1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* dir.c: AFS filesystem directory handling
4 * Copyright (C) 2002, 2018 Red Hat, Inc. All Rights Reserved.
8 #include <linux/kernel.h>
10 #include <linux/namei.h>
11 #include <linux/pagemap.h>
12 #include <linux/swap.h>
13 #include <linux/ctype.h>
14 #include <linux/sched.h>
15 #include <linux/task_io_accounting_ops.h>
20 static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry,
22 static int afs_dir_open(struct inode *inode, struct file *file);
23 static int afs_readdir(struct file *file, struct dir_context *ctx);
24 static int afs_d_revalidate(struct dentry *dentry, unsigned int flags);
25 static int afs_d_delete(const struct dentry *dentry);
26 static void afs_d_iput(struct dentry *dentry, struct inode *inode);
27 static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name, int nlen,
28 loff_t fpos, u64 ino, unsigned dtype);
29 static int afs_lookup_filldir(struct dir_context *ctx, const char *name, int nlen,
30 loff_t fpos, u64 ino, unsigned dtype);
31 static int afs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
33 static int afs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
34 static int afs_rmdir(struct inode *dir, struct dentry *dentry);
35 static int afs_unlink(struct inode *dir, struct dentry *dentry);
36 static int afs_link(struct dentry *from, struct inode *dir,
37 struct dentry *dentry);
38 static int afs_symlink(struct inode *dir, struct dentry *dentry,
40 static int afs_rename(struct inode *old_dir, struct dentry *old_dentry,
41 struct inode *new_dir, struct dentry *new_dentry,
43 static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags);
44 static void afs_dir_invalidatepage(struct page *page, unsigned int offset,
47 static int afs_dir_set_page_dirty(struct page *page)
49 BUG(); /* This should never happen. */
52 const struct file_operations afs_dir_file_operations = {
54 .release = afs_release,
55 .iterate_shared = afs_readdir,
57 .llseek = generic_file_llseek,
60 const struct inode_operations afs_dir_inode_operations = {
65 .symlink = afs_symlink,
69 .permission = afs_permission,
70 .getattr = afs_getattr,
71 .setattr = afs_setattr,
72 .listxattr = afs_listxattr,
75 const struct address_space_operations afs_dir_aops = {
76 .set_page_dirty = afs_dir_set_page_dirty,
77 .releasepage = afs_dir_releasepage,
78 .invalidatepage = afs_dir_invalidatepage,
81 const struct dentry_operations afs_fs_dentry_operations = {
82 .d_revalidate = afs_d_revalidate,
83 .d_delete = afs_d_delete,
84 .d_release = afs_d_release,
85 .d_automount = afs_d_automount,
89 struct afs_lookup_one_cookie {
90 struct dir_context ctx;
96 struct afs_lookup_cookie {
97 struct dir_context ctx;
101 unsigned short nr_fids;
102 struct afs_fid fids[50];
106 * check that a directory page is valid
108 static bool afs_dir_check_page(struct afs_vnode *dvnode, struct page *page,
111 struct afs_xdr_dir_page *dbuf;
115 /* Determine how many magic numbers there should be in this page, but
116 * we must take care because the directory may change size under us.
118 off = page_offset(page);
122 latter = i_size - off;
123 if (latter >= PAGE_SIZE)
127 qty /= sizeof(union afs_xdr_dir_block);
131 for (tmp = 0; tmp < qty; tmp++) {
132 if (dbuf->blocks[tmp].hdr.magic != AFS_DIR_MAGIC) {
133 printk("kAFS: %s(%lx): bad magic %d/%d is %04hx\n",
134 __func__, dvnode->vfs_inode.i_ino, tmp, qty,
135 ntohs(dbuf->blocks[tmp].hdr.magic));
136 trace_afs_dir_check_failed(dvnode, off, i_size);
138 trace_afs_file_error(dvnode, -EIO, afs_file_error_dir_bad_magic);
142 /* Make sure each block is NUL terminated so we can reasonably
143 * use string functions on it. The filenames in the page
144 * *should* be NUL-terminated anyway.
146 ((u8 *)&dbuf->blocks[tmp])[AFS_DIR_BLOCK_SIZE - 1] = 0;
152 afs_stat_v(dvnode, n_read_dir);
160 * Check the contents of a directory that we've just read.
162 static bool afs_dir_check_pages(struct afs_vnode *dvnode, struct afs_read *req)
164 struct afs_xdr_dir_page *dbuf;
165 unsigned int i, j, qty = PAGE_SIZE / sizeof(union afs_xdr_dir_block);
167 for (i = 0; i < req->nr_pages; i++)
168 if (!afs_dir_check_page(dvnode, req->pages[i], req->actual_len))
173 pr_warn("DIR %llx:%llx f=%llx l=%llx al=%llx r=%llx\n",
174 dvnode->fid.vid, dvnode->fid.vnode,
175 req->file_size, req->len, req->actual_len, req->remain);
176 pr_warn("DIR %llx %x %x %x\n",
177 req->pos, req->index, req->nr_pages, req->offset);
179 for (i = 0; i < req->nr_pages; i++) {
180 dbuf = kmap(req->pages[i]);
181 for (j = 0; j < qty; j++) {
182 union afs_xdr_dir_block *block = &dbuf->blocks[j];
184 pr_warn("[%02x] %32phN\n", i * qty + j, block);
186 kunmap(req->pages[i]);
192 * open an AFS directory file
194 static int afs_dir_open(struct inode *inode, struct file *file)
196 _enter("{%lu}", inode->i_ino);
198 BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
199 BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
201 if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(inode)->flags))
204 return afs_open(inode, file);
208 * Read the directory into the pagecache in one go, scrubbing the previous
209 * contents. The list of pages is returned, pinning them so that they don't
210 * get reclaimed during the iteration.
212 static struct afs_read *afs_read_dir(struct afs_vnode *dvnode, struct key *key)
213 __acquires(&dvnode->validate_lock)
215 struct afs_read *req;
217 int nr_pages, nr_inline, i, n;
221 i_size = i_size_read(&dvnode->vfs_inode);
223 return ERR_PTR(afs_bad(dvnode, afs_file_error_dir_small));
224 if (i_size > 2048 * 1024) {
225 trace_afs_file_error(dvnode, -EFBIG, afs_file_error_dir_big);
226 return ERR_PTR(-EFBIG);
229 _enter("%llu", i_size);
231 /* Get a request record to hold the page list. We want to hold it
232 * inline if we can, but we don't want to make an order 1 allocation.
234 nr_pages = (i_size + PAGE_SIZE - 1) / PAGE_SIZE;
235 nr_inline = nr_pages;
236 if (nr_inline > (PAGE_SIZE - sizeof(*req)) / sizeof(struct page *))
239 req = kzalloc(struct_size(req, array, nr_inline), GFP_KERNEL);
241 return ERR_PTR(-ENOMEM);
243 refcount_set(&req->usage, 1);
244 req->nr_pages = nr_pages;
245 req->actual_len = i_size; /* May change */
246 req->len = nr_pages * PAGE_SIZE; /* We can ask for more than there is */
247 req->data_version = dvnode->status.data_version; /* May change */
249 req->pages = req->array;
251 req->pages = kcalloc(nr_pages, sizeof(struct page *),
257 /* Get a list of all the pages that hold or will hold the directory
258 * content. We need to fill in any gaps that we might find where the
259 * memory reclaimer has been at work. If there are any gaps, we will
260 * need to reread the entire directory contents.
