1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * inode.c - NTFS kernel inode handling.
5 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
8 #include <linux/buffer_head.h>
11 #include <linux/mount.h>
12 #include <linux/mutex.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/slab.h>
16 #include <linux/log2.h>
31 * ntfs_test_inode - compare two (possibly fake) inodes for equality
32 * @vi: vfs inode which to test
33 * @data: data which is being tested with
35 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
36 * inode @vi for equality with the ntfs attribute @data.
38 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
39 * @na->name and @na->name_len are then ignored.
41 * Return 1 if the attributes match and 0 if not.
43 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
46 int ntfs_test_inode(struct inode *vi, void *data)
48 ntfs_attr *na = (ntfs_attr *)data;
51 if (vi->i_ino != na->mft_no)
54 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
55 if (likely(!NInoAttr(ni))) {
56 /* If not looking for a normal inode this is a mismatch. */
57 if (unlikely(na->type != AT_UNUSED))
60 /* A fake inode describing an attribute. */
61 if (ni->type != na->type)
63 if (ni->name_len != na->name_len)
65 if (na->name_len && memcmp(ni->name, na->name,
66 na->name_len * sizeof(ntfschar)))
74 * ntfs_init_locked_inode - initialize an inode
75 * @vi: vfs inode to initialize
76 * @data: data which to initialize @vi to
78 * Initialize the vfs inode @vi with the values from the ntfs attribute @data in
79 * order to enable ntfs_test_inode() to do its work.
81 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
82 * In that case, @na->name and @na->name_len should be set to NULL and 0,
83 * respectively. Although that is not strictly necessary as
84 * ntfs_read_locked_inode() will fill them in later.
86 * Return 0 on success and -errno on error.
88 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
89 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
91 static int ntfs_init_locked_inode(struct inode *vi, void *data)
93 ntfs_attr *na = (ntfs_attr *)data;
94 ntfs_inode *ni = NTFS_I(vi);
96 vi->i_ino = na->mft_no;
99 if (na->type == AT_INDEX_ALLOCATION)
100 NInoSetMstProtected(ni);
103 ni->name_len = na->name_len;
105 /* If initializing a normal inode, we are done. */
106 if (likely(na->type == AT_UNUSED)) {
108 BUG_ON(na->name_len);
112 /* It is a fake inode. */
116 * We have I30 global constant as an optimization as it is the name
117 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
118 * allocation but that is ok. And most attributes are unnamed anyway,
119 * thus the fraction of named attributes with name != I30 is actually
122 if (na->name_len && na->name != I30) {
126 i = na->name_len * sizeof(ntfschar);
127 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
130 memcpy(ni->name, na->name, i);
131 ni->name[na->name_len] = 0;
136 static int ntfs_read_locked_inode(struct inode *vi);
137 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
138 static int ntfs_read_locked_index_inode(struct inode *base_vi,
142 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
143 * @sb: super block of mounted volume
144 * @mft_no: mft record number / inode number to obtain
146 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
147 * file or directory).
149 * If the inode is in the cache, it is just returned with an increased
150 * reference count. Otherwise, a new struct inode is allocated and initialized,
151 * and finally ntfs_read_locked_inode() is called to read in the inode and
152 * fill in the remainder of the inode structure.
154 * Return the struct inode on success. Check the return value with IS_ERR() and
155 * if true, the function failed and the error code is obtained from PTR_ERR().
157 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
168 vi = iget5_locked(sb, mft_no, ntfs_test_inode,
169 ntfs_init_locked_inode, &na);
171 return ERR_PTR(-ENOMEM);
175 /* If this is a freshly allocated inode, need to read it now. */
176 if (vi->i_state & I_NEW) {
177 err = ntfs_read_locked_inode(vi);
178 unlock_new_inode(vi);
181 * There is no point in keeping bad inodes around if the failure was
182 * due to ENOMEM. We want to be able to retry again later.
184 if (unlikely(err == -ENOMEM)) {
192 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
193 * @base_vi: vfs base inode containing the attribute
194 * @type: attribute type
195 * @name: Unicode name of the attribute (NULL if unnamed)
196 * @name_len: length of @name in Unicode characters (0 if unnamed)
198 * Obtain the (fake) struct inode corresponding to the attribute specified by
199 * @type, @name, and @name_len, which is present in the base mft record
200 * specified by the vfs inode @base_vi.
202 * If the attribute inode is in the cache, it is just returned with an
203 * increased reference count. Otherwise, a new struct inode is allocated and
204 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
205 * attribute and fill in the inode structure.
207 * Note, for index allocation attributes, you need to use ntfs_index_iget()
208 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
210 * Return the struct inode of the attribute inode on success. Check the return
211 * value with IS_ERR() and if true, the function failed and the error code is
212 * obtained from PTR_ERR().
214 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
215 ntfschar *name, u32 name_len)
221 /* Make sure no one calls ntfs_attr_iget() for indices. */
222 BUG_ON(type == AT_INDEX_ALLOCATION);
224 na.mft_no = base_vi->i_ino;
227 na.name_len = name_len;
229 vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode,
230 ntfs_init_locked_inode, &na);
232 return ERR_PTR(-ENOMEM);
236 /* If this is a freshly allocated inode, need to read it now. */
237 if (vi->i_state & I_NEW) {
238 err = ntfs_read_locked_attr_inode(base_vi, vi);
239 unlock_new_inode(vi);
242 * There is no point in keeping bad attribute inodes around. This also
243 * simplifies things in that we never need to check for bad attribute
254 * ntfs_index_iget - obtain a struct inode corresponding to an index
255 * @base_vi: vfs base inode containing the index related attributes
256 * @name: Unicode name of the index
257 * @name_len: length of @name in Unicode characters
259 * Obtain the (fake) struct inode corresponding to the index specified by @name
260 * and @name_len, which is present in the base mft record specified by the vfs
263 * If the index inode is in the cache, it is just returned with an increased
264 * reference count. Otherwise, a new struct inode is allocated and
265 * initialized, and finally ntfs_read_locked_index_inode() is called to read
266 * the index related attributes and fill in the inode structure.
268 * Return the struct inode of the index inode on success. Check the return
269 * value with IS_ERR() and if true, the function failed and the error code is
270 * obtained from PTR_ERR().
272 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
279 na.mft_no = base_vi->i_ino;
280 na.type = AT_INDEX_ALLOCATION;
282 na.name_len = name_len;
284 vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode,
285 ntfs_init_locked_inode, &na);
287 return ERR_PTR(-ENOMEM);
291 /* If this is a freshly allocated inode, need to read it now. */
292 if (vi->i_state & I_NEW) {
293 err = ntfs_read_locked_index_inode(base_vi, vi);
294 unlock_new_inode(vi);
297 * There is no point in keeping bad index inodes around. This also
298 * simplifies things in that we never need to check for bad index
308 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
312 ntfs_debug("Entering.");
313 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
314 if (likely(ni != NULL)) {
318 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
322 void ntfs_free_big_inode(struct inode *inode)
324 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
327 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
331 ntfs_debug("Entering.");
332 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
333 if (likely(ni != NULL)) {
337 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
341 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
343 ntfs_debug("Entering.");
345 if (!atomic_dec_and_test(&ni->count))
347 kmem_cache_free(ntfs_inode_cache, ni);
351 * The attribute runlist lock has separate locking rules from the
352 * normal runlist lock, so split the two lock-classes:
354 static struct lock_class_key attr_list_rl_lock_class;
357 * __ntfs_init_inode - initialize ntfs specific part of an inode
358 * @sb: super block of mounted volume
359 * @ni: freshly allocated ntfs inode which to initialize
361 * Initialize an ntfs inode to defaults.
363 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
364 * untouched. Make sure to initialize them elsewhere.
366 * Return zero on success and -ENOMEM on error.
368 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
370 ntfs_debug("Entering.");
371 rwlock_init(&ni->size_lock);
372 ni->initialized_size = ni->allocated_size = 0;
374 atomic_set(&ni->count, 1);
375 ni->vol = NTFS_SB(sb);
376 ntfs_init_runlist(&ni->runlist);
377 mutex_init(&ni->mrec_lock);
380 ni->attr_list_size = 0;
381 ni->attr_list = NULL;
382 ntfs_init_runlist(&ni->attr_list_rl);
383 lockdep_set_class(&ni->attr_list_rl.lock,
384 &attr_list_rl_lock_class);
385 ni->itype.index.block_size = 0;
386 ni->itype.index.vcn_size = 0;
387 ni->itype.index.collation_rule = 0;
388 ni->itype.index.block_size_bits = 0;
389 ni->itype.index.vcn_size_bits = 0;
390 mutex_init(&ni->extent_lock);
392 ni->ext.base_ntfs_ino = NULL;
396 * Extent inodes get MFT-mapped in a nested way, while the base inode
397 * is still mapped. Teach this nesting to the lock validator by creating
398 * a separate class for nested inode's mrec_lock's:
400 static struct lock_class_key extent_inode_mrec_lock_key;
402 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
403 unsigned long mft_no)
405 ntfs_inode *ni = ntfs_alloc_extent_inode();
407 ntfs_debug("Entering.");
408 if (likely(ni != NULL)) {
409 __ntfs_init_inode(sb, ni);
410 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
412 ni->type = AT_UNUSED;
420 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
421 * @ctx: initialized attribute search context
423 * Search all file name attributes in the inode described by the attribute
424 * search context @ctx and check if any of the names are in the $Extend system
428 * 1: file is in $Extend directory
429 * 0: file is not in $Extend directory
430 * -errno: failed to determine if the file is in the $Extend directory
432 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
436 /* Restart search. */
437 ntfs_attr_reinit_search_ctx(ctx);
439 /* Get number of hard links. */
440 nr_links = le16_to_cpu(ctx->mrec->link_count);
442 /* Loop through all hard links. */
443 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
445 FILE_NAME_ATTR *file_name_attr;
446 ATTR_RECORD *attr = ctx->attr;
451 * Maximum sanity checking as we are called on an inode that
452 * we suspect might be corrupt.
