]> Git Repo - linux.git/blob - mm/swapfile.c
mm: make alloc_contig_range work at pageblock granularity
[linux.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blk-cgroup.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47 #include "swap.h"
48
49 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
50                                  unsigned char);
51 static void free_swap_count_continuations(struct swap_info_struct *);
52
53 static DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57  * Some modules use swappable objects and may try to swap them out under
58  * memory pressure (via the shrinker). Before doing so, they may wish to
59  * check to see if any swap space is available.
60  */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70
71 /*
72  * all active swap_info_structs
73  * protected with swap_lock, and ordered by priority.
74  */
75 static PLIST_HEAD(swap_active_head);
76
77 /*
78  * all available (active, not full) swap_info_structs
79  * protected with swap_avail_lock, ordered by priority.
80  * This is used by get_swap_page() instead of swap_active_head
81  * because swap_active_head includes all swap_info_structs,
82  * but get_swap_page() doesn't need to look at full ones.
83  * This uses its own lock instead of swap_lock because when a
84  * swap_info_struct changes between not-full/full, it needs to
85  * add/remove itself to/from this list, but the swap_info_struct->lock
86  * is held and the locking order requires swap_lock to be taken
87  * before any swap_info_struct->lock.
88  */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93
94 static DEFINE_MUTEX(swapon_mutex);
95
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104         if (type >= MAX_SWAPFILES)
105                 return NULL;
106
107         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
108 }
109
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
113 }
114
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY             0x1
117 /*
118  * Reclaim the swap entry if there are no more mappings of the
119  * corresponding page
120  */
121 #define TTRS_UNMAPPED           0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL               0x4
124
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127                                  unsigned long offset, unsigned long flags)
128 {
129         swp_entry_t entry = swp_entry(si->type, offset);
130         struct page *page;
131         int ret = 0;
132
133         page = find_get_page(swap_address_space(entry), offset);
134         if (!page)
135                 return 0;
136         /*
137          * When this function is called from scan_swap_map_slots() and it's
138          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139          * here. We have to use trylock for avoiding deadlock. This is a special
140          * case and you should use try_to_free_swap() with explicit lock_page()
141          * in usual operations.
142          */
143         if (trylock_page(page)) {
144                 if ((flags & TTRS_ANYWAY) ||
145                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147                         ret = try_to_free_swap(page);
148                 unlock_page(page);
149         }
150         put_page(page);
151         return ret;
152 }
153
154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156         struct rb_node *rb = rb_first(&sis->swap_extent_root);
157         return rb_entry(rb, struct swap_extent, rb_node);
158 }
159
160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162         struct rb_node *rb = rb_next(&se->rb_node);
163         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165
166 /*
167  * swapon tell device that all the old swap contents can be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static int discard_swap(struct swap_info_struct *si)
171 {
172         struct swap_extent *se;
173         sector_t start_block;
174         sector_t nr_blocks;
175         int err = 0;
176
177         /* Do not discard the swap header page! */
178         se = first_se(si);
179         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181         if (nr_blocks) {
182                 err = blkdev_issue_discard(si->bdev, start_block,
183                                 nr_blocks, GFP_KERNEL, 0);
184                 if (err)
185                         return err;
186                 cond_resched();
187         }
188
189         for (se = next_se(se); se; se = next_se(se)) {
190                 start_block = se->start_block << (PAGE_SHIFT - 9);
191                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192
193                 err = blkdev_issue_discard(si->bdev, start_block,
194                                 nr_blocks, GFP_KERNEL, 0);
195                 if (err)
196                         break;
197
198                 cond_resched();
199         }
200         return err;             /* That will often be -EOPNOTSUPP */
201 }
202
203 static struct swap_extent *
204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206         struct swap_extent *se;
207         struct rb_node *rb;
208
209         rb = sis->swap_extent_root.rb_node;
210         while (rb) {
211                 se = rb_entry(rb, struct swap_extent, rb_node);
212                 if (offset < se->start_page)
213                         rb = rb->rb_left;
214                 else if (offset >= se->start_page + se->nr_pages)
215                         rb = rb->rb_right;
216                 else
217                         return se;
218         }
219         /* It *must* be present */
220         BUG();
221 }
222
223 sector_t swap_page_sector(struct page *page)
224 {
225         struct swap_info_struct *sis = page_swap_info(page);
226         struct swap_extent *se;
227         sector_t sector;
228         pgoff_t offset;
229
230         offset = __page_file_index(page);
231         se = offset_to_swap_extent(sis, offset);
232         sector = se->start_block + (offset - se->start_page);
233         return sector << (PAGE_SHIFT - 9);
234 }
235
236 /*
237  * swap allocation tell device that a cluster of swap can now be discarded,
238  * to allow the swap device to optimize its wear-levelling.
239  */
240 static void discard_swap_cluster(struct swap_info_struct *si,
241                                  pgoff_t start_page, pgoff_t nr_pages)
242 {
243         struct swap_extent *se = offset_to_swap_extent(si, start_page);
244
245         while (nr_pages) {
246                 pgoff_t offset = start_page - se->start_page;
247                 sector_t start_block = se->start_block + offset;
248                 sector_t nr_blocks = se->nr_pages - offset;
249
250                 if (nr_blocks > nr_pages)
251                         nr_blocks = nr_pages;
252                 start_page += nr_blocks;
253                 nr_pages -= nr_blocks;
254
255                 start_block <<= PAGE_SHIFT - 9;
256                 nr_blocks <<= PAGE_SHIFT - 9;
257                 if (blkdev_issue_discard(si->bdev, start_block,
258                                         nr_blocks, GFP_NOIO, 0))
259                         break;
260
261                 se = next_se(se);
262         }
263 }
264
265 #ifdef CONFIG_THP_SWAP
266 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
267
268 #define swap_entry_size(size)   (size)
269 #else
270 #define SWAPFILE_CLUSTER        256
271
272 /*
273  * Define swap_entry_size() as constant to let compiler to optimize
274  * out some code if !CONFIG_THP_SWAP
275  */
276 #define swap_entry_size(size)   1
277 #endif
278 #define LATENCY_LIMIT           256
279
280 static inline void cluster_set_flag(struct swap_cluster_info *info,
281         unsigned int flag)
282 {
283         info->flags = flag;
284 }
285
286 static inline unsigned int cluster_count(struct swap_cluster_info *info)
287 {
288         return info->data;
289 }
290
291 static inline void cluster_set_count(struct swap_cluster_info *info,
292                                      unsigned int c)
293 {
294         info->data = c;
295 }
296
297 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
298                                          unsigned int c, unsigned int f)
299 {
300         info->flags = f;
301         info->data = c;
302 }
303
304 static inline unsigned int cluster_next(struct swap_cluster_info *info)
305 {
306         return info->data;
307 }
308
309 static inline void cluster_set_next(struct swap_cluster_info *info,
310                                     unsigned int n)
311 {
312         info->data = n;
313 }
314
315 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
316                                          unsigned int n, unsigned int f)
317 {
318         info->flags = f;
319         info->data = n;
320 }
321
322 static inline bool cluster_is_free(struct swap_cluster_info *info)
323 {
324         return info->flags & CLUSTER_FLAG_FREE;
325 }
326
327 static inline bool cluster_is_null(struct swap_cluster_info *info)
328 {
329         return info->flags & CLUSTER_FLAG_NEXT_NULL;
330 }
331
332 static inline void cluster_set_null(struct swap_cluster_info *info)
333 {
334         info->flags = CLUSTER_FLAG_NEXT_NULL;
335         info->data = 0;
336 }
337
338 static inline bool cluster_is_huge(struct swap_cluster_info *info)
339 {
340         if (IS_ENABLED(CONFIG_THP_SWAP))
341                 return info->flags & CLUSTER_FLAG_HUGE;
342         return false;
343 }
344
345 static inline void cluster_clear_huge(struct swap_cluster_info *info)
346 {
347         info->flags &= ~CLUSTER_FLAG_HUGE;
348 }
349
350 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
351                                                      unsigned long offset)
352 {
353         struct swap_cluster_info *ci;
354
355         ci = si->cluster_info;
356         if (ci) {
357                 ci += offset / SWAPFILE_CLUSTER;
358                 spin_lock(&ci->lock);
359         }
360         return ci;
361 }
362
363 static inline void unlock_cluster(struct swap_cluster_info *ci)
364 {
365         if (ci)
366                 spin_unlock(&ci->lock);
367 }
368
369 /*
370  * Determine the locking method in use for this device.  Return
371  * swap_cluster_info if SSD-style cluster-based locking is in place.
372  */
373 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
374                 struct swap_info_struct *si, unsigned long offset)
375 {
376         struct swap_cluster_info *ci;
377
378         /* Try to use fine-grained SSD-style locking if available: */
379         ci = lock_cluster(si, offset);
380         /* Otherwise, fall back to traditional, coarse locking: */
381         if (!ci)
382                 spin_lock(&si->lock);
383
384         return ci;
385 }
386
387 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
388                                                struct swap_cluster_info *ci)
389 {
390         if (ci)
391                 unlock_cluster(ci);
392         else
393                 spin_unlock(&si->lock);
394 }
395
396 static inline bool cluster_list_empty(struct swap_cluster_list *list)
397 {
398         return cluster_is_null(&list->head);
399 }
400
401 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
402 {
403         return cluster_next(&list->head);
404 }
405
406 static void cluster_list_init(struct swap_cluster_list *list)
407 {
408         cluster_set_null(&list->head);
409         cluster_set_null(&list->tail);
410 }
411
412 static void cluster_list_add_tail(struct swap_cluster_list *list,
413                                   struct swap_cluster_info *ci,
414                                   unsigned int idx)
415 {
416         if (cluster_list_empty(list)) {
417                 cluster_set_next_flag(&list->head, idx, 0);
418                 cluster_set_next_flag(&list->tail, idx, 0);
419         } else {
420                 struct swap_cluster_info *ci_tail;
421                 unsigned int tail = cluster_next(&list->tail);
422
423                 /*
424                  * Nested cluster lock, but both cluster locks are
425                  * only acquired when we held swap_info_struct->lock
426                  */
427                 ci_tail = ci + tail;
428                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
429                 cluster_set_next(ci_tail, idx);
430                 spin_unlock(&ci_tail->lock);
431                 cluster_set_next_flag(&list->tail, idx, 0);
432         }
433 }
434
435 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
436                                            struct swap_cluster_info *ci)
437 {
438         unsigned int idx;
439
440         idx = cluster_next(&list->head);
441         if (cluster_next(&list->tail) == idx) {
442                 cluster_set_null(&list->head);
443                 cluster_set_null(&list->tail);
444         } else
445                 cluster_set_next_flag(&list->head,
446                                       cluster_next(&ci[idx]), 0);
447
448         return idx;
449 }
450
451 /* Add a cluster to discard list and schedule it to do discard */
452 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
453                 unsigned int idx)
454 {
455         /*
456          * If scan_swap_map_slots() can't find a free cluster, it will check
457          * si->swap_map directly. To make sure the discarding cluster isn't
458          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
459          * It will be cleared after discard
460          */
461         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
462                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
463
464         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
465
466         schedule_work(&si->discard_work);
467 }
468
469 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
470 {
471         struct swap_cluster_info *ci = si->cluster_info;
472
473         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
474         cluster_list_add_tail(&si->free_clusters, ci, idx);
475 }
476
477 /*
478  * Doing discard actually. After a cluster discard is finished, the cluster
479  * will be added to free cluster list. caller should hold si->lock.
