents and allocate a
2916 * new prealloc extent, so that we get a larger contiguous disk extent.
2918 if (em->start <= alloc_start &&
2919 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2920 const u64 em_end = em->start + em->len;
2922 if (em_end >= offset + len) {
2924 * The whole range is already a prealloc extent,
2925 * do nothing except updating the inode's i_size if
2928 free_extent_map(em);
2929 ret = btrfs_fallocate_update_isize(inode, offset + len,
2934 * Part of the range is already a prealloc extent, so operate
2935 * only on the remaining part of the range.
2937 alloc_start = em_end;
2938 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2939 len = offset + len - alloc_start;
2940 offset = alloc_start;
2941 alloc_hint = em->block_start + em->len;
2943 free_extent_map(em);
2945 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2946 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2947 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2948 alloc_start, sectorsize, 0);
2954 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2955 free_extent_map(em);
2956 ret = btrfs_fallocate_update_isize(inode, offset + len,
2960 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2961 free_extent_map(em);
2962 ret = btrfs_truncate_block(inode, offset, len, 0);
2964 ret = btrfs_fallocate_update_isize(inode,
2969 free_extent_map(em);
2970 alloc_start = round_down(offset, sectorsize);
2971 alloc_end = alloc_start + sectorsize;
2975 alloc_start = round_up(offset, sectorsize);
2976 alloc_end = round_down(offset + len, sectorsize);
2979 * For unaligned ranges, check the pages at the boundaries, they might
2980 * map to an extent, in which case we need to partially zero them, or
2981 * they might map to a hole, in which case we need our allocation range
2984 if (!IS_ALIGNED(offset, sectorsize)) {
2985 ret = btrfs_zero_range_check_range_boundary(inode, offset);
2988 if (ret == RANGE_BOUNDARY_HOLE) {
2989 alloc_start = round_down(offset, sectorsize);
2991 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2992 ret = btrfs_truncate_block(inode, offset, 0, 0);
3000 if (!IS_ALIGNED(offset + len, sectorsize)) {
3001 ret = btrfs_zero_range_check_range_boundary(inode,
3005 if (ret == RANGE_BOUNDARY_HOLE) {
3006 alloc_end = round_up(offset + len, sectorsize);
3008 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3009 ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3018 if (alloc_start < alloc_end) {
3019 struct extent_state *cached_state = NULL;
3020 const u64 lockstart = alloc_start;
3021 const u64 lockend = alloc_end - 1;
3023 bytes_to_reserve = alloc_end - alloc_start;
3024 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3028 space_reserved = true;
3029 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3030 alloc_start, bytes_to_reserve);
3033 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3037 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3038 alloc_end - alloc_start,
3040 offset + len, &alloc_hint);
3041 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3042 lockend, &cached_state);
3043 /* btrfs_prealloc_file_range releases reserved space on error */
3045 space_reserved = false;
3049 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3051 if (ret && space_reserved)
3052 btrfs_free_reserved_data_space(inode, data_reserved,
3053 alloc_start, bytes_to_reserve);
3054 extent_changeset_free(data_reserved);
3059 static long btrfs_fallocate(struct file *file, int mode,
3060 loff_t offset, loff_t len)
3062 struct inode *inode = file_inode(file);
3063 struct extent_state *cached_state = NULL;
3064 struct extent_changeset *data_reserved = NULL;
3065 struct falloc_range *range;
3066 struct falloc_range *tmp;
3067 struct list_head reserve_list;
3075 struct extent_map *em;
3076 int blocksize = btrfs_inode_sectorsize(inode);
3079 alloc_start = round_down(offset, blocksize);
3080 alloc_end = round_up(offset + len, blocksize);
3081 cur_offset = alloc_start;
3083 /* Make sure we aren't being give some crap mode */
3084 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3085 FALLOC_FL_ZERO_RANGE))
3088 if (mode & FALLOC_FL_PUNCH_HOLE)
3089 return btrfs_punch_hole(inode, offset, len);
3092 * Only trigger disk allocation, don't trigger qgroup reserve
3094 * For qgroup space, it will be checked later.
3096 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3097 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3098 alloc_end - alloc_start);
3105 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3106 ret = inode_newsize_ok(inode, offset + len);
3112 * TODO: Move these two operations after we have checked
3113 * accurate reserved space, or fallocate can still fail but
3114 * with page truncated or size expanded.
3116 * But that's a minor problem and won't do much harm BTW.
3118 if (alloc_start > inode->i_size) {
3119 ret = btrfs_cont_expand(inode, i_size_read(inode),
3123 } else if (offset + len > inode->i_size) {
3125 * If we are fallocating from the end of the file onward we
3126 * need to zero out the end of the block if i_size lands in the
3127 * middle of a block.
3129 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3135 * wait for ordered IO before we have any locks. We'll loop again
3136 * below with the locks held.
