]> Git Repo - linux.git/blob - mm/zswap.c
mm: make alloc_contig_range work at pageblock granularity
[linux.git] / mm / zswap.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * zswap.c - zswap driver file
4  *
5  * zswap is a backend for frontswap that takes pages that are in the process
6  * of being swapped out and attempts to compress and store them in a
7  * RAM-based memory pool.  This can result in a significant I/O reduction on
8  * the swap device and, in the case where decompressing from RAM is faster
9  * than reading from the swap device, can also improve workload performance.
10  *
11  * Copyright (C) 2012  Seth Jennings <[email protected]>
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/frontswap.h>
24 #include <linux/rbtree.h>
25 #include <linux/swap.h>
26 #include <linux/crypto.h>
27 #include <linux/scatterlist.h>
28 #include <linux/mempool.h>
29 #include <linux/zpool.h>
30 #include <crypto/acompress.h>
31
32 #include <linux/mm_types.h>
33 #include <linux/page-flags.h>
34 #include <linux/swapops.h>
35 #include <linux/writeback.h>
36 #include <linux/pagemap.h>
37 #include <linux/workqueue.h>
38
39 #include "swap.h"
40
41 /*********************************
42 * statistics
43 **********************************/
44 /* Total bytes used by the compressed storage */
45 static u64 zswap_pool_total_size;
46 /* The number of compressed pages currently stored in zswap */
47 static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
48 /* The number of same-value filled pages currently stored in zswap */
49 static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
50
51 /*
52  * The statistics below are not protected from concurrent access for
53  * performance reasons so they may not be a 100% accurate.  However,
54  * they do provide useful information on roughly how many times a
55  * certain event is occurring.
56 */
57
58 /* Pool limit was hit (see zswap_max_pool_percent) */
59 static u64 zswap_pool_limit_hit;
60 /* Pages written back when pool limit was reached */
61 static u64 zswap_written_back_pages;
62 /* Store failed due to a reclaim failure after pool limit was reached */
63 static u64 zswap_reject_reclaim_fail;
64 /* Compressed page was too big for the allocator to (optimally) store */
65 static u64 zswap_reject_compress_poor;
66 /* Store failed because underlying allocator could not get memory */
67 static u64 zswap_reject_alloc_fail;
68 /* Store failed because the entry metadata could not be allocated (rare) */
69 static u64 zswap_reject_kmemcache_fail;
70 /* Duplicate store was encountered (rare) */
71 static u64 zswap_duplicate_entry;
72
73 /* Shrinker work queue */
74 static struct workqueue_struct *shrink_wq;
75 /* Pool limit was hit, we need to calm down */
76 static bool zswap_pool_reached_full;
77
78 /*********************************
79 * tunables
80 **********************************/
81
82 #define ZSWAP_PARAM_UNSET ""
83
84 /* Enable/disable zswap */
85 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
86 static int zswap_enabled_param_set(const char *,
87                                    const struct kernel_param *);
88 static const struct kernel_param_ops zswap_enabled_param_ops = {
89         .set =          zswap_enabled_param_set,
90         .get =          param_get_bool,
91 };
92 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
93
94 /* Crypto compressor to use */
95 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
96 static int zswap_compressor_param_set(const char *,
97                                       const struct kernel_param *);
98 static const struct kernel_param_ops zswap_compressor_param_ops = {
99         .set =          zswap_compressor_param_set,
100         .get =          param_get_charp,
101         .free =         param_free_charp,
102 };
103 module_param_cb(compressor, &zswap_compressor_param_ops,
104                 &zswap_compressor, 0644);
105
106 /* Compressed storage zpool to use */
107 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
108 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
109 static const struct kernel_param_ops zswap_zpool_param_ops = {
110         .set =          zswap_zpool_param_set,
111         .get =          param_get_charp,
112         .free =         param_free_charp,
113 };
114 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
115
116 /* The maximum percentage of memory that the compressed pool can occupy */
117 static unsigned int zswap_max_pool_percent = 20;
118 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
119
120 /* The threshold for accepting new pages after the max_pool_percent was hit */
121 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
122 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
123                    uint, 0644);
124
125 /*
126  * Enable/disable handling same-value filled pages (enabled by default).
127  * If disabled every page is considered non-same-value filled.
128  */
129 static bool zswap_same_filled_pages_enabled = true;
130 module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
131                    bool, 0644);
132
133 /* Enable/disable handling non-same-value filled pages (enabled by default) */
134 static bool zswap_non_same_filled_pages_enabled = true;
135 module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
136                    bool, 0644);
137
138 /*********************************
139 * data structures
140 **********************************/
141
142 struct crypto_acomp_ctx {
143         struct crypto_acomp *acomp;
144         struct acomp_req *req;
145         struct crypto_wait wait;
146         u8 *dstmem;
147         struct mutex *mutex;
148 };
149
150 struct zswap_pool {
151         struct zpool *zpool;
152         struct crypto_acomp_ctx __percpu *acomp_ctx;
153         struct kref kref;
154         struct list_head list;
155         struct work_struct release_work;
156         struct work_struct shrink_work;
157         struct hlist_node node;
158         char tfm_name[CRYPTO_MAX_ALG_NAME];
159 };
160
161 /*
162  * struct zswap_entry
163  *
164  * This structure contains the metadata for tracking a single compressed
165  * page within zswap.
166  *
167  * rbnode - links the entry into red-black tree for the appropriate swap type
168  * offset - the swap offset for the entry.  Index into the red-black tree.
169  * refcount - the number of outstanding reference to the entry. This is needed
170  *            to protect against premature freeing of the entry by code
171  *            concurrent calls to load, invalidate, and writeback.  The lock
172  *            for the zswap_tree structure that contains the entry must
173  *            be held while changing the refcount.  Since the lock must
174  *            be held, there is no reason to also make refcount atomic.
175  * length - the length in bytes of the compressed page data.  Needed during
176  *          decompression. For a same value filled page length is 0.