480 */
481 static void swap_do_scheduled_discard(struct swap_info_struct *si)
482 {
483         struct swap_cluster_info *info, *ci;
484         unsigned int idx;
485
486         info = si->cluster_info;
487
488         while (!cluster_list_empty(&si->discard_clusters)) {
489                 idx = cluster_list_del_first(&si->discard_clusters, info);
490                 spin_unlock(&si->lock);
491
492                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
493                                 SWAPFILE_CLUSTER);
494
495                 spin_lock(&si->lock);
496                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
497                 __free_cluster(si, idx);
498                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
499                                 0, SWAPFILE_CLUSTER);
500                 unlock_cluster(ci);
501         }
502 }
503
504 static void swap_discard_work(struct work_struct *work)
505 {
506         struct swap_info_struct *si;
507
508         si = container_of(work, struct swap_info_struct, discard_work);
509
510         spin_lock(&si->lock);
511         swap_do_scheduled_discard(si);
512         spin_unlock(&si->lock);
513 }
514
515 static void swap_users_ref_free(struct percpu_ref *ref)
516 {
517         struct swap_info_struct *si;
518
519         si = container_of(ref, struct swap_info_struct, users);
520         complete(&si->comp);
521 }
522
523 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
524 {
525         struct swap_cluster_info *ci = si->cluster_info;
526
527         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
528         cluster_list_del_first(&si->free_clusters, ci);
529         cluster_set_count_flag(ci + idx, 0, 0);
530 }
531
532 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
533 {
534         struct swap_cluster_info *ci = si->cluster_info + idx;
535
536         VM_BUG_ON(cluster_count(ci) != 0);
537         /*
538          * If the swap is discardable, prepare discard the cluster
539          * instead of free it immediately. The cluster will be freed
540          * after discard.
541          */
542         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
543             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
544                 swap_cluster_schedule_discard(si, idx);
545                 return;
546         }
547
548         __free_cluster(si, idx);
549 }
550
551 /*
552  * The cluster corresponding to page_nr will be used. The cluster will be
553  * removed from free cluster list and its usage counter will be increased.
554  */
555 static void inc_cluster_info_page(struct swap_info_struct *p,
556         struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560         if (!cluster_info)
561                 return;
562         if (cluster_is_free(&cluster_info[idx]))
563                 alloc_cluster(p, idx);
564
565         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
566         cluster_set_count(&cluster_info[idx],
567                 cluster_count(&cluster_info[idx]) + 1);
568 }
569
570 /*
571  * The cluster corresponding to page_nr decreases one usage. If the usage
572  * counter becomes 0, which means no page in the cluster is in using, we can
573  * optionally discard the cluster and add it to free cluster list.
574  */
575 static void dec_cluster_info_page(struct swap_info_struct *p,
576         struct swap_cluster_info *cluster_info, unsigned long page_nr)
577 {
578         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
579
580         if (!cluster_info)
581                 return;
582
583         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
584         cluster_set_count(&cluster_info[idx],
585                 cluster_count(&cluster_info[idx]) - 1);
586
587         if (cluster_count(&cluster_info[idx]) == 0)
588                 free_cluster(p, idx);
589 }
590
591 /*
592  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
593  * cluster list. Avoiding such abuse to avoid list corruption.
594  */
595 static bool
596 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
597         unsigned long offset)
598 {
599         struct percpu_cluster *percpu_cluster;
600         bool conflict;
601
602         offset /= SWAPFILE_CLUSTER;
603         conflict = !cluster_list_empty(&si->free_clusters) &&
604                 offset != cluster_list_first(&si->free_clusters) &&
605                 cluster_is_free(&si->cluster_info[offset]);
606
607         if (!conflict)
608                 return false;
609
610         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
611         cluster_set_null(&percpu_cluster->index);
612         return true;
613 }
614
615 /*
616  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
617  * might involve allocating a new cluster for current CPU too.
618  */
619 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
620         unsigned long *offset, unsigned long *scan_base)
621 {
622         struct percpu_cluster *cluster;
623         struct swap_cluster_info *ci;
624         unsigned long tmp, max;
625
626 new_cluster:
627         cluster = this_cpu_ptr(si->percpu_cluster);
628         if (cluster_is_null(&cluster->index)) {
629                 if (!cluster_list_empty(&si->free_clusters)) {
630                         cluster->index = si->free_clusters.head;
631                         cluster->next = cluster_next(&cluster->index) *
632                                         SWAPFILE_CLUSTER;
633                 } else if (!cluster_list_empty(&si->discard_clusters)) {
634                         /*
635                          * we don't have free cluster but have some clusters in
636                          * discarding, do discard now and reclaim them, then
637                          * reread cluster_next_cpu since we dropped si->lock
638                          */
639                         swap_do_scheduled_discard(si);
640                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
641                         *offset = *scan_base;
642                         goto new_cluster;
643                 } else
644                         return false;
645         }
646
647         /*
648          * Other CPUs can use our cluster if they can't find a free cluster,
649          * check if there is still free entry in the cluster
650          */
651         tmp = cluster->next;
652         max = min_t(unsigned long, si->max,
653                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
654         if (tmp < max) {
655                 ci = lock_cluster(si, tmp);
656                 while (tmp < max) {
657                         if (!si->swap_map[tmp])
658                                 break;
659                         tmp++;
660                 }
661                 unlock_cluster(ci);
662         }
663         if (tmp >= max) {
664                 cluster_set_null(&cluster->index);
665                 goto new_cluster;
666         }
667         cluster->next = tmp + 1;
668         *offset = tmp;
669         *scan_base = tmp;
670         return true;
671 }
672
673 static void __del_from_avail_list(struct swap_info_struct *p)
674 {
675         int nid;
676
677         for_each_node(nid)
678                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
679 }
680
681 static void del_from_avail_list(struct swap_info_struct *p)
682 {
683         spin_lock(&swap_avail_lock);
684         __del_from_avail_list(p);
685         spin_unlock(&swap_avail_lock);
686 }
687
688 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
689                              unsigned int nr_entries)
690 {
691         unsigned int end = offset + nr_entries - 1;
692
693         if (offset == si->lowest_bit)
694                 si->lowest_bit += nr_entries;
695         if (end == si->highest_bit)
696                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
697         si->inuse_pages += nr_entries;
698         if (si->inuse_pages == si->pages) {
699                 si->lowest_bit = si->max;
700                 si->highest_bit = 0;
701                 del_from_avail_list(si);
702         }
703 }
704
705 static void add_to_avail_list(struct swap_info_struct *p)
706 {
707         int nid;
708
709         spin_lock(&swap_avail_lock);
710         for_each_node(nid) {
711                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
712                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
713         }
714         spin_unlock(&swap_avail_lock);
715 }
716
717 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
718                             unsigned int nr_entries)
719 {
720         unsigned long begin = offset;
721         unsigned long end = offset + nr_entries - 1;
722         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
723
724         if (offset < si->lowest_bit)
725                 si->lowest_bit = offset;
726         if (end > si->highest_bit) {
727                 bool was_full = !si->highest_bit;
728
729                 WRITE_ONCE(si->highest_bit, end);
730                 if (was_full && (si->flags & SWP_WRITEOK))
731                         add_to_avail_list(si);
732         }
733         atomic_long_add(nr_entries, &nr_swap_pages);
734         si->inuse_pages -= nr_entries;
735         if (si->flags & SWP_BLKDEV)
736                 swap_slot_free_notify =
737                         si->bdev->bd_disk->fops->swap_slot_free_notify;
738         else
739                 swap_slot_free_notify = NULL;
740         while (offset <= end) {
741                 arch_swap_invalidate_page(si->type, offset);
742                 frontswap_invalidate_page(si->type, offset);
743                 if (swap_slot_free_notify)
744                         swap_slot_free_notify(si->bdev, offset);
745                 offset++;
746         }
747         clear_shadow_from_swap_cache(si->type, begin, end);
748 }
749
750 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
751 {
752         unsigned long prev;
753
754         if (!(si->flags & SWP_SOLIDSTATE)) {
755                 si->cluster_next = next;
756                 return;
757         }
758
759         prev = this_cpu_read(*si->cluster_next_cpu);
760         /*
761          * Cross the swap address space size aligned trunk, choose
762          * another trunk randomly to avoid lock contention on swap
763          * address space if possible.
764          */
765         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
766             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
767                 /* No free swap slots available */
768                 if (si->highest_bit <= si->lowest_bit)
769                         return;
770                 next = si->lowest_bit +
771                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
772                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
773                 next = max_t(unsigned int, next, si->lowest_bit);
774         }
775         this_cpu_write(*si->cluster_next_cpu, next);
776 }
777
778 static int scan_swap_map_slots(struct swap_info_struct *si,
779                                unsigned char usage, int nr,
780                                swp_entry_t slots[])
781 {
782         struct swap_cluster_info *ci;
783         unsigned long offset;
784         unsigned long scan_base;
785         unsigned long last_in_cluster = 0;
786         int latency_ration = LATENCY_LIMIT;
787         int n_ret = 0;
788         bool scanned_many = false;
789
790         /*
791          * We try to cluster swap pages by allocating them sequentially
792          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
793          * way, however, we resort to first-free allocation, starting
794          * a new cluster.  This prevents us from scattering swap pages
795          * all over the entire swap partition, so that we reduce
796          * overall disk seek times between swap pages.  -- sct
797          * But we do now try to find an empty cluster.  -Andrea
798          * And we let swap pages go all over an SSD partition.  Hugh
799          */
800
801         si->flags += SWP_SCANNING;
802         /*
803          * Use percpu scan base for SSD to reduce lock contention on
804          * cluster and swap cache.  For HDD, sequential access is more
805          * important.