454 p = (u8*)attr + le32_to_cpu(attr->length);
455 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
456 le32_to_cpu(ctx->mrec->bytes_in_use)) {
458 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
459 "attribute. You should run chkdsk.");
462 if (attr->non_resident) {
463 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
464 "name. You should run chkdsk.");
468 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
469 "invalid flags. You should run "
473 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
474 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
475 "name. You should run chkdsk.");
478 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
479 le16_to_cpu(attr->data.resident.value_offset));
480 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
481 if (p2 < (u8*)attr || p2 > p)
482 goto err_corrupt_attr;
483 /* This attribute is ok, but is it in the $Extend directory? */
484 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
485 return 1; /* YES, it's an extended system file. */
487 if (unlikely(err != -ENOENT))
489 if (unlikely(nr_links)) {
490 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
491 "doesn't match number of name attributes. You "
492 "should run chkdsk.");
495 return 0; /* NO, it is not an extended system file. */
499 * ntfs_read_locked_inode - read an inode from its device
502 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
503 * described by @vi into memory from the device.
505 * The only fields in @vi that we need to/can look at when the function is
506 * called are i_sb, pointing to the mounted device's super block, and i_ino,
507 * the number of the inode to load.
509 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
510 * for reading and sets up the necessary @vi fields as well as initializing
513 * Q: What locks are held when the function is called?
514 * A: i_state has I_NEW set, hence the inode is locked, also
515 * i_count is set to 1, so it is not going to go away
516 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
517 * is allowed to write to them. We should of course be honouring them but
518 * we need to do that using the IS_* macros defined in include/linux/fs.h.
519 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
521 * Return 0 on success and -errno on error. In the error case, the inode will
522 * have had make_bad_inode() executed on it.
524 static int ntfs_read_locked_inode(struct inode *vi)
526 ntfs_volume *vol = NTFS_SB(vi->i_sb);
531 STANDARD_INFORMATION *si;
532 ntfs_attr_search_ctx *ctx;
535 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
537 /* Setup the generic vfs inode parts now. */
538 vi->i_uid = vol->uid;
539 vi->i_gid = vol->gid;
543 * Initialize the ntfs specific part of @vi special casing
544 * FILE_MFT which we need to do at mount time.
546 if (vi->i_ino != FILE_MFT)
547 ntfs_init_big_inode(vi);
550 m = map_mft_record(ni);
555 ctx = ntfs_attr_get_search_ctx(ni, m);
561 if (!(m->flags & MFT_RECORD_IN_USE)) {
562 ntfs_error(vi->i_sb, "Inode is not in use!");
565 if (m->base_mft_record) {
566 ntfs_error(vi->i_sb, "Inode is an extent inode!");
570 /* Transfer information from mft record into vfs and ntfs inodes. */
571 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
574 * FIXME: Keep in mind that link_count is two for files which have both
575 * a long file name and a short file name as separate entries, so if
576 * we are hiding short file names this will be too high. Either we need
577 * to account for the short file names by subtracting them or we need
578 * to make sure we delete files even though i_nlink is not zero which
579 * might be tricky due to vfs interactions. Need to think about this
580 * some more when implementing the unlink command.
582 set_nlink(vi, le16_to_cpu(m->link_count));
584 * FIXME: Reparse points can have the directory bit set even though
585 * they would be S_IFLNK. Need to deal with this further below when we
586 * implement reparse points / symbolic links but it will do for now.
587 * Also if not a directory, it could be something else, rather than
588 * a regular file. But again, will do for now.
590 /* Everyone gets all permissions. */
591 vi->i_mode |= S_IRWXUGO;
592 /* If read-only, no one gets write permissions. */
594 vi->i_mode &= ~S_IWUGO;
595 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
596 vi->i_mode |= S_IFDIR;
598 * Apply the directory permissions mask set in the mount
601 vi->i_mode &= ~vol->dmask;
602 /* Things break without this kludge! */
606 vi->i_mode |= S_IFREG;
607 /* Apply the file permissions mask set in the mount options. */
608 vi->i_mode &= ~vol->fmask;
611 * Find the standard information attribute in the mft record. At this
612 * stage we haven't setup the attribute list stuff yet, so this could
613 * in fact fail if the standard information is in an extent record, but
614 * I don't think this actually ever happens.
616 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
619 if (err == -ENOENT) {
621 * TODO: We should be performing a hot fix here (if the
622 * recover mount option is set) by creating a new
625 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
631 /* Get the standard information attribute value. */
632 si = (STANDARD_INFORMATION*)((u8*)a +
633 le16_to_cpu(a->data.resident.value_offset));
635 /* Transfer information from the standard information into vi. */
637 * Note: The i_?times do not quite map perfectly onto the NTFS times,
638 * but they are close enough, and in the end it doesn't really matter
642 * mtime is the last change of the data within the file. Not changed
643 * when only metadata is changed, e.g. a rename doesn't affect mtime.
645 vi->i_mtime = ntfs2utc(si->last_data_change_time);
647 * ctime is the last change of the metadata of the file. This obviously
648 * always changes, when mtime is changed. ctime can be changed on its
649 * own, mtime is then not changed, e.g. when a file is renamed.
651 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
653 * Last access to the data within the file. Not changed during a rename
654 * for example but changed whenever the file is written to.
656 vi->i_atime = ntfs2utc(si->last_access_time);
658 /* Find the attribute list attribute if present. */
659 ntfs_attr_reinit_search_ctx(ctx);
660 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
662 if (unlikely(err != -ENOENT)) {
663 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
667 } else /* if (!err) */ {
668 if (vi->i_ino == FILE_MFT)
669 goto skip_attr_list_load;
670 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
673 if (a->flags & ATTR_COMPRESSION_MASK) {
674 ntfs_error(vi->i_sb, "Attribute list attribute is "
678 if (a->flags & ATTR_IS_ENCRYPTED ||
679 a->flags & ATTR_IS_SPARSE) {
680 if (a->non_resident) {
681 ntfs_error(vi->i_sb, "Non-resident attribute "
682 "list attribute is encrypted/"
686 ntfs_warning(vi->i_sb, "Resident attribute list "
687 "attribute in inode 0x%lx is marked "
688 "encrypted/sparse which is not true. "
689 "However, Windows allows this and "
690 "chkdsk does not detect or correct it "
691 "so we will just ignore the invalid "
692 "flags and pretend they are not set.",
695 /* Now allocate memory for the attribute list. */
696 ni->attr_list_size = (u32)ntfs_attr_size(a);
697 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
698 if (!ni->attr_list) {
699 ntfs_error(vi->i_sb, "Not enough memory to allocate "
700 "buffer for attribute list.");
704 if (a->non_resident) {
705 NInoSetAttrListNonResident(ni);
706 if (a->data.non_resident.lowest_vcn) {
707 ntfs_error(vi->i_sb, "Attribute list has non "
712 * Setup the runlist. No need for locking as we have
713 * exclusive access to the inode at this time.
715 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
717 if (IS_ERR(ni->attr_list_rl.rl)) {
718 err = PTR_ERR(ni->attr_list_rl.rl);
719 ni->attr_list_rl.rl = NULL;
720 ntfs_error(vi->i_sb, "Mapping pairs "
721 "decompression failed.");
724 /* Now load the attribute list. */
725 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
726 ni->attr_list, ni->attr_list_size,
727 sle64_to_cpu(a->data.non_resident.
728 initialized_size)))) {
729 ntfs_error(vi->i_sb, "Failed to load "
730 "attribute list attribute.");
733 } else /* if (!a->non_resident) */ {
734 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
736 a->data.resident.value_length) >
737 (u8*)ctx->mrec + vol->mft_record_size) {
738 ntfs_error(vi->i_sb, "Corrupt attribute list "
742 /* Now copy the attribute list. */
743 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
744 a->data.resident.value_offset),
746 a->data.resident.value_length));
751 * If an attribute list is present we now have the attribute list value
752 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
754 if (S_ISDIR(vi->i_mode)) {
758 u8 *ir_end, *index_end;
760 /* It is a directory, find index root attribute. */
761 ntfs_attr_reinit_search_ctx(ctx);
762 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
765 if (err == -ENOENT) {
766 // FIXME: File is corrupt! Hot-fix with empty
767 // index root attribute if recovery option is
769 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
775 /* Set up the state. */
776 if (unlikely(a->non_resident)) {
777 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
781 /* Ensure the attribute name is placed before the value. */
782 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
783 le16_to_cpu(a->data.resident.value_offset)))) {
784 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
785 "placed after the attribute value.");
789 * Compressed/encrypted index root just means that the newly
790 * created files in that directory should be created compressed/
791 * encrypted. However index root cannot be both compressed and
794 if (a->flags & ATTR_COMPRESSION_MASK)
795 NInoSetCompressed(ni);
796 if (a->flags & ATTR_IS_ENCRYPTED) {
797 if (a->flags & ATTR_COMPRESSION_MASK) {
798 ntfs_error(vi->i_sb, "Found encrypted and "
799 "compressed attribute.");
802 NInoSetEncrypted(ni);
804 if (a->flags & ATTR_IS_SPARSE)
806 ir = (INDEX_ROOT*)((u8*)a +
807 le16_to_cpu(a->data.resident.value_offset));
808 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
809 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
810 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
814 index_end = (u8*)&ir->index +
815 le32_to_cpu(ir->index.index_length);
816 if (index_end > ir_end) {
817 ntfs_error(vi->i_sb, "Directory index is corrupt.");
820 if (ir->type != AT_FILE_NAME) {
821 ntfs_error(vi->i_sb, "Indexed attribute is not "
825 if (ir->collation_rule != COLLATION_FILE_NAME) {
826 ntfs_error(vi->i_sb, "Index collation rule is not "
827 "COLLATION_FILE_NAME.");
830 ni->itype.index.collation_rule = ir->collation_rule;
831 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
832 if (ni->itype.index.block_size &
833 (ni->itype.index.block_size - 1)) {
834 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
836 ni->itype.index.block_size);
839 if (ni->itype.index.block_size > PAGE_SIZE) {
840 ntfs_error(vi->i_sb, "Index block size (%u) > "
841 "PAGE_SIZE (%ld) is not "
843 ni->itype.index.block_size,
848 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
849 ntfs_error(vi->i_sb, "Index block size (%u) < "
850 "NTFS_BLOCK_SIZE (%i) is not "
852 ni->itype.index.block_size,
857 ni->itype.index.block_size_bits =
858 ffs(ni->itype.index.block_size) - 1;
859 /* Determine the size of a vcn in the directory index. */
860 if (vol->cluster_size <= ni->itype.index.block_size) {
861 ni->itype.index.vcn_size = vol->cluster_size;
862 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
864 ni->itype.index.vcn_size = vol->sector_size;
865 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
868 /* Setup the index allocation attribute, even if not present. */
869 NInoSetMstProtected(ni);
870 ni->type = AT_INDEX_ALLOCATION;
874 if (!(ir->index.flags & LARGE_INDEX)) {
875 /* No index allocation. */
876 vi->i_size = ni->initialized_size =
877 ni->allocated_size = 0;
878 /* We are done with the mft record, so we release it. */
879 ntfs_attr_put_search_ctx(ctx);
880 unmap_mft_record(ni);
883 goto skip_large_dir_stuff;
884 } /* LARGE_INDEX: Index allocation present. Setup state. */
885 NInoSetIndexAllocPresent(ni);
886 /* Find index allocation attribute. */
887 ntfs_attr_reinit_search_ctx(ctx);
888 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
889 CASE_SENSITIVE, 0, NULL, 0, ctx);
892 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
893 "attribute is not present but "
894 "$INDEX_ROOT indicated it is.");
896 ntfs_error(vi->i_sb, "Failed to lookup "
902 if (!a->non_resident) {
903 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
908 * Ensure the attribute name is placed before the mapping pairs
911 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
913 a->data.non_resident.mapping_pairs_offset)))) {
914 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
915 "is placed after the mapping pairs "
919 if (a->flags & ATTR_IS_ENCRYPTED) {
920 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
924 if (a->flags & ATTR_IS_SPARSE) {
925 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
929 if (a->flags & ATTR_COMPRESSION_MASK) {
930 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
934 if (a->data.non_resident.lowest_vcn) {
935 ntfs_error(vi->i_sb, "First extent of "
936 "$INDEX_ALLOCATION attribute has non "
940 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
941 ni->initialized_size = sle64_to_cpu(
942 a->data.non_resident.initialized_size);
943 ni->allocated_size = sle64_to_cpu(
944 a->data.non_resident.allocated_size);
946 * We are done with the mft record, so we release it. Otherwise
947 * we would deadlock in ntfs_attr_iget().