177  * pool - the zswap_pool the entry's data is in
178  * handle - zpool allocation handle that stores the compressed page data
179  * value - value of the same-value filled pages which have same content
180  */
181 struct zswap_entry {
182         struct rb_node rbnode;
183         pgoff_t offset;
184         int refcount;
185         unsigned int length;
186         struct zswap_pool *pool;
187         union {
188                 unsigned long handle;
189                 unsigned long value;
190         };
191 };
192
193 struct zswap_header {
194         swp_entry_t swpentry;
195 };
196
197 /*
198  * The tree lock in the zswap_tree struct protects a few things:
199  * - the rbtree
200  * - the refcount field of each entry in the tree
201  */
202 struct zswap_tree {
203         struct rb_root rbroot;
204         spinlock_t lock;
205 };
206
207 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
208
209 /* RCU-protected iteration */
210 static LIST_HEAD(zswap_pools);
211 /* protects zswap_pools list modification */
212 static DEFINE_SPINLOCK(zswap_pools_lock);
213 /* pool counter to provide unique names to zpool */
214 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
215
216 /* used by param callback function */
217 static bool zswap_init_started;
218
219 /* fatal error during init */
220 static bool zswap_init_failed;
221
222 /* init completed, but couldn't create the initial pool */
223 static bool zswap_has_pool;
224
225 /*********************************
226 * helpers and fwd declarations
227 **********************************/
228
229 #define zswap_pool_debug(msg, p)                                \
230         pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,         \
231                  zpool_get_type((p)->zpool))
232
233 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle);
234 static int zswap_pool_get(struct zswap_pool *pool);
235 static void zswap_pool_put(struct zswap_pool *pool);
236
237 static const struct zpool_ops zswap_zpool_ops = {
238         .evict = zswap_writeback_entry
239 };
240
241 static bool zswap_is_full(void)
242 {
243         return totalram_pages() * zswap_max_pool_percent / 100 <
244                         DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
245 }
246
247 static bool zswap_can_accept(void)
248 {
249         return totalram_pages() * zswap_accept_thr_percent / 100 *
250                                 zswap_max_pool_percent / 100 >
251                         DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
252 }
253
254 static void zswap_update_total_size(void)
255 {
256         struct zswap_pool *pool;
257         u64 total = 0;
258
259         rcu_read_lock();
260
261         list_for_each_entry_rcu(pool, &zswap_pools, list)
262                 total += zpool_get_total_size(pool->zpool);
263
264         rcu_read_unlock();
265
266         zswap_pool_total_size = total;
267 }
268
269 /*********************************
270 * zswap entry functions
271 **********************************/
272 static struct kmem_cache *zswap_entry_cache;
273
274 static int __init zswap_entry_cache_create(void)
275 {
276         zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
277         return zswap_entry_cache == NULL;
278 }
279
280 static void __init zswap_entry_cache_destroy(void)
281 {
282         kmem_cache_destroy(zswap_entry_cache);
283 }
284
285 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
286 {
287         struct zswap_entry *entry;
288         entry = kmem_cache_alloc(zswap_entry_cache, gfp);
289         if (!entry)
290                 return NULL;
291         entry->refcount = 1;
292         RB_CLEAR_NODE(&entry->rbnode);
293         return entry;
294 }
295
296 static void zswap_entry_cache_free(struct zswap_entry *entry)
297 {
298         kmem_cache_free(zswap_entry_cache, entry);
299 }
300
301 /*********************************
302 * rbtree functions
303 **********************************/
304 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
305 {
306         struct rb_node *node = root->rb_node;
307         struct zswap_entry *entry;
308
309         while (node) {
310                 entry = rb_entry(node, struct zswap_entry, rbnode);
311                 if (entry->offset > offset)
312                         node = node->rb_left;
313                 else if (entry->offset < offset)
314                         node = node->rb_right;
315                 else
316                         return entry;
317         }
318         return NULL;
319 }
320
321 /*
322  * In the case that a entry with the same offset is found, a pointer to
323  * the existing entry is stored in dupentry and the function returns -EEXIST
324  */
325 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
326                         struct zswap_entry **dupentry)
327 {
328         struct rb_node **link = &root->rb_node, *parent = NULL;
329         struct zswap_entry *myentry;
330
331         while (*link) {
332                 parent = *link;
333                 myentry = rb_entry(parent, struct zswap_entry, rbnode);
334                 if (myentry->offset > entry->offset)
335                         link = &(*link)->rb_left;
336                 else if (myentry->offset < entry->offset)
337                         link = &(*link)->rb_right;
338                 else {
339                         *dupentry = myentry;
340                         return -EEXIST;
341                 }
342         }
343         rb_link_node(&entry->rbnode, parent, link);
344         rb_insert_color(&entry->rbnode, root);
345         return 0;
346 }
347
348 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
349 {
350         if (!RB_EMPTY_NODE(&entry->rbnode)) {
351                 rb_erase(&entry->rbnode, root);
352                 RB_CLEAR_NODE(&entry->rbnode);
353         }
354 }
355
356 /*
357  * Carries out the common pattern of freeing and entry's zpool allocation,
358  * freeing the entry itself, and decrementing the number of stored pages.
359  */
360 static void zswap_free_entry(struct zswap_entry *entry)
361 {
362         if (!entry->length)
363                 atomic_dec(&zswap_same_filled_pages);
364         else {
365                 zpool_free(entry->pool->zpool, entry->handle);
366                 zswap_pool_put(entry->pool);
367         }
368         zswap_entry_cache_free(entry);
369         atomic_dec(&zswap_stored_pages);
370         zswap_update_total_size();
371 }
372
373 /* caller must hold the tree lock */
374 static void zswap_entry_get(struct zswap_entry *entry)
375 {
376         entry->refcount++;
377 }
378
379 /* caller must hold the tree lock
380 * remove from the tree and free it, if nobody reference the entry
381 */
382 static void zswap_entry_put(struct zswap_tree *tree,
383                         struct zswap_entry *entry)
384 {
385         int refcount = --entry->refcount;
386
387         BUG_ON(refcount < 0);
388         if (refcount == 0) {
389                 zswap_rb_erase(&tree->rbroot, entry);
390                 zswap_free_entry(entry);
391         }
392 }
393
394 /* caller must hold the tree lock */
395 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
396                                 pgoff_t offset)
397 {
398         struct zswap_entry *entry;
399
400         entry = zswap_rb_search(root, offset);
401         if (entry)
402                 zswap_entry_get(entry);
403
404         return entry;
405 }
406
407 /*********************************
408 * per-cpu code
409 **********************************/
410 static DEFINE_PER_CPU(u8 *, zswap_dstmem);
411 /*
412  * If users dynamically change the zpool type and compressor at runtime, i.e.