264 n = find_get_pages_contig(dvnode->vfs_inode.i_mapping, i,
267 _debug("find %u at %u/%u", n, i, req->nr_pages);
269 gfp_t gfp = dvnode->vfs_inode.i_mapping->gfp_mask;
271 if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
272 afs_stat_v(dvnode, n_inval);
275 req->pages[i] = __page_cache_alloc(gfp);
278 ret = add_to_page_cache_lru(req->pages[i],
279 dvnode->vfs_inode.i_mapping,
284 attach_page_private(req->pages[i], (void *)1);
285 unlock_page(req->pages[i]);
290 } while (i < req->nr_pages);
292 /* If we're going to reload, we need to lock all the pages to prevent
296 if (down_read_killable(&dvnode->validate_lock) < 0)
299 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
302 up_read(&dvnode->validate_lock);
303 if (down_write_killable(&dvnode->validate_lock) < 0)
306 if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) {
307 trace_afs_reload_dir(dvnode);
308 ret = afs_fetch_data(dvnode, key, req);
312 task_io_account_read(PAGE_SIZE * req->nr_pages);
314 if (req->len < req->file_size)
315 goto content_has_grown;
317 /* Validate the data we just read. */
319 if (!afs_dir_check_pages(dvnode, req))
322 // TODO: Trim excess pages
324 set_bit(AFS_VNODE_DIR_VALID, &dvnode->flags);
327 downgrade_write(&dvnode->validate_lock);
332 up_write(&dvnode->validate_lock);
335 _leave(" = %d", ret);
339 up_write(&dvnode->validate_lock);
345 * deal with one block in an AFS directory
347 static int afs_dir_iterate_block(struct afs_vnode *dvnode,
348 struct dir_context *ctx,
349 union afs_xdr_dir_block *block,
352 union afs_xdr_dirent *dire;
353 unsigned offset, next, curr, nr_slots;
357 _enter("%u,%x,%p,,",(unsigned)ctx->pos,blkoff,block);
359 curr = (ctx->pos - blkoff) / sizeof(union afs_xdr_dirent);
361 /* walk through the block, an entry at a time */
362 for (offset = (blkoff == 0 ? AFS_DIR_RESV_BLOCKS0 : AFS_DIR_RESV_BLOCKS);
363 offset < AFS_DIR_SLOTS_PER_BLOCK;
366 /* skip entries marked unused in the bitmap */
367 if (!(block->hdr.bitmap[offset / 8] &
368 (1 << (offset % 8)))) {
369 _debug("ENT[%zu.%u]: unused",
370 blkoff / sizeof(union afs_xdr_dir_block), offset);
374 next * sizeof(union afs_xdr_dirent);
378 /* got a valid entry */
379 dire = &block->dirents[offset];
380 nlen = strnlen(dire->u.name,
382 offset * sizeof(union afs_xdr_dirent));
383 if (nlen > AFSNAMEMAX - 1) {
384 _debug("ENT[%zu]: name too long (len %u/%zu)",
385 blkoff / sizeof(union afs_xdr_dir_block),
387 return afs_bad(dvnode, afs_file_error_dir_name_too_long);
390 _debug("ENT[%zu.%u]: %s %zu \"%s\"",
391 blkoff / sizeof(union afs_xdr_dir_block), offset,
392 (offset < curr ? "skip" : "fill"),
395 nr_slots = afs_dir_calc_slots(nlen);
396 next = offset + nr_slots;
397 if (next > AFS_DIR_SLOTS_PER_BLOCK) {
398 _debug("ENT[%zu.%u]:"
399 " %u extends beyond end dir block"
401 blkoff / sizeof(union afs_xdr_dir_block),
403 return afs_bad(dvnode, afs_file_error_dir_over_end);
406 /* Check that the name-extension dirents are all allocated */
407 for (tmp = 1; tmp < nr_slots; tmp++) {
408 unsigned int ix = offset + tmp;
409 if (!(block->hdr.bitmap[ix / 8] & (1 << (ix % 8)))) {
411 " %u unmarked extension (%u/%u)",
412 blkoff / sizeof(union afs_xdr_dir_block),
413 offset, tmp, nr_slots);
414 return afs_bad(dvnode, afs_file_error_dir_unmarked_ext);
418 /* skip if starts before the current position */
422 /* found the next entry */
423 if (!dir_emit(ctx, dire->u.name, nlen,
424 ntohl(dire->u.vnode),
425 (ctx->actor == afs_lookup_filldir ||
426 ctx->actor == afs_lookup_one_filldir)?
427 ntohl(dire->u.unique) : DT_UNKNOWN)) {
428 _leave(" = 0 [full]");
432 ctx->pos = blkoff + next * sizeof(union afs_xdr_dirent);
435 _leave(" = 1 [more]");
440 * iterate through the data blob that lists the contents of an AFS directory
442 static int afs_dir_iterate(struct inode *dir, struct dir_context *ctx,
443 struct key *key, afs_dataversion_t *_dir_version)
445 struct afs_vnode *dvnode = AFS_FS_I(dir);
446 struct afs_xdr_dir_page *dbuf;
447 union afs_xdr_dir_block *dblock;
448 struct afs_read *req;
450 unsigned blkoff, limit;
453 _enter("{%lu},%u,,", dir->i_ino, (unsigned)ctx->pos);
455 if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(dir)->flags)) {
456 _leave(" = -ESTALE");
460 req = afs_read_dir(dvnode, key);
463 *_dir_version = req->data_version;
465 /* round the file position up to the next entry boundary */
466 ctx->pos += sizeof(union afs_xdr_dirent) - 1;
467 ctx->pos &= ~(sizeof(union afs_xdr_dirent) - 1);
469 /* walk through the blocks in sequence */
471 while (ctx->pos < req->actual_len) {
472 blkoff = ctx->pos & ~(sizeof(union afs_xdr_dir_block) - 1);
474 /* Fetch the appropriate page from the directory and re-add it
477 page = req->pages[blkoff / PAGE_SIZE];
479 ret = afs_bad(dvnode, afs_file_error_dir_missing_page);
482 mark_page_accessed(page);
484 limit = blkoff & ~(PAGE_SIZE - 1);
488 /* deal with the individual blocks stashed on this page */
490 dblock = &dbuf->blocks[(blkoff % PAGE_SIZE) /
491 sizeof(union afs_xdr_dir_block)];
492 ret = afs_dir_iterate_block(dvnode, ctx, dblock, blkoff);
498 blkoff += sizeof(union afs_xdr_dir_block);
500 } while (ctx->pos < dir->i_size && blkoff < limit);
507 up_read(&dvnode->validate_lock);
509 _leave(" = %d", ret);
514 * read an AFS directory
516 static int afs_readdir(struct file *file, struct dir_context *ctx)
518 afs_dataversion_t dir_version;
520 return afs_dir_iterate(file_inode(file), ctx, afs_file_key(file),
525 * Search the directory for a single name
526 * - if afs_dir_iterate_block() spots this function, it'll pass the FID
527 * uniquifier through dtype
529 static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name,
530 int nlen, loff_t fpos, u64 ino, unsigned dtype)
532 struct afs_lookup_one_cookie *cookie =
533 container_of(ctx, struct afs_lookup_one_cookie, ctx);
535 _enter("{%s,%u},%s,%u,,%llu,%u",
536 cookie->name.name, cookie->name.len, name, nlen,
537 (unsigned long long) ino, dtype);
539 /* insanity checks first */
540 BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
541 BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
543 if (cookie->name.len != nlen ||
544 memcmp(cookie->name.name, name, nlen) != 0) {
549 cookie->fid.vnode = ino;
550 cookie->fid.unique = dtype;
553 _leave(" = -1 [found]");
558 * Do a lookup of a single name in a directory
559 * - just returns the FID the dentry name maps to if found