3138 ret = btrfs_wait_ordered_range(inode, alloc_start,
3139 alloc_end - alloc_start);
3143 if (mode & FALLOC_FL_ZERO_RANGE) {
3144 ret = btrfs_zero_range(inode, offset, len, mode);
3145 inode_unlock(inode);
3149 locked_end = alloc_end - 1;
3151 struct btrfs_ordered_extent *ordered;
3153 /* the extent lock is ordered inside the running
3156 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3157 locked_end, &cached_state);
3158 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3161 ordered->file_offset + ordered->len > alloc_start &&
3162 ordered->file_offset < alloc_end) {
3163 btrfs_put_ordered_extent(ordered);
3164 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3165 alloc_start, locked_end,
3168 * we can't wait on the range with the transaction
3169 * running or with the extent lock held
3171 ret = btrfs_wait_ordered_range(inode, alloc_start,
3172 alloc_end - alloc_start);
3177 btrfs_put_ordered_extent(ordered);
3182 /* First, check if we exceed the qgroup limit */
3183 INIT_LIST_HEAD(&reserve_list);
3184 while (cur_offset < alloc_end) {
3185 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3186 alloc_end - cur_offset, 0);
3191 last_byte = min(extent_map_end(em), alloc_end);
3192 actual_end = min_t(u64, extent_map_end(em), offset + len);
3193 last_byte = ALIGN(last_byte, blocksize);
3194 if (em->block_start == EXTENT_MAP_HOLE ||
3195 (cur_offset >= inode->i_size &&
3196 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3197 ret = add_falloc_range(&reserve_list, cur_offset,
3198 last_byte - cur_offset);
3200 free_extent_map(em);
3203 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3204 cur_offset, last_byte - cur_offset);
3206 free_extent_map(em);
3211 * Do not need to reserve unwritten extent for this
3212 * range, free reserved data space first, otherwise
3213 * it'll result in false ENOSPC error.
3215 btrfs_free_reserved_data_space(inode, data_reserved,
3216 cur_offset, last_byte - cur_offset);
3218 free_extent_map(em);
3219 cur_offset = last_byte;
3223 * If ret is still 0, means we're OK to fallocate.
3224 * Or just cleanup the list and exit.
3226 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3228 ret = btrfs_prealloc_file_range(inode, mode,
3230 range->len, i_blocksize(inode),
3231 offset + len, &alloc_hint);
3233 btrfs_free_reserved_data_space(inode,
3234 data_reserved, range->start,
3236 list_del(&range->list);
3243 * We didn't need to allocate any more space, but we still extended the
3244 * size of the file so we need to update i_size and the inode item.
3246 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3248 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3251 inode_unlock(inode);
3252 /* Let go of our reservation. */
3253 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3254 btrfs_free_reserved_data_space(inode, data_reserved,
3255 alloc_start, alloc_end - cur_offset);
3256 extent_changeset_free(data_reserved);
3260 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3262 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3263 struct extent_map *em = NULL;
3264 struct extent_state *cached_state = NULL;
3271 if (inode->i_size == 0)
3275 * *offset can be negative, in this case we start finding DATA/HOLE from
3276 * the very start of the file.
3278 start = max_t(loff_t, 0, *offset);
3280 lockstart = round_down(start, fs_info->sectorsize);
3281 lockend = round_up(i_size_read(inode),
3282 fs_info->sectorsize);
3283 if (lockend <= lockstart)
3284 lockend = lockstart + fs_info->sectorsize;
3286 len = lockend - lockstart + 1;
3288 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3291 while (start < inode->i_size) {
3292 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3300 if (whence == SEEK_HOLE &&
3301 (em->block_start == EXTENT_MAP_HOLE ||
3302 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3304 else if (whence == SEEK_DATA &&
3305 (em->block_start != EXTENT_MAP_HOLE &&
3306 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3309 start = em->start + em->len;
3310 free_extent_map(em);
3314 free_extent_map(em);
3316 if (whence == SEEK_DATA && start >= inode->i_size)
3319 *offset = min_t(loff_t, start, inode->i_size);
3321 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3326 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3328 struct inode *inode = file->f_mapping->host;
3335 offset = generic_file_llseek(file, offset, whence);
3339 if (offset >= i_size_read(inode)) {
3340 inode_unlock(inode);
3344 ret = find_desired_extent(inode, &offset, whence);
3346 inode_unlock(inode);
3351 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3353 inode_unlock(inode);
3357 static int btrfs_file_open(struct inode *inode, struct file *filp)
3359 filp->f_mode |= FMODE_NOWAIT;
3360 return generic_file_open(inode, filp);
3363 const struct file_operations btrfs_file_operations = {
3364 .llseek = btrfs_file_llseek,
3365 .read_iter = generic_file_read_iter,
3366 .splice_read = generic_file_splice_read,
3367 .write_iter = btrfs_file_write_iter,
3368 .mmap = btrfs_file_mmap,
3369 .open = btrfs_file_open,
3370 .release = btrfs_release_file,
3371 .fsync = btrfs_sync_file,
3372 .fallocate = btrfs_fallocate,
3373 .unlocked_ioctl = btrfs_ioctl,
3374 #ifdef CONFIG_COMPAT
3375 .compat_ioctl = btrfs_compat_ioctl,
3377 .clone_file_range = btrfs_clone_file_range,
3378 .dedupe_file_range = btrfs_dedupe_file_range,
3381 void btrfs_auto_defrag_exit(void)
3383 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3386 int __init btrfs_auto_defrag_init(void)
3388 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3389 sizeof(struct inode_defrag), 0,
3392 if (!btrfs_inode_defrag_cachep)
3398 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3403 * So with compression we will find and lock a dirty page and clear the
3404 * first one as dirty, setup an async extent, and immediately return
3405 * with the entire range locked but with nobody actually marked with
3406 * writeback. So we can't just filemap_write_and_wait_range() and
3407 * expect it to work since it will just kick off a thread to do the
3408 * actual work. So we need to call filemap_fdatawrite_range _again_
3409 * since it will wait on the page lock, which won't be unlocked until
3410 * after the pages have been marked as writeback and so we're good to go
3411 * from there. We have to do this otherwise we'll miss the ordered
3412 * extents and that results in badness. Please Josef, do not think you
3413 * know better and pull this out at some point in the future, it is
3414 * right and you are wrong.
3416 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3417 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3418 &BTRFS_I(inode)->runtime_flags))
3419 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);