806          */
807         if (si->flags & SWP_SOLIDSTATE)
808                 scan_base = this_cpu_read(*si->cluster_next_cpu);
809         else
810                 scan_base = si->cluster_next;
811         offset = scan_base;
812
813         /* SSD algorithm */
814         if (si->cluster_info) {
815                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
816                         goto scan;
817         } else if (unlikely(!si->cluster_nr--)) {
818                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
819                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
820                         goto checks;
821                 }
822
823                 spin_unlock(&si->lock);
824
825                 /*
826                  * If seek is expensive, start searching for new cluster from
827                  * start of partition, to minimize the span of allocated swap.
828                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
829                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
830                  */
831                 scan_base = offset = si->lowest_bit;
832                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
833
834                 /* Locate the first empty (unaligned) cluster */
835                 for (; last_in_cluster <= si->highest_bit; offset++) {
836                         if (si->swap_map[offset])
837                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
838                         else if (offset == last_in_cluster) {
839                                 spin_lock(&si->lock);
840                                 offset -= SWAPFILE_CLUSTER - 1;
841                                 si->cluster_next = offset;
842                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
843                                 goto checks;
844                         }
845                         if (unlikely(--latency_ration < 0)) {
846                                 cond_resched();
847                                 latency_ration = LATENCY_LIMIT;
848                         }
849                 }
850
851                 offset = scan_base;
852                 spin_lock(&si->lock);
853                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
854         }
855
856 checks:
857         if (si->cluster_info) {
858                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
859                 /* take a break if we already got some slots */
860                         if (n_ret)
861                                 goto done;
862                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
863                                                         &scan_base))
864                                 goto scan;
865                 }
866         }
867         if (!(si->flags & SWP_WRITEOK))
868                 goto no_page;
869         if (!si->highest_bit)
870                 goto no_page;
871         if (offset > si->highest_bit)
872                 scan_base = offset = si->lowest_bit;
873
874         ci = lock_cluster(si, offset);
875         /* reuse swap entry of cache-only swap if not busy. */
876         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
877                 int swap_was_freed;
878                 unlock_cluster(ci);
879                 spin_unlock(&si->lock);
880                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
881                 spin_lock(&si->lock);
882                 /* entry was freed successfully, try to use this again */
883                 if (swap_was_freed)
884                         goto checks;
885                 goto scan; /* check next one */
886         }
887
888         if (si->swap_map[offset]) {
889                 unlock_cluster(ci);
890                 if (!n_ret)
891                         goto scan;
892                 else
893                         goto done;
894         }
895         WRITE_ONCE(si->swap_map[offset], usage);
896         inc_cluster_info_page(si, si->cluster_info, offset);
897         unlock_cluster(ci);
898
899         swap_range_alloc(si, offset, 1);
900         slots[n_ret++] = swp_entry(si->type, offset);
901
902         /* got enough slots or reach max slots? */
903         if ((n_ret == nr) || (offset >= si->highest_bit))
904                 goto done;
905
906         /* search for next available slot */
907
908         /* time to take a break? */
909         if (unlikely(--latency_ration < 0)) {
910                 if (n_ret)
911                         goto done;
912                 spin_unlock(&si->lock);
913                 cond_resched();
914                 spin_lock(&si->lock);
915                 latency_ration = LATENCY_LIMIT;
916         }
917
918         /* try to get more slots in cluster */
919         if (si->cluster_info) {
920                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
921                         goto checks;
922         } else if (si->cluster_nr && !si->swap_map[++offset]) {
923                 /* non-ssd case, still more slots in cluster? */
924                 --si->cluster_nr;
925                 goto checks;
926         }
927
928         /*
929          * Even if there's no free clusters available (fragmented),
930          * try to scan a little more quickly with lock held unless we
931          * have scanned too many slots already.
932          */
933         if (!scanned_many) {
934                 unsigned long scan_limit;
935
936                 if (offset < scan_base)
937                         scan_limit = scan_base;
938                 else
939                         scan_limit = si->highest_bit;
940                 for (; offset <= scan_limit && --latency_ration > 0;
941                      offset++) {
942                         if (!si->swap_map[offset])
943                                 goto checks;
944                 }
945         }
946
947 done:
948         set_cluster_next(si, offset + 1);
949         si->flags -= SWP_SCANNING;
950         return n_ret;
951
952 scan:
953         spin_unlock(&si->lock);
954         while (++offset <= READ_ONCE(si->highest_bit)) {
955                 if (data_race(!si->swap_map[offset])) {
956                         spin_lock(&si->lock);
957                         goto checks;
958                 }
959                 if (vm_swap_full() &&
960                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
961                         spin_lock(&si->lock);
962                         goto checks;
963                 }
964                 if (unlikely(--latency_ration < 0)) {
965                         cond_resched();
966                         latency_ration = LATENCY_LIMIT;
967                         scanned_many = true;
968                 }
969         }
970         offset = si->lowest_bit;
971         while (offset < scan_base) {
972                 if (data_race(!si->swap_map[offset])) {
973                         spin_lock(&si->lock);
974                         goto checks;
975                 }
976                 if (vm_swap_full() &&
977                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
978                         spin_lock(&si->lock);
979                         goto checks;
980                 }
981                 if (unlikely(--latency_ration < 0)) {
982                         cond_resched();
983                         latency_ration = LATENCY_LIMIT;
984                         scanned_many = true;
985                 }
986                 offset++;
987         }
988         spin_lock(&si->lock);
989
990 no_page:
991         si->flags -= SWP_SCANNING;
992         return n_ret;
993 }
994
995 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
996 {
997         unsigned long idx;
998         struct swap_cluster_info *ci;
999         unsigned long offset;
1000
1001         /*
1002          * Should not even be attempting cluster allocations when huge
1003          * page swap is disabled.  Warn and fail the allocation.
1004          */
1005         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1006                 VM_WARN_ON_ONCE(1);
1007                 return 0;
1008         }
1009
1010         if (cluster_list_empty(&si->free_clusters))
1011                 return 0;
1012
1013         idx = cluster_list_first(&si->free_clusters);
1014         offset = idx * SWAPFILE_CLUSTER;
1015         ci = lock_cluster(si, offset);
1016         alloc_cluster(si, idx);
1017         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1018
1019         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1020         unlock_cluster(ci);
1021         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1022         *slot = swp_entry(si->type, offset);
1023
1024         return 1;
1025 }
1026
1027 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1028 {
1029         unsigned long offset = idx * SWAPFILE_CLUSTER;
1030         struct swap_cluster_info *ci;
1031
1032         ci = lock_cluster(si, offset);
1033         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1034         cluster_set_count_flag(ci, 0, 0);
1035         free_cluster(si, idx);
1036         unlock_cluster(ci);
1037         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1038 }
1039
1040 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1041 {
1042         unsigned long size = swap_entry_size(entry_size);
1043         struct swap_info_struct *si, *next;
1044         long avail_pgs;
1045         int n_ret = 0;
1046         int node;
1047
1048         /* Only single cluster request supported */
1049         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1050
1051         spin_lock(&swap_avail_lock);
1052
1053         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1054         if (avail_pgs <= 0) {
1055                 spin_unlock(&swap_avail_lock);
1056                 goto noswap;
1057         }
1058
1059         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1060
1061         atomic_long_sub(n_goal * size, &nr_swap_pages);
1062
1063 start_over:
1064         node = numa_node_id();
1065         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1066                 /* requeue si to after same-priority siblings */
1067                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1068                 spin_unlock(&swap_avail_lock);
1069                 spin_lock(&si->lock);
1070                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1071                         spin_lock(&swap_avail_lock);
1072                         if (plist_node_empty(&si->avail_lists[node])) {
1073                                 spin_unlock(&si->lock);
1074                                 goto nextsi;
1075                         }
1076                         WARN(!si->highest_bit,
1077                              "swap_info %d in list but !highest_bit\n",
1078                              si->type);
1079                         WARN(!(si->flags & SWP_WRITEOK),
1080                              "swap_info %d in list but !SWP_WRITEOK\n",
1081                              si->type);
1082                         __del_from_avail_list(si);
1083                         spin_unlock(&si->lock);
1084                         goto nextsi;
1085                 }
1086                 if (size == SWAPFILE_CLUSTER) {
1087                         if (si->flags & SWP_BLKDEV)
1088                                 n_ret = swap_alloc_cluster(si, swp_entries);
1089                 } else
1090                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1091                                                     n_goal, swp_entries);
1092                 spin_unlock(&si->lock);
1093                 if (n_ret || size == SWAPFILE_CLUSTER)
1094                         goto check_out;
1095                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1096                         si->type);
1097
1098                 spin_lock(&swap_avail_lock);
1099 nextsi:
1100                 /*
1101                  * if we got here, it's likely that si was almost full before,
1102                  * and since scan_swap_map_slots() can drop the si->lock,
1103                  * multiple callers probably all tried to get a page from the
1104                  * same si and it filled up before we could get one; or, the si
1105                  * filled up between us dropping swap_avail_lock and taking
1106                  * si->lock. Since we dropped the swap_avail_lock, the
1107                  * swap_avail_head list may have been modified; so if next is
1108                  * still in the swap_avail_head list then try it, otherwise
1109                  * start over if we have not gotten any slots.