561 static int afs_do_lookup_one(struct inode *dir, struct dentry *dentry,
562 struct afs_fid *fid, struct key *key,
563 afs_dataversion_t *_dir_version)
565 struct afs_super_info *as = dir->i_sb->s_fs_info;
566 struct afs_lookup_one_cookie cookie = {
567 .ctx.actor = afs_lookup_one_filldir,
568 .name = dentry->d_name,
569 .fid.vid = as->volume->vid
573 _enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry);
575 /* search the directory */
576 ret = afs_dir_iterate(dir, &cookie.ctx, key, _dir_version);
578 _leave(" = %d [iter]", ret);
584 _leave(" = -ENOENT [not found]");
589 _leave(" = 0 { vn=%llu u=%u }", fid->vnode, fid->unique);
594 * search the directory for a name
595 * - if afs_dir_iterate_block() spots this function, it'll pass the FID
596 * uniquifier through dtype
598 static int afs_lookup_filldir(struct dir_context *ctx, const char *name,
599 int nlen, loff_t fpos, u64 ino, unsigned dtype)
601 struct afs_lookup_cookie *cookie =
602 container_of(ctx, struct afs_lookup_cookie, ctx);
605 _enter("{%s,%u},%s,%u,,%llu,%u",
606 cookie->name.name, cookie->name.len, name, nlen,
607 (unsigned long long) ino, dtype);
609 /* insanity checks first */
610 BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
611 BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
614 if (cookie->nr_fids < 50) {
615 cookie->fids[cookie->nr_fids].vnode = ino;
616 cookie->fids[cookie->nr_fids].unique = dtype;
619 } else if (cookie->name.len == nlen &&
620 memcmp(cookie->name.name, name, nlen) == 0) {
621 cookie->fids[1].vnode = ino;
622 cookie->fids[1].unique = dtype;
624 if (cookie->one_only)
628 ret = cookie->nr_fids >= 50 ? -1 : 0;
629 _leave(" = %d", ret);
634 * Deal with the result of a successful lookup operation. Turn all the files
635 * into inodes and save the first one - which is the one we actually want.
637 static void afs_do_lookup_success(struct afs_operation *op)
639 struct afs_vnode_param *vp;
640 struct afs_vnode *vnode;
647 for (i = 0; i < op->nr_files; i++) {
651 abort_code = vp->scb.status.abort_code;
652 if (abort_code != 0) {
653 op->ac.abort_code = abort_code;
654 op->error = afs_abort_to_error(abort_code);
663 vp = &op->more_files[i - 2];
667 if (!vp->scb.have_status && !vp->scb.have_error)
670 _debug("do [%u]", i);
672 if (!test_bit(AFS_VNODE_UNSET, &vp->vnode->flags))
673 afs_vnode_commit_status(op, vp);
674 } else if (vp->scb.status.abort_code == 0) {
675 inode = afs_iget(op, vp);
676 if (!IS_ERR(inode)) {
677 vnode = AFS_FS_I(inode);
678 afs_cache_permit(vnode, op->key,
679 0 /* Assume vnode->cb_break is 0 */ +
683 vp->put_vnode = true;
686 _debug("- abort %d %llx:%llx.%x",
687 vp->scb.status.abort_code,
688 vp->fid.vid, vp->fid.vnode, vp->fid.unique);
695 static const struct afs_operation_ops afs_inline_bulk_status_operation = {
696 .issue_afs_rpc = afs_fs_inline_bulk_status,
697 .issue_yfs_rpc = yfs_fs_inline_bulk_status,
698 .success = afs_do_lookup_success,
701 static const struct afs_operation_ops afs_lookup_fetch_status_operation = {
702 .issue_afs_rpc = afs_fs_fetch_status,
703 .issue_yfs_rpc = yfs_fs_fetch_status,
704 .success = afs_do_lookup_success,
705 .aborted = afs_check_for_remote_deletion,
709 * See if we know that the server we expect to use doesn't support
710 * FS.InlineBulkStatus.
712 static bool afs_server_supports_ibulk(struct afs_vnode *dvnode)
714 struct afs_server_list *slist;
715 struct afs_volume *volume = dvnode->volume;
716 struct afs_server *server;
720 if (!test_bit(AFS_VOLUME_MAYBE_NO_IBULK, &volume->flags))
724 slist = rcu_dereference(volume->servers);
726 for (i = 0; i < slist->nr_servers; i++) {
727 server = slist->servers[i].server;
728 if (server == dvnode->cb_server) {
729 if (test_bit(AFS_SERVER_FL_NO_IBULK, &server->flags))
740 * Do a lookup in a directory. We make use of bulk lookup to query a slew of
741 * files in one go and create inodes for them. The inode of the file we were
742 * asked for is returned.
744 static struct inode *afs_do_lookup(struct inode *dir, struct dentry *dentry,
747 struct afs_lookup_cookie *cookie;
748 struct afs_vnode_param *vp;
749 struct afs_operation *op;
750 struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode;
751 struct inode *inode = NULL, *ti;
752 afs_dataversion_t data_version = READ_ONCE(dvnode->status.data_version);
756 _enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry);
758 cookie = kzalloc(sizeof(struct afs_lookup_cookie), GFP_KERNEL);
760 return ERR_PTR(-ENOMEM);
762 for (i = 0; i < ARRAY_SIZE(cookie->fids); i++)
763 cookie->fids[i].vid = dvnode->fid.vid;
764 cookie->ctx.actor = afs_lookup_filldir;
765 cookie->name = dentry->d_name;
766 cookie->nr_fids = 2; /* slot 0 is saved for the fid we actually want
767 * and slot 1 for the directory */
769 if (!afs_server_supports_ibulk(dvnode))
770 cookie->one_only = true;
772 /* search the directory */
773 ret = afs_dir_iterate(dir, &cookie->ctx, key, &data_version);
777 dentry->d_fsdata = (void *)(unsigned long)data_version;
783 /* Check to see if we already have an inode for the primary fid. */
784 inode = ilookup5(dir->i_sb, cookie->fids[1].vnode,
785 afs_ilookup5_test_by_fid, &cookie->fids[1]);
787 goto out; /* We do */
789 /* Okay, we didn't find it. We need to query the server - and whilst
790 * we're doing that, we're going to attempt to look up a bunch of other
793 op = afs_alloc_operation(NULL, dvnode->volume);
799 afs_op_set_vnode(op, 0, dvnode);
800 afs_op_set_fid(op, 1, &cookie->fids[1]);
802 op->nr_files = cookie->nr_fids;
803 _debug("nr_files %u", op->nr_files);
805 /* Need space for examining all the selected files */
807 if (op->nr_files > 2) {
808 op->more_files = kvcalloc(op->nr_files - 2,
809 sizeof(struct afs_vnode_param),
814 for (i = 2; i < op->nr_files; i++) {
815 vp = &op->more_files[i - 2];
816 vp->fid = cookie->fids[i];
818 /* Find any inodes that already exist and get their
821 ti = ilookup5_nowait(dir->i_sb, vp->fid.vnode,
822 afs_ilookup5_test_by_fid, &vp->fid);
823 if (!IS_ERR_OR_NULL(ti)) {
824 vnode = AFS_FS_I(ti);
825 vp->dv_before = vnode->status.data_version;
826 vp->cb_break_before = afs_calc_vnode_cb_break(vnode);
828 vp->put_vnode = true;
829 vp->speculative = true; /* vnode not locked */
834 /* Try FS.InlineBulkStatus first. Abort codes for the individual
835 * lookups contained therein are stored in the reply without aborting
836 * the whole operation.
