]> Git Repo - linux.git/blob - drivers/net/dsa/microchip/ksz_common.c
Merge branch 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / drivers / net / dsa / microchip / ksz_common.c
1 /*
2  * Microchip switch driver main logic
3  *
4  * Copyright (C) 2017
5  *
6  * Permission to use, copy, modify, and/or distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18
19 #include <linux/delay.h>
20 #include <linux/export.h>
21 #include <linux/gpio.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/platform_data/microchip-ksz.h>
25 #include <linux/phy.h>
26 #include <linux/etherdevice.h>
27 #include <linux/if_bridge.h>
28 #include <net/dsa.h>
29 #include <net/switchdev.h>
30
31 #include "ksz_priv.h"
32
33 static const struct {
34         int index;
35         char string[ETH_GSTRING_LEN];
36 } mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
37         { 0x00, "rx_hi" },
38         { 0x01, "rx_undersize" },
39         { 0x02, "rx_fragments" },
40         { 0x03, "rx_oversize" },
41         { 0x04, "rx_jabbers" },
42         { 0x05, "rx_symbol_err" },
43         { 0x06, "rx_crc_err" },
44         { 0x07, "rx_align_err" },
45         { 0x08, "rx_mac_ctrl" },
46         { 0x09, "rx_pause" },
47         { 0x0A, "rx_bcast" },
48         { 0x0B, "rx_mcast" },
49         { 0x0C, "rx_ucast" },
50         { 0x0D, "rx_64_or_less" },
51         { 0x0E, "rx_65_127" },
52         { 0x0F, "rx_128_255" },
53         { 0x10, "rx_256_511" },
54         { 0x11, "rx_512_1023" },
55         { 0x12, "rx_1024_1522" },
56         { 0x13, "rx_1523_2000" },
57         { 0x14, "rx_2001" },
58         { 0x15, "tx_hi" },
59         { 0x16, "tx_late_col" },
60         { 0x17, "tx_pause" },
61         { 0x18, "tx_bcast" },
62         { 0x19, "tx_mcast" },
63         { 0x1A, "tx_ucast" },
64         { 0x1B, "tx_deferred" },
65         { 0x1C, "tx_total_col" },
66         { 0x1D, "tx_exc_col" },
67         { 0x1E, "tx_single_col" },
68         { 0x1F, "tx_mult_col" },
69         { 0x80, "rx_total" },
70         { 0x81, "tx_total" },
71         { 0x82, "rx_discards" },
72         { 0x83, "tx_discards" },
73 };
74
75 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
76 {
77         u8 data;
78
79         ksz_read8(dev, addr, &data);
80         if (set)
81                 data |= bits;
82         else
83                 data &= ~bits;
84         ksz_write8(dev, addr, data);
85 }
86
87 static void ksz_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
88 {
89         u32 data;
90
91         ksz_read32(dev, addr, &data);
92         if (set)
93                 data |= bits;
94         else
95                 data &= ~bits;
96         ksz_write32(dev, addr, data);
97 }
98
99 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
100                          bool set)
101 {
102         u32 addr;
103         u8 data;
104
105         addr = PORT_CTRL_ADDR(port, offset);
106         ksz_read8(dev, addr, &data);
107
108         if (set)
109                 data |= bits;
110         else
111                 data &= ~bits;
112
113         ksz_write8(dev, addr, data);
114 }
115
116 static void ksz_port_cfg32(struct ksz_device *dev, int port, int offset,
117                            u32 bits, bool set)
118 {
119         u32 addr;
120         u32 data;
121
122         addr = PORT_CTRL_ADDR(port, offset);
123         ksz_read32(dev, addr, &data);
124
125         if (set)
126                 data |= bits;
127         else
128                 data &= ~bits;
129
130         ksz_write32(dev, addr, data);
131 }
132
133 static int wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton, int timeout)
134 {
135         u8 data;
136
137         do {
138                 ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
139                 if (!(data & waiton))
140                         break;
141                 usleep_range(1, 10);
142         } while (timeout-- > 0);
143
144         if (timeout <= 0)
145                 return -ETIMEDOUT;
146
147         return 0;
148 }
149
150 static int get_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
151 {
152         struct ksz_device *dev = ds->priv;
153         int ret;
154
155         mutex_lock(&dev->vlan_mutex);
156
157         ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
158         ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
159
160         /* wait to be cleared */
161         ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
162         if (ret < 0) {
163                 dev_dbg(dev->dev, "Failed to read vlan table\n");
164                 goto exit;
165         }
166
167         ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
168         ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
169         ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
170
171         ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
172
173 exit:
174         mutex_unlock(&dev->vlan_mutex);
175
176         return ret;
177 }
178
179 static int set_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
180 {
181         struct ksz_device *dev = ds->priv;
182         int ret;
183
184         mutex_lock(&dev->vlan_mutex);
185
186         ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