949 ntfs_attr_put_search_ctx(ctx);
950 unmap_mft_record(ni);
953 /* Get the index bitmap attribute inode. */
954 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
956 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
961 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
963 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
964 "and/or encrypted and/or sparse.");
965 goto iput_unm_err_out;
967 /* Consistency check bitmap size vs. index allocation size. */
968 bvi_size = i_size_read(bvi);
969 if ((bvi_size << 3) < (vi->i_size >>
970 ni->itype.index.block_size_bits)) {
971 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
972 "for index allocation (0x%llx).",
973 bvi_size << 3, vi->i_size);
974 goto iput_unm_err_out;
976 /* No longer need the bitmap attribute inode. */
978 skip_large_dir_stuff:
979 /* Setup the operations for this inode. */
980 vi->i_op = &ntfs_dir_inode_ops;
981 vi->i_fop = &ntfs_dir_ops;
982 vi->i_mapping->a_ops = &ntfs_mst_aops;
985 ntfs_attr_reinit_search_ctx(ctx);
987 /* Setup the data attribute, even if not present. */
992 /* Find first extent of the unnamed data attribute. */
993 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
995 vi->i_size = ni->initialized_size =
996 ni->allocated_size = 0;
997 if (err != -ENOENT) {
998 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1003 * FILE_Secure does not have an unnamed $DATA
1004 * attribute, so we special case it here.
1006 if (vi->i_ino == FILE_Secure)
1007 goto no_data_attr_special_case;
1009 * Most if not all the system files in the $Extend
1010 * system directory do not have unnamed data
1011 * attributes so we need to check if the parent
1012 * directory of the file is FILE_Extend and if it is
1013 * ignore this error. To do this we need to get the
1014 * name of this inode from the mft record as the name
1015 * contains the back reference to the parent directory.
1017 if (ntfs_is_extended_system_file(ctx) > 0)
1018 goto no_data_attr_special_case;
1019 // FIXME: File is corrupt! Hot-fix with empty data
1020 // attribute if recovery option is set.
1021 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1025 /* Setup the state. */
1026 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1027 if (a->flags & ATTR_COMPRESSION_MASK) {
1028 NInoSetCompressed(ni);
1029 if (vol->cluster_size > 4096) {
1030 ntfs_error(vi->i_sb, "Found "
1031 "compressed data but "
1034 "cluster size (%i) > "
1039 if ((a->flags & ATTR_COMPRESSION_MASK)
1040 != ATTR_IS_COMPRESSED) {
1041 ntfs_error(vi->i_sb, "Found unknown "
1042 "compression method "
1043 "or corrupt file.");
1047 if (a->flags & ATTR_IS_SPARSE)
1050 if (a->flags & ATTR_IS_ENCRYPTED) {
1051 if (NInoCompressed(ni)) {
1052 ntfs_error(vi->i_sb, "Found encrypted and "
1053 "compressed data.");
1056 NInoSetEncrypted(ni);
1058 if (a->non_resident) {
1059 NInoSetNonResident(ni);
1060 if (NInoCompressed(ni) || NInoSparse(ni)) {
1061 if (NInoCompressed(ni) && a->data.non_resident.
1062 compression_unit != 4) {
1063 ntfs_error(vi->i_sb, "Found "
1065 "compression unit (%u "
1067 "Cannot handle this.",
1068 a->data.non_resident.
1073 if (a->data.non_resident.compression_unit) {
1074 ni->itype.compressed.block_size = 1U <<
1075 (a->data.non_resident.
1077 vol->cluster_size_bits);
1078 ni->itype.compressed.block_size_bits =
1082 ni->itype.compressed.block_clusters =
1087 ni->itype.compressed.block_size = 0;
1088 ni->itype.compressed.block_size_bits =
1090 ni->itype.compressed.block_clusters =
1093 ni->itype.compressed.size = sle64_to_cpu(
1094 a->data.non_resident.
1097 if (a->data.non_resident.lowest_vcn) {
1098 ntfs_error(vi->i_sb, "First extent of $DATA "
1099 "attribute has non zero "
1103 vi->i_size = sle64_to_cpu(
1104 a->data.non_resident.data_size);
1105 ni->initialized_size = sle64_to_cpu(
1106 a->data.non_resident.initialized_size);
1107 ni->allocated_size = sle64_to_cpu(
1108 a->data.non_resident.allocated_size);
1109 } else { /* Resident attribute. */
1110 vi->i_size = ni->initialized_size = le32_to_cpu(
1111 a->data.resident.value_length);
1112 ni->allocated_size = le32_to_cpu(a->length) -
1114 a->data.resident.value_offset);
1115 if (vi->i_size > ni->allocated_size) {
1116 ntfs_error(vi->i_sb, "Resident data attribute "
1117 "is corrupt (size exceeds "
1122 no_data_attr_special_case:
1123 /* We are done with the mft record, so we release it. */
1124 ntfs_attr_put_search_ctx(ctx);
1125 unmap_mft_record(ni);
1128 /* Setup the operations for this inode. */
1129 vi->i_op = &ntfs_file_inode_ops;
1130 vi->i_fop = &ntfs_file_ops;
1131 vi->i_mapping->a_ops = &ntfs_normal_aops;
1132 if (NInoMstProtected(ni))
1133 vi->i_mapping->a_ops = &ntfs_mst_aops;
1134 else if (NInoCompressed(ni))
1135 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1138 * The number of 512-byte blocks used on disk (for stat). This is in so
1139 * far inaccurate as it doesn't account for any named streams or other
1140 * special non-resident attributes, but that is how Windows works, too,
1141 * so we are at least consistent with Windows, if not entirely
1142 * consistent with the Linux Way. Doing it the Linux Way would cause a
1143 * significant slowdown as it would involve iterating over all
1144 * attributes in the mft record and adding the allocated/compressed
1145 * sizes of all non-resident attributes present to give us the Linux
1146 * correct size that should go into i_blocks (after division by 512).
1148 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1149 vi->i_blocks = ni->itype.compressed.size >> 9;
1151 vi->i_blocks = ni->allocated_size >> 9;
1152 ntfs_debug("Done.");
1160 ntfs_attr_put_search_ctx(ctx);
1162 unmap_mft_record(ni);
1164 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1165 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1167 if (err != -EOPNOTSUPP && err != -ENOMEM)
1173 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1174 * @base_vi: base inode
1175 * @vi: attribute inode to read
1177 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1178 * attribute inode described by @vi into memory from the base mft record
1179 * described by @base_ni.
1181 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1182 * reading and looks up the attribute described by @vi before setting up the
1183 * necessary fields in @vi as well as initializing the ntfs inode.
1185 * Q: What locks are held when the function is called?
1186 * A: i_state has I_NEW set, hence the inode is locked, also
1187 * i_count is set to 1, so it is not going to go away
1189 * Return 0 on success and -errno on error. In the error case, the inode will
1190 * have had make_bad_inode() executed on it.
1192 * Note this cannot be called for AT_INDEX_ALLOCATION.
1194 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1196 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1197 ntfs_inode *ni, *base_ni;
1200 ntfs_attr_search_ctx *ctx;
1203 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1205 ntfs_init_big_inode(vi);
1208 base_ni = NTFS_I(base_vi);
1210 /* Just mirror the values from the base inode. */
1211 vi->i_uid = base_vi->i_uid;
1212 vi->i_gid = base_vi->i_gid;
1213 set_nlink(vi, base_vi->i_nlink);
1214 vi->i_mtime = base_vi->i_mtime;
1215 vi->i_ctime = base_vi->i_ctime;
1216 vi->i_atime = base_vi->i_atime;
1217 vi->i_generation = ni->seq_no = base_ni->seq_no;
1219 /* Set inode type to zero but preserve permissions. */
1220 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1222 m = map_mft_record(base_ni);
1227 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1232 /* Find the attribute. */
1233 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1234 CASE_SENSITIVE, 0, NULL, 0, ctx);
1238 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1239 if (a->flags & ATTR_COMPRESSION_MASK) {
1240 NInoSetCompressed(ni);
1241 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1243 ntfs_error(vi->i_sb, "Found compressed "
1244 "non-data or named data "
1245 "attribute. Please report "
1246 "you saw this message to "
1247 "linux-ntfs-dev@lists."