413  * zswap is running, zswap can have more than one zpool on one cpu, but they
414  * are sharing dtsmem. So we need this mutex to be per-cpu.
415  */
416 static DEFINE_PER_CPU(struct mutex *, zswap_mutex);
417
418 static int zswap_dstmem_prepare(unsigned int cpu)
419 {
420         struct mutex *mutex;
421         u8 *dst;
422
423         dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
424         if (!dst)
425                 return -ENOMEM;
426
427         mutex = kmalloc_node(sizeof(*mutex), GFP_KERNEL, cpu_to_node(cpu));
428         if (!mutex) {
429                 kfree(dst);
430                 return -ENOMEM;
431         }
432
433         mutex_init(mutex);
434         per_cpu(zswap_dstmem, cpu) = dst;
435         per_cpu(zswap_mutex, cpu) = mutex;
436         return 0;
437 }
438
439 static int zswap_dstmem_dead(unsigned int cpu)
440 {
441         struct mutex *mutex;
442         u8 *dst;
443
444         mutex = per_cpu(zswap_mutex, cpu);
445         kfree(mutex);
446         per_cpu(zswap_mutex, cpu) = NULL;
447
448         dst = per_cpu(zswap_dstmem, cpu);
449         kfree(dst);
450         per_cpu(zswap_dstmem, cpu) = NULL;
451
452         return 0;
453 }
454
455 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
456 {
457         struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
458         struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
459         struct crypto_acomp *acomp;
460         struct acomp_req *req;
461
462         acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
463         if (IS_ERR(acomp)) {
464                 pr_err("could not alloc crypto acomp %s : %ld\n",
465                                 pool->tfm_name, PTR_ERR(acomp));
466                 return PTR_ERR(acomp);
467         }
468         acomp_ctx->acomp = acomp;
469
470         req = acomp_request_alloc(acomp_ctx->acomp);
471         if (!req) {
472                 pr_err("could not alloc crypto acomp_request %s\n",
473                        pool->tfm_name);
474                 crypto_free_acomp(acomp_ctx->acomp);
475                 return -ENOMEM;
476         }
477         acomp_ctx->req = req;
478
479         crypto_init_wait(&acomp_ctx->wait);
480         /*
481          * if the backend of acomp is async zip, crypto_req_done() will wakeup
482          * crypto_wait_req(); if the backend of acomp is scomp, the callback
483          * won't be called, crypto_wait_req() will return without blocking.
484          */
485         acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
486                                    crypto_req_done, &acomp_ctx->wait);
487
488         acomp_ctx->mutex = per_cpu(zswap_mutex, cpu);
489         acomp_ctx->dstmem = per_cpu(zswap_dstmem, cpu);
490
491         return 0;
492 }
493
494 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
495 {
496         struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
497         struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
498
499         if (!IS_ERR_OR_NULL(acomp_ctx)) {
500                 if (!IS_ERR_OR_NULL(acomp_ctx->req))
501                         acomp_request_free(acomp_ctx->req);
502                 if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
503                         crypto_free_acomp(acomp_ctx->acomp);
504         }
505
506         return 0;
507 }
508
509 /*********************************
510 * pool functions
511 **********************************/
512
513 static struct zswap_pool *__zswap_pool_current(void)
514 {
515         struct zswap_pool *pool;
516
517         pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
518         WARN_ONCE(!pool && zswap_has_pool,
519                   "%s: no page storage pool!\n", __func__);
520
521         return pool;
522 }
523
524 static struct zswap_pool *zswap_pool_current(void)
525 {
526         assert_spin_locked(&zswap_pools_lock);
527
528         return __zswap_pool_current();
529 }
530
531 static struct zswap_pool *zswap_pool_current_get(void)
532 {
533         struct zswap_pool *pool;
534
535         rcu_read_lock();
536
537         pool = __zswap_pool_current();
538         if (!zswap_pool_get(pool))
539                 pool = NULL;
540
541         rcu_read_unlock();
542
543         return pool;
544 }
545
546 static struct zswap_pool *zswap_pool_last_get(void)
547 {
548         struct zswap_pool *pool, *last = NULL;
549
550         rcu_read_lock();
551
552         list_for_each_entry_rcu(pool, &zswap_pools, list)
553                 last = pool;
554         WARN_ONCE(!last && zswap_has_pool,
555                   "%s: no page storage pool!\n", __func__);
556         if (!zswap_pool_get(last))
557                 last = NULL;
558
559         rcu_read_unlock();
560
561         return last;
562 }
563
564 /* type and compressor must be null-terminated */
565 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
566 {
567         struct zswap_pool *pool;
568
569         assert_spin_locked(&zswap_pools_lock);
570
571         list_for_each_entry_rcu(pool, &zswap_pools, list) {
572                 if (strcmp(pool->tfm_name, compressor))
573                         continue;
574                 if (strcmp(zpool_get_type(pool->zpool), type))
575                         continue;
576                 /* if we can't get it, it's about to be destroyed */
577                 if (!zswap_pool_get(pool))
578                         continue;
579                 return pool;
580         }
581
582         return NULL;
583 }
584
585 static void shrink_worker(struct work_struct *w)
586 {
587         struct zswap_pool *pool = container_of(w, typeof(*pool),
588                                                 shrink_work);
589
590         if (zpool_shrink(pool->zpool, 1, NULL))
591                 zswap_reject_reclaim_fail++;
592         zswap_pool_put(pool);
593 }
594
595 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
596 {
597         struct zswap_pool *pool;
598         char name[38]; /* 'zswap' + 32 char (max) num + \0 */
599         gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
600         int ret;
601
602         if (!zswap_has_pool) {
603                 /* if either are unset, pool initialization failed, and we
604                  * need both params to be set correctly before trying to
605                  * create a pool.