187         ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
188         ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
189
190         ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
191         ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
192
193         /* wait to be cleared */
194         ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
195         if (ret < 0) {
196                 dev_dbg(dev->dev, "Failed to write vlan table\n");
197                 goto exit;
198         }
199
200         ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
201
202         /* update vlan cache table */
203         dev->vlan_cache[vid].table[0] = vlan_table[0];
204         dev->vlan_cache[vid].table[1] = vlan_table[1];
205         dev->vlan_cache[vid].table[2] = vlan_table[2];
206
207 exit:
208         mutex_unlock(&dev->vlan_mutex);
209
210         return ret;
211 }
212
213 static void read_table(struct dsa_switch *ds, u32 *table)
214 {
215         struct ksz_device *dev = ds->priv;
216
217         ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
218         ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
219         ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
220         ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
221 }
222
223 static void write_table(struct dsa_switch *ds, u32 *table)
224 {
225         struct ksz_device *dev = ds->priv;
226
227         ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
228         ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
229         ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
230         ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
231 }
232
233 static int wait_alu_ready(struct ksz_device *dev, u32 waiton, int timeout)
234 {
235         u32 data;
236
237         do {
238                 ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
239                 if (!(data & waiton))
240                         break;
241                 usleep_range(1, 10);
242         } while (timeout-- > 0);
243
244         if (timeout <= 0)
245                 return -ETIMEDOUT;
246
247         return 0;
248 }
249
250 static int wait_alu_sta_ready(struct ksz_device *dev, u32 waiton, int timeout)
251 {
252         u32 data;
253
254         do {
255                 ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
256                 if (!(data & waiton))
257                         break;
258                 usleep_range(1, 10);
259         } while (timeout-- > 0);
260
261         if (timeout <= 0)
262                 return -ETIMEDOUT;
263
264         return 0;
265 }
266
267 static int ksz_reset_switch(struct dsa_switch *ds)
268 {
269         struct ksz_device *dev = ds->priv;
270         u8 data8;
271         u16 data16;
272         u32 data32;
273
274         /* reset switch */
275         ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
276
277         /* turn off SPI DO Edge select */
278         ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
279         data8 &= ~SPI_AUTO_EDGE_DETECTION;
280         ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
281
282         /* default configuration */
283         ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
284         data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
285               SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
286         ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
287
288         /* disable interrupts */
289         ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
290         ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
291         ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
292
293         /* set broadcast storm protection 10% rate */
294         ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
295         data16 &= ~BROADCAST_STORM_RATE;
296         data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
297         ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);
298
299         return 0;
300 }
301
302 static void port_setup(struct ksz_device *dev, int port, bool cpu_port)
303 {
304         u8 data8;
305         u16 data16;
306
307         /* enable tag tail for host port */
308         if (cpu_port)
309                 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
310                              true);
311
312         ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
313
314         /* set back pressure */
315         ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
316
317         /* set flow control */
318         ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
319                      PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, true);
320
321         /* enable broadcast storm limit */
322         ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
323
324         /* disable DiffServ priority */
325         ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
326
327         /* replace priority */
328         ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
329                      false);
330         ksz_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