1110                  */
1111                 if (plist_node_empty(&next->avail_lists[node]))
1112                         goto start_over;
1113         }
1114
1115         spin_unlock(&swap_avail_lock);
1116
1117 check_out:
1118         if (n_ret < n_goal)
1119                 atomic_long_add((long)(n_goal - n_ret) * size,
1120                                 &nr_swap_pages);
1121 noswap:
1122         return n_ret;
1123 }
1124
1125 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1126 {
1127         struct swap_info_struct *p;
1128         unsigned long offset;
1129
1130         if (!entry.val)
1131                 goto out;
1132         p = swp_swap_info(entry);
1133         if (!p)
1134                 goto bad_nofile;
1135         if (data_race(!(p->flags & SWP_USED)))
1136                 goto bad_device;
1137         offset = swp_offset(entry);
1138         if (offset >= p->max)
1139                 goto bad_offset;
1140         return p;
1141
1142 bad_offset:
1143         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1144         goto out;
1145 bad_device:
1146         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1147         goto out;
1148 bad_nofile:
1149         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1150 out:
1151         return NULL;
1152 }
1153
1154 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1155 {
1156         struct swap_info_struct *p;
1157
1158         p = __swap_info_get(entry);
1159         if (!p)
1160                 goto out;
1161         if (data_race(!p->swap_map[swp_offset(entry)]))
1162                 goto bad_free;
1163         return p;
1164
1165 bad_free:
1166         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1167 out:
1168         return NULL;
1169 }
1170
1171 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1172                                         struct swap_info_struct *q)
1173 {
1174         struct swap_info_struct *p;
1175
1176         p = _swap_info_get(entry);
1177
1178         if (p != q) {
1179                 if (q != NULL)
1180                         spin_unlock(&q->lock);
1181                 if (p != NULL)
1182                         spin_lock(&p->lock);
1183         }
1184         return p;
1185 }
1186
1187 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1188                                               unsigned long offset,
1189                                               unsigned char usage)
1190 {
1191         unsigned char count;
1192         unsigned char has_cache;
1193
1194         count = p->swap_map[offset];
1195
1196         has_cache = count & SWAP_HAS_CACHE;
1197         count &= ~SWAP_HAS_CACHE;
1198
1199         if (usage == SWAP_HAS_CACHE) {
1200                 VM_BUG_ON(!has_cache);
1201                 has_cache = 0;
1202         } else if (count == SWAP_MAP_SHMEM) {
1203                 /*
1204                  * Or we could insist on shmem.c using a special
1205                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1206                  */
1207                 count = 0;
1208         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1209                 if (count == COUNT_CONTINUED) {
1210                         if (swap_count_continued(p, offset, count))
1211                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1212                         else
1213                                 count = SWAP_MAP_MAX;
1214                 } else
1215                         count--;
1216         }
1217
1218         usage = count | has_cache;
1219         if (usage)
1220                 WRITE_ONCE(p->swap_map[offset], usage);
1221         else
1222                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1223
1224         return usage;
1225 }
1226
1227 /*
1228  * Check whether swap entry is valid in the swap device.  If so,
1229  * return pointer to swap_info_struct, and keep the swap entry valid
1230  * via preventing the swap device from being swapoff, until
1231  * put_swap_device() is called.  Otherwise return NULL.
1232  *
1233  * Notice that swapoff or swapoff+swapon can still happen before the
1234  * percpu_ref_tryget_live() in get_swap_device() or after the
1235  * percpu_ref_put() in put_swap_device() if there isn't any other way
1236  * to prevent swapoff, such as page lock, page table lock, etc.  The
1237  * caller must be prepared for that.  For example, the following
1238  * situation is possible.
1239  *
1240  *   CPU1                               CPU2
1241  *   do_swap_page()
1242  *     ...                              swapoff+swapon
1243  *     __read_swap_cache_async()
1244  *       swapcache_prepare()
1245  *         __swap_duplicate()
1246  *           // check swap_map
1247  *     // verify PTE not changed
1248  *
1249  * In __swap_duplicate(), the swap_map need to be checked before
1250  * changing partly because the specified swap entry may be for another
1251  * swap device which has been swapoff.  And in do_swap_page(), after
1252  * the page is read from the swap device, the PTE is verified not
1253  * changed with the page table locked to check whether the swap device
1254  * has been swapoff or swapoff+swapon.
1255  */
1256 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1257 {
1258         struct swap_info_struct *si;
1259         unsigned long offset;
1260
1261         if (!entry.val)
1262                 goto out;
1263         si = swp_swap_info(entry);
1264         if (!si)
1265                 goto bad_nofile;
1266         if (!percpu_ref_tryget_live(&si->users))
1267                 goto out;
1268         /*
1269          * Guarantee the si->users are checked before accessing other
1270          * fields of swap_info_struct.
1271          *
1272          * Paired with the spin_unlock() after setup_swap_info() in
1273          * enable_swap_info().
1274          */
1275         smp_rmb();
1276         offset = swp_offset(entry);
1277         if (offset >= si->max)
1278                 goto put_out;
1279
1280         return si;
1281 bad_nofile:
1282         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1283 out:
1284         return NULL;
1285 put_out:
1286         percpu_ref_put(&si->users);
1287         return NULL;
1288 }
1289
1290 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1291                                        swp_entry_t entry)
1292 {
1293         struct swap_cluster_info *ci;
1294         unsigned long offset = swp_offset(entry);
1295         unsigned char usage;
1296
1297         ci = lock_cluster_or_swap_info(p, offset);
1298         usage = __swap_entry_free_locked(p, offset, 1);
1299         unlock_cluster_or_swap_info(p, ci);
1300         if (!usage)
1301                 free_swap_slot(entry);
1302
1303         return usage;
1304 }
1305
1306 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1307 {
1308         struct swap_cluster_info *ci;
1309         unsigned long offset = swp_offset(entry);
1310         unsigned char count;
1311
1312         ci = lock_cluster(p, offset);
1313         count = p->swap_map[offset];
1314         VM_BUG_ON(count != SWAP_HAS_CACHE);
1315         p->swap_map[offset] = 0;
1316         dec_cluster_info_page(p, p->cluster_info, offset);
1317         unlock_cluster(ci);
1318
1319         mem_cgroup_uncharge_swap(entry, 1);
1320         swap_range_free(p, offset, 1);
1321 }
1322
1323 /*
1324  * Caller has made sure that the swap device corresponding to entry
1325  * is still around or has not been recycled.
1326  */
1327 void swap_free(swp_entry_t entry)
1328 {
1329         struct swap_info_struct *p;
1330
1331         p = _swap_info_get(entry);
1332         if (p)
1333                 __swap_entry_free(p, entry);
1334 }
1335
1336 /*
1337  * Called after dropping swapcache to decrease refcnt to swap entries.
1338  */
1339 void put_swap_page(struct page *page, swp_entry_t entry)
1340 {
1341         unsigned long offset = swp_offset(entry);
1342         unsigned long idx = offset / SWAPFILE_CLUSTER;
1343         struct swap_cluster_info *ci;
1344         struct swap_info_struct *si;
1345         unsigned char *map;
1346         unsigned int i, free_entries = 0;
1347         unsigned char val;
1348         int size = swap_entry_size(thp_nr_pages(page));
1349
1350         si = _swap_info_get(entry);
1351         if (!si)
1352                 return;
1353
1354         ci = lock_cluster_or_swap_info(si, offset);
1355         if (size == SWAPFILE_CLUSTER) {
1356                 VM_BUG_ON(!cluster_is_huge(ci));
1357                 map = si->swap_map + offset;
1358                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1359                         val = map[i];
1360                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1361                         if (val == SWAP_HAS_CACHE)
1362                                 free_entries++;
1363                 }
1364                 cluster_clear_huge(ci);
1365                 if (free_entries == SWAPFILE_CLUSTER) {
1366                         unlock_cluster_or_swap_info(si, ci);
1367                         spin_lock(&si->lock);
1368                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1369                         swap_free_cluster(si, idx);
1370                         spin_unlock(&si->lock);
1371                         return;
1372                 }
1373         }
1374         for (i = 0; i < size; i++, entry.val++) {
1375                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1376                         unlock_cluster_or_swap_info(si, ci);
1377                         free_swap_slot(entry);
1378                         if (i == size - 1)
1379                                 return;
1380                         lock_cluster_or_swap_info(si, offset);
1381                 }
1382         }
1383         unlock_cluster_or_swap_info(si, ci);
1384 }
1385
1386 #ifdef CONFIG_THP_SWAP
1387 int split_swap_cluster(swp_entry_t entry)
1388 {
1389         struct swap_info_struct *si;
1390         struct swap_cluster_info *ci;
1391         unsigned long offset = swp_offset(entry);
1392
1393         si = _swap_info_get(entry);
1394         if (!si)
1395                 return -EBUSY;
1396         ci = lock_cluster(si, offset);
1397         cluster_clear_huge(ci);
1398         unlock_cluster(ci);
1399         return 0;
1400 }
1401 #endif
1402
1403 static int swp_entry_cmp(const void *ent1, const void *ent2)
1404 {
1405         const swp_entry_t *e1 = ent1, *e2 = ent2;
1406
1407         return (int)swp_type(*e1) - (int)swp_type(*e2);
1408 }
1409
1410 void swapcache_free_entries(swp_entry_t *entries, int n)
1411 {
1412         struct swap_info_struct *p, *prev;
1413         int i;
1414
1415         if (n <= 0)
1416                 return;
1417
1418         prev = NULL;
1419         p = NULL;
1420
1421         /*
1422          * Sort swap entries by swap device, so each lock is only taken once.
1423          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1424          * so low that it isn't necessary to optimize further.
1425          */
1426         if (nr_swapfiles > 1)
1427                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1428         for (i = 0; i < n; ++i) {
1429                 p = swap_info_get_cont(entries[i], prev);
1430                 if (p)
1431                         swap_entry_free(p, entries[i]);
1432                 prev = p;
1433         }
1434         if (p)
1435                 spin_unlock(&p->lock);
1436 }
1437
1438 /*
1439  * How many references to page are currently swapped out?
1440  * This does not give an exact answer when swap count is continued,
1441  * but does include the high COUNT_CONTINUED flag to allow for that.
