1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Multiqueue VM started 5.8.00, Rik van Riel.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59 #include <linux/sched/sysctl.h>
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/vmscan.h>
68 /* How many pages shrink_list() should reclaim */
69 unsigned long nr_to_reclaim;
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
81 struct mem_cgroup *target_mem_cgroup;
84 * Scan pressure balancing between anon and file LRUs
86 unsigned long anon_cost;
87 unsigned long file_cost;
89 /* Can active pages be deactivated as part of reclaim? */
90 #define DEACTIVATE_ANON 1
91 #define DEACTIVATE_FILE 2
92 unsigned int may_deactivate:2;
93 unsigned int force_deactivate:1;
94 unsigned int skipped_deactivate:1;
96 /* Writepage batching in laptop mode; RECLAIM_WRITE */
97 unsigned int may_writepage:1;
99 /* Can mapped pages be reclaimed? */
100 unsigned int may_unmap:1;
102 /* Can pages be swapped as part of reclaim? */
103 unsigned int may_swap:1;
106 * Cgroup memory below memory.low is protected as long as we
107 * don't threaten to OOM. If any cgroup is reclaimed at
108 * reduced force or passed over entirely due to its memory.low
109 * setting (memcg_low_skipped), and nothing is reclaimed as a
110 * result, then go back for one more cycle that reclaims the protected
111 * memory (memcg_low_reclaim) to avert OOM.
113 unsigned int memcg_low_reclaim:1;
114 unsigned int memcg_low_skipped:1;
116 unsigned int hibernation_mode:1;
118 /* One of the zones is ready for compaction */
119 unsigned int compaction_ready:1;
121 /* There is easily reclaimable cold cache in the current node */
122 unsigned int cache_trim_mode:1;
124 /* The file pages on the current node are dangerously low */
125 unsigned int file_is_tiny:1;
127 /* Always discard instead of demoting to lower tier memory */
128 unsigned int no_demotion:1;
130 /* Allocation order */
133 /* Scan (total_size >> priority) pages at once */
136 /* The highest zone to isolate pages for reclaim from */
139 /* This context's GFP mask */
142 /* Incremented by the number of inactive pages that were scanned */
143 unsigned long nr_scanned;
145 /* Number of pages freed so far during a call to shrink_zones() */
146 unsigned long nr_reclaimed;
150 unsigned int unqueued_dirty;
151 unsigned int congested;
152 unsigned int writeback;
153 unsigned int immediate;
154 unsigned int file_taken;
158 /* for recording the reclaimed slab by now */
159 struct reclaim_state reclaim_state;
162 #ifdef ARCH_HAS_PREFETCHW
163 #define prefetchw_prev_lru_page(_page, _base, _field) \
165 if ((_page)->lru.prev != _base) { \
168 prev = lru_to_page(&(_page->lru)); \
169 prefetchw(&prev->_field); \
173 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
177 * From 0 .. 200. Higher means more swappy.
179 int vm_swappiness = 60;
181 static void set_task_reclaim_state(struct task_struct *task,
182 struct reclaim_state *rs)
184 /* Check for an overwrite */
185 WARN_ON_ONCE(rs && task->reclaim_state);
187 /* Check for the nulling of an already-nulled member */
188 WARN_ON_ONCE(!rs && !task->reclaim_state);
190 task->reclaim_state = rs;
193 static LIST_HEAD(shrinker_list);
194 static DECLARE_RWSEM(shrinker_rwsem);
197 static int shrinker_nr_max;
199 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
200 static inline int shrinker_map_size(int nr_items)
202 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
205 static inline int shrinker_defer_size(int nr_items)
207 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
210 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
213 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
214 lockdep_is_held(&shrinker_rwsem));
217 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
218 int map_size, int defer_size,
219 int old_map_size, int old_defer_size)
221 struct shrinker_info *new, *old;
222 struct mem_cgroup_per_node *pn;
224 int size = map_size + defer_size;
227 pn = memcg->nodeinfo[nid];
228 old = shrinker_info_protected(memcg, nid);
229 /* Not yet online memcg */
233 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
237 new->nr_deferred = (atomic_long_t *)(new + 1);
238 new->map = (void *)new->nr_deferred + defer_size;
240 /* map: set all old bits, clear all new bits */
241 memset(new->map, (int)0xff, old_map_size);
242 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
243 /* nr_deferred: copy old values, clear all new values */
244 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
245 memset((void *)new->nr_deferred + old_defer_size, 0,
246 defer_size - old_defer_size);
248 rcu_assign_pointer(pn->shrinker_info, new);
249 kvfree_rcu(old, rcu);
255 void free_shrinker_info(struct mem_cgroup *memcg)
257 struct mem_cgroup_per_node *pn;
258 struct shrinker_info *info;
262 pn = memcg->nodeinfo[nid];
263 info = rcu_dereference_protected(pn->shrinker_info, true);
265 rcu_assign_pointer(pn->shrinker_info, NULL);
269 int alloc_shrinker_info(struct mem_cgroup *memcg)
271 struct shrinker_info *info;
272 int nid, size, ret = 0;
273 int map_size, defer_size = 0;
275 down_write(&shrinker_rwsem);
276 map_size = shrinker_map_size(shrinker_nr_max);
277 defer_size = shrinker_defer_size(shrinker_nr_max);
278 size = map_size + defer_size;
280 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
282 free_shrinker_info(memcg);
286 info->nr_deferred = (atomic_long_t *)(info + 1);
287 info->map = (void *)info->nr_deferred + defer_size;
288 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
290 up_write(&shrinker_rwsem);
295 static inline bool need_expand(int nr_max)
297 return round_up(nr_max, BITS_PER_LONG) >
298 round_up(shrinker_nr_max, BITS_PER_LONG);
301 static int expand_shrinker_info(int new_id)
304 int new_nr_max = new_id + 1;
305 int map_size, defer_size = 0;
306 int old_map_size, old_defer_size = 0;
307 struct mem_cgroup *memcg;
309 if (!need_expand(new_nr_max))
312 if (!root_mem_cgroup)
315 lockdep_assert_held(&shrinker_rwsem);
317 map_size = shrinker_map_size(new_nr_max);
318 defer_size = shrinker_defer_size(new_nr_max);
319 old_map_size = shrinker_map_size(shrinker_nr_max);
320 old_defer_size = shrinker_defer_size(shrinker_nr_max);
322 memcg = mem_cgroup_iter(NULL, NULL, NULL);
324 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
325 old_map_size, old_defer_size);
327 mem_cgroup_iter_break(NULL, memcg);
330 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
333 shrinker_nr_max = new_nr_max;
338 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
340 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
341 struct shrinker_info *info;
344 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
345 /* Pairs with smp mb in shrink_slab() */
346 smp_mb__before_atomic();
347 set_bit(shrinker_id, info->map);
352 static DEFINE_IDR(shrinker_idr);
354 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
356 int id, ret = -ENOMEM;
358 if (mem_cgroup_disabled())
361 down_write(&shrinker_rwsem);
362 /* This may call shrinker, so it must use down_read_trylock() */
363 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
367 if (id >= shrinker_nr_max) {
368 if (expand_shrinker_info(id)) {
369 idr_remove(&shrinker_idr, id);
376 up_write(&shrinker_rwsem);
380 static void unregister_memcg_shrinker(struct shrinker *shrinker)
382 int id = shrinker->id;
386 lockdep_assert_held(&shrinker_rwsem);
388 idr_remove(&shrinker_idr, id);
391 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
392 struct mem_cgroup *memcg)
394 struct shrinker_info *info;
396 info = shrinker_info_protected(memcg, nid);
397 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
400 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
401 struct mem_cgroup *memcg)
403 struct shrinker_info *info;
405 info = shrinker_info_protected(memcg, nid);
406 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
409 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
413 struct mem_cgroup *parent;
414 struct shrinker_info *child_info, *parent_info;
416 parent = parent_mem_cgroup(memcg);
418 parent = root_mem_cgroup;
420 /* Prevent from concurrent shrinker_info expand */
421 down_read(&shrinker_rwsem);
423 child_info = shrinker_info_protected(memcg, nid);
424 parent_info = shrinker_info_protected(parent, nid);
425 for (i = 0; i < shrinker_nr_max; i++) {
426 nr = atomic_long_read(&child_info->nr_deferred[i]);
427 atomic_long_add(nr, &parent_info->nr_deferred[i]);
430 up_read(&shrinker_rwsem);
433 static bool cgroup_reclaim(struct scan_control *sc)
435 return sc->target_mem_cgroup;
439 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
440 * @sc: scan_control in question
442 * The normal page dirty throttling mechanism in balance_dirty_pages() is
443 * completely broken with the legacy memcg and direct stalling in
444 * shrink_page_list() is used for throttling instead, which lacks all the
445 * niceties such as fairness, adaptive pausing, bandwidth proportional
446 * allocation and configurability.
448 * This function tests whether the vmscan currently in progress can assume
449 * that the normal dirty throttling mechanism is operational.
451 static bool writeback_throttling_sane(struct scan_control *sc)
453 if (!cgroup_reclaim(sc))
455 #ifdef CONFIG_CGROUP_WRITEBACK
456 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
462 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
467 static void unregister_memcg_shrinker(struct shrinker *shrinker)
471 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
472 struct mem_cgroup *memcg)
477 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
478 struct mem_cgroup *memcg)
483 static bool cgroup_reclaim(struct scan_control *sc)
488 static bool writeback_throttling_sane(struct scan_control *sc)
494 static long xchg_nr_deferred(struct shrinker *shrinker,
495 struct shrink_control *sc)
499 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
503 (shrinker->flags & SHRINKER_MEMCG_AWARE))
504 return xchg_nr_deferred_memcg(nid, shrinker,
507 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
511 static long add_nr_deferred(long nr, struct shrinker *shrinker,
512 struct shrink_control *sc)
516 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
520 (shrinker->flags & SHRINKER_MEMCG_AWARE))
521 return add_nr_deferred_memcg(nr, nid, shrinker,
524 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
527 static bool can_demote(int nid, struct scan_control *sc)
529 if (!numa_demotion_enabled)
534 /* It is pointless to do demotion in memcg reclaim */
535 if (cgroup_reclaim(sc))
538 if (next_demotion_node(nid) == NUMA_NO_NODE)
544 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
546 struct scan_control *sc)
550 * For non-memcg reclaim, is there
551 * space in any swap device?
553 if (get_nr_swap_pages() > 0)
556 /* Is the memcg below its swap limit? */
557 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
562 * The page can not be swapped.
564 * Can it be reclaimed from this node via demotion?
566 return can_demote(nid, sc);
570 * This misses isolated pages which are not accounted for to save counters.
571 * As the data only determines if reclaim or compaction continues, it is
572 * not expected that isolated pages will be a dominating factor.
574 unsigned long zone_reclaimable_pages(struct zone *zone)
578 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
579 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
580 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
581 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
582 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
588 * lruvec_lru_size - Returns the number of pages on the given LRU list.
589 * @lruvec: lru vector
591 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
593 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
596 unsigned long size = 0;
599 for (zid = 0; zid <= zone_idx; zid++) {
600 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
602 if (!managed_zone(zone))
605 if (!mem_cgroup_disabled())
606 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
608 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
614 * Add a shrinker callback to be called from the vm.
616 int prealloc_shrinker(struct shrinker *shrinker)
621 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
622 err = prealloc_memcg_shrinker(shrinker);
626 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
629 size = sizeof(*shrinker->nr_deferred);
630 if (shrinker->flags & SHRINKER_NUMA_AWARE)
633 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
634 if (!shrinker->nr_deferred)
640 void free_prealloced_shrinker(struct shrinker *shrinker)
642 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
643 down_write(&shrinker_rwsem);
644 unregister_memcg_shrinker(shrinker);
645 up_write(&shrinker_rwsem);
649 kfree(shrinker->nr_deferred);
650 shrinker->nr_deferred = NULL;
653 void register_shrinker_prepared(struct shrinker *shrinker)
655 down_write(&shrinker_rwsem);
656 list_add_tail(&shrinker->list, &shrinker_list);
657 shrinker->flags |= SHRINKER_REGISTERED;
658 up_write(&shrinker_rwsem);
661 int register_shrinker(struct shrinker *shrinker)
663 int err = prealloc_shrinker(shrinker);
667 register_shrinker_prepared(shrinker);
670 EXPORT_SYMBOL(register_shrinker);
675 void unregister_shrinker(struct shrinker *shrinker)
677 if (!(shrinker->flags & SHRINKER_REGISTERED))
680 down_write(&shrinker_rwsem);
681 list_del(&shrinker->list);
682 shrinker->flags &= ~SHRINKER_REGISTERED;
683 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
684 unregister_memcg_shrinker(shrinker);
685 up_write(&shrinker_rwsem);
687 kfree(shrinker->nr_deferred);
688 shrinker->nr_deferred = NULL;
690 EXPORT_SYMBOL(unregister_shrinker);
693 * synchronize_shrinkers - Wait for all running shrinkers to complete.
695 * This is equivalent to calling unregister_shrink() and register_shrinker(),
696 * but atomically and with less overhead. This is useful to guarantee that all
697 * shrinker invocations have seen an update, before freeing memory, similar to
700 void synchronize_shrinkers(void)
702 down_write(&shrinker_rwsem);
703 up_write(&shrinker_rwsem);
705 EXPORT_SYMBOL(synchronize_shrinkers);
707 #define SHRINK_BATCH 128
709 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
710 struct shrinker *shrinker, int priority)
712 unsigned long freed = 0;
713 unsigned long long delta;
718 long batch_size = shrinker->batch ? shrinker->batch
720 long scanned = 0, next_deferred;
722 freeable = shrinker->count_objects(shrinker, shrinkctl);
723 if (freeable == 0 || freeable == SHRINK_EMPTY)
727 * copy the current shrinker scan count into a local variable
728 * and zero it so that other concurrent shrinker invocations
729 * don't also do this scanning work.
731 nr = xchg_nr_deferred(shrinker, shrinkctl);
733 if (shrinker->seeks) {
734 delta = freeable >> priority;
736 do_div(delta, shrinker->seeks);
739 * These objects don't require any IO to create. Trim
740 * them aggressively under memory pressure to keep
741 * them from causing refetches in the IO caches.