331                        MTI_PVID_REPLACE, false);
332
333         /* enable 802.1p priority */
334         ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
335
336         /* configure MAC to 1G & RGMII mode */
337         ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
338         data8 |= PORT_RGMII_ID_EG_ENABLE;
339         data8 &= ~PORT_MII_NOT_1GBIT;
340         data8 &= ~PORT_MII_SEL_M;
341         data8 |= PORT_RGMII_SEL;
342         ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
343
344         /* clear pending interrupts */
345         ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
346 }
347
348 static void ksz_config_cpu_port(struct dsa_switch *ds)
349 {
350         struct ksz_device *dev = ds->priv;
351         int i;
352
353         ds->num_ports = dev->port_cnt;
354
355         for (i = 0; i < ds->num_ports; i++) {
356                 if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
357                         dev->cpu_port = i;
358
359                         /* enable cpu port */
360                         port_setup(dev, i, true);
361                 }
362         }
363 }
364
365 static int ksz_setup(struct dsa_switch *ds)
366 {
367         struct ksz_device *dev = ds->priv;
368         int ret = 0;
369
370         dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
371                                        dev->num_vlans, GFP_KERNEL);
372         if (!dev->vlan_cache)
373                 return -ENOMEM;
374
375         ret = ksz_reset_switch(ds);
376         if (ret) {
377                 dev_err(ds->dev, "failed to reset switch\n");
378                 return ret;
379         }
380
381         /* accept packet up to 2000bytes */
382         ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
383
384         ksz_config_cpu_port(ds);
385
386         ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
387
388         /* queue based egress rate limit */
389         ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
390
391         /* start switch */
392         ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
393
394         return 0;
395 }
396
397 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
398                                                   int port)
399 {
400         return DSA_TAG_PROTO_KSZ;
401 }
402
403 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
404 {
405         struct ksz_device *dev = ds->priv;
406         u16 val = 0;
407
408         ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
409
410         return val;
411 }
412
413 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
414 {
415         struct ksz_device *dev = ds->priv;
416
417         ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
418
419         return 0;
420 }
421
422 static int ksz_enable_port(struct dsa_switch *ds, int port,
423                            struct phy_device *phy)
424 {
425         struct ksz_device *dev = ds->priv;
426
427         /* setup slave port */
428         port_setup(dev, port, false);
429
430         return 0;
431 }
432
433 static void ksz_disable_port(struct dsa_switch *ds, int port,
434                              struct phy_device *phy)
435 {
436         struct ksz_device *dev = ds->priv;
437
438         /* there is no port disable */
439         ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, true);
440 }
441
442 static int ksz_sset_count(struct dsa_switch *ds)
443 {
444         return TOTAL_SWITCH_COUNTER_NUM;
445 }
446
447 static void ksz_get_strings(struct dsa_switch *ds, int port, uint8_t *buf)
448 {
449         int i;
450
451         for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
452                 memcpy(buf + i * ETH_GSTRING_LEN, mib_names[i].string,
453                        ETH_GSTRING_LEN);
454         }
455 }
456
457 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
458                                   uint64_t *buf)
459 {
460         struct ksz_device *dev = ds->priv;
461         int i;
462         u32 data;
463         int timeout;
464
465         mutex_lock(&dev->stats_mutex);
466
467         for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
468                 data = MIB_COUNTER_READ;
469                 data |= ((mib_names[i].index & 0xFF) << MIB_COUNTER_INDEX_S);
470                 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
471
472                 timeout = 1000;
473                 do {
474                         ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
475                                     &data);
476                         usleep_range(1, 10);
477                         if (!(data & MIB_COUNTER_READ))
478                                 break;
479                 } while (timeout-- > 0);
480
481                 /* failed to read MIB. get out of loop */
482                 if (!timeout) {
483                         dev_dbg(dev->dev, "Failed to get MIB\n");
484                         break;
485                 }
486
487                 /* count resets upon read */
488                 ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
489
490                 dev->mib_value[i] += (uint64_t)data;
491                 buf[i] = dev->mib_value[i];