1442  */
1443 int page_swapcount(struct page *page)
1444 {
1445         int count = 0;
1446         struct swap_info_struct *p;
1447         struct swap_cluster_info *ci;
1448         swp_entry_t entry;
1449         unsigned long offset;
1450
1451         entry.val = page_private(page);
1452         p = _swap_info_get(entry);
1453         if (p) {
1454                 offset = swp_offset(entry);
1455                 ci = lock_cluster_or_swap_info(p, offset);
1456                 count = swap_count(p->swap_map[offset]);
1457                 unlock_cluster_or_swap_info(p, ci);
1458         }
1459         return count;
1460 }
1461
1462 int __swap_count(swp_entry_t entry)
1463 {
1464         struct swap_info_struct *si;
1465         pgoff_t offset = swp_offset(entry);
1466         int count = 0;
1467
1468         si = get_swap_device(entry);
1469         if (si) {
1470                 count = swap_count(si->swap_map[offset]);
1471                 put_swap_device(si);
1472         }
1473         return count;
1474 }
1475
1476 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1477 {
1478         int count = 0;
1479         pgoff_t offset = swp_offset(entry);
1480         struct swap_cluster_info *ci;
1481
1482         ci = lock_cluster_or_swap_info(si, offset);
1483         count = swap_count(si->swap_map[offset]);
1484         unlock_cluster_or_swap_info(si, ci);
1485         return count;
1486 }
1487
1488 /*
1489  * How many references to @entry are currently swapped out?
1490  * This does not give an exact answer when swap count is continued,
1491  * but does include the high COUNT_CONTINUED flag to allow for that.
1492  */
1493 int __swp_swapcount(swp_entry_t entry)
1494 {
1495         int count = 0;
1496         struct swap_info_struct *si;
1497
1498         si = get_swap_device(entry);
1499         if (si) {
1500                 count = swap_swapcount(si, entry);
1501                 put_swap_device(si);
1502         }
1503         return count;
1504 }
1505
1506 /*
1507  * How many references to @entry are currently swapped out?
1508  * This considers COUNT_CONTINUED so it returns exact answer.
1509  */
1510 int swp_swapcount(swp_entry_t entry)
1511 {
1512         int count, tmp_count, n;
1513         struct swap_info_struct *p;
1514         struct swap_cluster_info *ci;
1515         struct page *page;
1516         pgoff_t offset;
1517         unsigned char *map;
1518
1519         p = _swap_info_get(entry);
1520         if (!p)
1521                 return 0;
1522
1523         offset = swp_offset(entry);
1524
1525         ci = lock_cluster_or_swap_info(p, offset);
1526
1527         count = swap_count(p->swap_map[offset]);
1528         if (!(count & COUNT_CONTINUED))
1529                 goto out;
1530
1531         count &= ~COUNT_CONTINUED;
1532         n = SWAP_MAP_MAX + 1;
1533
1534         page = vmalloc_to_page(p->swap_map + offset);
1535         offset &= ~PAGE_MASK;
1536         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1537
1538         do {
1539                 page = list_next_entry(page, lru);
1540                 map = kmap_atomic(page);
1541                 tmp_count = map[offset];
1542                 kunmap_atomic(map);
1543
1544                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1545                 n *= (SWAP_CONT_MAX + 1);
1546         } while (tmp_count & COUNT_CONTINUED);
1547 out:
1548         unlock_cluster_or_swap_info(p, ci);
1549         return count;
1550 }
1551
1552 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1553                                          swp_entry_t entry)
1554 {
1555         struct swap_cluster_info *ci;
1556         unsigned char *map = si->swap_map;
1557         unsigned long roffset = swp_offset(entry);
1558         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1559         int i;
1560         bool ret = false;
1561
1562         ci = lock_cluster_or_swap_info(si, offset);
1563         if (!ci || !cluster_is_huge(ci)) {
1564                 if (swap_count(map[roffset]))
1565                         ret = true;
1566                 goto unlock_out;
1567         }
1568         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1569                 if (swap_count(map[offset + i])) {
1570                         ret = true;
1571                         break;
1572                 }
1573         }
1574 unlock_out:
1575         unlock_cluster_or_swap_info(si, ci);
1576         return ret;
1577 }
1578
1579 static bool page_swapped(struct page *page)
1580 {
1581         swp_entry_t entry;
1582         struct swap_info_struct *si;
1583
1584         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1585                 return page_swapcount(page) != 0;
1586
1587         page = compound_head(page);
1588         entry.val = page_private(page);
1589         si = _swap_info_get(entry);
1590         if (si)
1591                 return swap_page_trans_huge_swapped(si, entry);
1592         return false;
1593 }
1594
1595 /*
1596  * If swap is getting full, or if there are no more mappings of this page,
1597  * then try_to_free_swap is called to free its swap space.
1598  */
1599 int try_to_free_swap(struct page *page)
1600 {
1601         VM_BUG_ON_PAGE(!PageLocked(page), page);
1602
1603         if (!PageSwapCache(page))
1604                 return 0;
1605         if (PageWriteback(page))
1606                 return 0;
1607         if (page_swapped(page))
1608                 return 0;
1609
1610         /*
1611          * Once hibernation has begun to create its image of memory,
1612          * there's a danger that one of the calls to try_to_free_swap()
1613          * - most probably a call from __try_to_reclaim_swap() while
1614          * hibernation is allocating its own swap pages for the image,
1615          * but conceivably even a call from memory reclaim - will free
1616          * the swap from a page which has already been recorded in the
1617          * image as a clean swapcache page, and then reuse its swap for
1618          * another page of the image.  On waking from hibernation, the
1619          * original page might be freed under memory pressure, then
1620          * later read back in from swap, now with the wrong data.
1621          *
1622          * Hibernation suspends storage while it is writing the image
1623          * to disk so check that here.
1624          */
1625         if (pm_suspended_storage())
1626                 return 0;
1627
1628         page = compound_head(page);
1629         delete_from_swap_cache(page);
1630         SetPageDirty(page);
1631         return 1;
1632 }
1633
1634 /*
1635  * Free the swap entry like above, but also try to
1636  * free the page cache entry if it is the last user.
1637  */
1638 int free_swap_and_cache(swp_entry_t entry)
1639 {
1640         struct swap_info_struct *p;
1641         unsigned char count;
1642
1643         if (non_swap_entry(entry))
1644                 return 1;
1645
1646         p = _swap_info_get(entry);
1647         if (p) {
1648                 count = __swap_entry_free(p, entry);
1649                 if (count == SWAP_HAS_CACHE &&
1650                     !swap_page_trans_huge_swapped(p, entry))
1651                         __try_to_reclaim_swap(p, swp_offset(entry),
1652                                               TTRS_UNMAPPED | TTRS_FULL);
1653         }
1654         return p != NULL;
1655 }
1656
1657 #ifdef CONFIG_HIBERNATION
1658
1659 swp_entry_t get_swap_page_of_type(int type)
1660 {
1661         struct swap_info_struct *si = swap_type_to_swap_info(type);
1662         swp_entry_t entry = {0};
1663
1664         if (!si)
1665                 goto fail;
1666
1667         /* This is called for allocating swap entry, not cache */
1668         spin_lock(&si->lock);
1669         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1670                 atomic_long_dec(&nr_swap_pages);
1671         spin_unlock(&si->lock);
1672 fail:
1673         return entry;
1674 }
1675
1676 /*
1677  * Find the swap type that corresponds to given device (if any).
1678  *
1679  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1680  * from 0, in which the swap header is expected to be located.
1681  *
1682  * This is needed for the suspend to disk (aka swsusp).
1683  */
1684 int swap_type_of(dev_t device, sector_t offset)
1685 {
1686         int type;
1687
1688         if (!device)
1689                 return -1;
1690
1691         spin_lock(&swap_lock);
1692         for (type = 0; type < nr_swapfiles; type++) {
1693                 struct swap_info_struct *sis = swap_info[type];
1694
1695                 if (!(sis->flags & SWP_WRITEOK))
1696                         continue;
1697
1698                 if (device == sis->bdev->bd_dev) {
1699                         struct swap_extent *se = first_se(sis);
1700
1701                         if (se->start_block == offset) {
1702                                 spin_unlock(&swap_lock);
1703                                 return type;
1704                         }
1705                 }
1706         }
1707         spin_unlock(&swap_lock);
1708         return -ENODEV;
1709 }
1710
1711 int find_first_swap(dev_t *device)
1712 {
1713         int type;
1714
1715         spin_lock(&swap_lock);
1716         for (type = 0; type < nr_swapfiles; type++) {
1717                 struct swap_info_struct *sis = swap_info[type];
1718
1719                 if (!(sis->flags & SWP_WRITEOK))
1720                         continue;
1721                 *device = sis->bdev->bd_dev;
1722                 spin_unlock(&swap_lock);
1723                 return type;
1724         }
1725         spin_unlock(&swap_lock);
1726         return -ENODEV;
1727 }
1728
1729 /*
1730  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1731  * corresponding to given index in swap_info (swap type).
1732  */
1733 sector_t swapdev_block(int type, pgoff_t offset)
1734 {
1735         struct swap_info_struct *si = swap_type_to_swap_info(type);
1736         struct swap_extent *se;
1737
1738         if (!si || !(si->flags & SWP_WRITEOK))
1739                 return 0;
1740         se = offset_to_swap_extent(si, offset);
1741         return se->start_block + (offset - se->start_page);
1742 }
1743
1744 /*
1745  * Return either the total number of swap pages of given type, or the number
1746  * of free pages of that type (depending on @free)
1747  *
1748  * This is needed for software suspend
1749  */
1750 unsigned int count_swap_pages(int type, int free)
1751 {
1752         unsigned int n = 0;
1753
1754         spin_lock(&swap_lock);
1755         if ((unsigned int)type < nr_swapfiles) {
1756                 struct swap_info_struct *sis = swap_info[type];
1757
1758                 spin_lock(&sis->lock);
1759                 if (sis->flags & SWP_WRITEOK) {
1760                         n = sis->pages;
1761                         if (free)
1762                                 n -= sis->inuse_pages;
1763                 }
1764                 spin_unlock(&sis->lock);
1765         }
1766         spin_unlock(&swap_lock);
1767         return n;
1768 }
1769 #endif /* CONFIG_HIBERNATION */
1770
1771 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1772 {
1773         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1774 }
1775
1776 /*
1777  * No need to decide whether this PTE shares the swap entry with others,
1778  * just let do_wp_page work it out if a write is requested later - to
1779  * force COW, vm_page_prot omits write permission from any private vma.