838 op->error = -ENOTSUPP;
839 if (!cookie->one_only) {
840 op->ops = &afs_inline_bulk_status_operation;
841 afs_begin_vnode_operation(op);
842 afs_wait_for_operation(op);
845 if (op->error == -ENOTSUPP) {
846 /* We could try FS.BulkStatus next, but this aborts the entire
847 * op if any of the lookups fails - so, for the moment, revert
848 * to FS.FetchStatus for op->file[1].
850 op->fetch_status.which = 1;
851 op->ops = &afs_lookup_fetch_status_operation;
852 afs_begin_vnode_operation(op);
853 afs_wait_for_operation(op);
855 inode = ERR_PTR(op->error);
858 if (op->error == 0) {
859 inode = &op->file[1].vnode->vfs_inode;
860 op->file[1].vnode = NULL;
863 if (op->file[0].scb.have_status)
864 dentry->d_fsdata = (void *)(unsigned long)op->file[0].scb.status.data_version;
866 dentry->d_fsdata = (void *)(unsigned long)op->file[0].dv_before;
867 ret = afs_put_operation(op);
871 return inode ?: ERR_PTR(ret);
875 * Look up an entry in a directory with @sys substitution.
877 static struct dentry *afs_lookup_atsys(struct inode *dir, struct dentry *dentry,
880 struct afs_sysnames *subs;
881 struct afs_net *net = afs_i2net(dir);
883 char *buf, *p, *name;
888 ret = ERR_PTR(-ENOMEM);
889 p = buf = kmalloc(AFSNAMEMAX, GFP_KERNEL);
892 if (dentry->d_name.len > 4) {
893 memcpy(p, dentry->d_name.name, dentry->d_name.len - 4);
894 p += dentry->d_name.len - 4;
897 /* There is an ordered list of substitutes that we have to try. */
898 read_lock(&net->sysnames_lock);
899 subs = net->sysnames;
900 refcount_inc(&subs->usage);
901 read_unlock(&net->sysnames_lock);
903 for (i = 0; i < subs->nr; i++) {
904 name = subs->subs[i];
905 len = dentry->d_name.len - 4 + strlen(name);
906 if (len >= AFSNAMEMAX) {
907 ret = ERR_PTR(-ENAMETOOLONG);
912 ret = lookup_one_len(buf, dentry->d_parent, len);
913 if (IS_ERR(ret) || d_is_positive(ret))
918 /* We don't want to d_add() the @sys dentry here as we don't want to
919 * the cached dentry to hide changes to the sysnames list.
923 afs_put_sysnames(subs);
931 * look up an entry in a directory
933 static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry,
936 struct afs_vnode *dvnode = AFS_FS_I(dir);
937 struct afs_fid fid = {};
943 _enter("{%llx:%llu},%p{%pd},",
944 dvnode->fid.vid, dvnode->fid.vnode, dentry, dentry);
946 ASSERTCMP(d_inode(dentry), ==, NULL);
948 if (dentry->d_name.len >= AFSNAMEMAX) {
949 _leave(" = -ENAMETOOLONG");
950 return ERR_PTR(-ENAMETOOLONG);
953 if (test_bit(AFS_VNODE_DELETED, &dvnode->flags)) {
954 _leave(" = -ESTALE");
955 return ERR_PTR(-ESTALE);
958 key = afs_request_key(dvnode->volume->cell);
960 _leave(" = %ld [key]", PTR_ERR(key));
961 return ERR_CAST(key);
964 ret = afs_validate(dvnode, key);
967 _leave(" = %d [val]", ret);
971 if (dentry->d_name.len >= 4 &&
972 dentry->d_name.name[dentry->d_name.len - 4] == '@' &&
973 dentry->d_name.name[dentry->d_name.len - 3] == 's' &&
974 dentry->d_name.name[dentry->d_name.len - 2] == 'y' &&
975 dentry->d_name.name[dentry->d_name.len - 1] == 's')
976 return afs_lookup_atsys(dir, dentry, key);
978 afs_stat_v(dvnode, n_lookup);
979 inode = afs_do_lookup(dir, dentry, key);
981 if (inode == ERR_PTR(-ENOENT))
982 inode = afs_try_auto_mntpt(dentry, dir);
984 if (!IS_ERR_OR_NULL(inode))
985 fid = AFS_FS_I(inode)->fid;
987 _debug("splice %p", dentry->d_inode);
988 d = d_splice_alias(inode, dentry);
989 if (!IS_ERR_OR_NULL(d)) {
990 d->d_fsdata = dentry->d_fsdata;
991 trace_afs_lookup(dvnode, &d->d_name, &fid);
993 trace_afs_lookup(dvnode, &dentry->d_name, &fid);
1000 * Check the validity of a dentry under RCU conditions.