492         }
493
494         mutex_unlock(&dev->stats_mutex);
495 }
496
497 static void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
498 {
499         struct ksz_device *dev = ds->priv;
500         u8 data;
501
502         ksz_pread8(dev, port, P_STP_CTRL, &data);
503         data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
504
505         switch (state) {
506         case BR_STATE_DISABLED:
507                 data |= PORT_LEARN_DISABLE;
508                 break;
509         case BR_STATE_LISTENING:
510                 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
511                 break;
512         case BR_STATE_LEARNING:
513                 data |= PORT_RX_ENABLE;
514                 break;
515         case BR_STATE_FORWARDING:
516                 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
517                 break;
518         case BR_STATE_BLOCKING:
519                 data |= PORT_LEARN_DISABLE;
520                 break;
521         default:
522                 dev_err(ds->dev, "invalid STP state: %d\n", state);
523                 return;
524         }
525
526         ksz_pwrite8(dev, port, P_STP_CTRL, data);
527 }
528
529 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
530 {
531         struct ksz_device *dev = ds->priv;
532         u8 data8;
533
534         ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
535         data8 |= SW_FAST_AGING;
536         ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
537
538         data8 &= ~SW_FAST_AGING;
539         ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
540 }
541
542 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag)
543 {
544         struct ksz_device *dev = ds->priv;
545
546         if (flag) {
547                 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
548                              PORT_VLAN_LOOKUP_VID_0, true);
549                 ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, true);
550                 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
551         } else {
552                 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
553                 ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, false);
554                 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
555                              PORT_VLAN_LOOKUP_VID_0, false);
556         }
557
558         return 0;
559 }
560
561 static int ksz_port_vlan_prepare(struct dsa_switch *ds, int port,
562                                  const struct switchdev_obj_port_vlan *vlan)
563 {
564         /* nothing needed */
565
566         return 0;
567 }
568
569 static void ksz_port_vlan_add(struct dsa_switch *ds, int port,
570                               const struct switchdev_obj_port_vlan *vlan)
571 {
572         struct ksz_device *dev = ds->priv;
573         u32 vlan_table[3];
574         u16 vid;
575         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
576
577         for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
578                 if (get_vlan_table(ds, vid, vlan_table)) {
579                         dev_dbg(dev->dev, "Failed to get vlan table\n");
580                         return;
581                 }
582
583                 vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
584                 if (untagged)
585                         vlan_table[1] |= BIT(port);
586                 else
587                         vlan_table[1] &= ~BIT(port);
588                 vlan_table[1] &= ~(BIT(dev->cpu_port));
589
590                 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
591
592                 if (set_vlan_table(ds, vid, vlan_table)) {
593                         dev_dbg(dev->dev, "Failed to set vlan table\n");
594                         return;
595                 }
596
597                 /* change PVID */
598                 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
599                         ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
600         }
601 }
602
603 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
604                              const struct switchdev_obj_port_vlan *vlan)
605 {
606         struct ksz_device *dev = ds->priv;
607         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
608         u32 vlan_table[3];
609         u16 vid;
610         u16 pvid;
611
612         ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
613         pvid = pvid & 0xFFF;
614
615         for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
616                 if (get_vlan_table(ds, vid, vlan_table)) {
617                         dev_dbg(dev->dev, "Failed to get vlan table\n");
618                         return -ETIMEDOUT;
619                 }
620
621                 vlan_table[2] &= ~BIT(port);
622
623                 if (pvid == vid)
624                         pvid = 1;
625
626                 if (untagged)
627                         vlan_table[1] &= ~BIT(port);
628
629                 if (set_vlan_table(ds, vid, vlan_table)) {
630                         dev_dbg(dev->dev, "Failed to set vlan table\n");
631                         return -ETIMEDOUT;