1251 if (vol->cluster_size > 4096) {
1252 ntfs_error(vi->i_sb, "Found compressed "
1253 "attribute but compression is "
1254 "disabled due to cluster size "
1259 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1260 ATTR_IS_COMPRESSED) {
1261 ntfs_error(vi->i_sb, "Found unknown "
1262 "compression method.");
1267 * The compressed/sparse flag set in an index root just means
1268 * to compress all files.
1270 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1271 ntfs_error(vi->i_sb, "Found mst protected attribute "
1272 "but the attribute is %s. Please "
1273 "report you saw this message to "
1275 NInoCompressed(ni) ? "compressed" :
1279 if (a->flags & ATTR_IS_SPARSE)
1282 if (a->flags & ATTR_IS_ENCRYPTED) {
1283 if (NInoCompressed(ni)) {
1284 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1289 * The encryption flag set in an index root just means to
1290 * encrypt all files.
1292 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1293 ntfs_error(vi->i_sb, "Found mst protected attribute "
1294 "but the attribute is encrypted. "
1295 "Please report you saw this message "
1300 if (ni->type != AT_DATA) {
1301 ntfs_error(vi->i_sb, "Found encrypted non-data "
1305 NInoSetEncrypted(ni);
1307 if (!a->non_resident) {
1308 /* Ensure the attribute name is placed before the value. */
1309 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1310 le16_to_cpu(a->data.resident.value_offset)))) {
1311 ntfs_error(vol->sb, "Attribute name is placed after "
1312 "the attribute value.");
1315 if (NInoMstProtected(ni)) {
1316 ntfs_error(vi->i_sb, "Found mst protected attribute "
1317 "but the attribute is resident. "
1318 "Please report you saw this message to "
1322 vi->i_size = ni->initialized_size = le32_to_cpu(
1323 a->data.resident.value_length);
1324 ni->allocated_size = le32_to_cpu(a->length) -
1325 le16_to_cpu(a->data.resident.value_offset);
1326 if (vi->i_size > ni->allocated_size) {
1327 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1328 "(size exceeds allocation).");
1332 NInoSetNonResident(ni);
1334 * Ensure the attribute name is placed before the mapping pairs
1337 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1339 a->data.non_resident.mapping_pairs_offset)))) {
1340 ntfs_error(vol->sb, "Attribute name is placed after "
1341 "the mapping pairs array.");
1344 if (NInoCompressed(ni) || NInoSparse(ni)) {
1345 if (NInoCompressed(ni) && a->data.non_resident.
1346 compression_unit != 4) {
1347 ntfs_error(vi->i_sb, "Found non-standard "
1348 "compression unit (%u instead "
1349 "of 4). Cannot handle this.",
1350 a->data.non_resident.
1355 if (a->data.non_resident.compression_unit) {
1356 ni->itype.compressed.block_size = 1U <<
1357 (a->data.non_resident.
1359 vol->cluster_size_bits);
1360 ni->itype.compressed.block_size_bits =
1361 ffs(ni->itype.compressed.
1363 ni->itype.compressed.block_clusters = 1U <<
1364 a->data.non_resident.
1367 ni->itype.compressed.block_size = 0;
1368 ni->itype.compressed.block_size_bits = 0;
1369 ni->itype.compressed.block_clusters = 0;
1371 ni->itype.compressed.size = sle64_to_cpu(
1372 a->data.non_resident.compressed_size);
1374 if (a->data.non_resident.lowest_vcn) {
1375 ntfs_error(vi->i_sb, "First extent of attribute has "
1376 "non-zero lowest_vcn.");
1379 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1380 ni->initialized_size = sle64_to_cpu(
1381 a->data.non_resident.initialized_size);
1382 ni->allocated_size = sle64_to_cpu(
1383 a->data.non_resident.allocated_size);
1385 vi->i_mapping->a_ops = &ntfs_normal_aops;
1386 if (NInoMstProtected(ni))
1387 vi->i_mapping->a_ops = &ntfs_mst_aops;
1388 else if (NInoCompressed(ni))
1389 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1390 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1391 vi->i_blocks = ni->itype.compressed.size >> 9;
1393 vi->i_blocks = ni->allocated_size >> 9;
1395 * Make sure the base inode does not go away and attach it to the
1399 ni->ext.base_ntfs_ino = base_ni;
1400 ni->nr_extents = -1;
1402 ntfs_attr_put_search_ctx(ctx);
1403 unmap_mft_record(base_ni);
1405 ntfs_debug("Done.");
1412 ntfs_attr_put_search_ctx(ctx);
1413 unmap_mft_record(base_ni);
1415 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1416 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1417 "Marking corrupt inode and base inode 0x%lx as bad. "
1418 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1427 * ntfs_read_locked_index_inode - read an index inode from its base inode
1428 * @base_vi: base inode
1429 * @vi: index inode to read
1431 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1432 * index inode described by @vi into memory from the base mft record described
1435 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1436 * reading and looks up the attributes relating to the index described by @vi
1437 * before setting up the necessary fields in @vi as well as initializing the
1440 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1441 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1442 * are setup like directory inodes since directories are a special case of
1443 * indices ao they need to be treated in much the same way. Most importantly,
1444 * for small indices the index allocation attribute might not actually exist.
1445 * However, the index root attribute always exists but this does not need to
1446 * have an inode associated with it and this is why we define a new inode type
1447 * index. Also, like for directories, we need to have an attribute inode for
1448 * the bitmap attribute corresponding to the index allocation attribute and we
1449 * can store this in the appropriate field of the inode, just like we do for
1450 * normal directory inodes.
1452 * Q: What locks are held when the function is called?
1453 * A: i_state has I_NEW set, hence the inode is locked, also
1454 * i_count is set to 1, so it is not going to go away
1456 * Return 0 on success and -errno on error. In the error case, the inode will
1457 * have had make_bad_inode() executed on it.
1459 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1462 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1463 ntfs_inode *ni, *base_ni, *bni;
1467 ntfs_attr_search_ctx *ctx;
1469 u8 *ir_end, *index_end;
1472 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1473 ntfs_init_big_inode(vi);
1475 base_ni = NTFS_I(base_vi);
1476 /* Just mirror the values from the base inode. */
1477 vi->i_uid = base_vi->i_uid;
1478 vi->i_gid = base_vi->i_gid;
1479 set_nlink(vi, base_vi->i_nlink);
1480 vi->i_mtime = base_vi->i_mtime;
1481 vi->i_ctime = base_vi->i_ctime;
1482 vi->i_atime = base_vi->i_atime;
1483 vi->i_generation = ni->seq_no = base_ni->seq_no;
1484 /* Set inode type to zero but preserve permissions. */
1485 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1486 /* Map the mft record for the base inode. */
1487 m = map_mft_record(base_ni);
1492 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1497 /* Find the index root attribute. */
1498 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1499 CASE_SENSITIVE, 0, NULL, 0, ctx);
1500 if (unlikely(err)) {
1502 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1507 /* Set up the state. */
1508 if (unlikely(a->non_resident)) {
1509 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1512 /* Ensure the attribute name is placed before the value. */
1513 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1514 le16_to_cpu(a->data.resident.value_offset)))) {
1515 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1516 "after the attribute value.");
1520 * Compressed/encrypted/sparse index root is not allowed, except for
1521 * directories of course but those are not dealt with here.
1523 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1525 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1529 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1530 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1531 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1532 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1535 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1536 if (index_end > ir_end) {
1537 ntfs_error(vi->i_sb, "Index is corrupt.");
1541 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1542 le32_to_cpu(ir->type));
1545 ni->itype.index.collation_rule = ir->collation_rule;
1546 ntfs_debug("Index collation rule is 0x%x.",
1547 le32_to_cpu(ir->collation_rule));
1548 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1549 if (!is_power_of_2(ni->itype.index.block_size)) {
1550 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1551 "two.", ni->itype.index.block_size);
1554 if (ni->itype.index.block_size > PAGE_SIZE) {
1555 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1556 "(%ld) is not supported. Sorry.",
1557 ni->itype.index.block_size, PAGE_SIZE);
1561 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1562 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1563 "(%i) is not supported. Sorry.",
1564 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1568 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1569 /* Determine the size of a vcn in the index. */
1570 if (vol->cluster_size <= ni->itype.index.block_size) {
1571 ni->itype.index.vcn_size = vol->cluster_size;
1572 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1574 ni->itype.index.vcn_size = vol->sector_size;
1575 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1577 /* Check for presence of index allocation attribute. */
1578 if (!(ir->index.flags & LARGE_INDEX)) {
1579 /* No index allocation. */
1580 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1581 /* We are done with the mft record, so we release it. */
1582 ntfs_attr_put_search_ctx(ctx);
1583 unmap_mft_record(base_ni);
1586 goto skip_large_index_stuff;
1587 } /* LARGE_INDEX: Index allocation present. Setup state. */
1588 NInoSetIndexAllocPresent(ni);
1589 /* Find index allocation attribute. */
1590 ntfs_attr_reinit_search_ctx(ctx);
1591 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1592 CASE_SENSITIVE, 0, NULL, 0, ctx);
1593 if (unlikely(err)) {
1595 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1596 "not present but $INDEX_ROOT "
1597 "indicated it is.");
1599 ntfs_error(vi->i_sb, "Failed to lookup "
1600 "$INDEX_ALLOCATION attribute.");
1604 if (!a->non_resident) {
1605 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1610 * Ensure the attribute name is placed before the mapping pairs array.
1612 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1614 a->data.non_resident.mapping_pairs_offset)))) {
1615 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1616 "placed after the mapping pairs array.");
1619 if (a->flags & ATTR_IS_ENCRYPTED) {
1620 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1624 if (a->flags & ATTR_IS_SPARSE) {
1625 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1628 if (a->flags & ATTR_COMPRESSION_MASK) {
1629 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1633 if (a->data.non_resident.lowest_vcn) {
1634 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1635 "attribute has non zero lowest_vcn.");
1638 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1639 ni->initialized_size = sle64_to_cpu(
1640 a->data.non_resident.initialized_size);
1641 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1643 * We are done with the mft record, so we release it. Otherwise
1644 * we would deadlock in ntfs_attr_iget().