1780  */
1781 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1782                 unsigned long addr, swp_entry_t entry, struct page *page)
1783 {
1784         struct page *swapcache;
1785         spinlock_t *ptl;
1786         pte_t *pte;
1787         int ret = 1;
1788
1789         swapcache = page;
1790         page = ksm_might_need_to_copy(page, vma, addr);
1791         if (unlikely(!page))
1792                 return -ENOMEM;
1793
1794         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1795         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1796                 ret = 0;
1797                 goto out;
1798         }
1799
1800         /* See do_swap_page() */
1801         BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1802         BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1803
1804         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1805         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1806         get_page(page);
1807         if (page == swapcache) {
1808                 rmap_t rmap_flags = RMAP_NONE;
1809
1810                 /*
1811                  * See do_swap_page(): PageWriteback() would be problematic.
1812                  * However, we do a wait_on_page_writeback() just before this
1813                  * call and have the page locked.
1814                  */
1815                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1816                 if (pte_swp_exclusive(*pte))
1817                         rmap_flags |= RMAP_EXCLUSIVE;
1818
1819                 page_add_anon_rmap(page, vma, addr, rmap_flags);
1820         } else { /* ksm created a completely new copy */
1821                 page_add_new_anon_rmap(page, vma, addr);
1822                 lru_cache_add_inactive_or_unevictable(page, vma);
1823         }
1824         set_pte_at(vma->vm_mm, addr, pte,
1825                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1826         swap_free(entry);
1827 out:
1828         pte_unmap_unlock(pte, ptl);
1829         if (page != swapcache) {
1830                 unlock_page(page);
1831                 put_page(page);
1832         }
1833         return ret;
1834 }
1835
1836 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1837                         unsigned long addr, unsigned long end,
1838                         unsigned int type)
1839 {
1840         struct page *page;
1841         swp_entry_t entry;
1842         pte_t *pte;
1843         struct swap_info_struct *si;
1844         unsigned long offset;
1845         int ret = 0;
1846         volatile unsigned char *swap_map;
1847
1848         si = swap_info[type];
1849         pte = pte_offset_map(pmd, addr);
1850         do {
1851                 if (!is_swap_pte(*pte))
1852                         continue;
1853
1854                 entry = pte_to_swp_entry(*pte);
1855                 if (swp_type(entry) != type)
1856                         continue;
1857
1858                 offset = swp_offset(entry);
1859                 pte_unmap(pte);
1860                 swap_map = &si->swap_map[offset];
1861                 page = lookup_swap_cache(entry, vma, addr);
1862                 if (!page) {
1863                         struct vm_fault vmf = {
1864                                 .vma = vma,
1865                                 .address = addr,
1866                                 .real_address = addr,
1867                                 .pmd = pmd,
1868                         };
1869
1870                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1871                                                 &vmf);
1872                 }
1873                 if (!page) {
1874                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1875                                 goto try_next;
1876                         return -ENOMEM;
1877                 }
1878
1879                 lock_page(page);
1880                 wait_on_page_writeback(page);
1881                 ret = unuse_pte(vma, pmd, addr, entry, page);
1882                 if (ret < 0) {
1883                         unlock_page(page);
1884                         put_page(page);
1885                         goto out;
1886                 }
1887
1888                 try_to_free_swap(page);
1889                 unlock_page(page);
1890                 put_page(page);
1891 try_next:
1892                 pte = pte_offset_map(pmd, addr);
1893         } while (pte++, addr += PAGE_SIZE, addr != end);
1894         pte_unmap(pte - 1);
1895
1896         ret = 0;
1897 out:
1898         return ret;
1899 }
1900
1901 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1902                                 unsigned long addr, unsigned long end,
1903                                 unsigned int type)
1904 {
1905         pmd_t *pmd;
1906         unsigned long next;
1907         int ret;
1908
1909         pmd = pmd_offset(pud, addr);
1910         do {
1911                 cond_resched();
1912                 next = pmd_addr_end(addr, end);
1913                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1914                         continue;
1915                 ret = unuse_pte_range(vma, pmd, addr, next, type);
1916                 if (ret)
1917                         return ret;
1918         } while (pmd++, addr = next, addr != end);
1919         return 0;
1920 }
1921
1922 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1923                                 unsigned long addr, unsigned long end,
1924                                 unsigned int type)
1925 {
1926         pud_t *pud;
1927         unsigned long next;
1928         int ret;
1929
1930         pud = pud_offset(p4d, addr);
1931         do {
1932                 next = pud_addr_end(addr, end);
1933                 if (pud_none_or_clear_bad(pud))
1934                         continue;
1935                 ret = unuse_pmd_range(vma, pud, addr, next, type);
1936                 if (ret)
1937                         return ret;
1938         } while (pud++, addr = next, addr != end);
1939         return 0;
1940 }
1941
1942 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1943                                 unsigned long addr, unsigned long end,
1944                                 unsigned int type)
1945 {
1946         p4d_t *p4d;
1947         unsigned long next;
1948         int ret;
1949
1950         p4d = p4d_offset(pgd, addr);
1951         do {
1952                 next = p4d_addr_end(addr, end);
1953                 if (p4d_none_or_clear_bad(p4d))
1954                         continue;
1955                 ret = unuse_pud_range(vma, p4d, addr, next, type);
1956                 if (ret)
1957                         return ret;
1958         } while (p4d++, addr = next, addr != end);
1959         return 0;
1960 }
1961
1962 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1963 {
1964         pgd_t *pgd;
1965         unsigned long addr, end, next;
1966         int ret;
1967
1968         addr = vma->vm_start;
1969         end = vma->vm_end;
1970
1971         pgd = pgd_offset(vma->vm_mm, addr);
1972         do {
1973                 next = pgd_addr_end(addr, end);
1974                 if (pgd_none_or_clear_bad(pgd))
1975                         continue;
1976                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1977                 if (ret)
1978                         return ret;
1979         } while (pgd++, addr = next, addr != end);
1980         return 0;
1981 }
1982
1983 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1984 {
1985         struct vm_area_struct *vma;
1986         int ret = 0;
1987
1988         mmap_read_lock(mm);
1989         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1990                 if (vma->anon_vma) {
1991                         ret = unuse_vma(vma, type);
1992                         if (ret)
1993                                 break;
1994                 }
1995                 cond_resched();
1996         }
1997         mmap_read_unlock(mm);
1998         return ret;
1999 }
2000
2001 /*
2002  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2003  * from current position to next entry still in use. Return 0
2004  * if there are no inuse entries after prev till end of the map.
2005  */
2006 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2007                                         unsigned int prev)
2008 {
2009         unsigned int i;
2010         unsigned char count;
2011
2012         /*
2013          * No need for swap_lock here: we're just looking
2014          * for whether an entry is in use, not modifying it; false
2015          * hits are okay, and sys_swapoff() has already prevented new
2016          * allocations from this area (while holding swap_lock).
2017          */
2018         for (i = prev + 1; i < si->max; i++) {
2019                 count = READ_ONCE(si->swap_map[i]);
2020                 if (count && swap_count(count) != SWAP_MAP_BAD)
2021                         break;
2022                 if ((i % LATENCY_LIMIT) == 0)
2023                         cond_resched();
2024         }
2025
2026         if (i == si->max)
2027                 i = 0;
2028
2029         return i;
2030 }
2031
2032 static int try_to_unuse(unsigned int type)
2033 {
2034         struct mm_struct *prev_mm;
2035         struct mm_struct *mm;
2036         struct list_head *p;
2037         int retval = 0;
2038         struct swap_info_struct *si = swap_info[type];
2039         struct page *page;
2040         swp_entry_t entry;
2041         unsigned int i;
2042
2043         if (!READ_ONCE(si->inuse_pages))
2044                 return 0;
2045
2046 retry:
2047         retval = shmem_unuse(type);
2048         if (retval)
2049                 return retval;
2050
2051         prev_mm = &init_mm;
2052         mmget(prev_mm);
2053
2054         spin_lock(&mmlist_lock);
2055         p = &init_mm.mmlist;
2056         while (READ_ONCE(si->inuse_pages) &&
2057                !signal_pending(current) &&
2058                (p = p->next) != &init_mm.mmlist) {
2059
2060                 mm = list_entry(p, struct mm_struct, mmlist);
2061                 if (!mmget_not_zero(mm))
2062                         continue;
2063                 spin_unlock(&mmlist_lock);
2064                 mmput(prev_mm);
2065                 prev_mm = mm;
2066                 retval = unuse_mm(mm, type);
2067                 if (retval) {
2068                         mmput(prev_mm);
2069                         return retval;
2070                 }
2071
2072                 /*
2073                  * Make sure that we aren't completely killing
2074                  * interactive performance.
2075                  */
2076                 cond_resched();
2077                 spin_lock(&mmlist_lock);
2078         }
2079         spin_unlock(&mmlist_lock);
2080
2081         mmput(prev_mm);
2082
2083         i = 0;
2084         while (READ_ONCE(si->inuse_pages) &&
2085                !signal_pending(current) &&
2086                (i = find_next_to_unuse(si, i)) != 0) {
2087
2088                 entry = swp_entry(type, i);
2089                 page = find_get_page(swap_address_space(entry), i);
2090                 if (!page)
2091                         continue;
2092
2093                 /*
2094                  * It is conceivable that a racing task removed this page from
2095                  * swap cache just before we acquired the page lock. The page
2096                  * might even be back in swap cache on another swap area. But
2097                  * that is okay, try_to_free_swap() only removes stale pages.
2098                  */
2099                 lock_page(page);
2100                 wait_on_page_writeback(page);
2101                 try_to_free_swap(page);
2102                 unlock_page(page);
2103                 put_page(page);
2104         }
2105
2106         /*
2107          * Lets check again to see if there are still swap entries in the map.
2108          * If yes, we would need to do retry the unuse logic again.
2109          * Under global memory pressure, swap entries can be reinserted back
2110          * into process space after the mmlist loop above passes over them.
2111          *
2112          * Limit the number of retries? No: when mmget_not_zero() above fails,
2113          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2114          * at its own independent pace; and even shmem_writepage() could have
2115          * been preempted after get_swap_page(), temporarily hiding that swap.
2116          * It's easy and robust (though cpu-intensive) just to keep retrying.
2117          */
2118         if (READ_ONCE(si->inuse_pages)) {
2119                 if (!signal_pending(current))
2120                         goto retry;
2121                 return -EINTR;
2122         }
2123
2124         return 0;
2125 }
2126
2127 /*
2128  * After a successful try_to_unuse, if no swap is now in use, we know
2129  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2130  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2131  * added to the mmlist just after page_duplicate - before would be racy.