1002 static int afs_d_revalidate_rcu(struct dentry *dentry)
1004 struct afs_vnode *dvnode, *vnode;
1005 struct dentry *parent;
1006 struct inode *dir, *inode;
1007 long dir_version, de_version;
1009 _enter("%p", dentry);
1011 /* Check the parent directory is still valid first. */
1012 parent = READ_ONCE(dentry->d_parent);
1013 dir = d_inode_rcu(parent);
1016 dvnode = AFS_FS_I(dir);
1017 if (test_bit(AFS_VNODE_DELETED, &dvnode->flags))
1020 if (!afs_check_validity(dvnode))
1023 /* We only need to invalidate a dentry if the server's copy changed
1024 * behind our back. If we made the change, it's no problem. Note that
1025 * on a 32-bit system, we only have 32 bits in the dentry to store the
1028 dir_version = (long)READ_ONCE(dvnode->status.data_version);
1029 de_version = (long)READ_ONCE(dentry->d_fsdata);
1030 if (de_version != dir_version) {
1031 dir_version = (long)READ_ONCE(dvnode->invalid_before);
1032 if (de_version - dir_version < 0)
1036 /* Check to see if the vnode referred to by the dentry still
1039 if (d_really_is_positive(dentry)) {
1040 inode = d_inode_rcu(dentry);
1042 vnode = AFS_FS_I(inode);
1043 if (!afs_check_validity(vnode))
1048 return 1; /* Still valid */
1052 * check that a dentry lookup hit has found a valid entry
1053 * - NOTE! the hit can be a negative hit too, so we can't assume we have an
1056 static int afs_d_revalidate(struct dentry *dentry, unsigned int flags)
1058 struct afs_vnode *vnode, *dir;
1060 struct dentry *parent;
1061 struct inode *inode;
1063 afs_dataversion_t dir_version, invalid_before;
1067 if (flags & LOOKUP_RCU)
1068 return afs_d_revalidate_rcu(dentry);
1070 if (d_really_is_positive(dentry)) {
1071 vnode = AFS_FS_I(d_inode(dentry));
1072 _enter("{v={%llx:%llu} n=%pd fl=%lx},",
1073 vnode->fid.vid, vnode->fid.vnode, dentry,
1076 _enter("{neg n=%pd}", dentry);
1079 key = afs_request_key(AFS_FS_S(dentry->d_sb)->volume->cell);
1083 if (d_really_is_positive(dentry)) {
1084 inode = d_inode(dentry);
1086 vnode = AFS_FS_I(inode);
1087 afs_validate(vnode, key);
1088 if (test_bit(AFS_VNODE_DELETED, &vnode->flags))
1093 /* lock down the parent dentry so we can peer at it */
1094 parent = dget_parent(dentry);
1095 dir = AFS_FS_I(d_inode(parent));
1097 /* validate the parent directory */
1098 afs_validate(dir, key);
1100 if (test_bit(AFS_VNODE_DELETED, &dir->flags)) {
1101 _debug("%pd: parent dir deleted", dentry);
1102 goto out_bad_parent;
1105 /* We only need to invalidate a dentry if the server's copy changed
1106 * behind our back. If we made the change, it's no problem. Note that
1107 * on a 32-bit system, we only have 32 bits in the dentry to store the
1110 dir_version = dir->status.data_version;
1111 de_version = (long)dentry->d_fsdata;
1112 if (de_version == (long)dir_version)
1113 goto out_valid_noupdate;
1115 invalid_before = dir->invalid_before;
1116 if (de_version - (long)invalid_before >= 0)
1119 _debug("dir modified");
1120 afs_stat_v(dir, n_reval);
1122 /* search the directory for this vnode */
1123 ret = afs_do_lookup_one(&dir->vfs_inode, dentry, &fid, key, &dir_version);
1126 /* the filename maps to something */
1127 if (d_really_is_negative(dentry))
1128 goto out_bad_parent;
1129 inode = d_inode(dentry);
1130 if (is_bad_inode(inode)) {
1131 printk("kAFS: afs_d_revalidate: %pd2 has bad inode\n",
1133 goto out_bad_parent;
1136 vnode = AFS_FS_I(inode);
1138 /* if the vnode ID has changed, then the dirent points to a
1140 if (fid.vnode != vnode->fid.vnode) {
1141 _debug("%pd: dirent changed [%llu != %llu]",
1147 /* if the vnode ID uniqifier has changed, then the file has
1148 * been deleted and replaced, and the original vnode ID has
1150 if (fid.unique != vnode->fid.unique) {
1151 _debug("%pd: file deleted (uq %u -> %u I:%u)",
1154 vnode->vfs_inode.i_generation);
1155 write_seqlock(&vnode->cb_lock);
1156 set_bit(AFS_VNODE_DELETED, &vnode->flags);
1157 write_sequnlock(&vnode->cb_lock);
1163 /* the filename is unknown */
1164 _debug("%pd: dirent not found", dentry);
1165 if (d_really_is_positive(dentry))
1170 _debug("failed to iterate dir %pd: %d",
1172 goto out_bad_parent;
1176 dentry->d_fsdata = (void *)(unsigned long)dir_version;
1180 _leave(" = 1 [valid]");
1183 /* the dirent, if it exists, now points to a different vnode */
1185 spin_lock(&dentry->d_lock);
1186 dentry->d_flags |= DCACHE_NFSFS_RENAMED;
1187 spin_unlock(&dentry->d_lock);
1190 _debug("dropping dentry %pd2", dentry);
1195 _leave(" = 0 [bad]");
1200 * allow the VFS to enquire as to whether a dentry should be unhashed (mustn't
1202 * - called from dput() when d_count is going to 0.
1203 * - return 1 to request dentry be unhashed, 0 otherwise
1205 static int afs_d_delete(const struct dentry *dentry)
1207 _enter("%pd", dentry);
1209 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1212 if (d_really_is_positive(dentry) &&
1213 (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(d_inode(dentry))->flags) ||
1214 test_bit(AFS_VNODE_PSEUDODIR, &AFS_FS_I(d_inode(dentry))->flags)))
1217 _leave(" = 0 [keep]");
1221 _leave(" = 1 [zap]");
1226 * Clean up sillyrename files on dentry removal.
1228 static void afs_d_iput(struct dentry *dentry, struct inode *inode)
1230 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1231 afs_silly_iput(dentry, inode);
1236 * handle dentry release
1238 void afs_d_release(struct dentry *dentry)
1240 _enter("%pd", dentry);
1243 void afs_check_for_remote_deletion(struct afs_operation *op)
1245 struct afs_vnode *vnode = op->file[0].vnode;
1247 switch (op->ac.abort_code) {
1249 set_bit(AFS_VNODE_DELETED, &vnode->flags);
1250 afs_break_callback(vnode, afs_cb_break_for_deleted);
1255 * Create a new inode for create/mkdir/symlink
1257 static void afs_vnode_new_inode(struct afs_operation *op)
1259 struct afs_vnode_param *vp = &op->file[1];
1260 struct afs_vnode *vnode;
1261 struct inode *inode;
1265 ASSERTCMP(op->error, ==, 0);
1267 inode = afs_iget(op, vp);
1268 if (IS_ERR(inode)) {
1269 /* ENOMEM or EINTR at a really inconvenient time - just abandon
1270 * the new directory on the server.
1272 op->error = PTR_ERR(inode);
1276 vnode = AFS_FS_I(inode);
1277 set_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
1279 afs_cache_permit(vnode, op->key, vnode->cb_break, &vp->scb);
1280 d_instantiate(op->dentry, inode);
1283 static void afs_create_success(struct afs_operation *op)
1285 _enter("op=%08x", op->debug_id);
1286 op->ctime = op->file[0].scb.status.mtime_client;
1287 afs_vnode_commit_status(op, &op->file[0]);
1288 afs_update_dentry_version(op, &op->file[0], op->dentry);
1289 afs_vnode_new_inode(op);
1292 static void afs_create_edit_dir(struct afs_operation *op)
1294 struct afs_vnode_param *dvp = &op->file[0];
1295 struct afs_vnode_param *vp = &op->file[1];
1296 struct afs_vnode *dvnode = dvp->vnode;
1298 _enter("op=%08x", op->debug_id);
1300 down_write(&dvnode->validate_lock);
1301 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) &&
1302 dvnode->status.data_version == dvp->dv_before + dvp->dv_delta)
1303 afs_edit_dir_add(dvnode, &op->dentry->d_name, &vp->fid,
1305 up_write(&dvnode->validate_lock);
1308 static void afs_create_put(struct afs_operation *op)
1310 _enter("op=%08x", op->debug_id);
1316 static const struct afs_operation_ops afs_mkdir_operation = {
1317 .issue_afs_rpc = afs_fs_make_dir,
1318 .issue_yfs_rpc = yfs_fs_make_dir,
1319 .success = afs_create_success,
1320 .aborted = afs_check_for_remote_deletion,
1321 .edit_dir = afs_create_edit_dir,
1322 .put = afs_create_put,
1326 * create a directory on an AFS filesystem
1328 static int afs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1330 struct afs_operation *op;
1331 struct afs_vnode *dvnode = AFS_FS_I(dir);
1333 _enter("{%llx:%llu},{%pd},%ho",
1334 dvnode->fid.vid, dvnode->fid.vnode, dentry, mode);
1336 op = afs_alloc_operation(NULL, dvnode->volume);
1342 afs_op_set_vnode(op, 0, dvnode);
1343 op->file[0].dv_delta = 1;
1344 op->file[0].update_ctime = true;
1345 op->dentry = dentry;
1346 op->create.mode = S_IFDIR | mode;
1347 op->create.reason = afs_edit_dir_for_mkdir;
1348 op->ops = &afs_mkdir_operation;
1349 return afs_do_sync_operation(op);
1353 * Remove a subdir from a directory.