1646 ntfs_attr_put_search_ctx(ctx);
1647 unmap_mft_record(base_ni);
1650 /* Get the index bitmap attribute inode. */
1651 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1653 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1658 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1660 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1661 "encrypted and/or sparse.");
1662 goto iput_unm_err_out;
1664 /* Consistency check bitmap size vs. index allocation size. */
1665 bvi_size = i_size_read(bvi);
1666 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1667 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1668 "index allocation (0x%llx).", bvi_size << 3,
1670 goto iput_unm_err_out;
1673 skip_large_index_stuff:
1674 /* Setup the operations for this index inode. */
1675 vi->i_mapping->a_ops = &ntfs_mst_aops;
1676 vi->i_blocks = ni->allocated_size >> 9;
1678 * Make sure the base inode doesn't go away and attach it to the
1682 ni->ext.base_ntfs_ino = base_ni;
1683 ni->nr_extents = -1;
1685 ntfs_debug("Done.");
1693 ntfs_attr_put_search_ctx(ctx);
1695 unmap_mft_record(base_ni);
1697 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1698 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1701 if (err != -EOPNOTSUPP && err != -ENOMEM)
1707 * The MFT inode has special locking, so teach the lock validator
1708 * about this by splitting off the locking rules of the MFT from
1709 * the locking rules of other inodes. The MFT inode can never be
1710 * accessed from the VFS side (or even internally), only by the
1711 * map_mft functions.
1713 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1716 * ntfs_read_inode_mount - special read_inode for mount time use only
1717 * @vi: inode to read
1719 * Read inode FILE_MFT at mount time, only called with super_block lock
1720 * held from within the read_super() code path.
1722 * This function exists because when it is called the page cache for $MFT/$DATA
1723 * is not initialized and hence we cannot get at the contents of mft records
1724 * by calling map_mft_record*().
1726 * Further it needs to cope with the circular references problem, i.e. cannot
1727 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1728 * we do not know where the other extent mft records are yet and again, because
1729 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1730 * attribute list is actually present in $MFT inode.
1732 * We solve these problems by starting with the $DATA attribute before anything
1733 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1734 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1735 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1736 * sufficient information for the next step to complete.
1738 * This should work but there are two possible pit falls (see inline comments
1739 * below), but only time will tell if they are real pits or just smoke...
1741 int ntfs_read_inode_mount(struct inode *vi)
1743 VCN next_vcn, last_vcn, highest_vcn;
1745 struct super_block *sb = vi->i_sb;
1746 ntfs_volume *vol = NTFS_SB(sb);
1747 struct buffer_head *bh;
1749 MFT_RECORD *m = NULL;
1751 ntfs_attr_search_ctx *ctx;
1752 unsigned int i, nr_blocks;
1755 ntfs_debug("Entering.");
1757 /* Initialize the ntfs specific part of @vi. */
1758 ntfs_init_big_inode(vi);
1762 /* Setup the data attribute. It is special as it is mst protected. */
1763 NInoSetNonResident(ni);
1764 NInoSetMstProtected(ni);
1765 NInoSetSparseDisabled(ni);
1770 * This sets up our little cheat allowing us to reuse the async read io
1771 * completion handler for directories.
1773 ni->itype.index.block_size = vol->mft_record_size;
1774 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1776 /* Very important! Needed to be able to call map_mft_record*(). */
1779 /* Allocate enough memory to read the first mft record. */
1780 if (vol->mft_record_size > 64 * 1024) {
1781 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1782 vol->mft_record_size);
1785 i = vol->mft_record_size;
1786 if (i < sb->s_blocksize)
1787 i = sb->s_blocksize;
1788 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1790 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1794 /* Determine the first block of the $MFT/$DATA attribute. */
1795 block = vol->mft_lcn << vol->cluster_size_bits >>
1796 sb->s_blocksize_bits;
1797 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1801 /* Load $MFT/$DATA's first mft record. */
1802 for (i = 0; i < nr_blocks; i++) {
1803 bh = sb_bread(sb, block++);
1805 ntfs_error(sb, "Device read failed.");
1808 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1813 if (le32_to_cpu(m->bytes_allocated) != vol->mft_record_size) {
1814 ntfs_error(sb, "Incorrect mft record size %u in superblock, should be %u.",
1815 le32_to_cpu(m->bytes_allocated), vol->mft_record_size);
1819 /* Apply the mst fixups. */
1820 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1821 /* FIXME: Try to use the $MFTMirr now. */
1822 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1826 /* Need this to sanity check attribute list references to $MFT. */
1827 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1829 /* Provides readpage() for map_mft_record(). */
1830 vi->i_mapping->a_ops = &ntfs_mst_aops;
1832 ctx = ntfs_attr_get_search_ctx(ni, m);
1838 /* Find the attribute list attribute if present. */
1839 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1841 if (unlikely(err != -ENOENT)) {
1842 ntfs_error(sb, "Failed to lookup attribute list "
1843 "attribute. You should run chkdsk.");
1846 } else /* if (!err) */ {
1847 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1849 static const char *es = " Not allowed. $MFT is corrupt. "
1850 "You should run chkdsk.";
1852 ntfs_debug("Attribute list attribute found in $MFT.");
1853 NInoSetAttrList(ni);
1855 if (a->flags & ATTR_COMPRESSION_MASK) {
1856 ntfs_error(sb, "Attribute list attribute is "
1857 "compressed.%s", es);
1860 if (a->flags & ATTR_IS_ENCRYPTED ||
1861 a->flags & ATTR_IS_SPARSE) {
1862 if (a->non_resident) {
1863 ntfs_error(sb, "Non-resident attribute list "
1864 "attribute is encrypted/"
1868 ntfs_warning(sb, "Resident attribute list attribute "
1869 "in $MFT system file is marked "
1870 "encrypted/sparse which is not true. "
1871 "However, Windows allows this and "
1872 "chkdsk does not detect or correct it "
1873 "so we will just ignore the invalid "
1874 "flags and pretend they are not set.");
1876 /* Now allocate memory for the attribute list. */
1877 ni->attr_list_size = (u32)ntfs_attr_size(a);
1878 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1879 if (!ni->attr_list) {
1880 ntfs_error(sb, "Not enough memory to allocate buffer "
1881 "for attribute list.");
1884 if (a->non_resident) {
1885 NInoSetAttrListNonResident(ni);
1886 if (a->data.non_resident.lowest_vcn) {
1887 ntfs_error(sb, "Attribute list has non zero "
1888 "lowest_vcn. $MFT is corrupt. "
1889 "You should run chkdsk.");
1892 /* Setup the runlist. */
1893 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1895 if (IS_ERR(ni->attr_list_rl.rl)) {
1896 err = PTR_ERR(ni->attr_list_rl.rl);
1897 ni->attr_list_rl.rl = NULL;
1898 ntfs_error(sb, "Mapping pairs decompression "
1899 "failed with error code %i.",
1903 /* Now load the attribute list. */
1904 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1905 ni->attr_list, ni->attr_list_size,
1906 sle64_to_cpu(a->data.
1907 non_resident.initialized_size)))) {
1908 ntfs_error(sb, "Failed to load attribute list "
1909 "attribute with error code %i.",
1913 } else /* if (!ctx.attr->non_resident) */ {
1914 if ((u8*)a + le16_to_cpu(
1915 a->data.resident.value_offset) +
1917 a->data.resident.value_length) >
1918 (u8*)ctx->mrec + vol->mft_record_size) {
1919 ntfs_error(sb, "Corrupt attribute list "
1923 /* Now copy the attribute list. */
1924 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1925 a->data.resident.value_offset),
1927 a->data.resident.value_length));
1929 /* The attribute list is now setup in memory. */
1931 * FIXME: I don't know if this case is actually possible.
1932 * According to logic it is not possible but I have seen too
1933 * many weird things in MS software to rely on logic... Thus we
1934 * perform a manual search and make sure the first $MFT/$DATA
1935 * extent is in the base inode. If it is not we abort with an
1936 * error and if we ever see a report of this error we will need
1937 * to do some magic in order to have the necessary mft record
1938 * loaded and in the right place in the page cache. But
1939 * hopefully logic will prevail and this never happens...
1941 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1942 al_end = (u8*)al_entry + ni->attr_list_size;
1943 for (;; al_entry = next_al_entry) {
1944 /* Out of bounds check. */
1945 if ((u8*)al_entry < ni->attr_list ||
1946 (u8*)al_entry > al_end)
1947 goto em_put_err_out;
1948 /* Catch the end of the attribute list. */
1949 if ((u8*)al_entry == al_end)
1950 goto em_put_err_out;
1951 if (!al_entry->length)
1952 goto em_put_err_out;
1953 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1954 le16_to_cpu(al_entry->length) > al_end)
1955 goto em_put_err_out;
1956 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1957 le16_to_cpu(al_entry->length));
1958 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1959 goto em_put_err_out;
1960 if (AT_DATA != al_entry->type)
1962 /* We want an unnamed attribute. */
1963 if (al_entry->name_length)
1964 goto em_put_err_out;
1965 /* Want the first entry, i.e. lowest_vcn == 0. */
1966 if (al_entry->lowest_vcn)
1967 goto em_put_err_out;
1968 /* First entry has to be in the base mft record. */
1969 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1970 /* MFT references do not match, logic fails. */
1971 ntfs_error(sb, "BUG: The first $DATA extent "
1972 "of $MFT is not in the base "
1973 "mft record. Please report "
1974 "you saw this message to "
1975 "linux-ntfs-dev@lists."
1979 /* Sequence numbers must match. */
1980 if (MSEQNO_LE(al_entry->mft_reference) !=
1982 goto em_put_err_out;
1983 /* Got it. All is ok. We can stop now. */
1989 ntfs_attr_reinit_search_ctx(ctx);
1991 /* Now load all attribute extents. */
1993 next_vcn = last_vcn = highest_vcn = 0;
1994 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
1996 runlist_element *nrl;
1998 /* Cache the current attribute. */
2000 /* $MFT must be non-resident. */
2001 if (!a->non_resident) {
2002 ntfs_error(sb, "$MFT must be non-resident but a "
2003 "resident extent was found. $MFT is "
2004 "corrupt. Run chkdsk.");
2007 /* $MFT must be uncompressed and unencrypted. */
2008 if (a->flags & ATTR_COMPRESSION_MASK ||
2009 a->flags & ATTR_IS_ENCRYPTED ||
2010 a->flags & ATTR_IS_SPARSE) {
2011 ntfs_error(sb, "$MFT must be uncompressed, "
2012 "non-sparse, and unencrypted but a "
2013 "compressed/sparse/encrypted extent "
2014 "was found. $MFT is corrupt. Run "
2019 * Decompress the mapping pairs array of this extent and merge
2020 * the result into the existing runlist. No need for locking
2021 * as we have exclusive access to the inode at this time and we
2022 * are a mount in progress task, too.