743 delta = freeable / 2;
746 total_scan = nr >> priority;
748 total_scan = min(total_scan, (2 * freeable));
750 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
751 freeable, delta, total_scan, priority);
754 * Normally, we should not scan less than batch_size objects in one
755 * pass to avoid too frequent shrinker calls, but if the slab has less
756 * than batch_size objects in total and we are really tight on memory,
757 * we will try to reclaim all available objects, otherwise we can end
758 * up failing allocations although there are plenty of reclaimable
759 * objects spread over several slabs with usage less than the
762 * We detect the "tight on memory" situations by looking at the total
763 * number of objects we want to scan (total_scan). If it is greater
764 * than the total number of objects on slab (freeable), we must be
765 * scanning at high prio and therefore should try to reclaim as much as
768 while (total_scan >= batch_size ||
769 total_scan >= freeable) {
771 unsigned long nr_to_scan = min(batch_size, total_scan);
773 shrinkctl->nr_to_scan = nr_to_scan;
774 shrinkctl->nr_scanned = nr_to_scan;
775 ret = shrinker->scan_objects(shrinker, shrinkctl);
776 if (ret == SHRINK_STOP)
780 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
781 total_scan -= shrinkctl->nr_scanned;
782 scanned += shrinkctl->nr_scanned;
788 * The deferred work is increased by any new work (delta) that wasn't
789 * done, decreased by old deferred work that was done now.
791 * And it is capped to two times of the freeable items.
793 next_deferred = max_t(long, (nr + delta - scanned), 0);
794 next_deferred = min(next_deferred, (2 * freeable));
797 * move the unused scan count back into the shrinker in a
798 * manner that handles concurrent updates.
800 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
802 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
807 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
808 struct mem_cgroup *memcg, int priority)
810 struct shrinker_info *info;
811 unsigned long ret, freed = 0;
814 if (!mem_cgroup_online(memcg))
817 if (!down_read_trylock(&shrinker_rwsem))
820 info = shrinker_info_protected(memcg, nid);
824 for_each_set_bit(i, info->map, shrinker_nr_max) {
825 struct shrink_control sc = {
826 .gfp_mask = gfp_mask,
830 struct shrinker *shrinker;
832 shrinker = idr_find(&shrinker_idr, i);
833 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
835 clear_bit(i, info->map);
839 /* Call non-slab shrinkers even though kmem is disabled */
840 if (!memcg_kmem_enabled() &&
841 !(shrinker->flags & SHRINKER_NONSLAB))
844 ret = do_shrink_slab(&sc, shrinker, priority);
845 if (ret == SHRINK_EMPTY) {
846 clear_bit(i, info->map);
848 * After the shrinker reported that it had no objects to
849 * free, but before we cleared the corresponding bit in
850 * the memcg shrinker map, a new object might have been
851 * added. To make sure, we have the bit set in this
852 * case, we invoke the shrinker one more time and reset
853 * the bit if it reports that it is not empty anymore.
854 * The memory barrier here pairs with the barrier in
855 * set_shrinker_bit():
857 * list_lru_add() shrink_slab_memcg()
858 * list_add_tail() clear_bit()
860 * set_bit() do_shrink_slab()
862 smp_mb__after_atomic();
863 ret = do_shrink_slab(&sc, shrinker, priority);
864 if (ret == SHRINK_EMPTY)
867 set_shrinker_bit(memcg, nid, i);
871 if (rwsem_is_contended(&shrinker_rwsem)) {
877 up_read(&shrinker_rwsem);
880 #else /* CONFIG_MEMCG */
881 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
882 struct mem_cgroup *memcg, int priority)
886 #endif /* CONFIG_MEMCG */
889 * shrink_slab - shrink slab caches
890 * @gfp_mask: allocation context
891 * @nid: node whose slab caches to target
892 * @memcg: memory cgroup whose slab caches to target
893 * @priority: the reclaim priority
895 * Call the shrink functions to age shrinkable caches.
897 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
898 * unaware shrinkers will receive a node id of 0 instead.
900 * @memcg specifies the memory cgroup to target. Unaware shrinkers
901 * are called only if it is the root cgroup.
903 * @priority is sc->priority, we take the number of objects and >> by priority
904 * in order to get the scan target.
906 * Returns the number of reclaimed slab objects.
908 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
909 struct mem_cgroup *memcg,
912 unsigned long ret, freed = 0;
913 struct shrinker *shrinker;
916 * The root memcg might be allocated even though memcg is disabled
917 * via "cgroup_disable=memory" boot parameter. This could make
918 * mem_cgroup_is_root() return false, then just run memcg slab
919 * shrink, but skip global shrink. This may result in premature
922 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
923 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
925 if (!down_read_trylock(&shrinker_rwsem))
928 list_for_each_entry(shrinker, &shrinker_list, list) {
929 struct shrink_control sc = {
930 .gfp_mask = gfp_mask,
935 ret = do_shrink_slab(&sc, shrinker, priority);
936 if (ret == SHRINK_EMPTY)
940 * Bail out if someone want to register a new shrinker to
941 * prevent the registration from being stalled for long periods
942 * by parallel ongoing shrinking.
944 if (rwsem_is_contended(&shrinker_rwsem)) {
950 up_read(&shrinker_rwsem);
956 static void drop_slab_node(int nid)
962 struct mem_cgroup *memcg = NULL;
964 if (fatal_signal_pending(current))
968 memcg = mem_cgroup_iter(NULL, NULL, NULL);
970 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
971 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
972 } while ((freed >> shift++) > 1);
979 for_each_online_node(nid)
983 static inline int is_page_cache_freeable(struct folio *folio)
986 * A freeable page cache page is referenced only by the caller
987 * that isolated the page, the page cache and optional buffer
988 * heads at page->private.
990 return folio_ref_count(folio) - folio_test_private(folio) ==
991 1 + folio_nr_pages(folio);
995 * We detected a synchronous write error writing a folio out. Probably
996 * -ENOSPC. We need to propagate that into the address_space for a subsequent
997 * fsync(), msync() or close().
999 * The tricky part is that after writepage we cannot touch the mapping: nothing
1000 * prevents it from being freed up. But we have a ref on the folio and once
1001 * that folio is locked, the mapping is pinned.
1003 * We're allowed to run sleeping folio_lock() here because we know the caller has
1006 static void handle_write_error(struct address_space *mapping,
1007 struct folio *folio, int error)
1010 if (folio_mapping(folio) == mapping)
1011 mapping_set_error(mapping, error);
1012 folio_unlock(folio);
1015 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1017 int reclaimable = 0, write_pending = 0;
1021 * If kswapd is disabled, reschedule if necessary but do not
1022 * throttle as the system is likely near OOM.
1024 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1028 * If there are a lot of dirty/writeback pages then do not
1029 * throttle as throttling will occur when the pages cycle
1030 * towards the end of the LRU if still under writeback.
1032 for (i = 0; i < MAX_NR_ZONES; i++) {
1033 struct zone *zone = pgdat->node_zones + i;
1035 if (!managed_zone(zone))
1038 reclaimable += zone_reclaimable_pages(zone);
1039 write_pending += zone_page_state_snapshot(zone,
1040 NR_ZONE_WRITE_PENDING);
1042 if (2 * write_pending <= reclaimable)
1048 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1050 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1055 * Do not throttle IO workers, kthreads other than kswapd or
1056 * workqueues. They may be required for reclaim to make
1057 * forward progress (e.g. journalling workqueues or kthreads).
1059 if (!current_is_kswapd() &&
1060 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1066 * These figures are pulled out of thin air.
1067 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1068 * parallel reclaimers which is a short-lived event so the timeout is
1069 * short. Failing to make progress or waiting on writeback are
1070 * potentially long-lived events so use a longer timeout. This is shaky
1071 * logic as a failure to make progress could be due to anything from
1072 * writeback to a slow device to excessive references pages at the tail
1073 * of the inactive LRU.
1076 case VMSCAN_THROTTLE_WRITEBACK:
1079 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1080 WRITE_ONCE(pgdat->nr_reclaim_start,
1081 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1085 case VMSCAN_THROTTLE_CONGESTED:
1087 case VMSCAN_THROTTLE_NOPROGRESS:
1088 if (skip_throttle_noprogress(pgdat)) {
1096 case VMSCAN_THROTTLE_ISOLATED:
1105 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1106 ret = schedule_timeout(timeout);
1107 finish_wait(wqh, &wait);
1109 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1110 atomic_dec(&pgdat->nr_writeback_throttled);
1112 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1113 jiffies_to_usecs(timeout - ret),
1118 * Account for pages written if tasks are throttled waiting on dirty
1119 * pages to clean. If enough pages have been cleaned since throttling
1120 * started then wakeup the throttled tasks.
1122 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1125 unsigned long nr_written;
1127 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1130 * This is an inaccurate read as the per-cpu deltas may not
1131 * be synchronised. However, given that the system is
1132 * writeback throttled, it is not worth taking the penalty
1133 * of getting an accurate count. At worst, the throttle
1134 * timeout guarantees forward progress.
1136 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1137 READ_ONCE(pgdat->nr_reclaim_start);
1139 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1140 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1143 /* possible outcome of pageout() */
1145 /* failed to write page out, page is locked */
1147 /* move page to the active list, page is locked */
1149 /* page has been sent to the disk successfully, page is unlocked */
1151 /* page is clean and locked */
1156 * pageout is called by shrink_page_list() for each dirty page.
1157 * Calls ->writepage().
1159 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1160 struct swap_iocb **plug)
1163 * If the folio is dirty, only perform writeback if that write
1164 * will be non-blocking. To prevent this allocation from being
1165 * stalled by pagecache activity. But note that there may be
1166 * stalls if we need to run get_block(). We could test
1167 * PagePrivate for that.
1169 * If this process is currently in __generic_file_write_iter() against
1170 * this folio's queue, we can perform writeback even if that
1173 * If the folio is swapcache, write it back even if that would
1174 * block, for some throttling. This happens by accident, because
1175 * swap_backing_dev_info is bust: it doesn't reflect the
1176 * congestion state of the swapdevs. Easy to fix, if needed.
1178 if (!is_page_cache_freeable(folio))
1182 * Some data journaling orphaned folios can have
1183 * folio->mapping == NULL while being dirty with clean buffers.
1185 if (folio_test_private(folio)) {
1186 if (try_to_free_buffers(&folio->page)) {
1187 folio_clear_dirty(folio);
1188 pr_info("%s: orphaned folio\n", __func__);
1194 if (mapping->a_ops->writepage == NULL)
1195 return PAGE_ACTIVATE;
1197 if (folio_clear_dirty_for_io(folio)) {
1199 struct writeback_control wbc = {
1200 .sync_mode = WB_SYNC_NONE,
1201 .nr_to_write = SWAP_CLUSTER_MAX,
1203 .range_end = LLONG_MAX,
1208 folio_set_reclaim(folio);
1209 res = mapping->a_ops->writepage(&folio->page, &wbc);
1211 handle_write_error(mapping, folio, res);
1212 if (res == AOP_WRITEPAGE_ACTIVATE) {
1213 folio_clear_reclaim(folio);
1214 return PAGE_ACTIVATE;
1217 if (!folio_test_writeback(folio)) {
1218 /* synchronous write or broken a_ops? */
1219 folio_clear_reclaim(folio);
1221 trace_mm_vmscan_write_folio(folio);
1222 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1223 return PAGE_SUCCESS;
1230 * Same as remove_mapping, but if the page is removed from the mapping, it
1231 * gets returned with a refcount of 0.
1233 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1234 bool reclaimed, struct mem_cgroup *target_memcg)
1237 void *shadow = NULL;
1239 BUG_ON(!folio_test_locked(folio));
1240 BUG_ON(mapping != folio_mapping(folio));
1242 if (!folio_test_swapcache(folio))
1243 spin_lock(&mapping->host->i_lock);
1244 xa_lock_irq(&mapping->i_pages);
1246 * The non racy check for a busy page.
1248 * Must be careful with the order of the tests. When someone has
1249 * a ref to the page, it may be possible that they dirty it then
1250 * drop the reference. So if PageDirty is tested before page_count
1251 * here, then the following race may occur:
1253 * get_user_pages(&page);
1254 * [user mapping goes away]
1256 * !PageDirty(page) [good]
1257 * SetPageDirty(page);
1259 * !page_count(page) [good, discard it]
1261 * [oops, our write_to data is lost]
1263 * Reversing the order of the tests ensures such a situation cannot
1264 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1265 * load is not satisfied before that of page->_refcount.
1267 * Note that if SetPageDirty is always performed via set_page_dirty,
1268 * and thus under the i_pages lock, then this ordering is not required.
1270 refcount = 1 + folio_nr_pages(folio);
1271 if (!folio_ref_freeze(folio, refcount))
1273 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1274 if (unlikely(folio_test_dirty(folio))) {
1275 folio_ref_unfreeze(folio, refcount);
1279 if (folio_test_swapcache(folio)) {
1280 swp_entry_t swap = folio_swap_entry(folio);
1281 mem_cgroup_swapout(folio, swap);
1282 if (reclaimed && !mapping_exiting(mapping))
1283 shadow = workingset_eviction(folio, target_memcg);
1284 __delete_from_swap_cache(&folio->page, swap, shadow);
1285 xa_unlock_irq(&mapping->i_pages);
1286 put_swap_page(&folio->page, swap);
1288 void (*freepage)(struct page *);
1290 freepage = mapping->a_ops->freepage;
1292 * Remember a shadow entry for reclaimed file cache in
1293 * order to detect refaults, thus thrashing, later on.
1295 * But don't store shadows in an address space that is
1296 * already exiting. This is not just an optimization,
1297 * inode reclaim needs to empty out the radix tree or
1298 * the nodes are lost. Don't plant shadows behind its
1301 * We also don't store shadows for DAX mappings because the
1302 * only page cache pages found in these are zero pages
1303 * covering holes, and because we don't want to mix DAX
1304 * exceptional entries and shadow exceptional entries in the
1305 * same address_space.
1307 if (reclaimed && folio_is_file_lru(folio) &&
1308 !mapping_exiting(mapping) && !dax_mapping(mapping))
1309 shadow = workingset_eviction(folio, target_memcg);
1310 __filemap_remove_folio(folio, shadow);
1311 xa_unlock_irq(&mapping->i_pages);
1312 if (mapping_shrinkable(mapping))
1313 inode_add_lru(mapping->host);
1314 spin_unlock(&mapping->host->i_lock);
1316 if (freepage != NULL)
1317 freepage(&folio->page);
1323 xa_unlock_irq(&mapping->i_pages);
1324 if (!folio_test_swapcache(folio))
1325 spin_unlock(&mapping->host->i_lock);
1330 * remove_mapping() - Attempt to remove a folio from its mapping.
1331 * @mapping: The address space.
1332 * @folio: The folio to remove.
1334 * If the folio is dirty, under writeback or if someone else has a ref
1335 * on it, removal will fail.
1336 * Return: The number of pages removed from the mapping. 0 if the folio
1337 * could not be removed.
1338 * Context: The caller should have a single refcount on the folio and
1341 long remove_mapping(struct address_space *mapping, struct folio *folio)
1343 if (__remove_mapping(mapping, folio, false, NULL)) {
1345 * Unfreezing the refcount with 1 effectively
1346 * drops the pagecache ref for us without requiring another
1349 folio_ref_unfreeze(folio, 1);
1350 return folio_nr_pages(folio);
1356 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1357 * @folio: Folio to be returned to an LRU list.