1355 static void afs_dir_remove_subdir(struct dentry *dentry)
1357 if (d_really_is_positive(dentry)) {
1358 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
1360 clear_nlink(&vnode->vfs_inode);
1361 set_bit(AFS_VNODE_DELETED, &vnode->flags);
1362 clear_bit(AFS_VNODE_CB_PROMISED, &vnode->flags);
1363 clear_bit(AFS_VNODE_DIR_VALID, &vnode->flags);
1367 static void afs_rmdir_success(struct afs_operation *op)
1369 _enter("op=%08x", op->debug_id);
1370 op->ctime = op->file[0].scb.status.mtime_client;
1371 afs_vnode_commit_status(op, &op->file[0]);
1372 afs_update_dentry_version(op, &op->file[0], op->dentry);
1375 static void afs_rmdir_edit_dir(struct afs_operation *op)
1377 struct afs_vnode_param *dvp = &op->file[0];
1378 struct afs_vnode *dvnode = dvp->vnode;
1380 _enter("op=%08x", op->debug_id);
1381 afs_dir_remove_subdir(op->dentry);
1383 down_write(&dvnode->validate_lock);
1384 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) &&
1385 dvnode->status.data_version == dvp->dv_before + dvp->dv_delta)
1386 afs_edit_dir_remove(dvnode, &op->dentry->d_name,
1387 afs_edit_dir_for_rmdir);
1388 up_write(&dvnode->validate_lock);
1391 static void afs_rmdir_put(struct afs_operation *op)
1393 _enter("op=%08x", op->debug_id);
1394 if (op->file[1].vnode)
1395 up_write(&op->file[1].vnode->rmdir_lock);
1398 static const struct afs_operation_ops afs_rmdir_operation = {
1399 .issue_afs_rpc = afs_fs_remove_dir,
1400 .issue_yfs_rpc = yfs_fs_remove_dir,
1401 .success = afs_rmdir_success,
1402 .aborted = afs_check_for_remote_deletion,
1403 .edit_dir = afs_rmdir_edit_dir,
1404 .put = afs_rmdir_put,
1408 * remove a directory from an AFS filesystem
1410 static int afs_rmdir(struct inode *dir, struct dentry *dentry)
1412 struct afs_operation *op;
1413 struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode = NULL;
1416 _enter("{%llx:%llu},{%pd}",
1417 dvnode->fid.vid, dvnode->fid.vnode, dentry);
1419 op = afs_alloc_operation(NULL, dvnode->volume);
1423 afs_op_set_vnode(op, 0, dvnode);
1424 op->file[0].dv_delta = 1;
1425 op->file[0].update_ctime = true;
1427 op->dentry = dentry;
1428 op->ops = &afs_rmdir_operation;
1430 /* Try to make sure we have a callback promise on the victim. */
1431 if (d_really_is_positive(dentry)) {
1432 vnode = AFS_FS_I(d_inode(dentry));
1433 ret = afs_validate(vnode, op->key);
1439 ret = down_write_killable(&vnode->rmdir_lock);
1442 op->file[1].vnode = vnode;
1445 return afs_do_sync_operation(op);
1448 return afs_put_operation(op);
1452 * Remove a link to a file or symlink from a directory.
1454 * If the file was not deleted due to excess hard links, the fileserver will
1455 * break the callback promise on the file - if it had one - before it returns
1456 * to us, and if it was deleted, it won't
1458 * However, if we didn't have a callback promise outstanding, or it was
1459 * outstanding on a different server, then it won't break it either...
1461 static void afs_dir_remove_link(struct afs_operation *op)
1463 struct afs_vnode *dvnode = op->file[0].vnode;
1464 struct afs_vnode *vnode = op->file[1].vnode;
1465 struct dentry *dentry = op->dentry;
1468 if (op->error != 0 ||
1469 (op->file[1].scb.have_status && op->file[1].scb.have_error))
1471 if (d_really_is_positive(dentry))
1474 if (test_bit(AFS_VNODE_DELETED, &vnode->flags)) {
1476 } else if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) {
1477 write_seqlock(&vnode->cb_lock);
1478 drop_nlink(&vnode->vfs_inode);
1479 if (vnode->vfs_inode.i_nlink == 0) {
1480 set_bit(AFS_VNODE_DELETED, &vnode->flags);
1481 __afs_break_callback(vnode, afs_cb_break_for_unlink);
1483 write_sequnlock(&vnode->cb_lock);
1485 afs_break_callback(vnode, afs_cb_break_for_unlink);
1487 if (test_bit(AFS_VNODE_DELETED, &vnode->flags))
1488 _debug("AFS_VNODE_DELETED");
1490 ret = afs_validate(vnode, op->key);
1495 _debug("nlink %d [val %d]", vnode->vfs_inode.i_nlink, op->error);
1498 static void afs_unlink_success(struct afs_operation *op)
1500 _enter("op=%08x", op->debug_id);
1501 op->ctime = op->file[0].scb.status.mtime_client;
1502 afs_check_dir_conflict(op, &op->file[0]);
1503 afs_vnode_commit_status(op, &op->file[0]);
1504 afs_vnode_commit_status(op, &op->file[1]);
1505 afs_update_dentry_version(op, &op->file[0], op->dentry);
1506 afs_dir_remove_link(op);
1509 static void afs_unlink_edit_dir(struct afs_operation *op)
1511 struct afs_vnode_param *dvp = &op->file[0];
1512 struct afs_vnode *dvnode = dvp->vnode;
1514 _enter("op=%08x", op->debug_id);
1515 down_write(&dvnode->validate_lock);
1516 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) &&
1517 dvnode->status.data_version == dvp->dv_before + dvp->dv_delta)
1518 afs_edit_dir_remove(dvnode, &op->dentry->d_name,
1519 afs_edit_dir_for_unlink);
1520 up_write(&dvnode->validate_lock);
1523 static void afs_unlink_put(struct afs_operation *op)
1525 _enter("op=%08x", op->debug_id);
1526 if (op->unlink.need_rehash && op->error < 0 && op->error != -ENOENT)
1527 d_rehash(op->dentry);
1530 static const struct afs_operation_ops afs_unlink_operation = {
1531 .issue_afs_rpc = afs_fs_remove_file,
1532 .issue_yfs_rpc = yfs_fs_remove_file,
1533 .success = afs_unlink_success,
1534 .aborted = afs_check_for_remote_deletion,
1535 .edit_dir = afs_unlink_edit_dir,
1536 .put = afs_unlink_put,
1540 * Remove a file or symlink from an AFS filesystem.