606                  */
607                 if (!strcmp(type, ZSWAP_PARAM_UNSET))
608                         return NULL;
609                 if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
610                         return NULL;
611         }
612
613         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
614         if (!pool)
615                 return NULL;
616
617         /* unique name for each pool specifically required by zsmalloc */
618         snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
619
620         pool->zpool = zpool_create_pool(type, name, gfp, &zswap_zpool_ops);
621         if (!pool->zpool) {
622                 pr_err("%s zpool not available\n", type);
623                 goto error;
624         }
625         pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
626
627         strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
628
629         pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
630         if (!pool->acomp_ctx) {
631                 pr_err("percpu alloc failed\n");
632                 goto error;
633         }
634
635         ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
636                                        &pool->node);
637         if (ret)
638                 goto error;
639         pr_debug("using %s compressor\n", pool->tfm_name);
640
641         /* being the current pool takes 1 ref; this func expects the
642          * caller to always add the new pool as the current pool
643          */
644         kref_init(&pool->kref);
645         INIT_LIST_HEAD(&pool->list);
646         INIT_WORK(&pool->shrink_work, shrink_worker);
647
648         zswap_pool_debug("created", pool);
649
650         return pool;
651
652 error:
653         if (pool->acomp_ctx)
654                 free_percpu(pool->acomp_ctx);
655         if (pool->zpool)
656                 zpool_destroy_pool(pool->zpool);
657         kfree(pool);
658         return NULL;
659 }
660
661 static __init struct zswap_pool *__zswap_pool_create_fallback(void)
662 {
663         bool has_comp, has_zpool;
664
665         has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
666         if (!has_comp && strcmp(zswap_compressor,
667                                 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
668                 pr_err("compressor %s not available, using default %s\n",
669                        zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
670                 param_free_charp(&zswap_compressor);
671                 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
672                 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
673         }
674         if (!has_comp) {
675                 pr_err("default compressor %s not available\n",
676                        zswap_compressor);
677                 param_free_charp(&zswap_compressor);
678                 zswap_compressor = ZSWAP_PARAM_UNSET;
679         }
680
681         has_zpool = zpool_has_pool(zswap_zpool_type);
682         if (!has_zpool && strcmp(zswap_zpool_type,
683                                  CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
684                 pr_err("zpool %s not available, using default %s\n",
685                        zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
686                 param_free_charp(&zswap_zpool_type);
687                 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
688                 has_zpool = zpool_has_pool(zswap_zpool_type);
689         }
690         if (!has_zpool) {
691                 pr_err("default zpool %s not available\n",
692                        zswap_zpool_type);
693                 param_free_charp(&zswap_zpool_type);
694                 zswap_zpool_type = ZSWAP_PARAM_UNSET;
695         }
696
697         if (!has_comp || !has_zpool)
698                 return NULL;
699
700         return zswap_pool_create(zswap_zpool_type, zswap_compressor);
701 }
702
703 static void zswap_pool_destroy(struct zswap_pool *pool)
704 {
705         zswap_pool_debug("destroying", pool);
706
707         cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
708         free_percpu(pool->acomp_ctx);
709         zpool_destroy_pool(pool->zpool);
710         kfree(pool);
711 }
712
713 static int __must_check zswap_pool_get(struct zswap_pool *pool)
714 {
715         if (!pool)
716                 return 0;
717
718         return kref_get_unless_zero(&pool->kref);
719 }
720
721 static void __zswap_pool_release(struct work_struct *work)
722 {
723         struct zswap_pool *pool = container_of(work, typeof(*pool),
724                                                 release_work);
725
726         synchronize_rcu();
727
728         /* nobody should have been able to get a kref... */
729         WARN_ON(kref_get_unless_zero(&pool->kref));
730
731         /* pool is now off zswap_pools list and has no references. */
732         zswap_pool_destroy(pool);
733 }
734
735 static void __zswap_pool_empty(struct kref *kref)
736 {
737         struct zswap_pool *pool;
738
739         pool = container_of(kref, typeof(*pool), kref);
740
741         spin_lock(&zswap_pools_lock);
742
743         WARN_ON(pool == zswap_pool_current());
744
745         list_del_rcu(&pool->list);
746
747         INIT_WORK(&pool->release_work, __zswap_pool_release);
748         schedule_work(&pool->release_work);
749
750         spin_unlock(&zswap_pools_lock);
751 }
752
753 static void zswap_pool_put(struct zswap_pool *pool)
754 {
755         kref_put(&pool->kref, __zswap_pool_empty);
756 }
757
758 /*********************************
759 * param callbacks
760 **********************************/
761
762 /* val must be a null-terminated string */
763 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
764                              char *type, char *compressor)
765 {
766         struct zswap_pool *pool, *put_pool = NULL;
767         char *s = strstrip((char *)val);
768         int ret;
769
770         if (zswap_init_failed) {
771                 pr_err("can't set param, initialization failed\n");
772                 return -ENODEV;
773         }
774
775         /* no change required */
776         if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
777                 return 0;
778
779         /* if this is load-time (pre-init) param setting,
780          * don't create a pool; that's done during init.
781          */
782         if (!zswap_init_started)
783                 return param_set_charp(s, kp);
784
785         if (!type) {
786                 if (!zpool_has_pool(s)) {
787                         pr_err("zpool %s not available\n", s);
788                         return -ENOENT;
789                 }
790                 type = s;
791         } else if (!compressor) {
792                 if (!crypto_has_acomp(s, 0, 0)) {
793                         pr_err("compressor %s not available\n", s);
794                         return -ENOENT;
795                 }
796                 compressor = s;
797         } else {
798                 WARN_ON(1);
799                 return -EINVAL;
800         }
801
802         spin_lock(&zswap_pools_lock);
803
804         pool = zswap_pool_find_get(type, compressor);
805         if (pool) {
806                 zswap_pool_debug("using existing", pool);
807                 WARN_ON(pool == zswap_pool_current());
808                 list_del_rcu(&pool->list);
809         }
810
811         spin_unlock(&zswap_pools_lock);
812
813         if (!pool)
814                 pool = zswap_pool_create(type, compressor);
815
816         if (pool)
817                 ret = param_set_charp(s, kp);
818         else
819                 ret = -EINVAL;
820
821         spin_lock(&zswap_pools_lock);
822
823         if (!ret) {
824                 put_pool = zswap_pool_current();
825                 list_add_rcu(&pool->list, &zswap_pools);
826                 zswap_has_pool = true;
827         } else if (pool) {
828                 /* add the possibly pre-existing pool to the end of the pools
829                  * list; if it's new (and empty) then it'll be removed and
830                  * destroyed by the put after we drop the lock
831                  */
832                 list_add_tail_rcu(&pool->list, &zswap_pools);
833                 put_pool = pool;
834         }
835
836         spin_unlock(&zswap_pools_lock);
837
838         if (!zswap_has_pool && !pool) {
839                 /* if initial pool creation failed, and this pool creation also
840                  * failed, maybe both compressor and zpool params were bad.