1359 * Add previously isolated @folio to appropriate LRU list.
1360 * The folio may still be unevictable for other reasons.
1362 * Context: lru_lock must not be held, interrupts must be enabled.
1364 void folio_putback_lru(struct folio *folio)
1366 folio_add_lru(folio);
1367 folio_put(folio); /* drop ref from isolate */
1370 enum page_references {
1372 PAGEREF_RECLAIM_CLEAN,
1377 static enum page_references folio_check_references(struct folio *folio,
1378 struct scan_control *sc)
1380 int referenced_ptes, referenced_folio;
1381 unsigned long vm_flags;
1383 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1385 referenced_folio = folio_test_clear_referenced(folio);
1388 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1389 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1391 if (vm_flags & VM_LOCKED)
1392 return PAGEREF_ACTIVATE;
1394 if (referenced_ptes) {
1396 * All mapped folios start out with page table
1397 * references from the instantiating fault, so we need
1398 * to look twice if a mapped file/anon folio is used more
1401 * Mark it and spare it for another trip around the
1402 * inactive list. Another page table reference will
1403 * lead to its activation.
1405 * Note: the mark is set for activated folios as well
1406 * so that recently deactivated but used folios are
1407 * quickly recovered.
1409 folio_set_referenced(folio);
1411 if (referenced_folio || referenced_ptes > 1)
1412 return PAGEREF_ACTIVATE;
1415 * Activate file-backed executable folios after first usage.
1417 if ((vm_flags & VM_EXEC) && !folio_test_swapbacked(folio))
1418 return PAGEREF_ACTIVATE;
1420 return PAGEREF_KEEP;
1423 /* Reclaim if clean, defer dirty folios to writeback */
1424 if (referenced_folio && !folio_test_swapbacked(folio))
1425 return PAGEREF_RECLAIM_CLEAN;
1427 return PAGEREF_RECLAIM;
1430 /* Check if a page is dirty or under writeback */
1431 static void folio_check_dirty_writeback(struct folio *folio,
1432 bool *dirty, bool *writeback)
1434 struct address_space *mapping;
1437 * Anonymous pages are not handled by flushers and must be written
1438 * from reclaim context. Do not stall reclaim based on them
1440 if (!folio_is_file_lru(folio) ||
1441 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1447 /* By default assume that the folio flags are accurate */
1448 *dirty = folio_test_dirty(folio);
1449 *writeback = folio_test_writeback(folio);
1451 /* Verify dirty/writeback state if the filesystem supports it */
1452 if (!folio_test_private(folio))
1455 mapping = folio_mapping(folio);
1456 if (mapping && mapping->a_ops->is_dirty_writeback)
1457 mapping->a_ops->is_dirty_writeback(&folio->page, dirty, writeback);
1460 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1462 struct migration_target_control mtc = {
1464 * Allocate from 'node', or fail quickly and quietly.
1465 * When this happens, 'page' will likely just be discarded
1466 * instead of migrated.
1468 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1469 __GFP_THISNODE | __GFP_NOWARN |
1470 __GFP_NOMEMALLOC | GFP_NOWAIT,
1474 return alloc_migration_target(page, (unsigned long)&mtc);
1478 * Take pages on @demote_list and attempt to demote them to
1479 * another node. Pages which are not demoted are left on
1482 static unsigned int demote_page_list(struct list_head *demote_pages,
1483 struct pglist_data *pgdat)
1485 int target_nid = next_demotion_node(pgdat->node_id);
1486 unsigned int nr_succeeded;
1488 if (list_empty(demote_pages))
1491 if (target_nid == NUMA_NO_NODE)
1494 /* Demotion ignores all cpuset and mempolicy settings */
1495 migrate_pages(demote_pages, alloc_demote_page, NULL,
1496 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1499 if (current_is_kswapd())
1500 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1502 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1504 return nr_succeeded;
1507 static bool may_enter_fs(struct page *page, gfp_t gfp_mask)
1509 if (gfp_mask & __GFP_FS)
1511 if (!PageSwapCache(page) || !(gfp_mask & __GFP_IO))
1514 * We can "enter_fs" for swap-cache with only __GFP_IO
1515 * providing this isn't SWP_FS_OPS.
1516 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1517 * but that will never affect SWP_FS_OPS, so the data_race
1520 return !data_race(page_swap_flags(page) & SWP_FS_OPS);
1524 * shrink_page_list() returns the number of reclaimed pages
1526 static unsigned int shrink_page_list(struct list_head *page_list,
1527 struct pglist_data *pgdat,
1528 struct scan_control *sc,
1529 struct reclaim_stat *stat,
1530 bool ignore_references)
1532 LIST_HEAD(ret_pages);
1533 LIST_HEAD(free_pages);
1534 LIST_HEAD(demote_pages);
1535 unsigned int nr_reclaimed = 0;
1536 unsigned int pgactivate = 0;
1537 bool do_demote_pass;
1538 struct swap_iocb *plug = NULL;
1540 memset(stat, 0, sizeof(*stat));
1542 do_demote_pass = can_demote(pgdat->node_id, sc);
1545 while (!list_empty(page_list)) {
1546 struct address_space *mapping;
1548 struct folio *folio;
1549 enum page_references references = PAGEREF_RECLAIM;
1550 bool dirty, writeback;
1551 unsigned int nr_pages;
1555 folio = lru_to_folio(page_list);
1556 list_del(&folio->lru);
1557 page = &folio->page;
1559 if (!trylock_page(page))
1562 VM_BUG_ON_PAGE(PageActive(page), page);
1564 nr_pages = compound_nr(page);
1566 /* Account the number of base pages even though THP */
1567 sc->nr_scanned += nr_pages;
1569 if (unlikely(!page_evictable(page)))
1570 goto activate_locked;
1572 if (!sc->may_unmap && page_mapped(page))
1576 * The number of dirty pages determines if a node is marked
1577 * reclaim_congested. kswapd will stall and start writing
1578 * pages if the tail of the LRU is all dirty unqueued pages.
1580 folio_check_dirty_writeback(folio, &dirty, &writeback);
1581 if (dirty || writeback)
1582 stat->nr_dirty += nr_pages;
1584 if (dirty && !writeback)
1585 stat->nr_unqueued_dirty += nr_pages;
1588 * Treat this page as congested if the underlying BDI is or if
1589 * pages are cycling through the LRU so quickly that the
1590 * pages marked for immediate reclaim are making it to the
1591 * end of the LRU a second time.
1593 mapping = page_mapping(page);
1594 if (writeback && PageReclaim(page))
1595 stat->nr_congested += nr_pages;
1598 * If a page at the tail of the LRU is under writeback, there
1599 * are three cases to consider.
1601 * 1) If reclaim is encountering an excessive number of pages
1602 * under writeback and this page is both under writeback and
1603 * PageReclaim then it indicates that pages are being queued
1604 * for IO but are being recycled through the LRU before the
1605 * IO can complete. Waiting on the page itself risks an
1606 * indefinite stall if it is impossible to writeback the
1607 * page due to IO error or disconnected storage so instead
1608 * note that the LRU is being scanned too quickly and the
1609 * caller can stall after page list has been processed.
1611 * 2) Global or new memcg reclaim encounters a page that is
1612 * not marked for immediate reclaim, or the caller does not
1613 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1614 * not to fs). In this case mark the page for immediate
1615 * reclaim and continue scanning.
1617 * Require may_enter_fs() because we would wait on fs, which
1618 * may not have submitted IO yet. And the loop driver might
1619 * enter reclaim, and deadlock if it waits on a page for
1620 * which it is needed to do the write (loop masks off
1621 * __GFP_IO|__GFP_FS for this reason); but more thought
1622 * would probably show more reasons.
1624 * 3) Legacy memcg encounters a page that is already marked
1625 * PageReclaim. memcg does not have any dirty pages
1626 * throttling so we could easily OOM just because too many
1627 * pages are in writeback and there is nothing else to
1628 * reclaim. Wait for the writeback to complete.
1630 * In cases 1) and 2) we activate the pages to get them out of
1631 * the way while we continue scanning for clean pages on the
1632 * inactive list and refilling from the active list. The
1633 * observation here is that waiting for disk writes is more
1634 * expensive than potentially causing reloads down the line.
1635 * Since they're marked for immediate reclaim, they won't put
1636 * memory pressure on the cache working set any longer than it
1637 * takes to write them to disk.
1639 if (PageWriteback(page)) {
1641 if (current_is_kswapd() &&
1642 PageReclaim(page) &&
1643 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1644 stat->nr_immediate += nr_pages;
1645 goto activate_locked;
1648 } else if (writeback_throttling_sane(sc) ||
1649 !PageReclaim(page) || !may_enter_fs(page, sc->gfp_mask)) {
1651 * This is slightly racy - end_page_writeback()
1652 * might have just cleared PageReclaim, then
1653 * setting PageReclaim here end up interpreted
1654 * as PageReadahead - but that does not matter
1655 * enough to care. What we do want is for this
1656 * page to have PageReclaim set next time memcg
1657 * reclaim reaches the tests above, so it will
1658 * then wait_on_page_writeback() to avoid OOM;
1659 * and it's also appropriate in global reclaim.
1661 SetPageReclaim(page);
1662 stat->nr_writeback += nr_pages;
1663 goto activate_locked;
1668 wait_on_page_writeback(page);
1669 /* then go back and try same page again */
1670 list_add_tail(&page->lru, page_list);
1675 if (!ignore_references)
1676 references = folio_check_references(folio, sc);
1678 switch (references) {
1679 case PAGEREF_ACTIVATE:
1680 goto activate_locked;
1682 stat->nr_ref_keep += nr_pages;
1684 case PAGEREF_RECLAIM:
1685 case PAGEREF_RECLAIM_CLEAN:
1686 ; /* try to reclaim the page below */
1690 * Before reclaiming the page, try to relocate
1691 * its contents to another node.
1693 if (do_demote_pass &&
1694 (thp_migration_supported() || !PageTransHuge(page))) {
1695 list_add(&page->lru, &demote_pages);
1701 * Anonymous process memory has backing store?
1702 * Try to allocate it some swap space here.
1703 * Lazyfree page could be freed directly
1705 if (PageAnon(page) && PageSwapBacked(page)) {
1706 if (!PageSwapCache(page)) {
1707 if (!(sc->gfp_mask & __GFP_IO))
1709 if (folio_maybe_dma_pinned(folio))
1711 if (PageTransHuge(page)) {
1712 /* cannot split THP, skip it */
1713 if (!can_split_folio(folio, NULL))
1714 goto activate_locked;
1716 * Split pages without a PMD map right
1717 * away. Chances are some or all of the
1718 * tail pages can be freed without IO.
1720 if (!folio_entire_mapcount(folio) &&
1721 split_folio_to_list(folio,
1723 goto activate_locked;
1725 if (!add_to_swap(page)) {
1726 if (!PageTransHuge(page))
1727 goto activate_locked_split;
1728 /* Fallback to swap normal pages */
1729 if (split_folio_to_list(folio,
1731 goto activate_locked;
1732 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1733 count_vm_event(THP_SWPOUT_FALLBACK);
1735 if (!add_to_swap(page))
1736 goto activate_locked_split;
1739 /* Adding to swap updated mapping */
1740 mapping = page_mapping(page);
1742 } else if (PageSwapBacked(page) && PageTransHuge(page)) {
1743 /* Split shmem THP */
1744 if (split_folio_to_list(folio, page_list))
1749 * THP may get split above, need minus tail pages and update
1750 * nr_pages to avoid accounting tail pages twice.
1752 * The tail pages that are added into swap cache successfully
1755 if ((nr_pages > 1) && !PageTransHuge(page)) {
1756 sc->nr_scanned -= (nr_pages - 1);
1761 * The page is mapped into the page tables of one or more
1762 * processes. Try to unmap it here.
1764 if (page_mapped(page)) {
1765 enum ttu_flags flags = TTU_BATCH_FLUSH;
1766 bool was_swapbacked = PageSwapBacked(page);
1768 if (PageTransHuge(page) &&
1769 thp_order(page) >= HPAGE_PMD_ORDER)
1770 flags |= TTU_SPLIT_HUGE_PMD;
1772 try_to_unmap(folio, flags);
1773 if (page_mapped(page)) {
1774 stat->nr_unmap_fail += nr_pages;
1775 if (!was_swapbacked && PageSwapBacked(page))
1776 stat->nr_lazyfree_fail += nr_pages;
1777 goto activate_locked;
1781 if (PageDirty(page)) {
1783 * Only kswapd can writeback filesystem pages
1784 * to avoid risk of stack overflow. But avoid
1785 * injecting inefficient single-page IO into
1786 * flusher writeback as much as possible: only
1787 * write pages when we've encountered many
1788 * dirty pages, and when we've already scanned
1789 * the rest of the LRU for clean pages and see
1790 * the same dirty pages again (PageReclaim).
1792 if (page_is_file_lru(page) &&
1793 (!current_is_kswapd() || !PageReclaim(page) ||
1794 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1796 * Immediately reclaim when written back.
1797 * Similar in principal to deactivate_page()
1798 * except we already have the page isolated
1799 * and know it's dirty
1801 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1802 SetPageReclaim(page);
1804 goto activate_locked;
1807 if (references == PAGEREF_RECLAIM_CLEAN)
1809 if (!may_enter_fs(page, sc->gfp_mask))
1811 if (!sc->may_writepage)
1815 * Page is dirty. Flush the TLB if a writable entry
1816 * potentially exists to avoid CPU writes after IO
1817 * starts and then write it out here.
1819 try_to_unmap_flush_dirty();
1820 switch (pageout(folio, mapping, &plug)) {
1824 goto activate_locked;
1826 stat->nr_pageout += nr_pages;
1828 if (PageWriteback(page))
1830 if (PageDirty(page))
1834 * A synchronous write - probably a ramdisk. Go
1835 * ahead and try to reclaim the page.
1837 if (!trylock_page(page))
1839 if (PageDirty(page) || PageWriteback(page))
1841 mapping = page_mapping(page);
1844 ; /* try to free the page below */
1849 * If the page has buffers, try to free the buffer mappings
1850 * associated with this page. If we succeed we try to free
1853 * We do this even if the page is PageDirty().
1854 * try_to_release_page() does not perform I/O, but it is
1855 * possible for a page to have PageDirty set, but it is actually
1856 * clean (all its buffers are clean). This happens if the
1857 * buffers were written out directly, with submit_bh(). ext3
1858 * will do this, as well as the blockdev mapping.