1542 static int afs_unlink(struct inode *dir, struct dentry *dentry)
1544 struct afs_operation *op;
1545 struct afs_vnode *dvnode = AFS_FS_I(dir);
1546 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
1549 _enter("{%llx:%llu},{%pd}",
1550 dvnode->fid.vid, dvnode->fid.vnode, dentry);
1552 if (dentry->d_name.len >= AFSNAMEMAX)
1553 return -ENAMETOOLONG;
1555 op = afs_alloc_operation(NULL, dvnode->volume);
1559 afs_op_set_vnode(op, 0, dvnode);
1560 op->file[0].dv_delta = 1;
1561 op->file[0].update_ctime = true;
1563 /* Try to make sure we have a callback promise on the victim. */
1564 ret = afs_validate(vnode, op->key);
1570 spin_lock(&dentry->d_lock);
1571 if (d_count(dentry) > 1) {
1572 spin_unlock(&dentry->d_lock);
1573 /* Start asynchronous writeout of the inode */
1574 write_inode_now(d_inode(dentry), 0);
1575 op->error = afs_sillyrename(dvnode, vnode, dentry, op->key);
1578 if (!d_unhashed(dentry)) {
1579 /* Prevent a race with RCU lookup. */
1581 op->unlink.need_rehash = true;
1583 spin_unlock(&dentry->d_lock);
1585 op->file[1].vnode = vnode;
1586 op->file[1].update_ctime = true;
1587 op->file[1].op_unlinked = true;
1588 op->dentry = dentry;
1589 op->ops = &afs_unlink_operation;
1590 afs_begin_vnode_operation(op);
1591 afs_wait_for_operation(op);
1593 /* If there was a conflict with a third party, check the status of the
1596 if (op->error == 0 && (op->flags & AFS_OPERATION_DIR_CONFLICT)) {
1597 op->file[1].update_ctime = false;
1598 op->fetch_status.which = 1;
1599 op->ops = &afs_fetch_status_operation;
1600 afs_begin_vnode_operation(op);
1601 afs_wait_for_operation(op);
1604 return afs_put_operation(op);
1607 return afs_put_operation(op);
1610 static const struct afs_operation_ops afs_create_operation = {
1611 .issue_afs_rpc = afs_fs_create_file,
1612 .issue_yfs_rpc = yfs_fs_create_file,
1613 .success = afs_create_success,
1614 .aborted = afs_check_for_remote_deletion,
1615 .edit_dir = afs_create_edit_dir,
1616 .put = afs_create_put,
1620 * create a regular file on an AFS filesystem
1622 static int afs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1625 struct afs_operation *op;
1626 struct afs_vnode *dvnode = AFS_FS_I(dir);
1627 int ret = -ENAMETOOLONG;
1629 _enter("{%llx:%llu},{%pd},%ho",
1630 dvnode->fid.vid, dvnode->fid.vnode, dentry, mode);
1632 if (dentry->d_name.len >= AFSNAMEMAX)
1635 op = afs_alloc_operation(NULL, dvnode->volume);
1641 afs_op_set_vnode(op, 0, dvnode);
1642 op->file[0].dv_delta = 1;
1643 op->file[0].update_ctime = true;
1645 op->dentry = dentry;
1646 op->create.mode = S_IFREG | mode;
1647 op->create.reason = afs_edit_dir_for_create;
1648 op->ops = &afs_create_operation;
1649 return afs_do_sync_operation(op);
1653 _leave(" = %d", ret);
1657 static void afs_link_success(struct afs_operation *op)
1659 struct afs_vnode_param *dvp = &op->file[0];
1660 struct afs_vnode_param *vp = &op->file[1];
1662 _enter("op=%08x", op->debug_id);
1663 op->ctime = dvp->scb.status.mtime_client;
1664 afs_vnode_commit_status(op, dvp);
1665 afs_vnode_commit_status(op, vp);
1666 afs_update_dentry_version(op, dvp, op->dentry);
1667 if (op->dentry_2->d_parent == op->dentry->d_parent)
1668 afs_update_dentry_version(op, dvp, op->dentry_2);
1669 ihold(&vp->vnode->vfs_inode);
1670 d_instantiate(op->dentry, &vp->vnode->vfs_inode);
1673 static void afs_link_put(struct afs_operation *op)
1675 _enter("op=%08x", op->debug_id);
1680 static const struct afs_operation_ops afs_link_operation = {
1681 .issue_afs_rpc = afs_fs_link,
1682 .issue_yfs_rpc = yfs_fs_link,
1683 .success = afs_link_success,
1684 .aborted = afs_check_for_remote_deletion,
1685 .edit_dir = afs_create_edit_dir,
1686 .put = afs_link_put,
1690 * create a hard link between files in an AFS filesystem
1692 static int afs_link(struct dentry *from, struct inode *dir,
1693 struct dentry *dentry)
1695 struct afs_operation *op;
1696 struct afs_vnode *dvnode = AFS_FS_I(dir);
1697 struct afs_vnode *vnode = AFS_FS_I(d_inode(from));
1698 int ret = -ENAMETOOLONG;
1700 _enter("{%llx:%llu},{%llx:%llu},{%pd}",
1701 vnode->fid.vid, vnode->fid.vnode,
1702 dvnode->fid.vid, dvnode->fid.vnode,
1705 if (dentry->d_name.len >= AFSNAMEMAX)
1708 op = afs_alloc_operation(NULL, dvnode->volume);
1714 afs_op_set_vnode(op, 0, dvnode);
1715 afs_op_set_vnode(op, 1, vnode);
1716 op->file[0].dv_delta = 1;
1717 op->file[0].update_ctime = true;
1718 op->file[1].update_ctime = true;
1720 op->dentry = dentry;
1721 op->dentry_2 = from;
1722 op->ops = &afs_link_operation;
1723 op->create.reason = afs_edit_dir_for_link;
1724 return afs_do_sync_operation(op);
1728 _leave(" = %d", ret);
1732 static const struct afs_operation_ops afs_symlink_operation = {
1733 .issue_afs_rpc = afs_fs_symlink,
1734 .issue_yfs_rpc = yfs_fs_symlink,
1735 .success = afs_create_success,
1736 .aborted = afs_check_for_remote_deletion,
1737 .edit_dir = afs_create_edit_dir,
1738 .put = afs_create_put,
1742 * create a symlink in an AFS filesystem
1744 static int afs_symlink(struct inode *dir, struct dentry *dentry,
1745 const char *content)
1747 struct afs_operation *op;
1748 struct afs_vnode *dvnode = AFS_FS_I(dir);
1751 _enter("{%llx:%llu},{%pd},%s",
1752 dvnode->fid.vid, dvnode->fid.vnode, dentry,
1755 ret = -ENAMETOOLONG;
1756 if (dentry->d_name.len >= AFSNAMEMAX)
1760 if (strlen(content) >= AFSPATHMAX)
1763 op = afs_alloc_operation(NULL, dvnode->volume);
1769 afs_op_set_vnode(op, 0, dvnode);
1770 op->file[0].dv_delta = 1;
1772 op->dentry = dentry;
1773 op->ops = &afs_symlink_operation;
1774 op->create.reason = afs_edit_dir_for_symlink;
1775 op->create.symlink = content;
1776 return afs_do_sync_operation(op);
1780 _leave(" = %d", ret);
1784 static void afs_rename_success(struct afs_operation *op)
1786 _enter("op=%08x", op->debug_id);
1788 op->ctime = op->file[0].scb.status.mtime_client;
1789 afs_check_dir_conflict(op, &op->file[1]);
1790 afs_vnode_commit_status(op, &op->file[0]);
1791 if (op->file[1].vnode != op->file[0].vnode) {
1792 op->ctime = op->file[1].scb.status.mtime_client;
1793 afs_vnode_commit_status(op, &op->file[1]);
1797 static void afs_rename_edit_dir(struct afs_operation *op)