632                 }
633         }
634
635         ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
636
637         return 0;
638 }
639
640 struct alu_struct {
641         /* entry 1 */
642         u8      is_static:1;
643         u8      is_src_filter:1;
644         u8      is_dst_filter:1;
645         u8      prio_age:3;
646         u32     _reserv_0_1:23;
647         u8      mstp:3;
648         /* entry 2 */
649         u8      is_override:1;
650         u8      is_use_fid:1;
651         u32     _reserv_1_1:23;
652         u8      port_forward:7;
653         /* entry 3 & 4*/
654         u32     _reserv_2_1:9;
655         u8      fid:7;
656         u8      mac[ETH_ALEN];
657 };
658
659 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
660                             const unsigned char *addr, u16 vid)
661 {
662         struct ksz_device *dev = ds->priv;
663         u32 alu_table[4];
664         u32 data;
665         int ret = 0;
666
667         mutex_lock(&dev->alu_mutex);
668
669         /* find any entry with mac & vid */
670         data = vid << ALU_FID_INDEX_S;
671         data |= ((addr[0] << 8) | addr[1]);
672         ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
673
674         data = ((addr[2] << 24) | (addr[3] << 16));
675         data |= ((addr[4] << 8) | addr[5]);
676         ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
677
678         /* start read operation */
679         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
680
681         /* wait to be finished */
682         ret = wait_alu_ready(dev, ALU_START, 1000);
683         if (ret < 0) {
684                 dev_dbg(dev->dev, "Failed to read ALU\n");
685                 goto exit;
686         }
687
688         /* read ALU entry */
689         read_table(ds, alu_table);
690
691         /* update ALU entry */
692         alu_table[0] = ALU_V_STATIC_VALID;
693         alu_table[1] |= BIT(port);
694         if (vid)
695                 alu_table[1] |= ALU_V_USE_FID;
696         alu_table[2] = (vid << ALU_V_FID_S);
697         alu_table[2] |= ((addr[0] << 8) | addr[1]);
698         alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
699         alu_table[3] |= ((addr[4] << 8) | addr[5]);
700
701         write_table(ds, alu_table);
702
703         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
704
705         /* wait to be finished */
706         ret = wait_alu_ready(dev, ALU_START, 1000);
707         if (ret < 0)
708                 dev_dbg(dev->dev, "Failed to write ALU\n");
709
710 exit:
711         mutex_unlock(&dev->alu_mutex);
712
713         return ret;
714 }
715
716 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
717                             const unsigned char *addr, u16 vid)
718 {
719         struct ksz_device *dev = ds->priv;
720         u32 alu_table[4];
721         u32 data;
722         int ret = 0;
723
724         mutex_lock(&dev->alu_mutex);
725
726         /* read any entry with mac & vid */
727         data = vid << ALU_FID_INDEX_S;
728         data |= ((addr[0] << 8) | addr[1]);
729         ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
730
731         data = ((addr[2] << 24) | (addr[3] << 16));
732         data |= ((addr[4] << 8) | addr[5]);
733         ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
734
735         /* start read operation */
736         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
737
738         /* wait to be finished */
739         ret = wait_alu_ready(dev, ALU_START, 1000);
740         if (ret < 0) {
741                 dev_dbg(dev->dev, "Failed to read ALU\n");
742                 goto exit;
743         }
744
745         ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
746         if (alu_table[0] & ALU_V_STATIC_VALID) {
747                 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
748                 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
749                 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
750
751                 /* clear forwarding port */
752                 alu_table[2] &= ~BIT(port);
753
754                 /* if there is no port to forward, clear table */
755                 if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
756                         alu_table[0] = 0;
757                         alu_table[1] = 0;
758                         alu_table[2] = 0;
759                         alu_table[3] = 0;
760                 }
761         } else {
762                 alu_table[0] = 0;
763                 alu_table[1] = 0;
764                 alu_table[2] = 0;
765                 alu_table[3] = 0;
766         }
767
768         write_table(ds, alu_table);
769
770         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
771
772         /* wait to be finished */
773         ret = wait_alu_ready(dev, ALU_START, 1000);
774         if (ret < 0)
775                 dev_dbg(dev->dev, "Failed to write ALU\n");
776
777 exit:
778         mutex_unlock(&dev->alu_mutex);
779
780         return ret;
781 }
782
783 static void convert_alu(struct alu_struct *alu, u32 *alu_table)
784 {
785         alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