841                  * Allow changing this param, so pool creation will succeed
842                  * when the other param is changed. We already verified this
843                  * param is ok in the zpool_has_pool() or crypto_has_acomp()
844                  * checks above.
845                  */
846                 ret = param_set_charp(s, kp);
847         }
848
849         /* drop the ref from either the old current pool,
850          * or the new pool we failed to add
851          */
852         if (put_pool)
853                 zswap_pool_put(put_pool);
854
855         return ret;
856 }
857
858 static int zswap_compressor_param_set(const char *val,
859                                       const struct kernel_param *kp)
860 {
861         return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
862 }
863
864 static int zswap_zpool_param_set(const char *val,
865                                  const struct kernel_param *kp)
866 {
867         return __zswap_param_set(val, kp, NULL, zswap_compressor);
868 }
869
870 static int zswap_enabled_param_set(const char *val,
871                                    const struct kernel_param *kp)
872 {
873         if (zswap_init_failed) {
874                 pr_err("can't enable, initialization failed\n");
875                 return -ENODEV;
876         }
877         if (!zswap_has_pool && zswap_init_started) {
878                 pr_err("can't enable, no pool configured\n");
879                 return -ENODEV;
880         }
881
882         return param_set_bool(val, kp);
883 }
884
885 /*********************************
886 * writeback code
887 **********************************/
888 /* return enum for zswap_get_swap_cache_page */
889 enum zswap_get_swap_ret {
890         ZSWAP_SWAPCACHE_NEW,
891         ZSWAP_SWAPCACHE_EXIST,
892         ZSWAP_SWAPCACHE_FAIL,
893 };
894
895 /*
896  * zswap_get_swap_cache_page
897  *
898  * This is an adaption of read_swap_cache_async()
899  *
900  * This function tries to find a page with the given swap entry
901  * in the swapper_space address space (the swap cache).  If the page
902  * is found, it is returned in retpage.  Otherwise, a page is allocated,
903  * added to the swap cache, and returned in retpage.
904  *
905  * If success, the swap cache page is returned in retpage
906  * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
907  * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
908  *     the new page is added to swapcache and locked
909  * Returns ZSWAP_SWAPCACHE_FAIL on error
910  */
911 static int zswap_get_swap_cache_page(swp_entry_t entry,
912                                 struct page **retpage)
913 {
914         bool page_was_allocated;
915
916         *retpage = __read_swap_cache_async(entry, GFP_KERNEL,
917                         NULL, 0, &page_was_allocated);
918         if (page_was_allocated)
919                 return ZSWAP_SWAPCACHE_NEW;
920         if (!*retpage)
921                 return ZSWAP_SWAPCACHE_FAIL;
922         return ZSWAP_SWAPCACHE_EXIST;
923 }
924
925 /*
926  * Attempts to free an entry by adding a page to the swap cache,
927  * decompressing the entry data into the page, and issuing a
928  * bio write to write the page back to the swap device.
929  *
930  * This can be thought of as a "resumed writeback" of the page
931  * to the swap device.  We are basically resuming the same swap
932  * writeback path that was intercepted with the frontswap_store()
933  * in the first place.  After the page has been decompressed into
934  * the swap cache, the compressed version stored by zswap can be
935  * freed.
936  */
937 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
938 {
939         struct zswap_header *zhdr;
940         swp_entry_t swpentry;
941         struct zswap_tree *tree;
942         pgoff_t offset;
943         struct zswap_entry *entry;
944         struct page *page;
945         struct scatterlist input, output;
946         struct crypto_acomp_ctx *acomp_ctx;
947
948         u8 *src, *tmp = NULL;
949         unsigned int dlen;
950         int ret;
951         struct writeback_control wbc = {
952                 .sync_mode = WB_SYNC_NONE,
953         };
954
955         if (!zpool_can_sleep_mapped(pool)) {
956                 tmp = kmalloc(PAGE_SIZE, GFP_ATOMIC);
957                 if (!tmp)
958                         return -ENOMEM;
959         }
960
961         /* extract swpentry from data */
962         zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
963         swpentry = zhdr->swpentry; /* here */
964         tree = zswap_trees[swp_type(swpentry)];
965         offset = swp_offset(swpentry);
966
967         /* find and ref zswap entry */
968         spin_lock(&tree->lock);
969         entry = zswap_entry_find_get(&tree->rbroot, offset);
970         if (!entry) {
971                 /* entry was invalidated */
972                 spin_unlock(&tree->lock);
973                 zpool_unmap_handle(pool, handle);
974                 kfree(tmp);
975                 return 0;
976         }
977         spin_unlock(&tree->lock);
978         BUG_ON(offset != entry->offset);
979
980         src = (u8 *)zhdr + sizeof(struct zswap_header);
981         if (!zpool_can_sleep_mapped(pool)) {
982                 memcpy(tmp, src, entry->length);
983                 src = tmp;
984                 zpool_unmap_handle(pool, handle);
985         }
986
987         /* try to allocate swap cache page */
988         switch (zswap_get_swap_cache_page(swpentry, &page)) {
989         case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
990                 ret = -ENOMEM;
991                 goto fail;
992
993         case ZSWAP_SWAPCACHE_EXIST:
994                 /* page is already in the swap cache, ignore for now */
995                 put_page(page);
996                 ret = -EEXIST;
997                 goto fail;
998
999         case ZSWAP_SWAPCACHE_NEW: /* page is locked */
1000                 /* decompress */
1001                 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1002                 dlen = PAGE_SIZE;
1003
1004                 mutex_lock(acomp_ctx->mutex);
1005                 sg_init_one(&input, src, entry->length);
1006                 sg_init_table(&output, 1);
1007                 sg_set_page(&output, page, PAGE_SIZE, 0);
1008                 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen);
1009                 ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
1010                 dlen = acomp_ctx->req->dlen;
1011                 mutex_unlock(acomp_ctx->mutex);
1012
1013                 BUG_ON(ret);
1014                 BUG_ON(dlen != PAGE_SIZE);
1015
1016                 /* page is up to date */
1017                 SetPageUptodate(page);
1018         }
1019
1020         /* move it to the tail of the inactive list after end_writeback */
1021         SetPageReclaim(page);
1022
1023         /* start writeback */
1024         __swap_writepage(page, &wbc, end_swap_bio_write);
1025         put_page(page);
1026         zswap_written_back_pages++;
1027
1028         spin_lock(&tree->lock);
1029         /* drop local reference */
1030         zswap_entry_put(tree, entry);
1031
1032         /*
1033         * There are two possible situations for entry here:
1034         * (1) refcount is 1(normal case),  entry is valid and on the tree
1035         * (2) refcount is 0, entry is freed and not on the tree
1036         *     because invalidate happened during writeback
1037         *  search the tree and free the entry if find entry
1038         */
1039         if (entry == zswap_rb_search(&tree->rbroot, offset))
1040                 zswap_entry_put(tree, entry);
1041         spin_unlock(&tree->lock);
1042
1043         goto end;
1044
1045         /*
1046         * if we get here due to ZSWAP_SWAPCACHE_EXIST
1047         * a load may be happening concurrently.