1799 struct afs_vnode_param *orig_dvp = &op->file[0];
1800 struct afs_vnode_param *new_dvp = &op->file[1];
1801 struct afs_vnode *orig_dvnode = orig_dvp->vnode;
1802 struct afs_vnode *new_dvnode = new_dvp->vnode;
1803 struct afs_vnode *vnode = AFS_FS_I(d_inode(op->dentry));
1804 struct dentry *old_dentry = op->dentry;
1805 struct dentry *new_dentry = op->dentry_2;
1806 struct inode *new_inode;
1808 _enter("op=%08x", op->debug_id);
1810 if (op->rename.rehash) {
1811 d_rehash(op->rename.rehash);
1812 op->rename.rehash = NULL;
1815 down_write(&orig_dvnode->validate_lock);
1816 if (test_bit(AFS_VNODE_DIR_VALID, &orig_dvnode->flags) &&
1817 orig_dvnode->status.data_version == orig_dvp->dv_before + orig_dvp->dv_delta)
1818 afs_edit_dir_remove(orig_dvnode, &old_dentry->d_name,
1819 afs_edit_dir_for_rename_0);
1821 if (new_dvnode != orig_dvnode) {
1822 up_write(&orig_dvnode->validate_lock);
1823 down_write(&new_dvnode->validate_lock);
1826 if (test_bit(AFS_VNODE_DIR_VALID, &new_dvnode->flags) &&
1827 new_dvnode->status.data_version == new_dvp->dv_before + new_dvp->dv_delta) {
1828 if (!op->rename.new_negative)
1829 afs_edit_dir_remove(new_dvnode, &new_dentry->d_name,
1830 afs_edit_dir_for_rename_1);
1832 afs_edit_dir_add(new_dvnode, &new_dentry->d_name,
1833 &vnode->fid, afs_edit_dir_for_rename_2);
1836 new_inode = d_inode(new_dentry);
1838 spin_lock(&new_inode->i_lock);
1839 if (new_inode->i_nlink > 0)
1840 drop_nlink(new_inode);
1841 spin_unlock(&new_inode->i_lock);
1844 /* Now we can update d_fsdata on the dentries to reflect their
1845 * new parent's data_version.
1847 * Note that if we ever implement RENAME_EXCHANGE, we'll have
1848 * to update both dentries with opposing dir versions.
1850 afs_update_dentry_version(op, new_dvp, op->dentry);
1851 afs_update_dentry_version(op, new_dvp, op->dentry_2);
1853 d_move(old_dentry, new_dentry);
1855 up_write(&new_dvnode->validate_lock);
1858 static void afs_rename_put(struct afs_operation *op)
1860 _enter("op=%08x", op->debug_id);
1861 if (op->rename.rehash)
1862 d_rehash(op->rename.rehash);
1863 dput(op->rename.tmp);
1865 d_rehash(op->dentry);
1868 static const struct afs_operation_ops afs_rename_operation = {
1869 .issue_afs_rpc = afs_fs_rename,
1870 .issue_yfs_rpc = yfs_fs_rename,
1871 .success = afs_rename_success,
1872 .edit_dir = afs_rename_edit_dir,
1873 .put = afs_rename_put,
1877 * rename a file in an AFS filesystem and/or move it between directories
1879 static int afs_rename(struct inode *old_dir, struct dentry *old_dentry,
1880 struct inode *new_dir, struct dentry *new_dentry,
1883 struct afs_operation *op;
1884 struct afs_vnode *orig_dvnode, *new_dvnode, *vnode;
1890 /* Don't allow silly-rename files be moved around. */
1891 if (old_dentry->d_flags & DCACHE_NFSFS_RENAMED)
1894 vnode = AFS_FS_I(d_inode(old_dentry));
1895 orig_dvnode = AFS_FS_I(old_dir);
1896 new_dvnode = AFS_FS_I(new_dir);
1898 _enter("{%llx:%llu},{%llx:%llu},{%llx:%llu},{%pd}",
1899 orig_dvnode->fid.vid, orig_dvnode->fid.vnode,
1900 vnode->fid.vid, vnode->fid.vnode,
1901 new_dvnode->fid.vid, new_dvnode->fid.vnode,
1904 op = afs_alloc_operation(NULL, orig_dvnode->volume);
1908 afs_op_set_vnode(op, 0, orig_dvnode);
1909 afs_op_set_vnode(op, 1, new_dvnode); /* May be same as orig_dvnode */
1910 op->file[0].dv_delta = 1;
1911 op->file[1].dv_delta = 1;
1912 op->file[0].update_ctime = true;
1913 op->file[1].update_ctime = true;
1915 op->dentry = old_dentry;
1916 op->dentry_2 = new_dentry;
1917 op->rename.new_negative = d_is_negative(new_dentry);
1918 op->ops = &afs_rename_operation;
1920 /* For non-directories, check whether the target is busy and if so,
1921 * make a copy of the dentry and then do a silly-rename. If the
1922 * silly-rename succeeds, the copied dentry is hashed and becomes the
1925 if (d_is_positive(new_dentry) && !d_is_dir(new_dentry)) {
1926 /* To prevent any new references to the target during the
1927 * rename, we unhash the dentry in advance.
1929 if (!d_unhashed(new_dentry)) {
1931 op->rename.rehash = new_dentry;
1934 if (d_count(new_dentry) > 2) {
1935 /* copy the target dentry's name */
1937 op->rename.tmp = d_alloc(new_dentry->d_parent,
1938 &new_dentry->d_name);
1939 if (!op->rename.tmp)
1942 ret = afs_sillyrename(new_dvnode,
1943 AFS_FS_I(d_inode(new_dentry)),
1944 new_dentry, op->key);
1948 op->dentry_2 = op->rename.tmp;
1949 op->rename.rehash = NULL;
1950 op->rename.new_negative = true;
1954 /* This bit is potentially nasty as there's a potential race with
1955 * afs_d_revalidate{,_rcu}(). We have to change d_fsdata on the dentry
1956 * to reflect it's new parent's new data_version after the op, but
1957 * d_revalidate may see old_dentry between the op having taken place
1958 * and the version being updated.
1960 * So drop the old_dentry for now to make other threads go through
1961 * lookup instead - which we hold a lock against.
1965 return afs_do_sync_operation(op);
1968 return afs_put_operation(op);
1972 * Release a directory page and clean up its private state if it's not busy
1973 * - return true if the page can now be released, false if not
1975 static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags)
1977 struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host);
1979 _enter("{{%llx:%llu}[%lu]}", dvnode->fid.vid, dvnode->fid.vnode, page->index);
1981 detach_page_private(page);
1983 /* The directory will need reloading. */
1984 if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
1985 afs_stat_v(dvnode, n_relpg);
1990 * invalidate part or all of a page
1991 * - release a page and clean up its private data if offset is 0 (indicating
1994 static void afs_dir_invalidatepage(struct page *page, unsigned int offset,
1995 unsigned int length)
1997 struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host);
1999 _enter("{%lu},%u,%u", page->index, offset, length);
2001 BUG_ON(!PageLocked(page));
2003 /* The directory will need reloading. */
2004 if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
2005 afs_stat_v(dvnode, n_inval);
2007 /* we clean up only if the entire page is being invalidated */
2008 if (offset == 0 && length == PAGE_SIZE)
2009 detach_page_private(page);