1859 * try_to_release_page() will discover that cleanness and will
1860 * drop the buffers and mark the page clean - it can be freed.
1862 * Rarely, pages can have buffers and no ->mapping. These are
1863 * the pages which were not successfully invalidated in
1864 * truncate_cleanup_page(). We try to drop those buffers here
1865 * and if that worked, and the page is no longer mapped into
1866 * process address space (page_count == 1) it can be freed.
1867 * Otherwise, leave the page on the LRU so it is swappable.
1869 if (page_has_private(page)) {
1870 if (!try_to_release_page(page, sc->gfp_mask))
1871 goto activate_locked;
1872 if (!mapping && page_count(page) == 1) {
1874 if (put_page_testzero(page))
1878 * rare race with speculative reference.
1879 * the speculative reference will free
1880 * this page shortly, so we may
1881 * increment nr_reclaimed here (and
1882 * leave it off the LRU).
1890 if (PageAnon(page) && !PageSwapBacked(page)) {
1891 /* follow __remove_mapping for reference */
1892 if (!page_ref_freeze(page, 1))
1895 * The page has only one reference left, which is
1896 * from the isolation. After the caller puts the
1897 * page back on lru and drops the reference, the
1898 * page will be freed anyway. It doesn't matter
1899 * which lru it goes. So we don't bother checking
1902 count_vm_event(PGLAZYFREED);
1903 count_memcg_page_event(page, PGLAZYFREED);
1904 } else if (!mapping || !__remove_mapping(mapping, folio, true,
1905 sc->target_mem_cgroup))
1911 * THP may get swapped out in a whole, need account
1914 nr_reclaimed += nr_pages;
1917 * Is there need to periodically free_page_list? It would
1918 * appear not as the counts should be low
1920 if (unlikely(PageTransHuge(page)))
1921 destroy_compound_page(page);
1923 list_add(&page->lru, &free_pages);
1926 activate_locked_split:
1928 * The tail pages that are failed to add into swap cache
1929 * reach here. Fixup nr_scanned and nr_pages.
1932 sc->nr_scanned -= (nr_pages - 1);
1936 /* Not a candidate for swapping, so reclaim swap space. */
1937 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1939 try_to_free_swap(page);
1940 VM_BUG_ON_PAGE(PageActive(page), page);
1941 if (!PageMlocked(page)) {
1942 int type = page_is_file_lru(page);
1943 SetPageActive(page);
1944 stat->nr_activate[type] += nr_pages;
1945 count_memcg_page_event(page, PGACTIVATE);
1950 list_add(&page->lru, &ret_pages);
1951 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1953 /* 'page_list' is always empty here */
1955 /* Migrate pages selected for demotion */
1956 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1957 /* Pages that could not be demoted are still in @demote_pages */
1958 if (!list_empty(&demote_pages)) {
1959 /* Pages which failed to demoted go back on @page_list for retry: */
1960 list_splice_init(&demote_pages, page_list);
1961 do_demote_pass = false;
1965 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1967 mem_cgroup_uncharge_list(&free_pages);
1968 try_to_unmap_flush();
1969 free_unref_page_list(&free_pages);
1971 list_splice(&ret_pages, page_list);
1972 count_vm_events(PGACTIVATE, pgactivate);
1975 swap_write_unplug(plug);
1976 return nr_reclaimed;
1979 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1980 struct list_head *page_list)
1982 struct scan_control sc = {
1983 .gfp_mask = GFP_KERNEL,
1986 struct reclaim_stat stat;
1987 unsigned int nr_reclaimed;
1988 struct page *page, *next;
1989 LIST_HEAD(clean_pages);
1990 unsigned int noreclaim_flag;
1992 list_for_each_entry_safe(page, next, page_list, lru) {
1993 if (!PageHuge(page) && page_is_file_lru(page) &&
1994 !PageDirty(page) && !__PageMovable(page) &&
1995 !PageUnevictable(page)) {
1996 ClearPageActive(page);
1997 list_move(&page->lru, &clean_pages);
2002 * We should be safe here since we are only dealing with file pages and
2003 * we are not kswapd and therefore cannot write dirty file pages. But
2004 * call memalloc_noreclaim_save() anyway, just in case these conditions
2005 * change in the future.
2007 noreclaim_flag = memalloc_noreclaim_save();
2008 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
2010 memalloc_noreclaim_restore(noreclaim_flag);
2012 list_splice(&clean_pages, page_list);
2013 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2014 -(long)nr_reclaimed);
2016 * Since lazyfree pages are isolated from file LRU from the beginning,
2017 * they will rotate back to anonymous LRU in the end if it failed to
2018 * discard so isolated count will be mismatched.
2019 * Compensate the isolated count for both LRU lists.
2021 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2022 stat.nr_lazyfree_fail);
2023 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2024 -(long)stat.nr_lazyfree_fail);
2025 return nr_reclaimed;
2029 * Update LRU sizes after isolating pages. The LRU size updates must
2030 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2032 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2033 enum lru_list lru, unsigned long *nr_zone_taken)
2037 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2038 if (!nr_zone_taken[zid])
2041 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2047 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2049 * lruvec->lru_lock is heavily contended. Some of the functions that
2050 * shrink the lists perform better by taking out a batch of pages
2051 * and working on them outside the LRU lock.
2053 * For pagecache intensive workloads, this function is the hottest
2054 * spot in the kernel (apart from copy_*_user functions).
2056 * Lru_lock must be held before calling this function.
2058 * @nr_to_scan: The number of eligible pages to look through on the list.
2059 * @lruvec: The LRU vector to pull pages from.
2060 * @dst: The temp list to put pages on to.
2061 * @nr_scanned: The number of pages that were scanned.
2062 * @sc: The scan_control struct for this reclaim session
2063 * @lru: LRU list id for isolating
2065 * returns how many pages were moved onto *@dst.
2067 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2068 struct lruvec *lruvec, struct list_head *dst,
2069 unsigned long *nr_scanned, struct scan_control *sc,
2072 struct list_head *src = &lruvec->lists[lru];
2073 unsigned long nr_taken = 0;
2074 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2075 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2076 unsigned long skipped = 0;
2077 unsigned long scan, total_scan, nr_pages;
2078 LIST_HEAD(pages_skipped);
2082 while (scan < nr_to_scan && !list_empty(src)) {
2083 struct list_head *move_to = src;
2086 page = lru_to_page(src);
2087 prefetchw_prev_lru_page(page, src, flags);
2089 nr_pages = compound_nr(page);
2090 total_scan += nr_pages;
2092 if (page_zonenum(page) > sc->reclaim_idx) {
2093 nr_skipped[page_zonenum(page)] += nr_pages;
2094 move_to = &pages_skipped;
2099 * Do not count skipped pages because that makes the function
2100 * return with no isolated pages if the LRU mostly contains
2101 * ineligible pages. This causes the VM to not reclaim any
2102 * pages, triggering a premature OOM.
2103 * Account all tail pages of THP.
2109 if (!sc->may_unmap && page_mapped(page))
2113 * Be careful not to clear PageLRU until after we're
2114 * sure the page is not being freed elsewhere -- the
2115 * page release code relies on it.
2117 if (unlikely(!get_page_unless_zero(page)))
2120 if (!TestClearPageLRU(page)) {
2121 /* Another thread is already isolating this page */
2126 nr_taken += nr_pages;
2127 nr_zone_taken[page_zonenum(page)] += nr_pages;
2130 list_move(&page->lru, move_to);
2134 * Splice any skipped pages to the start of the LRU list. Note that
2135 * this disrupts the LRU order when reclaiming for lower zones but
2136 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2137 * scanning would soon rescan the same pages to skip and waste lots
2140 if (!list_empty(&pages_skipped)) {
2143 list_splice(&pages_skipped, src);
2144 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2145 if (!nr_skipped[zid])
2148 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2149 skipped += nr_skipped[zid];
2152 *nr_scanned = total_scan;
2153 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2154 total_scan, skipped, nr_taken,
2155 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2156 update_lru_sizes(lruvec, lru, nr_zone_taken);
2161 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2162 * @folio: Folio to isolate from its LRU list.
2164 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2165 * corresponding to whatever LRU list the folio was on.
2167 * The folio will have its LRU flag cleared. If it was found on the
2168 * active list, it will have the Active flag set. If it was found on the
2169 * unevictable list, it will have the Unevictable flag set. These flags
2170 * may need to be cleared by the caller before letting the page go.
2174 * (1) Must be called with an elevated refcount on the page. This is a
2175 * fundamental difference from isolate_lru_pages() (which is called
2176 * without a stable reference).
2177 * (2) The lru_lock must not be held.
2178 * (3) Interrupts must be enabled.
2180 * Return: 0 if the folio was removed from an LRU list.
2181 * -EBUSY if the folio was not on an LRU list.
2183 int folio_isolate_lru(struct folio *folio)
2187 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2189 if (folio_test_clear_lru(folio)) {
2190 struct lruvec *lruvec;
2193 lruvec = folio_lruvec_lock_irq(folio);
2194 lruvec_del_folio(lruvec, folio);
2195 unlock_page_lruvec_irq(lruvec);
2203 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2204 * then get rescheduled. When there are massive number of tasks doing page
2205 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2206 * the LRU list will go small and be scanned faster than necessary, leading to
2207 * unnecessary swapping, thrashing and OOM.
2209 static int too_many_isolated(struct pglist_data *pgdat, int file,
2210 struct scan_control *sc)
2212 unsigned long inactive, isolated;
2215 if (current_is_kswapd())
2218 if (!writeback_throttling_sane(sc))
2222 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2223 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2225 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2226 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2230 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2231 * won't get blocked by normal direct-reclaimers, forming a circular
2234 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2237 too_many = isolated > inactive;
2239 /* Wake up tasks throttled due to too_many_isolated. */
2241 wake_throttle_isolated(pgdat);
2247 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2248 * On return, @list is reused as a list of pages to be freed by the caller.
2250 * Returns the number of pages moved to the given lruvec.
2252 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2253 struct list_head *list)
2255 int nr_pages, nr_moved = 0;
2256 LIST_HEAD(pages_to_free);
2259 while (!list_empty(list)) {
2260 page = lru_to_page(list);
2261 VM_BUG_ON_PAGE(PageLRU(page), page);
2262 list_del(&page->lru);
2263 if (unlikely(!page_evictable(page))) {
2264 spin_unlock_irq(&lruvec->lru_lock);
2265 putback_lru_page(page);
2266 spin_lock_irq(&lruvec->lru_lock);
2271 * The SetPageLRU needs to be kept here for list integrity.
2273 * #0 move_pages_to_lru #1 release_pages
2274 * if !put_page_testzero
2275 * if (put_page_testzero())
2276 * !PageLRU //skip lru_lock
2278 * list_add(&page->lru,)
2279 * list_add(&page->lru,)
2283 if (unlikely(put_page_testzero(page))) {
2284 __clear_page_lru_flags(page);
2286 if (unlikely(PageCompound(page))) {
2287 spin_unlock_irq(&lruvec->lru_lock);
2288 destroy_compound_page(page);
2289 spin_lock_irq(&lruvec->lru_lock);
2291 list_add(&page->lru, &pages_to_free);
2297 * All pages were isolated from the same lruvec (and isolation
2298 * inhibits memcg migration).
2300 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
2301 add_page_to_lru_list(page, lruvec);
2302 nr_pages = thp_nr_pages(page);
2303 nr_moved += nr_pages;
2304 if (PageActive(page))
2305 workingset_age_nonresident(lruvec, nr_pages);
2309 * To save our caller's stack, now use input list for pages to free.
2311 list_splice(&pages_to_free, list);
2317 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2318 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2319 * we should not throttle. Otherwise it is safe to do so.
2321 static int current_may_throttle(void)
2323 return !(current->flags & PF_LOCAL_THROTTLE);
2327 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2328 * of reclaimed pages
2330 static unsigned long
2331 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2332 struct scan_control *sc, enum lru_list lru)
2334 LIST_HEAD(page_list);
2335 unsigned long nr_scanned;
2336 unsigned int nr_reclaimed = 0;
2337 unsigned long nr_taken;
2338 struct reclaim_stat stat;
2339 bool file = is_file_lru(lru);
2340 enum vm_event_item item;
2341 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2342 bool stalled = false;
2344 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2348 /* wait a bit for the reclaimer. */
2350 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2352 /* We are about to die and free our memory. Return now. */
2353 if (fatal_signal_pending(current))
2354 return SWAP_CLUSTER_MAX;
2359 spin_lock_irq(&lruvec->lru_lock);
2361 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2362 &nr_scanned, sc, lru);
2364 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2365 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2366 if (!cgroup_reclaim(sc))
2367 __count_vm_events(item, nr_scanned);
2368 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2369 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2371 spin_unlock_irq(&lruvec->lru_lock);
2376 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2378 spin_lock_irq(&lruvec->lru_lock);
2379 move_pages_to_lru(lruvec, &page_list);
2381 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2382 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2383 if (!cgroup_reclaim(sc))
2384 __count_vm_events(item, nr_reclaimed);
2385 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2386 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2387 spin_unlock_irq(&lruvec->lru_lock);
2389 lru_note_cost(lruvec, file, stat.nr_pageout);
2390 mem_cgroup_uncharge_list(&page_list);
2391 free_unref_page_list(&page_list);
2394 * If dirty pages are scanned that are not queued for IO, it
2395 * implies that flushers are not doing their job. This can
2396 * happen when memory pressure pushes dirty pages to the end of
2397 * the LRU before the dirty limits are breached and the dirty
2398 * data has expired. It can also happen when the proportion of
2399 * dirty pages grows not through writes but through memory
2400 * pressure reclaiming all the clean cache. And in some cases,
2401 * the flushers simply cannot keep up with the allocation
2402 * rate. Nudge the flusher threads in case they are asleep.
2404 if (stat.nr_unqueued_dirty == nr_taken)
2405 wakeup_flusher_threads(WB_REASON_VMSCAN);
2407 sc->nr.dirty += stat.nr_dirty;
2408 sc->nr.congested += stat.nr_congested;
2409 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2410 sc->nr.writeback += stat.nr_writeback;
2411 sc->nr.immediate += stat.nr_immediate;
2412 sc->nr.taken += nr_taken;
2414 sc->nr.file_taken += nr_taken;
2416 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2417 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2418 return nr_reclaimed;
2422 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2424 * We move them the other way if the page is referenced by one or more
2427 * If the pages are mostly unmapped, the processing is fast and it is
2428 * appropriate to hold lru_lock across the whole operation. But if
2429 * the pages are mapped, the processing is slow (folio_referenced()), so
2430 * we should drop lru_lock around each page. It's impossible to balance
2431 * this, so instead we remove the pages from the LRU while processing them.
2432 * It is safe to rely on PG_active against the non-LRU pages in here because
2433 * nobody will play with that bit on a non-LRU page.