1048         * it is safe and okay to not free the entry.
1049         * if we free the entry in the following put
1050         * it is also okay to return !0
1051         */
1052 fail:
1053         spin_lock(&tree->lock);
1054         zswap_entry_put(tree, entry);
1055         spin_unlock(&tree->lock);
1056
1057 end:
1058         if (zpool_can_sleep_mapped(pool))
1059                 zpool_unmap_handle(pool, handle);
1060         else
1061                 kfree(tmp);
1062
1063         return ret;
1064 }
1065
1066 static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1067 {
1068         unsigned int pos;
1069         unsigned long *page;
1070
1071         page = (unsigned long *)ptr;
1072         for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
1073                 if (page[pos] != page[0])
1074                         return 0;
1075         }
1076         *value = page[0];
1077         return 1;
1078 }
1079
1080 static void zswap_fill_page(void *ptr, unsigned long value)
1081 {
1082         unsigned long *page;
1083
1084         page = (unsigned long *)ptr;
1085         memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1086 }
1087
1088 /*********************************
1089 * frontswap hooks
1090 **********************************/
1091 /* attempts to compress and store an single page */
1092 static int zswap_frontswap_store(unsigned type, pgoff_t offset,
1093                                 struct page *page)
1094 {
1095         struct zswap_tree *tree = zswap_trees[type];
1096         struct zswap_entry *entry, *dupentry;
1097         struct scatterlist input, output;
1098         struct crypto_acomp_ctx *acomp_ctx;
1099         int ret;
1100         unsigned int hlen, dlen = PAGE_SIZE;
1101         unsigned long handle, value;
1102         char *buf;
1103         u8 *src, *dst;
1104         struct zswap_header zhdr = { .swpentry = swp_entry(type, offset) };
1105         gfp_t gfp;
1106
1107         /* THP isn't supported */
1108         if (PageTransHuge(page)) {
1109                 ret = -EINVAL;
1110                 goto reject;
1111         }
1112
1113         if (!zswap_enabled || !tree) {
1114                 ret = -ENODEV;
1115                 goto reject;
1116         }
1117
1118         /* reclaim space if needed */
1119         if (zswap_is_full()) {
1120                 struct zswap_pool *pool;
1121
1122                 zswap_pool_limit_hit++;
1123                 zswap_pool_reached_full = true;
1124                 pool = zswap_pool_last_get();
1125                 if (pool)
1126                         queue_work(shrink_wq, &pool->shrink_work);
1127                 ret = -ENOMEM;
1128                 goto reject;
1129         }
1130
1131         if (zswap_pool_reached_full) {
1132                if (!zswap_can_accept()) {
1133                         ret = -ENOMEM;
1134                         goto reject;
1135                 } else
1136                         zswap_pool_reached_full = false;
1137         }
1138
1139         /* allocate entry */
1140         entry = zswap_entry_cache_alloc(GFP_KERNEL);
1141         if (!entry) {
1142                 zswap_reject_kmemcache_fail++;
1143                 ret = -ENOMEM;
1144                 goto reject;
1145         }
1146
1147         if (zswap_same_filled_pages_enabled) {
1148                 src = kmap_atomic(page);
1149                 if (zswap_is_page_same_filled(src, &value)) {
1150                         kunmap_atomic(src);
1151                         entry->offset = offset;
1152                         entry->length = 0;
1153                         entry->value = value;
1154                         atomic_inc(&zswap_same_filled_pages);
1155                         goto insert_entry;
1156                 }
1157                 kunmap_atomic(src);
1158         }
1159
1160         if (!zswap_non_same_filled_pages_enabled) {
1161                 ret = -EINVAL;
1162                 goto freepage;
1163         }
1164
1165         /* if entry is successfully added, it keeps the reference */
1166         entry->pool = zswap_pool_current_get();
1167         if (!entry->pool) {
1168                 ret = -EINVAL;
1169                 goto freepage;
1170         }
1171
1172         /* compress */
1173         acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1174
1175         mutex_lock(acomp_ctx->mutex);
1176
1177         dst = acomp_ctx->dstmem;
1178         sg_init_table(&input, 1);
1179         sg_set_page(&input, page, PAGE_SIZE, 0);
1180
1181         /* zswap_dstmem is of size (PAGE_SIZE * 2). Reflect same in sg_list */
1182         sg_init_one(&output, dst, PAGE_SIZE * 2);
1183         acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1184         /*
1185          * it maybe looks a little bit silly that we send an asynchronous request,
1186          * then wait for its completion synchronously. This makes the process look
1187          * synchronous in fact.