2024 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2026 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2027 "failed with error code %ld. $MFT is "
2028 "corrupt.", PTR_ERR(nrl));
2031 ni->runlist.rl = nrl;
2033 /* Are we in the first extent? */
2035 if (a->data.non_resident.lowest_vcn) {
2036 ntfs_error(sb, "First extent of $DATA "
2037 "attribute has non zero "
2038 "lowest_vcn. $MFT is corrupt. "
2039 "You should run chkdsk.");
2042 /* Get the last vcn in the $DATA attribute. */
2043 last_vcn = sle64_to_cpu(
2044 a->data.non_resident.allocated_size)
2045 >> vol->cluster_size_bits;
2046 /* Fill in the inode size. */
2047 vi->i_size = sle64_to_cpu(
2048 a->data.non_resident.data_size);
2049 ni->initialized_size = sle64_to_cpu(
2050 a->data.non_resident.initialized_size);
2051 ni->allocated_size = sle64_to_cpu(
2052 a->data.non_resident.allocated_size);
2054 * Verify the number of mft records does not exceed
2057 if ((vi->i_size >> vol->mft_record_size_bits) >=
2059 ntfs_error(sb, "$MFT is too big! Aborting.");
2063 * We have got the first extent of the runlist for
2064 * $MFT which means it is now relatively safe to call
2065 * the normal ntfs_read_inode() function.
2066 * Complete reading the inode, this will actually
2067 * re-read the mft record for $MFT, this time entering
2068 * it into the page cache with which we complete the
2069 * kick start of the volume. It should be safe to do
2070 * this now as the first extent of $MFT/$DATA is
2071 * already known and we would hope that we don't need
2072 * further extents in order to find the other
2073 * attributes belonging to $MFT. Only time will tell if
2074 * this is really the case. If not we will have to play
2075 * magic at this point, possibly duplicating a lot of
2076 * ntfs_read_inode() at this point. We will need to
2077 * ensure we do enough of its work to be able to call
2078 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2079 * hope this never happens...
2081 ntfs_read_locked_inode(vi);
2082 if (is_bad_inode(vi)) {
2083 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2084 "failed. BUG or corrupt $MFT. "
2085 "Run chkdsk and if no errors "
2086 "are found, please report you "
2087 "saw this message to "
2088 "linux-ntfs-dev@lists."
2090 ntfs_attr_put_search_ctx(ctx);
2091 /* Revert to the safe super operations. */
2096 * Re-initialize some specifics about $MFT's inode as
2097 * ntfs_read_inode() will have set up the default ones.
2099 /* Set uid and gid to root. */
2100 vi->i_uid = GLOBAL_ROOT_UID;
2101 vi->i_gid = GLOBAL_ROOT_GID;
2102 /* Regular file. No access for anyone. */
2103 vi->i_mode = S_IFREG;
2104 /* No VFS initiated operations allowed for $MFT. */
2105 vi->i_op = &ntfs_empty_inode_ops;
2106 vi->i_fop = &ntfs_empty_file_ops;
2109 /* Get the lowest vcn for the next extent. */
2110 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2111 next_vcn = highest_vcn + 1;
2113 /* Only one extent or error, which we catch below. */
2117 /* Avoid endless loops due to corruption. */
2118 if (next_vcn < sle64_to_cpu(
2119 a->data.non_resident.lowest_vcn)) {
2120 ntfs_error(sb, "$MFT has corrupt attribute list "
2121 "attribute. Run chkdsk.");
2125 if (err != -ENOENT) {
2126 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2127 "$MFT is corrupt. Run chkdsk.");
2131 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2132 "corrupt. Run chkdsk.");
2135 if (highest_vcn && highest_vcn != last_vcn - 1) {
2136 ntfs_error(sb, "Failed to load the complete runlist for "
2137 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2139 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2140 (unsigned long long)highest_vcn,
2141 (unsigned long long)last_vcn - 1);
2144 ntfs_attr_put_search_ctx(ctx);
2145 ntfs_debug("Done.");
2149 * Split the locking rules of the MFT inode from the
2150 * locking rules of other inodes:
2152 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2153 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2158 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2159 "attribute list. $MFT is corrupt. Run chkdsk.");
2161 ntfs_attr_put_search_ctx(ctx);
2163 ntfs_error(sb, "Failed. Marking inode as bad.");
2169 static void __ntfs_clear_inode(ntfs_inode *ni)
2171 /* Free all alocated memory. */
2172 down_write(&ni->runlist.lock);
2173 if (ni->runlist.rl) {
2174 ntfs_free(ni->runlist.rl);
2175 ni->runlist.rl = NULL;
2177 up_write(&ni->runlist.lock);
2179 if (ni->attr_list) {
2180 ntfs_free(ni->attr_list);
2181 ni->attr_list = NULL;
2184 down_write(&ni->attr_list_rl.lock);
2185 if (ni->attr_list_rl.rl) {
2186 ntfs_free(ni->attr_list_rl.rl);
2187 ni->attr_list_rl.rl = NULL;
2189 up_write(&ni->attr_list_rl.lock);
2191 if (ni->name_len && ni->name != I30) {
2198 void ntfs_clear_extent_inode(ntfs_inode *ni)
2200 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2202 BUG_ON(NInoAttr(ni));
2203 BUG_ON(ni->nr_extents != -1);
2206 if (NInoDirty(ni)) {
2207 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2208 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2209 "Losing data! This is a BUG!!!");
2210 // FIXME: Do something!!!
2212 #endif /* NTFS_RW */
2214 __ntfs_clear_inode(ni);
2217 ntfs_destroy_extent_inode(ni);
2221 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2222 * @vi: vfs inode pending annihilation
2224 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2225 * is called, which deallocates all memory belonging to the NTFS specific part
2226 * of the inode and returns.
2228 * If the MFT record is dirty, we commit it before doing anything else.
2230 void ntfs_evict_big_inode(struct inode *vi)
2232 ntfs_inode *ni = NTFS_I(vi);
2234 truncate_inode_pages_final(&vi->i_data);
2238 if (NInoDirty(ni)) {
2239 bool was_bad = (is_bad_inode(vi));
2241 /* Committing the inode also commits all extent inodes. */
2242 ntfs_commit_inode(vi);
2244 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2245 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2246 "0x%lx. Losing data!", vi->i_ino);
2247 // FIXME: Do something!!!
2250 #endif /* NTFS_RW */
2252 /* No need to lock at this stage as no one else has a reference. */
2253 if (ni->nr_extents > 0) {
2256 for (i = 0; i < ni->nr_extents; i++)
2257 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2258 kfree(ni->ext.extent_ntfs_inos);
2261 __ntfs_clear_inode(ni);
2264 /* Release the base inode if we are holding it. */
2265 if (ni->nr_extents == -1) {
2266 iput(VFS_I(ni->ext.base_ntfs_ino));
2268 ni->ext.base_ntfs_ino = NULL;
2272 if (!atomic_dec_and_test(&ni->count))
2278 * ntfs_show_options - show mount options in /proc/mounts
2279 * @sf: seq_file in which to write our mount options
2280 * @root: root of the mounted tree whose mount options to display
2282 * Called by the VFS once for each mounted ntfs volume when someone reads
2283 * /proc/mounts in order to display the NTFS specific mount options of each
2284 * mount. The mount options of fs specified by @root are written to the seq file
2285 * @sf and success is returned.
2287 int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2289 ntfs_volume *vol = NTFS_SB(root->d_sb);
2292 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2293 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2294 if (vol->fmask == vol->dmask)
2295 seq_printf(sf, ",umask=0%o", vol->fmask);
2297 seq_printf(sf, ",fmask=0%o", vol->fmask);
2298 seq_printf(sf, ",dmask=0%o", vol->dmask);
2300 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2301 if (NVolCaseSensitive(vol))
2302 seq_printf(sf, ",case_sensitive");
2303 if (NVolShowSystemFiles(vol))
2304 seq_printf(sf, ",show_sys_files");
2305 if (!NVolSparseEnabled(vol))
2306 seq_printf(sf, ",disable_sparse");
2307 for (i = 0; on_errors_arr[i].val; i++) {
2308 if (on_errors_arr[i].val & vol->on_errors)
2309 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2311 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2317 static const char *es = " Leaving inconsistent metadata. Unmount and run "
2321 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2322 * @vi: inode for which the i_size was changed
2324 * We only support i_size changes for normal files at present, i.e. not
2325 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2328 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2329 * that the change is allowed.
2331 * This implies for us that @vi is a file inode rather than a directory, index,
2332 * or attribute inode as well as that @vi is a base inode.
2334 * Returns 0 on success or -errno on error.
2336 * Called with ->i_mutex held.
2338 int ntfs_truncate(struct inode *vi)
2340 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2342 unsigned long flags;
2343 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2344 ntfs_volume *vol = ni->vol;
2345 ntfs_attr_search_ctx *ctx;
2348 const char *te = " Leaving file length out of sync with i_size.";
2349 int err, mp_size, size_change, alloc_change;
2351 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2352 BUG_ON(NInoAttr(ni));
2353 BUG_ON(S_ISDIR(vi->i_mode));
2354 BUG_ON(NInoMstProtected(ni));
2355 BUG_ON(ni->nr_extents < 0);
2358 * Lock the runlist for writing and map the mft record to ensure it is
2359 * safe to mess with the attribute runlist and sizes.
2361 down_write(&ni->runlist.lock);
2365 base_ni = ni->ext.base_ntfs_ino;
2366 m = map_mft_record(base_ni);
2369 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2370 "(error code %d).%s", vi->i_ino, err, te);
2375 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2376 if (unlikely(!ctx)) {
2377 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2378 "inode 0x%lx (not enough memory).%s",
2383 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2384 CASE_SENSITIVE, 0, NULL, 0, ctx);
2385 if (unlikely(err)) {
2386 if (err == -ENOENT) {
2387 ntfs_error(vi->i_sb, "Open attribute is missing from "
2388 "mft record. Inode 0x%lx is corrupt. "
2389 "Run chkdsk.%s", vi->i_ino, te);
2392 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2393 "inode 0x%lx (error code %d).%s",
2394 vi->i_ino, err, te);
2400 * The i_size of the vfs inode is the new size for the attribute value.