2435 * The downside is that we have to touch page->_refcount against each page.
2436 * But we had to alter page->flags anyway.
2438 static void shrink_active_list(unsigned long nr_to_scan,
2439 struct lruvec *lruvec,
2440 struct scan_control *sc,
2443 unsigned long nr_taken;
2444 unsigned long nr_scanned;
2445 unsigned long vm_flags;
2446 LIST_HEAD(l_hold); /* The pages which were snipped off */
2447 LIST_HEAD(l_active);
2448 LIST_HEAD(l_inactive);
2449 unsigned nr_deactivate, nr_activate;
2450 unsigned nr_rotated = 0;
2451 int file = is_file_lru(lru);
2452 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2456 spin_lock_irq(&lruvec->lru_lock);
2458 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2459 &nr_scanned, sc, lru);
2461 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2463 if (!cgroup_reclaim(sc))
2464 __count_vm_events(PGREFILL, nr_scanned);
2465 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2467 spin_unlock_irq(&lruvec->lru_lock);
2469 while (!list_empty(&l_hold)) {
2470 struct folio *folio;
2474 folio = lru_to_folio(&l_hold);
2475 list_del(&folio->lru);
2476 page = &folio->page;
2478 if (unlikely(!page_evictable(page))) {
2479 putback_lru_page(page);
2483 if (unlikely(buffer_heads_over_limit)) {
2484 if (page_has_private(page) && trylock_page(page)) {
2485 if (page_has_private(page))
2486 try_to_release_page(page, 0);
2491 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2494 * Identify referenced, file-backed active pages and
2495 * give them one more trip around the active list. So
2496 * that executable code get better chances to stay in
2497 * memory under moderate memory pressure. Anon pages
2498 * are not likely to be evicted by use-once streaming
2499 * IO, plus JVM can create lots of anon VM_EXEC pages,
2500 * so we ignore them here.
2502 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2503 nr_rotated += thp_nr_pages(page);
2504 list_add(&page->lru, &l_active);
2509 ClearPageActive(page); /* we are de-activating */
2510 SetPageWorkingset(page);
2511 list_add(&page->lru, &l_inactive);
2515 * Move pages back to the lru list.
2517 spin_lock_irq(&lruvec->lru_lock);
2519 nr_activate = move_pages_to_lru(lruvec, &l_active);
2520 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2521 /* Keep all free pages in l_active list */
2522 list_splice(&l_inactive, &l_active);
2524 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2525 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2527 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2528 spin_unlock_irq(&lruvec->lru_lock);
2530 mem_cgroup_uncharge_list(&l_active);
2531 free_unref_page_list(&l_active);
2532 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2533 nr_deactivate, nr_rotated, sc->priority, file);
2536 unsigned long reclaim_pages(struct list_head *page_list)
2538 int nid = NUMA_NO_NODE;
2539 unsigned int nr_reclaimed = 0;
2540 LIST_HEAD(node_page_list);
2541 struct reclaim_stat dummy_stat;
2543 unsigned int noreclaim_flag;
2544 struct scan_control sc = {
2545 .gfp_mask = GFP_KERNEL,
2552 noreclaim_flag = memalloc_noreclaim_save();
2554 while (!list_empty(page_list)) {
2555 page = lru_to_page(page_list);
2556 if (nid == NUMA_NO_NODE) {
2557 nid = page_to_nid(page);
2558 INIT_LIST_HEAD(&node_page_list);
2561 if (nid == page_to_nid(page)) {
2562 ClearPageActive(page);
2563 list_move(&page->lru, &node_page_list);
2567 nr_reclaimed += shrink_page_list(&node_page_list,
2569 &sc, &dummy_stat, false);
2570 while (!list_empty(&node_page_list)) {
2571 page = lru_to_page(&node_page_list);
2572 list_del(&page->lru);
2573 putback_lru_page(page);
2579 if (!list_empty(&node_page_list)) {
2580 nr_reclaimed += shrink_page_list(&node_page_list,
2582 &sc, &dummy_stat, false);
2583 while (!list_empty(&node_page_list)) {
2584 page = lru_to_page(&node_page_list);
2585 list_del(&page->lru);
2586 putback_lru_page(page);
2590 memalloc_noreclaim_restore(noreclaim_flag);
2592 return nr_reclaimed;
2595 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2596 struct lruvec *lruvec, struct scan_control *sc)
2598 if (is_active_lru(lru)) {
2599 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2600 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2602 sc->skipped_deactivate = 1;
2606 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2610 * The inactive anon list should be small enough that the VM never has
2611 * to do too much work.
2613 * The inactive file list should be small enough to leave most memory
2614 * to the established workingset on the scan-resistant active list,
2615 * but large enough to avoid thrashing the aggregate readahead window.
2617 * Both inactive lists should also be large enough that each inactive
2618 * page has a chance to be referenced again before it is reclaimed.
2620 * If that fails and refaulting is observed, the inactive list grows.
2622 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2623 * on this LRU, maintained by the pageout code. An inactive_ratio
2624 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2627 * memory ratio inactive
2628 * -------------------------------------
2637 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2639 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2640 unsigned long inactive, active;
2641 unsigned long inactive_ratio;
2644 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2645 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2647 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2649 inactive_ratio = int_sqrt(10 * gb);
2653 return inactive * inactive_ratio < active;
2664 * Determine how aggressively the anon and file LRU lists should be
2667 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2668 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2670 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2673 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2674 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2675 unsigned long anon_cost, file_cost, total_cost;
2676 int swappiness = mem_cgroup_swappiness(memcg);
2677 u64 fraction[ANON_AND_FILE];
2678 u64 denominator = 0; /* gcc */
2679 enum scan_balance scan_balance;
2680 unsigned long ap, fp;
2683 /* If we have no swap space, do not bother scanning anon pages. */
2684 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2685 scan_balance = SCAN_FILE;
2690 * Global reclaim will swap to prevent OOM even with no
2691 * swappiness, but memcg users want to use this knob to
2692 * disable swapping for individual groups completely when
2693 * using the memory controller's swap limit feature would be
2696 if (cgroup_reclaim(sc) && !swappiness) {
2697 scan_balance = SCAN_FILE;
2702 * Do not apply any pressure balancing cleverness when the
2703 * system is close to OOM, scan both anon and file equally
2704 * (unless the swappiness setting disagrees with swapping).
2706 if (!sc->priority && swappiness) {
2707 scan_balance = SCAN_EQUAL;
2712 * If the system is almost out of file pages, force-scan anon.
2714 if (sc->file_is_tiny) {
2715 scan_balance = SCAN_ANON;
2720 * If there is enough inactive page cache, we do not reclaim
2721 * anything from the anonymous working right now.
2723 if (sc->cache_trim_mode) {
2724 scan_balance = SCAN_FILE;
2728 scan_balance = SCAN_FRACT;
2730 * Calculate the pressure balance between anon and file pages.
2732 * The amount of pressure we put on each LRU is inversely
2733 * proportional to the cost of reclaiming each list, as
2734 * determined by the share of pages that are refaulting, times
2735 * the relative IO cost of bringing back a swapped out
2736 * anonymous page vs reloading a filesystem page (swappiness).
2738 * Although we limit that influence to ensure no list gets
2739 * left behind completely: at least a third of the pressure is
2740 * applied, before swappiness.
2742 * With swappiness at 100, anon and file have equal IO cost.
2744 total_cost = sc->anon_cost + sc->file_cost;
2745 anon_cost = total_cost + sc->anon_cost;
2746 file_cost = total_cost + sc->file_cost;
2747 total_cost = anon_cost + file_cost;
2749 ap = swappiness * (total_cost + 1);
2750 ap /= anon_cost + 1;
2752 fp = (200 - swappiness) * (total_cost + 1);
2753 fp /= file_cost + 1;
2757 denominator = ap + fp;
2759 for_each_evictable_lru(lru) {
2760 int file = is_file_lru(lru);
2761 unsigned long lruvec_size;
2762 unsigned long low, min;
2765 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2766 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2771 * Scale a cgroup's reclaim pressure by proportioning
2772 * its current usage to its memory.low or memory.min
2775 * This is important, as otherwise scanning aggression
2776 * becomes extremely binary -- from nothing as we
2777 * approach the memory protection threshold, to totally
2778 * nominal as we exceed it. This results in requiring
2779 * setting extremely liberal protection thresholds. It
2780 * also means we simply get no protection at all if we
2781 * set it too low, which is not ideal.
2783 * If there is any protection in place, we reduce scan
2784 * pressure by how much of the total memory used is
2785 * within protection thresholds.
2787 * There is one special case: in the first reclaim pass,
2788 * we skip over all groups that are within their low
2789 * protection. If that fails to reclaim enough pages to
2790 * satisfy the reclaim goal, we come back and override
2791 * the best-effort low protection. However, we still
2792 * ideally want to honor how well-behaved groups are in
2793 * that case instead of simply punishing them all
2794 * equally. As such, we reclaim them based on how much
2795 * memory they are using, reducing the scan pressure
2796 * again by how much of the total memory used is under
2799 unsigned long cgroup_size = mem_cgroup_size(memcg);
2800 unsigned long protection;
2802 /* memory.low scaling, make sure we retry before OOM */
2803 if (!sc->memcg_low_reclaim && low > min) {
2805 sc->memcg_low_skipped = 1;
2810 /* Avoid TOCTOU with earlier protection check */
2811 cgroup_size = max(cgroup_size, protection);
2813 scan = lruvec_size - lruvec_size * protection /
2817 * Minimally target SWAP_CLUSTER_MAX pages to keep
2818 * reclaim moving forwards, avoiding decrementing
2819 * sc->priority further than desirable.
2821 scan = max(scan, SWAP_CLUSTER_MAX);
2826 scan >>= sc->priority;
2829 * If the cgroup's already been deleted, make sure to
2830 * scrape out the remaining cache.
2832 if (!scan && !mem_cgroup_online(memcg))
2833 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2835 switch (scan_balance) {
2837 /* Scan lists relative to size */
2841 * Scan types proportional to swappiness and
2842 * their relative recent reclaim efficiency.
2843 * Make sure we don't miss the last page on
2844 * the offlined memory cgroups because of a
2847 scan = mem_cgroup_online(memcg) ?
2848 div64_u64(scan * fraction[file], denominator) :
2849 DIV64_U64_ROUND_UP(scan * fraction[file],
2854 /* Scan one type exclusively */
2855 if ((scan_balance == SCAN_FILE) != file)
2859 /* Look ma, no brain */
2868 * Anonymous LRU management is a waste if there is
2869 * ultimately no way to reclaim the memory.
2871 static bool can_age_anon_pages(struct pglist_data *pgdat,
2872 struct scan_control *sc)
2874 /* Aging the anon LRU is valuable if swap is present: */
2875 if (total_swap_pages > 0)
2878 /* Also valuable if anon pages can be demoted: */
2879 return can_demote(pgdat->node_id, sc);
2882 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2884 unsigned long nr[NR_LRU_LISTS];
2885 unsigned long targets[NR_LRU_LISTS];
2886 unsigned long nr_to_scan;
2888 unsigned long nr_reclaimed = 0;
2889 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2890 struct blk_plug plug;
2893 get_scan_count(lruvec, sc, nr);
2895 /* Record the original scan target for proportional adjustments later */
2896 memcpy(targets, nr, sizeof(nr));
2899 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2900 * event that can occur when there is little memory pressure e.g.
2901 * multiple streaming readers/writers. Hence, we do not abort scanning
2902 * when the requested number of pages are reclaimed when scanning at
2903 * DEF_PRIORITY on the assumption that the fact we are direct
2904 * reclaiming implies that kswapd is not keeping up and it is best to
2905 * do a batch of work at once. For memcg reclaim one check is made to
2906 * abort proportional reclaim if either the file or anon lru has already
2907 * dropped to zero at the first pass.
2909 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2910 sc->priority == DEF_PRIORITY);
2912 blk_start_plug(&plug);
2913 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2914 nr[LRU_INACTIVE_FILE]) {
2915 unsigned long nr_anon, nr_file, percentage;
2916 unsigned long nr_scanned;
2918 for_each_evictable_lru(lru) {
2920 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2921 nr[lru] -= nr_to_scan;
2923 nr_reclaimed += shrink_list(lru, nr_to_scan,
2930 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2934 * For kswapd and memcg, reclaim at least the number of pages
2935 * requested. Ensure that the anon and file LRUs are scanned
2936 * proportionally what was requested by get_scan_count(). We
2937 * stop reclaiming one LRU and reduce the amount scanning
2938 * proportional to the original scan target.
2940 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2941 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2944 * It's just vindictive to attack the larger once the smaller
2945 * has gone to zero. And given the way we stop scanning the
2946 * smaller below, this makes sure that we only make one nudge
2947 * towards proportionality once we've got nr_to_reclaim.
2949 if (!nr_file || !nr_anon)
2952 if (nr_file > nr_anon) {
2953 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2954 targets[LRU_ACTIVE_ANON] + 1;
2956 percentage = nr_anon * 100 / scan_target;
2958 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2959 targets[LRU_ACTIVE_FILE] + 1;
2961 percentage = nr_file * 100 / scan_target;
2964 /* Stop scanning the smaller of the LRU */
2966 nr[lru + LRU_ACTIVE] = 0;
2969 * Recalculate the other LRU scan count based on its original
2970 * scan target and the percentage scanning already complete
2972 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2973 nr_scanned = targets[lru] - nr[lru];
2974 nr[lru] = targets[lru] * (100 - percentage) / 100;
2975 nr[lru] -= min(nr[lru], nr_scanned);
2978 nr_scanned = targets[lru] - nr[lru];
2979 nr[lru] = targets[lru] * (100 - percentage) / 100;
2980 nr[lru] -= min(nr[lru], nr_scanned);
2982 scan_adjusted = true;
2984 blk_finish_plug(&plug);
2985 sc->nr_reclaimed += nr_reclaimed;
2988 * Even if we did not try to evict anon pages at all, we want to
2989 * rebalance the anon lru active/inactive ratio.
2991 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
2992 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2993 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2994 sc, LRU_ACTIVE_ANON);
2997 /* Use reclaim/compaction for costly allocs or under memory pressure */
2998 static bool in_reclaim_compaction(struct scan_control *sc)
3000 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3001 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
3002 sc->priority < DEF_PRIORITY - 2))
3009 * Reclaim/compaction is used for high-order allocation requests. It reclaims
3010 * order-0 pages before compacting the zone. should_continue_reclaim() returns
3011 * true if more pages should be reclaimed such that when the page allocator
3012 * calls try_to_compact_pages() that it will have enough free pages to succeed.
3013 * It will give up earlier than that if there is difficulty reclaiming pages.