786         alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
787         alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
788         alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
789                         ALU_V_PRIO_AGE_CNT_M;
790         alu->mstp = alu_table[0] & ALU_V_MSTP_M;
791
792         alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
793         alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
794         alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
795
796         alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
797
798         alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
799         alu->mac[1] = alu_table[2] & 0xFF;
800         alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
801         alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
802         alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
803         alu->mac[5] = alu_table[3] & 0xFF;
804 }
805
806 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
807                              dsa_fdb_dump_cb_t *cb, void *data)
808 {
809         struct ksz_device *dev = ds->priv;
810         int ret = 0;
811         u32 ksz_data;
812         u32 alu_table[4];
813         struct alu_struct alu;
814         int timeout;
815
816         mutex_lock(&dev->alu_mutex);
817
818         /* start ALU search */
819         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
820
821         do {
822                 timeout = 1000;
823                 do {
824                         ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
825                         if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
826                                 break;
827                         usleep_range(1, 10);
828                 } while (timeout-- > 0);
829
830                 if (!timeout) {
831                         dev_dbg(dev->dev, "Failed to search ALU\n");
832                         ret = -ETIMEDOUT;
833                         goto exit;
834                 }
835
836                 /* read ALU table */
837                 read_table(ds, alu_table);
838
839                 convert_alu(&alu, alu_table);
840
841                 if (alu.port_forward & BIT(port)) {
842                         ret = cb(alu.mac, alu.fid, alu.is_static, data);
843                         if (ret)
844                                 goto exit;
845                 }
846         } while (ksz_data & ALU_START);
847
848 exit:
849
850         /* stop ALU search */
851         ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
852
853         mutex_unlock(&dev->alu_mutex);
854
855         return ret;
856 }
857
858 static int ksz_port_mdb_prepare(struct dsa_switch *ds, int port,
859                                 const struct switchdev_obj_port_mdb *mdb)
860 {
861         /* nothing to do */
862         return 0;
863 }
864
865 static void ksz_port_mdb_add(struct dsa_switch *ds, int port,
866                              const struct switchdev_obj_port_mdb *mdb)
867 {
868         struct ksz_device *dev = ds->priv;
869         u32 static_table[4];
870         u32 data;
871         int index;
872         u32 mac_hi, mac_lo;
873
874         mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
875         mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
876         mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
877
878         mutex_lock(&dev->alu_mutex);
879
880         for (index = 0; index < dev->num_statics; index++) {
881                 /* find empty slot first */
882                 data = (index << ALU_STAT_INDEX_S) |
883                         ALU_STAT_READ | ALU_STAT_START;
884                 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
885
886                 /* wait to be finished */
887                 if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
888                         dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
889                         goto exit;
890                 }
891
892                 /* read ALU static table */
893                 read_table(ds, static_table);
894
895                 if (static_table[0] & ALU_V_STATIC_VALID) {
896                         /* check this has same vid & mac address */
897                         if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
898                             ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
899                             (static_table[3] == mac_lo)) {
900                                 /* found matching one */
901                                 break;
902                         }
903                 } else {
904                         /* found empty one */
905                         break;
906                 }
907         }
908
909         /* no available entry */
910         if (index == dev->num_statics)
911                 goto exit;
912
913         /* add entry */
914         static_table[0] = ALU_V_STATIC_VALID;
915         static_table[1] |= BIT(port);
916         if (mdb->vid)
917                 static_table[1] |= ALU_V_USE_FID;
918         static_table[2] = (mdb->vid << ALU_V_FID_S);
919         static_table[2] |= mac_hi;
920         static_table[3] = mac_lo;