2402 new_size = i_size_read(vi);
2403 /* The current size of the attribute value is the old size. */
2404 old_size = ntfs_attr_size(a);
2405 /* Calculate the new allocated size. */
2406 if (NInoNonResident(ni))
2407 new_alloc_size = (new_size + vol->cluster_size - 1) &
2408 ~(s64)vol->cluster_size_mask;
2410 new_alloc_size = (new_size + 7) & ~7;
2411 /* The current allocated size is the old allocated size. */
2412 read_lock_irqsave(&ni->size_lock, flags);
2413 old_alloc_size = ni->allocated_size;
2414 read_unlock_irqrestore(&ni->size_lock, flags);
2416 * The change in the file size. This will be 0 if no change, >0 if the
2417 * size is growing, and <0 if the size is shrinking.
2420 if (new_size - old_size >= 0) {
2422 if (new_size == old_size)
2425 /* As above for the allocated size. */
2427 if (new_alloc_size - old_alloc_size >= 0) {
2429 if (new_alloc_size == old_alloc_size)
2433 * If neither the size nor the allocation are being changed there is
2436 if (!size_change && !alloc_change)
2438 /* If the size is changing, check if new size is allowed in $AttrDef. */
2440 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2441 if (unlikely(err)) {
2442 if (err == -ERANGE) {
2443 ntfs_error(vol->sb, "Truncate would cause the "
2444 "inode 0x%lx to %simum size "
2445 "for its attribute type "
2446 "(0x%x). Aborting truncate.",
2448 new_size > old_size ? "exceed "
2449 "the max" : "go under the min",
2450 le32_to_cpu(ni->type));
2453 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2454 "attribute type 0x%x. "
2455 "Aborting truncate.",
2457 le32_to_cpu(ni->type));
2460 /* Reset the vfs inode size to the old size. */
2461 i_size_write(vi, old_size);
2465 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2466 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2467 "supported yet for %s files, ignoring.",
2468 NInoCompressed(ni) ? "compressed" :
2473 if (a->non_resident)
2474 goto do_non_resident_truncate;
2475 BUG_ON(NInoNonResident(ni));
2476 /* Resize the attribute record to best fit the new attribute size. */
2477 if (new_size < vol->mft_record_size &&
2478 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2479 /* The resize succeeded! */
2480 flush_dcache_mft_record_page(ctx->ntfs_ino);
2481 mark_mft_record_dirty(ctx->ntfs_ino);
2482 write_lock_irqsave(&ni->size_lock, flags);
2483 /* Update the sizes in the ntfs inode and all is done. */
2484 ni->allocated_size = le32_to_cpu(a->length) -
2485 le16_to_cpu(a->data.resident.value_offset);
2487 * Note ntfs_resident_attr_value_resize() has already done any
2488 * necessary data clearing in the attribute record. When the
2489 * file is being shrunk vmtruncate() will already have cleared
2490 * the top part of the last partial page, i.e. since this is
2491 * the resident case this is the page with index 0. However,
2492 * when the file is being expanded, the page cache page data
2493 * between the old data_size, i.e. old_size, and the new_size
2494 * has not been zeroed. Fortunately, we do not need to zero it
2495 * either since on one hand it will either already be zero due
2496 * to both readpage and writepage clearing partial page data
2497 * beyond i_size in which case there is nothing to do or in the
2498 * case of the file being mmap()ped at the same time, POSIX
2499 * specifies that the behaviour is unspecified thus we do not
2500 * have to do anything. This means that in our implementation
2501 * in the rare case that the file is mmap()ped and a write
2502 * occurred into the mmap()ped region just beyond the file size
2503 * and writepage has not yet been called to write out the page
2504 * (which would clear the area beyond the file size) and we now
2505 * extend the file size to incorporate this dirty region
2506 * outside the file size, a write of the page would result in
2507 * this data being written to disk instead of being cleared.
2508 * Given both POSIX and the Linux mmap(2) man page specify that
2509 * this corner case is undefined, we choose to leave it like
2510 * that as this is much simpler for us as we cannot lock the
2511 * relevant page now since we are holding too many ntfs locks
2512 * which would result in a lock reversal deadlock.
2514 ni->initialized_size = new_size;
2515 write_unlock_irqrestore(&ni->size_lock, flags);
2518 /* If the above resize failed, this must be an attribute extension. */
2519 BUG_ON(size_change < 0);
2521 * We have to drop all the locks so we can call
2522 * ntfs_attr_make_non_resident(). This could be optimised by try-
2523 * locking the first page cache page and only if that fails dropping
2524 * the locks, locking the page, and redoing all the locking and
2525 * lookups. While this would be a huge optimisation, it is not worth
2526 * it as this is definitely a slow code path as it only ever can happen
2527 * once for any given file.
2529 ntfs_attr_put_search_ctx(ctx);
2530 unmap_mft_record(base_ni);
2531 up_write(&ni->runlist.lock);
2533 * Not enough space in the mft record, try to make the attribute
2534 * non-resident and if successful restart the truncation process.
2536 err = ntfs_attr_make_non_resident(ni, old_size);
2538 goto retry_truncate;
2540 * Could not make non-resident. If this is due to this not being
2541 * permitted for this attribute type or there not being enough space,
2542 * try to make other attributes non-resident. Otherwise fail.
2544 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2545 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2546 "type 0x%x, because the conversion from "
2547 "resident to non-resident attribute failed "
2548 "with error code %i.", vi->i_ino,
2549 (unsigned)le32_to_cpu(ni->type), err);
2554 /* TODO: Not implemented from here, abort. */
2556 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2557 "disk for the non-resident attribute value. "
2558 "This case is not implemented yet.");
2559 else /* if (err == -EPERM) */
2560 ntfs_error(vol->sb, "This attribute type may not be "
2561 "non-resident. This case is not implemented "
2566 // TODO: Attempt to make other attributes non-resident.
2568 goto do_resident_extend;
2570 * Both the attribute list attribute and the standard information
2571 * attribute must remain in the base inode. Thus, if this is one of
2572 * these attributes, we have to try to move other attributes out into
2573 * extent mft records instead.
2575 if (ni->type == AT_ATTRIBUTE_LIST ||
2576 ni->type == AT_STANDARD_INFORMATION) {
2577 // TODO: Attempt to move other attributes into extent mft
2581 goto do_resident_extend;
2584 // TODO: Attempt to move this attribute to an extent mft record, but
2585 // only if it is not already the only attribute in an mft record in
2586 // which case there would be nothing to gain.
2589 goto do_resident_extend;
2590 /* There is nothing we can do to make enough space. )-: */
2593 do_non_resident_truncate:
2594 BUG_ON(!NInoNonResident(ni));
2595 if (alloc_change < 0) {
2596 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2597 if (highest_vcn > 0 &&
2598 old_alloc_size >> vol->cluster_size_bits >
2601 * This attribute has multiple extents. Not yet
2604 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2605 "attribute type 0x%x, because the "
2606 "attribute is highly fragmented (it "
2607 "consists of multiple extents) and "
2608 "this case is not implemented yet.",
2610 (unsigned)le32_to_cpu(ni->type));
2616 * If the size is shrinking, need to reduce the initialized_size and
2617 * the data_size before reducing the allocation.
2619 if (size_change < 0) {
2621 * Make the valid size smaller (i_size is already up-to-date).
2623 write_lock_irqsave(&ni->size_lock, flags);
2624 if (new_size < ni->initialized_size) {
2625 ni->initialized_size = new_size;
2626 a->data.non_resident.initialized_size =
2627 cpu_to_sle64(new_size);
2629 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2630 write_unlock_irqrestore(&ni->size_lock, flags);
2631 flush_dcache_mft_record_page(ctx->ntfs_ino);
2632 mark_mft_record_dirty(ctx->ntfs_ino);
2633 /* If the allocated size is not changing, we are done. */
2637 * If the size is shrinking it makes no sense for the
2638 * allocation to be growing.
2640 BUG_ON(alloc_change > 0);
2641 } else /* if (size_change >= 0) */ {
2643 * The file size is growing or staying the same but the
2644 * allocation can be shrinking, growing or staying the same.
2646 if (alloc_change > 0) {
2648 * We need to extend the allocation and possibly update
2649 * the data size. If we are updating the data size,
2650 * since we are not touching the initialized_size we do
2651 * not need to worry about the actual data on disk.
2652 * And as far as the page cache is concerned, there
2653 * will be no pages beyond the old data size and any
2654 * partial region in the last page between the old and
2655 * new data size (or the end of the page if the new
2656 * data size is outside the page) does not need to be
2657 * modified as explained above for the resident
2658 * attribute truncate case. To do this, we simply drop
2659 * the locks we hold and leave all the work to our
2660 * friendly helper ntfs_attr_extend_allocation().
2662 ntfs_attr_put_search_ctx(ctx);
2663 unmap_mft_record(base_ni);
2664 up_write(&ni->runlist.lock);
2665 err = ntfs_attr_extend_allocation(ni, new_size,
2666 size_change > 0 ? new_size : -1, -1);
2668 * ntfs_attr_extend_allocation() will have done error
2676 /* alloc_change < 0 */
2677 /* Free the clusters. */
2678 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2679 vol->cluster_size_bits, -1, ctx);
2682 if (unlikely(nr_freed < 0)) {
2683 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2684 "%lli). Unmount and run chkdsk to recover "
2685 "the lost cluster(s).", (long long)nr_freed);
2689 /* Truncate the runlist. */
2690 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2691 new_alloc_size >> vol->cluster_size_bits);
2693 * If the runlist truncation failed and/or the search context is no
2694 * longer valid, we cannot resize the attribute record or build the
2695 * mapping pairs array thus we mark the inode bad so that no access to
2696 * the freed clusters can happen.
2698 if (unlikely(err || IS_ERR(m))) {
2699 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2701 "restore attribute search context" :
2702 "truncate attribute runlist",
2703 IS_ERR(m) ? PTR_ERR(m) : err, es);
2707 /* Get the size for the shrunk mapping pairs array for the runlist. */
2708 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2709 if (unlikely(mp_size <= 0)) {
2710 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2711 "attribute type 0x%x, because determining the "
2712 "size for the mapping pairs failed with error "
2713 "code %i.%s", vi->i_ino,
2714 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2719 * Shrink the attribute record for the new mapping pairs array. Note,
2720 * this cannot fail since we are making the attribute smaller thus by
2721 * definition there is enough space to do so.