3015 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3016 unsigned long nr_reclaimed,
3017 struct scan_control *sc)
3019 unsigned long pages_for_compaction;
3020 unsigned long inactive_lru_pages;
3023 /* If not in reclaim/compaction mode, stop */
3024 if (!in_reclaim_compaction(sc))
3028 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3029 * number of pages that were scanned. This will return to the caller
3030 * with the risk reclaim/compaction and the resulting allocation attempt
3031 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3032 * allocations through requiring that the full LRU list has been scanned
3033 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3034 * scan, but that approximation was wrong, and there were corner cases
3035 * where always a non-zero amount of pages were scanned.
3040 /* If compaction would go ahead or the allocation would succeed, stop */
3041 for (z = 0; z <= sc->reclaim_idx; z++) {
3042 struct zone *zone = &pgdat->node_zones[z];
3043 if (!managed_zone(zone))
3046 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3047 case COMPACT_SUCCESS:
3048 case COMPACT_CONTINUE:
3051 /* check next zone */
3057 * If we have not reclaimed enough pages for compaction and the
3058 * inactive lists are large enough, continue reclaiming
3060 pages_for_compaction = compact_gap(sc->order);
3061 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3062 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3063 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3065 return inactive_lru_pages > pages_for_compaction;
3068 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3070 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3071 struct mem_cgroup *memcg;
3073 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3075 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3076 unsigned long reclaimed;
3077 unsigned long scanned;
3080 * This loop can become CPU-bound when target memcgs
3081 * aren't eligible for reclaim - either because they
3082 * don't have any reclaimable pages, or because their
3083 * memory is explicitly protected. Avoid soft lockups.
3087 mem_cgroup_calculate_protection(target_memcg, memcg);
3089 if (mem_cgroup_below_min(memcg)) {
3092 * If there is no reclaimable memory, OOM.
3095 } else if (mem_cgroup_below_low(memcg)) {
3098 * Respect the protection only as long as
3099 * there is an unprotected supply
3100 * of reclaimable memory from other cgroups.
3102 if (!sc->memcg_low_reclaim) {
3103 sc->memcg_low_skipped = 1;
3106 memcg_memory_event(memcg, MEMCG_LOW);
3109 reclaimed = sc->nr_reclaimed;
3110 scanned = sc->nr_scanned;
3112 shrink_lruvec(lruvec, sc);
3114 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3117 /* Record the group's reclaim efficiency */
3118 vmpressure(sc->gfp_mask, memcg, false,
3119 sc->nr_scanned - scanned,
3120 sc->nr_reclaimed - reclaimed);
3122 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3125 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3127 struct reclaim_state *reclaim_state = current->reclaim_state;
3128 unsigned long nr_reclaimed, nr_scanned;
3129 struct lruvec *target_lruvec;
3130 bool reclaimable = false;
3133 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3137 * Flush the memory cgroup stats, so that we read accurate per-memcg
3138 * lruvec stats for heuristics.
3140 mem_cgroup_flush_stats();
3142 memset(&sc->nr, 0, sizeof(sc->nr));
3144 nr_reclaimed = sc->nr_reclaimed;
3145 nr_scanned = sc->nr_scanned;
3148 * Determine the scan balance between anon and file LRUs.
3150 spin_lock_irq(&target_lruvec->lru_lock);
3151 sc->anon_cost = target_lruvec->anon_cost;
3152 sc->file_cost = target_lruvec->file_cost;
3153 spin_unlock_irq(&target_lruvec->lru_lock);
3156 * Target desirable inactive:active list ratios for the anon
3157 * and file LRU lists.
3159 if (!sc->force_deactivate) {
3160 unsigned long refaults;
3162 refaults = lruvec_page_state(target_lruvec,
3163 WORKINGSET_ACTIVATE_ANON);
3164 if (refaults != target_lruvec->refaults[0] ||
3165 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3166 sc->may_deactivate |= DEACTIVATE_ANON;
3168 sc->may_deactivate &= ~DEACTIVATE_ANON;
3171 * When refaults are being observed, it means a new
3172 * workingset is being established. Deactivate to get
3173 * rid of any stale active pages quickly.
3175 refaults = lruvec_page_state(target_lruvec,
3176 WORKINGSET_ACTIVATE_FILE);
3177 if (refaults != target_lruvec->refaults[1] ||
3178 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3179 sc->may_deactivate |= DEACTIVATE_FILE;
3181 sc->may_deactivate &= ~DEACTIVATE_FILE;
3183 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3186 * If we have plenty of inactive file pages that aren't
3187 * thrashing, try to reclaim those first before touching
3190 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3191 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3192 sc->cache_trim_mode = 1;
3194 sc->cache_trim_mode = 0;
3197 * Prevent the reclaimer from falling into the cache trap: as
3198 * cache pages start out inactive, every cache fault will tip
3199 * the scan balance towards the file LRU. And as the file LRU
3200 * shrinks, so does the window for rotation from references.
3201 * This means we have a runaway feedback loop where a tiny
3202 * thrashing file LRU becomes infinitely more attractive than
3203 * anon pages. Try to detect this based on file LRU size.
3205 if (!cgroup_reclaim(sc)) {
3206 unsigned long total_high_wmark = 0;
3207 unsigned long free, anon;
3210 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3211 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3212 node_page_state(pgdat, NR_INACTIVE_FILE);
3214 for (z = 0; z < MAX_NR_ZONES; z++) {
3215 struct zone *zone = &pgdat->node_zones[z];
3216 if (!managed_zone(zone))
3219 total_high_wmark += high_wmark_pages(zone);
3223 * Consider anon: if that's low too, this isn't a
3224 * runaway file reclaim problem, but rather just
3225 * extreme pressure. Reclaim as per usual then.
3227 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3230 file + free <= total_high_wmark &&
3231 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3232 anon >> sc->priority;
3235 shrink_node_memcgs(pgdat, sc);
3237 if (reclaim_state) {
3238 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3239 reclaim_state->reclaimed_slab = 0;
3242 /* Record the subtree's reclaim efficiency */
3243 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3244 sc->nr_scanned - nr_scanned,
3245 sc->nr_reclaimed - nr_reclaimed);
3247 if (sc->nr_reclaimed - nr_reclaimed)
3250 if (current_is_kswapd()) {
3252 * If reclaim is isolating dirty pages under writeback,
3253 * it implies that the long-lived page allocation rate
3254 * is exceeding the page laundering rate. Either the
3255 * global limits are not being effective at throttling
3256 * processes due to the page distribution throughout
3257 * zones or there is heavy usage of a slow backing
3258 * device. The only option is to throttle from reclaim
3259 * context which is not ideal as there is no guarantee
3260 * the dirtying process is throttled in the same way
3261 * balance_dirty_pages() manages.
3263 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3264 * count the number of pages under pages flagged for
3265 * immediate reclaim and stall if any are encountered
3266 * in the nr_immediate check below.
3268 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3269 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3271 /* Allow kswapd to start writing pages during reclaim.*/
3272 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3273 set_bit(PGDAT_DIRTY, &pgdat->flags);
3276 * If kswapd scans pages marked for immediate
3277 * reclaim and under writeback (nr_immediate), it
3278 * implies that pages are cycling through the LRU
3279 * faster than they are written so forcibly stall
3280 * until some pages complete writeback.
3282 if (sc->nr.immediate)
3283 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3287 * Tag a node/memcg as congested if all the dirty pages were marked
3288 * for writeback and immediate reclaim (counted in nr.congested).
3290 * Legacy memcg will stall in page writeback so avoid forcibly
3291 * stalling in reclaim_throttle().
3293 if ((current_is_kswapd() ||
3294 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3295 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3296 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3299 * Stall direct reclaim for IO completions if the lruvec is
3300 * node is congested. Allow kswapd to continue until it
3301 * starts encountering unqueued dirty pages or cycling through
3302 * the LRU too quickly.
3304 if (!current_is_kswapd() && current_may_throttle() &&
3305 !sc->hibernation_mode &&
3306 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3307 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
3309 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3314 * Kswapd gives up on balancing particular nodes after too
3315 * many failures to reclaim anything from them and goes to
3316 * sleep. On reclaim progress, reset the failure counter. A
3317 * successful direct reclaim run will revive a dormant kswapd.
3320 pgdat->kswapd_failures = 0;
3324 * Returns true if compaction should go ahead for a costly-order request, or
3325 * the allocation would already succeed without compaction. Return false if we
3326 * should reclaim first.
3328 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3330 unsigned long watermark;
3331 enum compact_result suitable;
3333 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3334 if (suitable == COMPACT_SUCCESS)
3335 /* Allocation should succeed already. Don't reclaim. */
3337 if (suitable == COMPACT_SKIPPED)
3338 /* Compaction cannot yet proceed. Do reclaim. */
3342 * Compaction is already possible, but it takes time to run and there
3343 * are potentially other callers using the pages just freed. So proceed
3344 * with reclaim to make a buffer of free pages available to give
3345 * compaction a reasonable chance of completing and allocating the page.
3346 * Note that we won't actually reclaim the whole buffer in one attempt
3347 * as the target watermark in should_continue_reclaim() is lower. But if
3348 * we are already above the high+gap watermark, don't reclaim at all.
3350 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3352 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3355 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3358 * If reclaim is making progress greater than 12% efficiency then
3359 * wake all the NOPROGRESS throttled tasks.
3361 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3362 wait_queue_head_t *wqh;
3364 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3365 if (waitqueue_active(wqh))
3372 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3373 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3374 * under writeback and marked for immediate reclaim at the tail of the
3377 if (current_is_kswapd() || cgroup_reclaim(sc))
3380 /* Throttle if making no progress at high prioities. */
3381 if (sc->priority == 1 && !sc->nr_reclaimed)
3382 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3386 * This is the direct reclaim path, for page-allocating processes. We only
3387 * try to reclaim pages from zones which will satisfy the caller's allocation
3390 * If a zone is deemed to be full of pinned pages then just give it a light
3391 * scan then give up on it.
3393 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3397 unsigned long nr_soft_reclaimed;
3398 unsigned long nr_soft_scanned;
3400 pg_data_t *last_pgdat = NULL;
3401 pg_data_t *first_pgdat = NULL;
3404 * If the number of buffer_heads in the machine exceeds the maximum
3405 * allowed level, force direct reclaim to scan the highmem zone as
3406 * highmem pages could be pinning lowmem pages storing buffer_heads
3408 orig_mask = sc->gfp_mask;
3409 if (buffer_heads_over_limit) {
3410 sc->gfp_mask |= __GFP_HIGHMEM;
3411 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3414 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3415 sc->reclaim_idx, sc->nodemask) {
3417 * Take care memory controller reclaiming has small influence
3420 if (!cgroup_reclaim(sc)) {
3421 if (!cpuset_zone_allowed(zone,
3422 GFP_KERNEL | __GFP_HARDWALL))
3426 * If we already have plenty of memory free for
3427 * compaction in this zone, don't free any more.
3428 * Even though compaction is invoked for any
3429 * non-zero order, only frequent costly order
3430 * reclamation is disruptive enough to become a
3431 * noticeable problem, like transparent huge
3434 if (IS_ENABLED(CONFIG_COMPACTION) &&
3435 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3436 compaction_ready(zone, sc)) {
3437 sc->compaction_ready = true;
3442 * Shrink each node in the zonelist once. If the
3443 * zonelist is ordered by zone (not the default) then a
3444 * node may be shrunk multiple times but in that case
3445 * the user prefers lower zones being preserved.
3447 if (zone->zone_pgdat == last_pgdat)
3451 * This steals pages from memory cgroups over softlimit
3452 * and returns the number of reclaimed pages and
3453 * scanned pages. This works for global memory pressure
3454 * and balancing, not for a memcg's limit.
3456 nr_soft_scanned = 0;
3457 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3458 sc->order, sc->gfp_mask,
3460 sc->nr_reclaimed += nr_soft_reclaimed;
3461 sc->nr_scanned += nr_soft_scanned;
3462 /* need some check for avoid more shrink_zone() */
3466 first_pgdat = zone->zone_pgdat;
3468 /* See comment about same check for global reclaim above */
3469 if (zone->zone_pgdat == last_pgdat)
3471 last_pgdat = zone->zone_pgdat;
3472 shrink_node(zone->zone_pgdat, sc);
3476 consider_reclaim_throttle(first_pgdat, sc);
3479 * Restore to original mask to avoid the impact on the caller if we
3480 * promoted it to __GFP_HIGHMEM.
3482 sc->gfp_mask = orig_mask;
3485 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3487 struct lruvec *target_lruvec;
3488 unsigned long refaults;
3490 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3491 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3492 target_lruvec->refaults[0] = refaults;
3493 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3494 target_lruvec->refaults[1] = refaults;
3498 * This is the main entry point to direct page reclaim.
3500 * If a full scan of the inactive list fails to free enough memory then we
3501 * are "out of memory" and something needs to be killed.
3503 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3504 * high - the zone may be full of dirty or under-writeback pages, which this
3505 * caller can't do much about. We kick the writeback threads and take explicit
3506 * naps in the hope that some of these pages can be written. But if the
3507 * allocating task holds filesystem locks which prevent writeout this might not
3508 * work, and the allocation attempt will fail.
3510 * returns: 0, if no pages reclaimed
3511 * else, the number of pages reclaimed
3513 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3514 struct scan_control *sc)
3516 int initial_priority = sc->priority;
3517 pg_data_t *last_pgdat;
3521 delayacct_freepages_start();
3523 if (!cgroup_reclaim(sc))
3524 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3527 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3530 shrink_zones(zonelist, sc);
3532 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3535 if (sc->compaction_ready)
3539 * If we're getting trouble reclaiming, start doing
3540 * writepage even in laptop mode.
3542 if (sc->priority < DEF_PRIORITY - 2)
3543 sc->may_writepage = 1;
3544 } while (--sc->priority >= 0);
3547 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3549 if (zone->zone_pgdat == last_pgdat)
3551 last_pgdat = zone->zone_pgdat;
3553 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3555 if (cgroup_reclaim(sc)) {
3556 struct lruvec *lruvec;
3558 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3560 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3564 delayacct_freepages_end();
3566 if (sc->nr_reclaimed)
3567 return sc->nr_reclaimed;
3569 /* Aborted reclaim to try compaction? don't OOM, then */
3570 if (sc->compaction_ready)
3574 * We make inactive:active ratio decisions based on the node's
3575 * composition of memory, but a restrictive reclaim_idx or a
3576 * memory.low cgroup setting can exempt large amounts of
3577 * memory from reclaim. Neither of which are very common, so
3578 * instead of doing costly eligibility calculations of the
3579 * entire cgroup subtree up front, we assume the estimates are
3580 * good, and retry with forcible deactivation if that fails.