921
922         write_table(ds, static_table);
923
924         data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
925         ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
926
927         /* wait to be finished */
928         if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
929                 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
930
931 exit:
932         mutex_unlock(&dev->alu_mutex);
933 }
934
935 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
936                             const struct switchdev_obj_port_mdb *mdb)
937 {
938         struct ksz_device *dev = ds->priv;
939         u32 static_table[4];
940         u32 data;
941         int index;
942         int ret = 0;
943         u32 mac_hi, mac_lo;
944
945         mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
946         mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
947         mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
948
949         mutex_lock(&dev->alu_mutex);
950
951         for (index = 0; index < dev->num_statics; index++) {
952                 /* find empty slot first */
953                 data = (index << ALU_STAT_INDEX_S) |
954                         ALU_STAT_READ | ALU_STAT_START;
955                 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
956
957                 /* wait to be finished */
958                 ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
959                 if (ret < 0) {
960                         dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
961                         goto exit;
962                 }
963
964                 /* read ALU static table */
965                 read_table(ds, static_table);
966
967                 if (static_table[0] & ALU_V_STATIC_VALID) {
968                         /* check this has same vid & mac address */
969
970                         if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
971                             ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
972                             (static_table[3] == mac_lo)) {
973                                 /* found matching one */
974                                 break;
975                         }
976                 }
977         }
978
979         /* no available entry */
980         if (index == dev->num_statics) {
981                 ret = -EINVAL;
982                 goto exit;
983         }
984
985         /* clear port */
986         static_table[1] &= ~BIT(port);
987
988         if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
989                 /* delete entry */
990                 static_table[0] = 0;
991                 static_table[1] = 0;
992                 static_table[2] = 0;
993                 static_table[3] = 0;
994         }
995
996         write_table(ds, static_table);
997
998         data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
999         ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1000
1001         /* wait to be finished */
1002         ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
1003         if (ret < 0)
1004                 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
1005
1006 exit:
1007         mutex_unlock(&dev->alu_mutex);
1008
1009         return ret;
1010 }
1011
1012 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
1013                                struct dsa_mall_mirror_tc_entry *mirror,
1014                                bool ingress)
1015 {
1016         struct ksz_device *dev = ds->priv;
1017
1018         if (ingress)
1019                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1020         else
1021                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1022
1023         ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1024
1025         /* configure mirror port */
1026         ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1027                      PORT_MIRROR_SNIFFER, true);
1028
1029         ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1030
1031         return 0;
1032 }
1033
1034 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
1035                                 struct dsa_mall_mirror_tc_entry *mirror)
1036 {
1037         struct ksz_device *dev = ds->priv;
1038         u8 data;
1039
1040         if (mirror->ingress)
1041                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1042         else
1043                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1044
1045         ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1046
1047         if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
1048                 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1049                              PORT_MIRROR_SNIFFER, false);
1050 }
1051
1052 static const struct dsa_switch_ops ksz_switch_ops = {
1053         .get_tag_protocol       = ksz_get_tag_protocol,
1054         .setup                  = ksz_setup,
1055         .phy_read               = ksz_phy_read16,
1056         .phy_write              = ksz_phy_write16,
1057         .port_enable            = ksz_enable_port,
1058         .port_disable           = ksz_disable_port,