2132  */
2133 static void drain_mmlist(void)
2134 {
2135         struct list_head *p, *next;
2136         unsigned int type;
2137
2138         for (type = 0; type < nr_swapfiles; type++)
2139                 if (swap_info[type]->inuse_pages)
2140                         return;
2141         spin_lock(&mmlist_lock);
2142         list_for_each_safe(p, next, &init_mm.mmlist)
2143                 list_del_init(p);
2144         spin_unlock(&mmlist_lock);
2145 }
2146
2147 /*
2148  * Free all of a swapdev's extent information
2149  */
2150 static void destroy_swap_extents(struct swap_info_struct *sis)
2151 {
2152         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2153                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2154                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2155
2156                 rb_erase(rb, &sis->swap_extent_root);
2157                 kfree(se);
2158         }
2159
2160         if (sis->flags & SWP_ACTIVATED) {
2161                 struct file *swap_file = sis->swap_file;
2162                 struct address_space *mapping = swap_file->f_mapping;
2163
2164                 sis->flags &= ~SWP_ACTIVATED;
2165                 if (mapping->a_ops->swap_deactivate)
2166                         mapping->a_ops->swap_deactivate(swap_file);
2167         }
2168 }
2169
2170 /*
2171  * Add a block range (and the corresponding page range) into this swapdev's
2172  * extent tree.
2173  *
2174  * This function rather assumes that it is called in ascending page order.
2175  */
2176 int
2177 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2178                 unsigned long nr_pages, sector_t start_block)
2179 {
2180         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2181         struct swap_extent *se;
2182         struct swap_extent *new_se;
2183
2184         /*
2185          * place the new node at the right most since the
2186          * function is called in ascending page order.
2187          */
2188         while (*link) {
2189                 parent = *link;
2190                 link = &parent->rb_right;
2191         }
2192
2193         if (parent) {
2194                 se = rb_entry(parent, struct swap_extent, rb_node);
2195                 BUG_ON(se->start_page + se->nr_pages != start_page);
2196                 if (se->start_block + se->nr_pages == start_block) {
2197                         /* Merge it */
2198                         se->nr_pages += nr_pages;
2199                         return 0;
2200                 }
2201         }
2202
2203         /* No merge, insert a new extent. */
2204         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2205         if (new_se == NULL)
2206                 return -ENOMEM;
2207         new_se->start_page = start_page;
2208         new_se->nr_pages = nr_pages;
2209         new_se->start_block = start_block;
2210
2211         rb_link_node(&new_se->rb_node, parent, link);
2212         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2213         return 1;
2214 }
2215 EXPORT_SYMBOL_GPL(add_swap_extent);
2216
2217 /*
2218  * A `swap extent' is a simple thing which maps a contiguous range of pages
2219  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2220  * is built at swapon time and is then used at swap_writepage/swap_readpage
2221  * time for locating where on disk a page belongs.
2222  *
2223  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2224  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2225  * swap files identically.
2226  *
2227  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2228  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2229  * swapfiles are handled *identically* after swapon time.
2230  *
2231  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2232  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2233  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2234  * requirements, they are simply tossed out - we will never use those blocks
2235  * for swapping.
2236  *
2237  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2238  * prevents users from writing to the swap device, which will corrupt memory.
2239  *
2240  * The amount of disk space which a single swap extent represents varies.
2241  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2242  * extents in the list.  To avoid much list walking, we cache the previous
2243  * search location in `curr_swap_extent', and start new searches from there.
2244  * This is extremely effective.  The average number of iterations in
2245  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2246  */
2247 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2248 {
2249         struct file *swap_file = sis->swap_file;
2250         struct address_space *mapping = swap_file->f_mapping;
2251         struct inode *inode = mapping->host;
2252         int ret;
2253
2254         if (S_ISBLK(inode->i_mode)) {
2255                 ret = add_swap_extent(sis, 0, sis->max, 0);
2256                 *span = sis->pages;
2257                 return ret;
2258         }
2259
2260         if (mapping->a_ops->swap_activate) {
2261                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2262                 if (ret < 0)
2263                         return ret;
2264                 sis->flags |= SWP_ACTIVATED;
2265                 if ((sis->flags & SWP_FS_OPS) &&
2266                     sio_pool_init() != 0) {
2267                         destroy_swap_extents(sis);
2268                         return -ENOMEM;
2269                 }
2270                 return ret;
2271         }
2272
2273         return generic_swapfile_activate(sis, swap_file, span);
2274 }
2275
2276 static int swap_node(struct swap_info_struct *p)
2277 {
2278         struct block_device *bdev;
2279
2280         if (p->bdev)
2281                 bdev = p->bdev;
2282         else
2283                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2284
2285         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2286 }
2287
2288 static void setup_swap_info(struct swap_info_struct *p, int prio,
2289                             unsigned char *swap_map,
2290                             struct swap_cluster_info *cluster_info)
2291 {
2292         int i;
2293
2294         if (prio >= 0)
2295                 p->prio = prio;
2296         else
2297                 p->prio = --least_priority;
2298         /*
2299          * the plist prio is negated because plist ordering is
2300          * low-to-high, while swap ordering is high-to-low
2301          */
2302         p->list.prio = -p->prio;
2303         for_each_node(i) {
2304                 if (p->prio >= 0)
2305                         p->avail_lists[i].prio = -p->prio;
2306                 else {
2307                         if (swap_node(p) == i)
2308                                 p->avail_lists[i].prio = 1;
2309                         else
2310                                 p->avail_lists[i].prio = -p->prio;
2311                 }
2312         }
2313         p->swap_map = swap_map;
2314         p->cluster_info = cluster_info;
2315 }
2316
2317 static void _enable_swap_info(struct swap_info_struct *p)
2318 {
2319         p->flags |= SWP_WRITEOK;
2320         atomic_long_add(p->pages, &nr_swap_pages);
2321         total_swap_pages += p->pages;
2322
2323         assert_spin_locked(&swap_lock);
2324         /*
2325          * both lists are plists, and thus priority ordered.
2326          * swap_active_head needs to be priority ordered for swapoff(),
2327          * which on removal of any swap_info_struct with an auto-assigned
2328          * (i.e. negative) priority increments the auto-assigned priority
2329          * of any lower-priority swap_info_structs.
2330          * swap_avail_head needs to be priority ordered for get_swap_page(),
2331          * which allocates swap pages from the highest available priority
2332          * swap_info_struct.
2333          */
2334         plist_add(&p->list, &swap_active_head);
2335         add_to_avail_list(p);
2336 }
2337
2338 static void enable_swap_info(struct swap_info_struct *p, int prio,
2339                                 unsigned char *swap_map,
2340                                 struct swap_cluster_info *cluster_info,
2341                                 unsigned long *frontswap_map)
2342 {
2343         if (IS_ENABLED(CONFIG_FRONTSWAP))
2344                 frontswap_init(p->type, frontswap_map);
2345         spin_lock(&swap_lock);
2346         spin_lock(&p->lock);
2347         setup_swap_info(p, prio, swap_map, cluster_info);
2348         spin_unlock(&p->lock);
2349         spin_unlock(&swap_lock);
2350         /*
2351          * Finished initializing swap device, now it's safe to reference it.
2352          */
2353         percpu_ref_resurrect(&p->users);
2354         spin_lock(&swap_lock);
2355         spin_lock(&p->lock);
2356         _enable_swap_info(p);
2357         spin_unlock(&p->lock);
2358         spin_unlock(&swap_lock);
2359 }
2360
2361 static void reinsert_swap_info(struct swap_info_struct *p)
2362 {
2363         spin_lock(&swap_lock);
2364         spin_lock(&p->lock);
2365         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2366         _enable_swap_info(p);
2367         spin_unlock(&p->lock);
2368         spin_unlock(&swap_lock);
2369 }
2370
2371 bool has_usable_swap(void)
2372 {
2373         bool ret = true;
2374
2375         spin_lock(&swap_lock);
2376         if (plist_head_empty(&swap_active_head))
2377                 ret = false;
2378         spin_unlock(&swap_lock);
2379         return ret;
2380 }
2381
2382 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2383 {
2384         struct swap_info_struct *p = NULL;
2385         unsigned char *swap_map;
2386         struct swap_cluster_info *cluster_info;
2387         unsigned long *frontswap_map;
2388         struct file *swap_file, *victim;
2389         struct address_space *mapping;
2390         struct inode *inode;
2391         struct filename *pathname;
2392         int err, found = 0;
2393         unsigned int old_block_size;
2394
2395         if (!capable(CAP_SYS_ADMIN))
2396                 return -EPERM;
2397
2398         BUG_ON(!current->mm);
2399
2400         pathname = getname(specialfile);
2401         if (IS_ERR(pathname))
2402                 return PTR_ERR(pathname);
2403
2404         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2405         err = PTR_ERR(victim);
2406         if (IS_ERR(victim))
2407                 goto out;
2408
2409         mapping = victim->f_mapping;
2410         spin_lock(&swap_lock);
2411         plist_for_each_entry(p, &swap_active_head, list) {
2412                 if (p->flags & SWP_WRITEOK) {
2413                         if (p->swap_file->f_mapping == mapping) {
2414                                 found = 1;
2415                                 break;
2416                         }
2417                 }
2418         }
2419         if (!found) {
2420                 err = -EINVAL;
2421                 spin_unlock(&swap_lock);
2422                 goto out_dput;
2423         }
2424         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2425                 vm_unacct_memory(p->pages);
2426         else {
2427                 err = -ENOMEM;
2428                 spin_unlock(&swap_lock);
2429                 goto out_dput;
2430         }
2431         del_from_avail_list(p);
2432         spin_lock(&p->lock);
2433         if (p->prio < 0) {
2434                 struct swap_info_struct *si = p;
2435                 int nid;
2436
2437                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2438                         si->prio++;
2439                         si->list.prio--;
2440                         for_each_node(nid) {
2441                                 if (si->avail_lists[nid].prio != 1)
2442                                         si->avail_lists[nid].prio--;
2443                         }
2444                 }
2445                 least_priority++;
2446         }
2447         plist_del(&p->list, &swap_active_head);
2448         atomic_long_sub(p->pages, &nr_swap_pages);
2449         total_swap_pages -= p->pages;
2450         p->flags &= ~SWP_WRITEOK;
2451         spin_unlock(&p->lock);
2452         spin_unlock(&swap_lock);
2453
2454         disable_swap_slots_cache_lock();
2455
2456         set_current_oom_origin();
2457         err = try_to_unuse(p->type);
2458         clear_current_oom_origin();
2459
2460         if (err) {
2461                 /* re-insert swap space back into swap_list */
2462                 reinsert_swap_info(p);
2463                 reenable_swap_slots_cache_unlock();
2464                 goto out_dput;
2465         }
2466
2467         reenable_swap_slots_cache_unlock();
2468
2469         /*
2470          * Wait for swap operations protected by get/put_swap_device()
2471          * to complete.