3582 if (sc->skipped_deactivate) {
3583 sc->priority = initial_priority;
3584 sc->force_deactivate = 1;
3585 sc->skipped_deactivate = 0;
3589 /* Untapped cgroup reserves? Don't OOM, retry. */
3590 if (sc->memcg_low_skipped) {
3591 sc->priority = initial_priority;
3592 sc->force_deactivate = 0;
3593 sc->memcg_low_reclaim = 1;
3594 sc->memcg_low_skipped = 0;
3601 static bool allow_direct_reclaim(pg_data_t *pgdat)
3604 unsigned long pfmemalloc_reserve = 0;
3605 unsigned long free_pages = 0;
3609 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3612 for (i = 0; i <= ZONE_NORMAL; i++) {
3613 zone = &pgdat->node_zones[i];
3614 if (!managed_zone(zone))
3617 if (!zone_reclaimable_pages(zone))
3620 pfmemalloc_reserve += min_wmark_pages(zone);
3621 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3624 /* If there are no reserves (unexpected config) then do not throttle */
3625 if (!pfmemalloc_reserve)
3628 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3630 /* kswapd must be awake if processes are being throttled */
3631 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3632 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3633 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3635 wake_up_interruptible(&pgdat->kswapd_wait);
3642 * Throttle direct reclaimers if backing storage is backed by the network
3643 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3644 * depleted. kswapd will continue to make progress and wake the processes
3645 * when the low watermark is reached.
3647 * Returns true if a fatal signal was delivered during throttling. If this
3648 * happens, the page allocator should not consider triggering the OOM killer.
3650 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3651 nodemask_t *nodemask)
3655 pg_data_t *pgdat = NULL;
3658 * Kernel threads should not be throttled as they may be indirectly
3659 * responsible for cleaning pages necessary for reclaim to make forward
3660 * progress. kjournald for example may enter direct reclaim while
3661 * committing a transaction where throttling it could forcing other
3662 * processes to block on log_wait_commit().
3664 if (current->flags & PF_KTHREAD)
3668 * If a fatal signal is pending, this process should not throttle.
3669 * It should return quickly so it can exit and free its memory
3671 if (fatal_signal_pending(current))
3675 * Check if the pfmemalloc reserves are ok by finding the first node
3676 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3677 * GFP_KERNEL will be required for allocating network buffers when
3678 * swapping over the network so ZONE_HIGHMEM is unusable.
3680 * Throttling is based on the first usable node and throttled processes
3681 * wait on a queue until kswapd makes progress and wakes them. There
3682 * is an affinity then between processes waking up and where reclaim
3683 * progress has been made assuming the process wakes on the same node.
3684 * More importantly, processes running on remote nodes will not compete
3685 * for remote pfmemalloc reserves and processes on different nodes
3686 * should make reasonable progress.
3688 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3689 gfp_zone(gfp_mask), nodemask) {
3690 if (zone_idx(zone) > ZONE_NORMAL)
3693 /* Throttle based on the first usable node */
3694 pgdat = zone->zone_pgdat;
3695 if (allow_direct_reclaim(pgdat))
3700 /* If no zone was usable by the allocation flags then do not throttle */
3704 /* Account for the throttling */
3705 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3708 * If the caller cannot enter the filesystem, it's possible that it
3709 * is due to the caller holding an FS lock or performing a journal
3710 * transaction in the case of a filesystem like ext[3|4]. In this case,
3711 * it is not safe to block on pfmemalloc_wait as kswapd could be
3712 * blocked waiting on the same lock. Instead, throttle for up to a
3713 * second before continuing.
3715 if (!(gfp_mask & __GFP_FS))
3716 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3717 allow_direct_reclaim(pgdat), HZ);
3719 /* Throttle until kswapd wakes the process */
3720 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3721 allow_direct_reclaim(pgdat));
3723 if (fatal_signal_pending(current))
3730 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3731 gfp_t gfp_mask, nodemask_t *nodemask)
3733 unsigned long nr_reclaimed;
3734 struct scan_control sc = {
3735 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3736 .gfp_mask = current_gfp_context(gfp_mask),
3737 .reclaim_idx = gfp_zone(gfp_mask),
3739 .nodemask = nodemask,
3740 .priority = DEF_PRIORITY,
3741 .may_writepage = !laptop_mode,
3747 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3748 * Confirm they are large enough for max values.
3750 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3751 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3752 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3755 * Do not enter reclaim if fatal signal was delivered while throttled.
3756 * 1 is returned so that the page allocator does not OOM kill at this
3759 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3762 set_task_reclaim_state(current, &sc.reclaim_state);
3763 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3765 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3767 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3768 set_task_reclaim_state(current, NULL);
3770 return nr_reclaimed;
3775 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3776 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3777 gfp_t gfp_mask, bool noswap,
3779 unsigned long *nr_scanned)
3781 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3782 struct scan_control sc = {
3783 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3784 .target_mem_cgroup = memcg,
3785 .may_writepage = !laptop_mode,
3787 .reclaim_idx = MAX_NR_ZONES - 1,
3788 .may_swap = !noswap,
3791 WARN_ON_ONCE(!current->reclaim_state);
3793 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3794 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3796 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3800 * NOTE: Although we can get the priority field, using it
3801 * here is not a good idea, since it limits the pages we can scan.
3802 * if we don't reclaim here, the shrink_node from balance_pgdat
3803 * will pick up pages from other mem cgroup's as well. We hack
3804 * the priority and make it zero.
3806 shrink_lruvec(lruvec, &sc);
3808 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3810 *nr_scanned = sc.nr_scanned;
3812 return sc.nr_reclaimed;
3815 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3816 unsigned long nr_pages,
3820 unsigned long nr_reclaimed;
3821 unsigned int noreclaim_flag;
3822 struct scan_control sc = {
3823 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3824 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3825 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3826 .reclaim_idx = MAX_NR_ZONES - 1,
3827 .target_mem_cgroup = memcg,
3828 .priority = DEF_PRIORITY,
3829 .may_writepage = !laptop_mode,
3831 .may_swap = may_swap,
3834 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3835 * equal pressure on all the nodes. This is based on the assumption that
3836 * the reclaim does not bail out early.
3838 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3840 set_task_reclaim_state(current, &sc.reclaim_state);
3841 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3842 noreclaim_flag = memalloc_noreclaim_save();
3844 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3846 memalloc_noreclaim_restore(noreclaim_flag);
3847 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3848 set_task_reclaim_state(current, NULL);
3850 return nr_reclaimed;
3854 static void age_active_anon(struct pglist_data *pgdat,
3855 struct scan_control *sc)
3857 struct mem_cgroup *memcg;
3858 struct lruvec *lruvec;
3860 if (!can_age_anon_pages(pgdat, sc))
3863 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3864 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3867 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3869 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3870 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3871 sc, LRU_ACTIVE_ANON);
3872 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3876 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3882 * Check for watermark boosts top-down as the higher zones
3883 * are more likely to be boosted. Both watermarks and boosts
3884 * should not be checked at the same time as reclaim would
3885 * start prematurely when there is no boosting and a lower
3888 for (i = highest_zoneidx; i >= 0; i--) {
3889 zone = pgdat->node_zones + i;
3890 if (!managed_zone(zone))
3893 if (zone->watermark_boost)
3901 * Returns true if there is an eligible zone balanced for the request order
3902 * and highest_zoneidx
3904 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3907 unsigned long mark = -1;
3911 * Check watermarks bottom-up as lower zones are more likely to
3914 for (i = 0; i <= highest_zoneidx; i++) {
3915 zone = pgdat->node_zones + i;
3917 if (!managed_zone(zone))
3920 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
3921 mark = wmark_pages(zone, WMARK_PROMO);
3923 mark = high_wmark_pages(zone);
3924 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3929 * If a node has no managed zone within highest_zoneidx, it does not
3930 * need balancing by definition. This can happen if a zone-restricted
3931 * allocation tries to wake a remote kswapd.
3939 /* Clear pgdat state for congested, dirty or under writeback. */
3940 static void clear_pgdat_congested(pg_data_t *pgdat)
3942 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3944 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3945 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3946 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3950 * Prepare kswapd for sleeping. This verifies that there are no processes
3951 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3953 * Returns true if kswapd is ready to sleep
3955 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3956 int highest_zoneidx)
3959 * The throttled processes are normally woken up in balance_pgdat() as
3960 * soon as allow_direct_reclaim() is true. But there is a potential
3961 * race between when kswapd checks the watermarks and a process gets
3962 * throttled. There is also a potential race if processes get
3963 * throttled, kswapd wakes, a large process exits thereby balancing the
3964 * zones, which causes kswapd to exit balance_pgdat() before reaching
3965 * the wake up checks. If kswapd is going to sleep, no process should
3966 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3967 * the wake up is premature, processes will wake kswapd and get
3968 * throttled again. The difference from wake ups in balance_pgdat() is
3969 * that here we are under prepare_to_wait().
3971 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3972 wake_up_all(&pgdat->pfmemalloc_wait);
3974 /* Hopeless node, leave it to direct reclaim */
3975 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3978 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3979 clear_pgdat_congested(pgdat);
3987 * kswapd shrinks a node of pages that are at or below the highest usable
3988 * zone that is currently unbalanced.
3990 * Returns true if kswapd scanned at least the requested number of pages to
3991 * reclaim or if the lack of progress was due to pages under writeback.
3992 * This is used to determine if the scanning priority needs to be raised.
3994 static bool kswapd_shrink_node(pg_data_t *pgdat,
3995 struct scan_control *sc)
4000 /* Reclaim a number of pages proportional to the number of zones */
4001 sc->nr_to_reclaim = 0;
4002 for (z = 0; z <= sc->reclaim_idx; z++) {
4003 zone = pgdat->node_zones + z;
4004 if (!managed_zone(zone))
4007 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4011 * Historically care was taken to put equal pressure on all zones but
4012 * now pressure is applied based on node LRU order.
4014 shrink_node(pgdat, sc);
4017 * Fragmentation may mean that the system cannot be rebalanced for
4018 * high-order allocations. If twice the allocation size has been
4019 * reclaimed then recheck watermarks only at order-0 to prevent
4020 * excessive reclaim. Assume that a process requested a high-order
4021 * can direct reclaim/compact.
4023 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4026 return sc->nr_scanned >= sc->nr_to_reclaim;
4029 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4031 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4036 for (i = 0; i <= highest_zoneidx; i++) {
4037 zone = pgdat->node_zones + i;
4039 if (!managed_zone(zone))
4043 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4045 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4050 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4052 update_reclaim_active(pgdat, highest_zoneidx, true);
4056 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4058 update_reclaim_active(pgdat, highest_zoneidx, false);
4062 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4063 * that are eligible for use by the caller until at least one zone is
4066 * Returns the order kswapd finished reclaiming at.
4068 * kswapd scans the zones in the highmem->normal->dma direction. It skips
4069 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4070 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4071 * or lower is eligible for reclaim until at least one usable zone is
4074 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4077 unsigned long nr_soft_reclaimed;
4078 unsigned long nr_soft_scanned;
4079 unsigned long pflags;
4080 unsigned long nr_boost_reclaim;
4081 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4084 struct scan_control sc = {
4085 .gfp_mask = GFP_KERNEL,
4090 set_task_reclaim_state(current, &sc.reclaim_state);
4091 psi_memstall_enter(&pflags);
4092 __fs_reclaim_acquire(_THIS_IP_);
4094 count_vm_event(PAGEOUTRUN);
4097 * Account for the reclaim boost. Note that the zone boost is left in
4098 * place so that parallel allocations that are near the watermark will
4099 * stall or direct reclaim until kswapd is finished.
4101 nr_boost_reclaim = 0;
4102 for (i = 0; i <= highest_zoneidx; i++) {
4103 zone = pgdat->node_zones + i;
4104 if (!managed_zone(zone))
4107 nr_boost_reclaim += zone->watermark_boost;
4108 zone_boosts[i] = zone->watermark_boost;
4110 boosted = nr_boost_reclaim;
4113 set_reclaim_active(pgdat, highest_zoneidx);
4114 sc.priority = DEF_PRIORITY;
4116 unsigned long nr_reclaimed = sc.nr_reclaimed;
4117 bool raise_priority = true;
4121 sc.reclaim_idx = highest_zoneidx;
4124 * If the number of buffer_heads exceeds the maximum allowed
4125 * then consider reclaiming from all zones. This has a dual
4126 * purpose -- on 64-bit systems it is expected that
4127 * buffer_heads are stripped during active rotation. On 32-bit
4128 * systems, highmem pages can pin lowmem memory and shrinking
4129 * buffers can relieve lowmem pressure. Reclaim may still not
4130 * go ahead if all eligible zones for the original allocation
4131 * request are balanced to avoid excessive reclaim from kswapd.
4133 if (buffer_heads_over_limit) {
4134 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4135 zone = pgdat->node_zones + i;
4136 if (!managed_zone(zone))
4145 * If the pgdat is imbalanced then ignore boosting and preserve
4146 * the watermarks for a later time and restart. Note that the
4147 * zone watermarks will be still reset at the end of balancing
4148 * on the grounds that the normal reclaim should be enough to
4149 * re-evaluate if boosting is required when kswapd next wakes.
4151 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4152 if (!balanced && nr_boost_reclaim) {
4153 nr_boost_reclaim = 0;
4158 * If boosting is not active then only reclaim if there are no
4159 * eligible zones. Note that sc.reclaim_idx is not used as
4160 * buffer_heads_over_limit may have adjusted it.
4162 if (!nr_boost_reclaim && balanced)
4165 /* Limit the priority of boosting to avoid reclaim writeback */
4166 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4167 raise_priority = false;
4170 * Do not writeback or swap pages for boosted reclaim. The
4171 * intent is to relieve pressure not issue sub-optimal IO
4172 * from reclaim context. If no pages are reclaimed, the
4173 * reclaim will be aborted.
4175 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4176 sc.may_swap = !nr_boost_reclaim;
4179 * Do some background aging of the anon list, to give
4180 * pages a chance to be referenced before reclaiming. All
4181 * pages are rotated regardless of classzone as this is
4182 * about consistent aging.
4184 age_active_anon(pgdat, &sc);
4187 * If we're getting trouble reclaiming, start doing writepage
4188 * even in laptop mode.
4190 if (sc.priority < DEF_PRIORITY - 2)
4191 sc.may_writepage = 1;
4193 /* Call soft limit reclaim before calling shrink_node. */
4195 nr_soft_scanned = 0;
4196 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4197 sc.gfp_mask, &nr_soft_scanned);
4198 sc.nr_reclaimed += nr_soft_reclaimed;
4201 * There should be no need to raise the scanning priority if
4202 * enough pages are already being scanned that that high
4203 * watermark would be met at 100% efficiency.