1188          * Theoretically, acomp supports users send multiple acomp requests in one
1189          * acomp instance, then get those requests done simultaneously. but in this
1190          * case, frontswap actually does store and load page by page, there is no
1191          * existing method to send the second page before the first page is done
1192          * in one thread doing frontswap.
1193          * but in different threads running on different cpu, we have different
1194          * acomp instance, so multiple threads can do (de)compression in parallel.
1195          */
1196         ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1197         dlen = acomp_ctx->req->dlen;
1198
1199         if (ret) {
1200                 ret = -EINVAL;
1201                 goto put_dstmem;
1202         }
1203
1204         /* store */
1205         hlen = zpool_evictable(entry->pool->zpool) ? sizeof(zhdr) : 0;
1206         gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1207         if (zpool_malloc_support_movable(entry->pool->zpool))
1208                 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1209         ret = zpool_malloc(entry->pool->zpool, hlen + dlen, gfp, &handle);
1210         if (ret == -ENOSPC) {
1211                 zswap_reject_compress_poor++;
1212                 goto put_dstmem;
1213         }
1214         if (ret) {
1215                 zswap_reject_alloc_fail++;
1216                 goto put_dstmem;
1217         }
1218         buf = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_WO);
1219         memcpy(buf, &zhdr, hlen);
1220         memcpy(buf + hlen, dst, dlen);
1221         zpool_unmap_handle(entry->pool->zpool, handle);
1222         mutex_unlock(acomp_ctx->mutex);
1223
1224         /* populate entry */
1225         entry->offset = offset;
1226         entry->handle = handle;
1227         entry->length = dlen;
1228
1229 insert_entry:
1230         /* map */
1231         spin_lock(&tree->lock);
1232         do {
1233                 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
1234                 if (ret == -EEXIST) {
1235                         zswap_duplicate_entry++;
1236                         /* remove from rbtree */
1237                         zswap_rb_erase(&tree->rbroot, dupentry);
1238                         zswap_entry_put(tree, dupentry);
1239                 }
1240         } while (ret == -EEXIST);
1241         spin_unlock(&tree->lock);
1242
1243         /* update stats */
1244         atomic_inc(&zswap_stored_pages);
1245         zswap_update_total_size();
1246
1247         return 0;
1248
1249 put_dstmem:
1250         mutex_unlock(acomp_ctx->mutex);
1251         zswap_pool_put(entry->pool);
1252 freepage:
1253         zswap_entry_cache_free(entry);
1254 reject:
1255         return ret;
1256 }
1257
1258 /*
1259  * returns 0 if the page was successfully decompressed
1260  * return -1 on entry not found or error
1261 */
1262 static int zswap_frontswap_load(unsigned type, pgoff_t offset,
1263                                 struct page *page)
1264 {
1265         struct zswap_tree *tree = zswap_trees[type];
1266         struct zswap_entry *entry;
1267         struct scatterlist input, output;
1268         struct crypto_acomp_ctx *acomp_ctx;
1269         u8 *src, *dst, *tmp;
1270         unsigned int dlen;
1271         int ret;
1272
1273         /* find */
1274         spin_lock(&tree->lock);
1275         entry = zswap_entry_find_get(&tree->rbroot, offset);
1276         if (!entry) {
1277                 /* entry was written back */
1278                 spin_unlock(&tree->lock);
1279                 return -1;
1280         }
1281         spin_unlock(&tree->lock);
1282
1283         if (!entry->length) {
1284                 dst = kmap_atomic(page);
1285                 zswap_fill_page(dst, entry->value);
1286                 kunmap_atomic(dst);
1287                 ret = 0;
1288                 goto freeentry;
1289         }
1290
1291         if (!zpool_can_sleep_mapped(entry->pool->zpool)) {
1292
1293                 tmp = kmalloc(entry->length, GFP_ATOMIC);
1294                 if (!tmp) {
1295                         ret = -ENOMEM;
1296                         goto freeentry;
1297                 }
1298         }
1299
1300         /* decompress */
1301         dlen = PAGE_SIZE;
1302         src = zpool_map_handle(entry->pool->zpool, entry->handle, ZPOOL_MM_RO);
1303         if (zpool_evictable(entry->pool->zpool))
1304                 src += sizeof(struct zswap_header);
1305
1306         if (!zpool_can_sleep_mapped(entry->pool->zpool)) {
1307
1308                 memcpy(tmp, src, entry->length);
1309                 src = tmp;
1310
1311                 zpool_unmap_handle(entry->pool->zpool, entry->handle);
1312         }
1313
1314         acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1315         mutex_lock(acomp_ctx->mutex);
1316         sg_init_one(&input, src, entry->length);
1317         sg_init_table(&output, 1);
1318         sg_set_page(&output, page, PAGE_SIZE, 0);
1319         acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen);
1320         ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
1321         mutex_unlock(acomp_ctx->mutex);
1322
1323         if (zpool_can_sleep_mapped(entry->pool->zpool))
1324                 zpool_unmap_handle(entry->pool->zpool, entry->handle);
1325         else
1326                 kfree(tmp);
1327
1328         BUG_ON(ret);
1329
1330 freeentry:
1331         spin_lock(&tree->lock);
1332         zswap_entry_put(tree, entry);
1333         spin_unlock(&tree->lock);
1334
1335         return ret;
1336 }
1337
1338 /* frees an entry in zswap */
1339 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
1340 {
1341         struct zswap_tree *tree = zswap_trees[type];
1342         struct zswap_entry *entry;
1343
1344         /* find */
1345         spin_lock(&tree->lock);
1346         entry = zswap_rb_search(&tree->rbroot, offset);
1347         if (!entry) {
1348                 /* entry was written back */
1349                 spin_unlock(&tree->lock);
1350                 return;
1351         }
1352
1353         /* remove from rbtree */
1354         zswap_rb_erase(&tree->rbroot, entry);
1355