2723 err = ntfs_attr_record_resize(m, a, mp_size +
2724 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2727 * Generate the mapping pairs array directly into the attribute record.
2729 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2730 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2731 mp_size, ni->runlist.rl, 0, -1, NULL);
2732 if (unlikely(err)) {
2733 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2734 "attribute type 0x%x, because building the "
2735 "mapping pairs failed with error code %i.%s",
2736 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2741 /* Update the allocated/compressed size as well as the highest vcn. */
2742 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2743 vol->cluster_size_bits) - 1);
2744 write_lock_irqsave(&ni->size_lock, flags);
2745 ni->allocated_size = new_alloc_size;
2746 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2747 if (NInoSparse(ni) || NInoCompressed(ni)) {
2749 ni->itype.compressed.size -= nr_freed <<
2750 vol->cluster_size_bits;
2751 BUG_ON(ni->itype.compressed.size < 0);
2752 a->data.non_resident.compressed_size = cpu_to_sle64(
2753 ni->itype.compressed.size);
2754 vi->i_blocks = ni->itype.compressed.size >> 9;
2757 vi->i_blocks = new_alloc_size >> 9;
2758 write_unlock_irqrestore(&ni->size_lock, flags);
2760 * We have shrunk the allocation. If this is a shrinking truncate we
2761 * have already dealt with the initialized_size and the data_size above
2762 * and we are done. If the truncate is only changing the allocation
2763 * and not the data_size, we are also done. If this is an extending
2764 * truncate, need to extend the data_size now which is ensured by the
2765 * fact that @size_change is positive.
2769 * If the size is growing, need to update it now. If it is shrinking,
2770 * we have already updated it above (before the allocation change).
2772 if (size_change > 0)
2773 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2774 /* Ensure the modified mft record is written out. */
2775 flush_dcache_mft_record_page(ctx->ntfs_ino);
2776 mark_mft_record_dirty(ctx->ntfs_ino);
2778 ntfs_attr_put_search_ctx(ctx);
2779 unmap_mft_record(base_ni);
2780 up_write(&ni->runlist.lock);
2782 /* Update the mtime and ctime on the base inode. */
2783 /* normally ->truncate shouldn't update ctime or mtime,
2784 * but ntfs did before so it got a copy & paste version
2785 * of file_update_time. one day someone should fix this
2788 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2789 struct timespec64 now = current_time(VFS_I(base_ni));
2792 if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2793 !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now))
2795 VFS_I(base_ni)->i_mtime = now;
2796 VFS_I(base_ni)->i_ctime = now;
2799 mark_inode_dirty_sync(VFS_I(base_ni));
2803 NInoClearTruncateFailed(ni);
2804 ntfs_debug("Done.");
2810 if (err != -ENOMEM && err != -EOPNOTSUPP)
2812 if (err != -EOPNOTSUPP)
2813 NInoSetTruncateFailed(ni);
2814 else if (old_size >= 0)
2815 i_size_write(vi, old_size);
2818 ntfs_attr_put_search_ctx(ctx);
2820 unmap_mft_record(base_ni);
2821 up_write(&ni->runlist.lock);
2823 ntfs_debug("Failed. Returning error code %i.", err);
2826 if (err != -ENOMEM && err != -EOPNOTSUPP)
2828 if (err != -EOPNOTSUPP)
2829 NInoSetTruncateFailed(ni);
2831 i_size_write(vi, old_size);
2836 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2837 * @vi: inode for which the i_size was changed
2839 * Wrapper for ntfs_truncate() that has no return value.
2841 * See ntfs_truncate() description above for details.
2844 void ntfs_truncate_vfs(struct inode *vi) {
2850 * ntfs_setattr - called from notify_change() when an attribute is being changed
2851 * @dentry: dentry whose attributes to change
2852 * @attr: structure describing the attributes and the changes
2854 * We have to trap VFS attempts to truncate the file described by @dentry as
2855 * soon as possible, because we do not implement changes in i_size yet. So we
2856 * abort all i_size changes here.
2858 * We also abort all changes of user, group, and mode as we do not implement
2859 * the NTFS ACLs yet.
2861 * Called with ->i_mutex held.
2863 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2865 struct inode *vi = d_inode(dentry);
2867 unsigned int ia_valid = attr->ia_valid;
2869 err = setattr_prepare(dentry, attr);
2872 /* We do not support NTFS ACLs yet. */
2873 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2874 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2875 "supported yet, ignoring.");
2879 if (ia_valid & ATTR_SIZE) {
2880 if (attr->ia_size != i_size_read(vi)) {
2881 ntfs_inode *ni = NTFS_I(vi);
2883 * FIXME: For now we do not support resizing of
2884 * compressed or encrypted files yet.
2886 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2887 ntfs_warning(vi->i_sb, "Changes in inode size "
2888 "are not supported yet for "
2889 "%s files, ignoring.",
2890 NInoCompressed(ni) ?
2891 "compressed" : "encrypted");
2894 truncate_setsize(vi, attr->ia_size);
2895 ntfs_truncate_vfs(vi);
2897 if (err || ia_valid == ATTR_SIZE)
2901 * We skipped the truncate but must still update
2904 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2907 if (ia_valid & ATTR_ATIME)
2908 vi->i_atime = attr->ia_atime;
2909 if (ia_valid & ATTR_MTIME)
2910 vi->i_mtime = attr->ia_mtime;
2911 if (ia_valid & ATTR_CTIME)
2912 vi->i_ctime = attr->ia_ctime;
2913 mark_inode_dirty(vi);
2919 * ntfs_write_inode - write out a dirty inode
2920 * @vi: inode to write out
2921 * @sync: if true, write out synchronously
2923 * Write out a dirty inode to disk including any extent inodes if present.
2925 * If @sync is true, commit the inode to disk and wait for io completion. This
2926 * is done using write_mft_record().
2928 * If @sync is false, just schedule the write to happen but do not wait for i/o
2929 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2930 * marking the page (and in this case mft record) dirty but we do not implement
2931 * this yet as write_mft_record() largely ignores the @sync parameter and
2932 * always performs synchronous writes.
2934 * Return 0 on success and -errno on error.
2936 int __ntfs_write_inode(struct inode *vi, int sync)
2939 ntfs_inode *ni = NTFS_I(vi);
2940 ntfs_attr_search_ctx *ctx;
2942 STANDARD_INFORMATION *si;
2944 bool modified = false;
2946 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2949 * Dirty attribute inodes are written via their real inodes so just
2950 * clean them here. Access time updates are taken care off when the
2951 * real inode is written.
2955 ntfs_debug("Done.");
2958 /* Map, pin, and lock the mft record belonging to the inode. */
2959 m = map_mft_record(ni);
2964 /* Update the access times in the standard information attribute. */
2965 ctx = ntfs_attr_get_search_ctx(ni, m);
2966 if (unlikely(!ctx)) {
2970 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2971 CASE_SENSITIVE, 0, NULL, 0, ctx);
2972 if (unlikely(err)) {
2973 ntfs_attr_put_search_ctx(ctx);
2976 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
2977 le16_to_cpu(ctx->attr->data.resident.value_offset));
2978 /* Update the access times if they have changed. */
2979 nt = utc2ntfs(vi->i_mtime);
2980 if (si->last_data_change_time != nt) {
2981 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
2982 "new = 0x%llx", vi->i_ino, (long long)
2983 sle64_to_cpu(si->last_data_change_time),
2984 (long long)sle64_to_cpu(nt));
2985 si->last_data_change_time = nt;
2988 nt = utc2ntfs(vi->i_ctime);
2989 if (si->last_mft_change_time != nt) {
2990 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
2991 "new = 0x%llx", vi->i_ino, (long long)
2992 sle64_to_cpu(si->last_mft_change_time),
2993 (long long)sle64_to_cpu(nt));
2994 si->last_mft_change_time = nt;
2997 nt = utc2ntfs(vi->i_atime);
2998 if (si->last_access_time != nt) {
2999 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3000 "new = 0x%llx", vi->i_ino,
3001 (long long)sle64_to_cpu(si->last_access_time),
3002 (long long)sle64_to_cpu(nt));
3003 si->last_access_time = nt;
3007 * If we just modified the standard information attribute we need to
3008 * mark the mft record it is in dirty. We do this manually so that
3009 * mark_inode_dirty() is not called which would redirty the inode and
3010 * hence result in an infinite loop of trying to write the inode.
3011 * There is no need to mark the base inode nor the base mft record
3012 * dirty, since we are going to write this mft record below in any case
3013 * and the base mft record may actually not have been modified so it
3014 * might not need to be written out.
3015 * NOTE: It is not a problem when the inode for $MFT itself is being
3016 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3017 * on the $MFT inode and hence ntfs_write_inode() will not be
3018 * re-invoked because of it which in turn is ok since the dirtied mft
3019 * record will be cleaned and written out to disk below, i.e. before
3020 * this function returns.
3023 flush_dcache_mft_record_page(ctx->ntfs_ino);
3024 if (!NInoTestSetDirty(ctx->ntfs_ino))
3025 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3026 ctx->ntfs_ino->page_ofs);
3028 ntfs_attr_put_search_ctx(ctx);
3029 /* Now the access times are updated, write the base mft record. */
3031 err = write_mft_record(ni, m, sync);
3032 /* Write all attached extent mft records. */
3033 mutex_lock(&ni->extent_lock);
3034 if (ni->nr_extents > 0) {
3035 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3038 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3039 for (i = 0; i < ni->nr_extents; i++) {
3040 ntfs_inode *tni = extent_nis[i];
3042 if (NInoDirty(tni)) {
3043 MFT_RECORD *tm = map_mft_record(tni);
3047 if (!err || err == -ENOMEM)
3051 ret = write_mft_record(tni, tm, sync);
3052 unmap_mft_record(tni);
3053 if (unlikely(ret)) {
3054 if (!err || err == -ENOMEM)
3060 mutex_unlock(&ni->extent_lock);
3061 unmap_mft_record(ni);
3064 ntfs_debug("Done.");
3067 unmap_mft_record(ni);
3069 if (err == -ENOMEM) {
3070 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3071 "Marking the inode dirty again, so the VFS "
3073 mark_inode_dirty(vi);
3075 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
3076 NVolSetErrors(ni->vol);
3081 #endif /* NTFS_RW */