4205 if (kswapd_shrink_node(pgdat, &sc))
4206 raise_priority = false;
4209 * If the low watermark is met there is no need for processes
4210 * to be throttled on pfmemalloc_wait as they should not be
4211 * able to safely make forward progress. Wake them
4213 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4214 allow_direct_reclaim(pgdat))
4215 wake_up_all(&pgdat->pfmemalloc_wait);
4217 /* Check if kswapd should be suspending */
4218 __fs_reclaim_release(_THIS_IP_);
4219 ret = try_to_freeze();
4220 __fs_reclaim_acquire(_THIS_IP_);
4221 if (ret || kthread_should_stop())
4225 * Raise priority if scanning rate is too low or there was no
4226 * progress in reclaiming pages
4228 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4229 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4232 * If reclaim made no progress for a boost, stop reclaim as
4233 * IO cannot be queued and it could be an infinite loop in
4234 * extreme circumstances.
4236 if (nr_boost_reclaim && !nr_reclaimed)
4239 if (raise_priority || !nr_reclaimed)
4241 } while (sc.priority >= 1);
4243 if (!sc.nr_reclaimed)
4244 pgdat->kswapd_failures++;
4247 clear_reclaim_active(pgdat, highest_zoneidx);
4249 /* If reclaim was boosted, account for the reclaim done in this pass */
4251 unsigned long flags;
4253 for (i = 0; i <= highest_zoneidx; i++) {
4254 if (!zone_boosts[i])
4257 /* Increments are under the zone lock */
4258 zone = pgdat->node_zones + i;
4259 spin_lock_irqsave(&zone->lock, flags);
4260 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4261 spin_unlock_irqrestore(&zone->lock, flags);
4265 * As there is now likely space, wakeup kcompact to defragment
4268 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4271 snapshot_refaults(NULL, pgdat);
4272 __fs_reclaim_release(_THIS_IP_);
4273 psi_memstall_leave(&pflags);
4274 set_task_reclaim_state(current, NULL);
4277 * Return the order kswapd stopped reclaiming at as
4278 * prepare_kswapd_sleep() takes it into account. If another caller
4279 * entered the allocator slow path while kswapd was awake, order will
4280 * remain at the higher level.
4286 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4287 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4288 * not a valid index then either kswapd runs for first time or kswapd couldn't
4289 * sleep after previous reclaim attempt (node is still unbalanced). In that
4290 * case return the zone index of the previous kswapd reclaim cycle.
4292 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4293 enum zone_type prev_highest_zoneidx)
4295 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4297 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4300 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4301 unsigned int highest_zoneidx)
4306 if (freezing(current) || kthread_should_stop())
4309 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4312 * Try to sleep for a short interval. Note that kcompactd will only be
4313 * woken if it is possible to sleep for a short interval. This is
4314 * deliberate on the assumption that if reclaim cannot keep an
4315 * eligible zone balanced that it's also unlikely that compaction will
4318 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4320 * Compaction records what page blocks it recently failed to
4321 * isolate pages from and skips them in the future scanning.
4322 * When kswapd is going to sleep, it is reasonable to assume
4323 * that pages and compaction may succeed so reset the cache.
4325 reset_isolation_suitable(pgdat);
4328 * We have freed the memory, now we should compact it to make
4329 * allocation of the requested order possible.
4331 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4333 remaining = schedule_timeout(HZ/10);
4336 * If woken prematurely then reset kswapd_highest_zoneidx and
4337 * order. The values will either be from a wakeup request or
4338 * the previous request that slept prematurely.
4341 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4342 kswapd_highest_zoneidx(pgdat,
4345 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4346 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4349 finish_wait(&pgdat->kswapd_wait, &wait);
4350 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4354 * After a short sleep, check if it was a premature sleep. If not, then
4355 * go fully to sleep until explicitly woken up.
4358 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4359 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4362 * vmstat counters are not perfectly accurate and the estimated
4363 * value for counters such as NR_FREE_PAGES can deviate from the
4364 * true value by nr_online_cpus * threshold. To avoid the zone
4365 * watermarks being breached while under pressure, we reduce the
4366 * per-cpu vmstat threshold while kswapd is awake and restore
4367 * them before going back to sleep.
4369 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4371 if (!kthread_should_stop())
4374 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4377 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4379 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4381 finish_wait(&pgdat->kswapd_wait, &wait);
4385 * The background pageout daemon, started as a kernel thread
4386 * from the init process.
4388 * This basically trickles out pages so that we have _some_
4389 * free memory available even if there is no other activity
4390 * that frees anything up. This is needed for things like routing
4391 * etc, where we otherwise might have all activity going on in
4392 * asynchronous contexts that cannot page things out.
4394 * If there are applications that are active memory-allocators
4395 * (most normal use), this basically shouldn't matter.
4397 static int kswapd(void *p)
4399 unsigned int alloc_order, reclaim_order;
4400 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4401 pg_data_t *pgdat = (pg_data_t *)p;
4402 struct task_struct *tsk = current;
4403 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4405 if (!cpumask_empty(cpumask))
4406 set_cpus_allowed_ptr(tsk, cpumask);
4409 * Tell the memory management that we're a "memory allocator",
4410 * and that if we need more memory we should get access to it
4411 * regardless (see "__alloc_pages()"). "kswapd" should
4412 * never get caught in the normal page freeing logic.
4414 * (Kswapd normally doesn't need memory anyway, but sometimes
4415 * you need a small amount of memory in order to be able to
4416 * page out something else, and this flag essentially protects
4417 * us from recursively trying to free more memory as we're
4418 * trying to free the first piece of memory in the first place).
4420 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
4423 WRITE_ONCE(pgdat->kswapd_order, 0);
4424 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4425 atomic_set(&pgdat->nr_writeback_throttled, 0);
4429 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4430 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4434 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4437 /* Read the new order and highest_zoneidx */
4438 alloc_order = READ_ONCE(pgdat->kswapd_order);
4439 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4441 WRITE_ONCE(pgdat->kswapd_order, 0);
4442 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4444 ret = try_to_freeze();
4445 if (kthread_should_stop())
4449 * We can speed up thawing tasks if we don't call balance_pgdat
4450 * after returning from the refrigerator
4456 * Reclaim begins at the requested order but if a high-order
4457 * reclaim fails then kswapd falls back to reclaiming for
4458 * order-0. If that happens, kswapd will consider sleeping
4459 * for the order it finished reclaiming at (reclaim_order)
4460 * but kcompactd is woken to compact for the original
4461 * request (alloc_order).
4463 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4465 reclaim_order = balance_pgdat(pgdat, alloc_order,
4467 if (reclaim_order < alloc_order)
4468 goto kswapd_try_sleep;
4471 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
4477 * A zone is low on free memory or too fragmented for high-order memory. If
4478 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4479 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4480 * has failed or is not needed, still wake up kcompactd if only compaction is
4483 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4484 enum zone_type highest_zoneidx)
4487 enum zone_type curr_idx;
4489 if (!managed_zone(zone))
4492 if (!cpuset_zone_allowed(zone, gfp_flags))
4495 pgdat = zone->zone_pgdat;
4496 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4498 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4499 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4501 if (READ_ONCE(pgdat->kswapd_order) < order)
4502 WRITE_ONCE(pgdat->kswapd_order, order);
4504 if (!waitqueue_active(&pgdat->kswapd_wait))
4507 /* Hopeless node, leave it to direct reclaim if possible */
4508 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4509 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4510 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4512 * There may be plenty of free memory available, but it's too
4513 * fragmented for high-order allocations. Wake up kcompactd
4514 * and rely on compaction_suitable() to determine if it's
4515 * needed. If it fails, it will defer subsequent attempts to
4516 * ratelimit its work.
4518 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4519 wakeup_kcompactd(pgdat, order, highest_zoneidx);
4523 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4525 wake_up_interruptible(&pgdat->kswapd_wait);
4528 #ifdef CONFIG_HIBERNATION
4530 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4533 * Rather than trying to age LRUs the aim is to preserve the overall
4534 * LRU order by reclaiming preferentially
4535 * inactive > active > active referenced > active mapped
4537 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4539 struct scan_control sc = {
4540 .nr_to_reclaim = nr_to_reclaim,
4541 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4542 .reclaim_idx = MAX_NR_ZONES - 1,
4543 .priority = DEF_PRIORITY,
4547 .hibernation_mode = 1,
4549 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4550 unsigned long nr_reclaimed;
4551 unsigned int noreclaim_flag;
4553 fs_reclaim_acquire(sc.gfp_mask);
4554 noreclaim_flag = memalloc_noreclaim_save();
4555 set_task_reclaim_state(current, &sc.reclaim_state);
4557 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4559 set_task_reclaim_state(current, NULL);
4560 memalloc_noreclaim_restore(noreclaim_flag);
4561 fs_reclaim_release(sc.gfp_mask);
4563 return nr_reclaimed;
4565 #endif /* CONFIG_HIBERNATION */
4568 * This kswapd start function will be called by init and node-hot-add.
4569 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4571 void kswapd_run(int nid)
4573 pg_data_t *pgdat = NODE_DATA(nid);
4578 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4579 if (IS_ERR(pgdat->kswapd)) {
4580 /* failure at boot is fatal */
4581 BUG_ON(system_state < SYSTEM_RUNNING);
4582 pr_err("Failed to start kswapd on node %d\n", nid);
4583 pgdat->kswapd = NULL;
4588 * Called by memory hotplug when all memory in a node is offlined. Caller must
4589 * hold mem_hotplug_begin/end().
4591 void kswapd_stop(int nid)
4593 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4596 kthread_stop(kswapd);
4597 NODE_DATA(nid)->kswapd = NULL;
4601 static int __init kswapd_init(void)
4606 for_each_node_state(nid, N_MEMORY)
4611 module_init(kswapd_init)
4617 * If non-zero call node_reclaim when the number of free pages falls below
4620 int node_reclaim_mode __read_mostly;
4623 * Priority for NODE_RECLAIM. This determines the fraction of pages
4624 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4627 #define NODE_RECLAIM_PRIORITY 4
4630 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4633 int sysctl_min_unmapped_ratio = 1;
4636 * If the number of slab pages in a zone grows beyond this percentage then
4637 * slab reclaim needs to occur.
4639 int sysctl_min_slab_ratio = 5;
4641 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4643 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4644 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4645 node_page_state(pgdat, NR_ACTIVE_FILE);
4648 * It's possible for there to be more file mapped pages than
4649 * accounted for by the pages on the file LRU lists because
4650 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4652 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4655 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4656 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4658 unsigned long nr_pagecache_reclaimable;
4659 unsigned long delta = 0;
4662 * If RECLAIM_UNMAP is set, then all file pages are considered
4663 * potentially reclaimable. Otherwise, we have to worry about
4664 * pages like swapcache and node_unmapped_file_pages() provides
4667 if (node_reclaim_mode & RECLAIM_UNMAP)
4668 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4670 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4672 /* If we can't clean pages, remove dirty pages from consideration */
4673 if (!(node_reclaim_mode & RECLAIM_WRITE))
4674 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4676 /* Watch for any possible underflows due to delta */
4677 if (unlikely(delta > nr_pagecache_reclaimable))
4678 delta = nr_pagecache_reclaimable;
4680 return nr_pagecache_reclaimable - delta;
4684 * Try to free up some pages from this node through reclaim.
4686 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4688 /* Minimum pages needed in order to stay on node */
4689 const unsigned long nr_pages = 1 << order;
4690 struct task_struct *p = current;
4691 unsigned int noreclaim_flag;
4692 struct scan_control sc = {
4693 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4694 .gfp_mask = current_gfp_context(gfp_mask),
4696 .priority = NODE_RECLAIM_PRIORITY,
4697 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4698 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4700 .reclaim_idx = gfp_zone(gfp_mask),
4702 unsigned long pflags;
4704 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4708 psi_memstall_enter(&pflags);
4709 fs_reclaim_acquire(sc.gfp_mask);
4711 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4713 noreclaim_flag = memalloc_noreclaim_save();
4714 set_task_reclaim_state(p, &sc.reclaim_state);
4716 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4718 * Free memory by calling shrink node with increasing
4719 * priorities until we have enough memory freed.
4722 shrink_node(pgdat, &sc);
4723 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4726 set_task_reclaim_state(p, NULL);
4727 memalloc_noreclaim_restore(noreclaim_flag);
4728 fs_reclaim_release(sc.gfp_mask);
4729 psi_memstall_leave(&pflags);
4731 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4733 return sc.nr_reclaimed >= nr_pages;
4736 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4741 * Node reclaim reclaims unmapped file backed pages and
4742 * slab pages if we are over the defined limits.
4744 * A small portion of unmapped file backed pages is needed for
4745 * file I/O otherwise pages read by file I/O will be immediately
4746 * thrown out if the node is overallocated. So we do not reclaim
4747 * if less than a specified percentage of the node is used by
4748 * unmapped file backed pages.
4750 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4751 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4752 pgdat->min_slab_pages)
4753 return NODE_RECLAIM_FULL;
4756 * Do not scan if the allocation should not be delayed.
4758 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4759 return NODE_RECLAIM_NOSCAN;
4762 * Only run node reclaim on the local node or on nodes that do not
4763 * have associated processors. This will favor the local processor
4764 * over remote processors and spread off node memory allocations
4765 * as wide as possible.
4767 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4768 return NODE_RECLAIM_NOSCAN;
4770 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4771 return NODE_RECLAIM_NOSCAN;
4773 ret = __node_reclaim(pgdat, gfp_mask, order);
4774 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4777 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4784 * check_move_unevictable_pages - check pages for evictability and move to
4785 * appropriate zone lru list
4786 * @pvec: pagevec with lru pages to check
4788 * Checks pages for evictability, if an evictable page is in the unevictable
4789 * lru list, moves it to the appropriate evictable lru list. This function
4790 * should be only used for lru pages.
4792 void check_move_unevictable_pages(struct pagevec *pvec)
4794 struct lruvec *lruvec = NULL;
4799 for (i = 0; i < pvec->nr; i++) {
4800 struct page *page = pvec->pages[i];
4801 struct folio *folio = page_folio(page);
4804 if (PageTransTail(page))
4807 nr_pages = thp_nr_pages(page);
4808 pgscanned += nr_pages;
4810 /* block memcg migration during page moving between lru */
4811 if (!TestClearPageLRU(page))
4814 lruvec = folio_lruvec_relock_irq(folio, lruvec);
4815 if (page_evictable(page) && PageUnevictable(page)) {
4816 del_page_from_lru_list(page, lruvec);
4817 ClearPageUnevictable(page);
4818 add_page_to_lru_list(page, lruvec);
4819 pgrescued += nr_pages;
4825 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4826 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4827 unlock_page_lruvec_irq(lruvec);
4828 } else if (pgscanned) {
4829 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4832 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);