1059         .get_strings            = ksz_get_strings,
1060         .get_ethtool_stats      = ksz_get_ethtool_stats,
1061         .get_sset_count         = ksz_sset_count,
1062         .port_stp_state_set     = ksz_port_stp_state_set,
1063         .port_fast_age          = ksz_port_fast_age,
1064         .port_vlan_filtering    = ksz_port_vlan_filtering,
1065         .port_vlan_prepare      = ksz_port_vlan_prepare,
1066         .port_vlan_add          = ksz_port_vlan_add,
1067         .port_vlan_del          = ksz_port_vlan_del,
1068         .port_fdb_dump          = ksz_port_fdb_dump,
1069         .port_fdb_add           = ksz_port_fdb_add,
1070         .port_fdb_del           = ksz_port_fdb_del,
1071         .port_mdb_prepare       = ksz_port_mdb_prepare,
1072         .port_mdb_add           = ksz_port_mdb_add,
1073         .port_mdb_del           = ksz_port_mdb_del,
1074         .port_mirror_add        = ksz_port_mirror_add,
1075         .port_mirror_del        = ksz_port_mirror_del,
1076 };
1077
1078 struct ksz_chip_data {
1079         u32 chip_id;
1080         const char *dev_name;
1081         int num_vlans;
1082         int num_alus;
1083         int num_statics;
1084         int cpu_ports;
1085         int port_cnt;
1086 };
1087
1088 static const struct ksz_chip_data ksz_switch_chips[] = {
1089         {
1090                 .chip_id = 0x00947700,
1091                 .dev_name = "KSZ9477",
1092                 .num_vlans = 4096,
1093                 .num_alus = 4096,
1094                 .num_statics = 16,
1095                 .cpu_ports = 0x7F,      /* can be configured as cpu port */
1096                 .port_cnt = 7,          /* total physical port count */
1097         },
1098 };
1099
1100 static int ksz_switch_init(struct ksz_device *dev)
1101 {
1102         int i;
1103
1104         mutex_init(&dev->reg_mutex);
1105         mutex_init(&dev->stats_mutex);
1106         mutex_init(&dev->alu_mutex);
1107         mutex_init(&dev->vlan_mutex);
1108
1109         dev->ds->ops = &ksz_switch_ops;
1110
1111         for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1112                 const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1113
1114                 if (dev->chip_id == chip->chip_id) {
1115                         dev->name = chip->dev_name;
1116                         dev->num_vlans = chip->num_vlans;
1117                         dev->num_alus = chip->num_alus;
1118                         dev->num_statics = chip->num_statics;
1119                         dev->port_cnt = chip->port_cnt;
1120                         dev->cpu_ports = chip->cpu_ports;
1121
1122                         break;
1123                 }
1124         }
1125
1126         /* no switch found */
1127         if (!dev->port_cnt)
1128                 return -ENODEV;
1129
1130         return 0;
1131 }
1132
1133 struct ksz_device *ksz_switch_alloc(struct device *base,
1134                                     const struct ksz_io_ops *ops,
1135                                     void *priv)
1136 {
1137         struct dsa_switch *ds;
1138         struct ksz_device *swdev;
1139
1140         ds = dsa_switch_alloc(base, DSA_MAX_PORTS);
1141         if (!ds)
1142                 return NULL;
1143
1144         swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
1145         if (!swdev)
1146                 return NULL;
1147
1148         ds->priv = swdev;
1149         swdev->dev = base;
1150
1151         swdev->ds = ds;
1152         swdev->priv = priv;
1153         swdev->ops = ops;
1154
1155         return swdev;
1156 }
1157 EXPORT_SYMBOL(ksz_switch_alloc);
1158
1159 int ksz_switch_detect(struct ksz_device *dev)
1160 {
1161         u8 data8;
1162         u32 id32;
1163         int ret;
1164
1165         /* turn off SPI DO Edge select */
1166         ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1167         if (ret)
1168                 return ret;
1169
1170         data8 &= ~SPI_AUTO_EDGE_DETECTION;
1171         ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1172         if (ret)
1173                 return ret;
1174
1175         /* read chip id */
1176         ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1177         if (ret)
1178                 return ret;
1179
1180         dev->chip_id = id32;
1181
1182         return 0;
1183 }
1184 EXPORT_SYMBOL(ksz_switch_detect);
1185
1186 int ksz_switch_register(struct ksz_device *dev)
1187 {
1188         int ret;
1189
1190         if (dev->pdata)
1191                 dev->chip_id = dev->pdata->chip_id;
1192
1193         if (ksz_switch_detect(dev))
1194                 return -EINVAL;
1195
1196         ret = ksz_switch_init(dev);
1197         if (ret)
1198                 return ret;
1199
1200         return dsa_register_switch(dev->ds);
1201 }
1202 EXPORT_SYMBOL(ksz_switch_register);
1203
1204 void ksz_switch_remove(struct ksz_device *dev)
1205 {
1206         dsa_unregister_switch(dev->ds);
1207 }
1208 EXPORT_SYMBOL(ksz_switch_remove);
1209
1210 MODULE_AUTHOR("Woojung Huh <[email protected]>");
1211 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
1212 MODULE_LICENSE("GPL");
This page took 0.10532 seconds and 4 git commands to generate.