1356         /* drop the initial reference from entry creation */
1357         zswap_entry_put(tree, entry);
1358
1359         spin_unlock(&tree->lock);
1360 }
1361
1362 /* frees all zswap entries for the given swap type */
1363 static void zswap_frontswap_invalidate_area(unsigned type)
1364 {
1365         struct zswap_tree *tree = zswap_trees[type];
1366         struct zswap_entry *entry, *n;
1367
1368         if (!tree)
1369                 return;
1370
1371         /* walk the tree and free everything */
1372         spin_lock(&tree->lock);
1373         rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1374                 zswap_free_entry(entry);
1375         tree->rbroot = RB_ROOT;
1376         spin_unlock(&tree->lock);
1377         kfree(tree);
1378         zswap_trees[type] = NULL;
1379 }
1380
1381 static void zswap_frontswap_init(unsigned type)
1382 {
1383         struct zswap_tree *tree;
1384
1385         tree = kzalloc(sizeof(*tree), GFP_KERNEL);
1386         if (!tree) {
1387                 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1388                 return;
1389         }
1390
1391         tree->rbroot = RB_ROOT;
1392         spin_lock_init(&tree->lock);
1393         zswap_trees[type] = tree;
1394 }
1395
1396 static const struct frontswap_ops zswap_frontswap_ops = {
1397         .store = zswap_frontswap_store,
1398         .load = zswap_frontswap_load,
1399         .invalidate_page = zswap_frontswap_invalidate_page,
1400         .invalidate_area = zswap_frontswap_invalidate_area,
1401         .init = zswap_frontswap_init
1402 };
1403
1404 /*********************************
1405 * debugfs functions
1406 **********************************/
1407 #ifdef CONFIG_DEBUG_FS
1408 #include <linux/debugfs.h>
1409
1410 static struct dentry *zswap_debugfs_root;
1411
1412 static int __init zswap_debugfs_init(void)
1413 {
1414         if (!debugfs_initialized())
1415                 return -ENODEV;
1416
1417         zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1418
1419         debugfs_create_u64("pool_limit_hit", 0444,
1420                            zswap_debugfs_root, &zswap_pool_limit_hit);
1421         debugfs_create_u64("reject_reclaim_fail", 0444,
1422                            zswap_debugfs_root, &zswap_reject_reclaim_fail);
1423         debugfs_create_u64("reject_alloc_fail", 0444,
1424                            zswap_debugfs_root, &zswap_reject_alloc_fail);
1425         debugfs_create_u64("reject_kmemcache_fail", 0444,
1426                            zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1427         debugfs_create_u64("reject_compress_poor", 0444,
1428                            zswap_debugfs_root, &zswap_reject_compress_poor);
1429         debugfs_create_u64("written_back_pages", 0444,
1430                            zswap_debugfs_root, &zswap_written_back_pages);
1431         debugfs_create_u64("duplicate_entry", 0444,
1432                            zswap_debugfs_root, &zswap_duplicate_entry);
1433         debugfs_create_u64("pool_total_size", 0444,
1434                            zswap_debugfs_root, &zswap_pool_total_size);
1435         debugfs_create_atomic_t("stored_pages", 0444,
1436                                 zswap_debugfs_root, &zswap_stored_pages);
1437         debugfs_create_atomic_t("same_filled_pages", 0444,
1438                                 zswap_debugfs_root, &zswap_same_filled_pages);
1439
1440         return 0;
1441 }
1442 #else
1443 static int __init zswap_debugfs_init(void)
1444 {
1445         return 0;
1446 }
1447 #endif
1448
1449 /*********************************
1450 * module init and exit
1451 **********************************/
1452 static int __init init_zswap(void)
1453 {
1454         struct zswap_pool *pool;
1455         int ret;
1456
1457         zswap_init_started = true;
1458
1459         if (zswap_entry_cache_create()) {
1460                 pr_err("entry cache creation failed\n");
1461                 goto cache_fail;
1462         }
1463
1464         ret = cpuhp_setup_state(CPUHP_MM_ZSWP_MEM_PREPARE, "mm/zswap:prepare",
1465                                 zswap_dstmem_prepare, zswap_dstmem_dead);
1466         if (ret) {
1467                 pr_err("dstmem alloc failed\n");
1468                 goto dstmem_fail;
1469         }
1470
1471         ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1472                                       "mm/zswap_pool:prepare",
1473                                       zswap_cpu_comp_prepare,
1474                                       zswap_cpu_comp_dead);
1475         if (ret)
1476                 goto hp_fail;
1477
1478         pool = __zswap_pool_create_fallback();
1479         if (pool) {
1480                 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1481                         zpool_get_type(pool->zpool));
1482                 list_add(&pool->list, &zswap_pools);
1483                 zswap_has_pool = true;
1484         } else {
1485                 pr_err("pool creation failed\n");
1486                 zswap_enabled = false;
1487         }
1488
1489         shrink_wq = create_workqueue("zswap-shrink");
1490         if (!shrink_wq)
1491                 goto fallback_fail;
1492
1493         ret = frontswap_register_ops(&zswap_frontswap_ops);
1494         if (ret)
1495                 goto destroy_wq;
1496         if (zswap_debugfs_init())
1497                 pr_warn("debugfs initialization failed\n");
1498         return 0;
1499
1500 destroy_wq:
1501         destroy_workqueue(shrink_wq);
1502 fallback_fail:
1503         if (pool)
1504                 zswap_pool_destroy(pool);
1505 hp_fail:
1506         cpuhp_remove_state(CPUHP_MM_ZSWP_MEM_PREPARE);
1507 dstmem_fail:
1508         zswap_entry_cache_destroy();
1509 cache_fail:
1510         /* if built-in, we aren't unloaded on failure; don't allow use */
1511         zswap_init_failed = true;
1512         zswap_enabled = false;
1513         return -ENOMEM;
1514 }
1515 /* must be late so crypto has time to come up */
1516 late_initcall(init_zswap);
1517
1518 MODULE_LICENSE("GPL");
1519 MODULE_AUTHOR("Seth Jennings <[email protected]>");
1520 MODULE_DESCRIPTION("Compressed cache for swap pages");
This page took 0.113137 seconds and 4 git commands to generate.