2472          *
2473          * We need synchronize_rcu() here to protect the accessing to
2474          * the swap cache data structure.
2475          */
2476         percpu_ref_kill(&p->users);
2477         synchronize_rcu();
2478         wait_for_completion(&p->comp);
2479
2480         flush_work(&p->discard_work);
2481
2482         destroy_swap_extents(p);
2483         if (p->flags & SWP_CONTINUED)
2484                 free_swap_count_continuations(p);
2485
2486         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2487                 atomic_dec(&nr_rotate_swap);
2488
2489         mutex_lock(&swapon_mutex);
2490         spin_lock(&swap_lock);
2491         spin_lock(&p->lock);
2492         drain_mmlist();
2493
2494         /* wait for anyone still in scan_swap_map_slots */
2495         p->highest_bit = 0;             /* cuts scans short */
2496         while (p->flags >= SWP_SCANNING) {
2497                 spin_unlock(&p->lock);
2498                 spin_unlock(&swap_lock);
2499                 schedule_timeout_uninterruptible(1);
2500                 spin_lock(&swap_lock);
2501                 spin_lock(&p->lock);
2502         }
2503
2504         swap_file = p->swap_file;
2505         old_block_size = p->old_block_size;
2506         p->swap_file = NULL;
2507         p->max = 0;
2508         swap_map = p->swap_map;
2509         p->swap_map = NULL;
2510         cluster_info = p->cluster_info;
2511         p->cluster_info = NULL;
2512         frontswap_map = frontswap_map_get(p);
2513         spin_unlock(&p->lock);
2514         spin_unlock(&swap_lock);
2515         arch_swap_invalidate_area(p->type);
2516         frontswap_invalidate_area(p->type);
2517         frontswap_map_set(p, NULL);
2518         mutex_unlock(&swapon_mutex);
2519         free_percpu(p->percpu_cluster);
2520         p->percpu_cluster = NULL;
2521         free_percpu(p->cluster_next_cpu);
2522         p->cluster_next_cpu = NULL;
2523         vfree(swap_map);
2524         kvfree(cluster_info);
2525         kvfree(frontswap_map);
2526         /* Destroy swap account information */
2527         swap_cgroup_swapoff(p->type);
2528         exit_swap_address_space(p->type);
2529
2530         inode = mapping->host;
2531         if (S_ISBLK(inode->i_mode)) {
2532                 struct block_device *bdev = I_BDEV(inode);
2533
2534                 set_blocksize(bdev, old_block_size);
2535                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2536         }
2537
2538         inode_lock(inode);
2539         inode->i_flags &= ~S_SWAPFILE;
2540         inode_unlock(inode);
2541         filp_close(swap_file, NULL);
2542
2543         /*
2544          * Clear the SWP_USED flag after all resources are freed so that swapon
2545          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2546          * not hold p->lock after we cleared its SWP_WRITEOK.
2547          */
2548         spin_lock(&swap_lock);
2549         p->flags = 0;
2550         spin_unlock(&swap_lock);
2551
2552         err = 0;
2553         atomic_inc(&proc_poll_event);
2554         wake_up_interruptible(&proc_poll_wait);
2555
2556 out_dput:
2557         filp_close(victim, NULL);
2558 out:
2559         putname(pathname);
2560         return err;
2561 }
2562
2563 #ifdef CONFIG_PROC_FS
2564 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2565 {
2566         struct seq_file *seq = file->private_data;
2567
2568         poll_wait(file, &proc_poll_wait, wait);
2569
2570         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2571                 seq->poll_event = atomic_read(&proc_poll_event);
2572                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2573         }
2574
2575         return EPOLLIN | EPOLLRDNORM;
2576 }
2577
2578 /* iterator */
2579 static void *swap_start(struct seq_file *swap, loff_t *pos)
2580 {
2581         struct swap_info_struct *si;
2582         int type;
2583         loff_t l = *pos;
2584
2585         mutex_lock(&swapon_mutex);
2586
2587         if (!l)
2588                 return SEQ_START_TOKEN;
2589
2590         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2591                 if (!(si->flags & SWP_USED) || !si->swap_map)
2592                         continue;
2593                 if (!--l)
2594                         return si;
2595         }
2596
2597         return NULL;
2598 }
2599
2600 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2601 {
2602         struct swap_info_struct *si = v;
2603         int type;
2604
2605         if (v == SEQ_START_TOKEN)
2606                 type = 0;
2607         else
2608                 type = si->type + 1;
2609
2610         ++(*pos);
2611         for (; (si = swap_type_to_swap_info(type)); type++) {
2612                 if (!(si->flags & SWP_USED) || !si->swap_map)
2613                         continue;
2614                 return si;
2615         }
2616
2617         return NULL;
2618 }
2619
2620 static void swap_stop(struct seq_file *swap, void *v)
2621 {
2622         mutex_unlock(&swapon_mutex);
2623 }
2624
2625 static int swap_show(struct seq_file *swap, void *v)
2626 {
2627         struct swap_info_struct *si = v;
2628         struct file *file;
2629         int len;
2630         unsigned long bytes, inuse;
2631
2632         if (si == SEQ_START_TOKEN) {
2633                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2634                 return 0;
2635         }
2636
2637         bytes = si->pages << (PAGE_SHIFT - 10);
2638         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2639
2640         file = si->swap_file;
2641         len = seq_file_path(swap, file, " \t\n\\");
2642         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2643                         len < 40 ? 40 - len : 1, " ",
2644                         S_ISBLK(file_inode(file)->i_mode) ?
2645                                 "partition" : "file\t",
2646                         bytes, bytes < 10000000 ? "\t" : "",
2647                         inuse, inuse < 10000000 ? "\t" : "",
2648                         si->prio);
2649         return 0;
2650 }
2651
2652 static const struct seq_operations swaps_op = {
2653         .start =        swap_start,
2654         .next =         swap_next,
2655         .stop =         swap_stop,
2656         .show =         swap_show
2657 };
2658
2659 static int swaps_open(struct inode *inode, struct file *file)
2660 {
2661         struct seq_file *seq;
2662         int ret;
2663
2664         ret = seq_open(file, &swaps_op);
2665         if (ret)
2666                 return ret;
2667
2668         seq = file->private_data;
2669         seq->poll_event = atomic_read(&proc_poll_event);
2670         return 0;
2671 }
2672
2673 static const struct proc_ops swaps_proc_ops = {
2674         .proc_flags     = PROC_ENTRY_PERMANENT,
2675         .proc_open      = swaps_open,
2676         .proc_read      = seq_read,
2677         .proc_lseek     = seq_lseek,
2678         .proc_release   = seq_release,
2679         .proc_poll      = swaps_poll,
2680 };
2681
2682 static int __init procswaps_init(void)
2683 {
2684         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2685         return 0;
2686 }
2687 __initcall(procswaps_init);
2688 #endif /* CONFIG_PROC_FS */
2689
2690 #ifdef MAX_SWAPFILES_CHECK
2691 static int __init max_swapfiles_check(void)
2692 {
2693         MAX_SWAPFILES_CHECK();
2694         return 0;
2695 }
2696 late_initcall(max_swapfiles_check);
2697 #endif
2698
2699 static struct swap_info_struct *alloc_swap_info(void)
2700 {
2701         struct swap_info_struct *p;
2702         struct swap_info_struct *defer = NULL;
2703         unsigned int type;
2704         int i;
2705
2706         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2707         if (!p)
2708                 return ERR_PTR(-ENOMEM);
2709
2710         if (percpu_ref_init(&p->users, swap_users_ref_free,
2711                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2712                 kvfree(p);
2713                 return ERR_PTR(-ENOMEM);
2714         }
2715
2716         spin_lock(&swap_lock);
2717         for (type = 0; type < nr_swapfiles; type++) {
2718                 if (!(swap_info[type]->flags & SWP_USED))
2719                         break;
2720         }
2721         if (type >= MAX_SWAPFILES) {
2722                 spin_unlock(&swap_lock);
2723                 percpu_ref_exit(&p->users);
2724                 kvfree(p);
2725                 return ERR_PTR(-EPERM);
2726         }
2727         if (type >= nr_swapfiles) {
2728                 p->type = type;
2729                 /*
2730                  * Publish the swap_info_struct after initializing it.
2731                  * Note that kvzalloc() above zeroes all its fields.
2732                  */
2733                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2734                 nr_swapfiles++;
2735         } else {
2736                 defer = p;
2737                 p = swap_info[type];
2738                 /*
2739                  * Do not memset this entry: a racing procfs swap_next()
2740                  * would be relying on p->type to remain valid.
2741                  */
2742         }
2743         p->swap_extent_root = RB_ROOT;
2744         plist_node_init(&p->list, 0);
2745         for_each_node(i)
2746                 plist_node_init(&p->avail_lists[i], 0);
2747         p->flags = SWP_USED;
2748         spin_unlock(&swap_lock);
2749         if (defer) {
2750                 percpu_ref_exit(&defer->users);
2751                 kvfree(defer);
2752         }
2753         spin_lock_init(&p->lock);
2754         spin_lock_init(&p->cont_lock);
2755         init_completion(&p->comp);
2756
2757         return p;
2758 }
2759
2760 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2761 {
2762         int error;
2763
2764         if (S_ISBLK(inode->i_mode)) {
2765                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2766                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2767                 if (IS_ERR(p->bdev)) {
2768                         error = PTR_ERR(p->bdev);
2769                         p->bdev = NULL;
2770                         return error;
2771                 }
2772                 p->old_block_size = block_size(p->bdev);
2773                 error = set_blocksize(p->bdev, PAGE_SIZE);
2774                 if (error < 0)
2775                         return error;
2776                 /*
2777                  * Zoned block devices contain zones that have a sequential
2778                  * write only restriction.  Hence zoned block devices are not
2779                  * suitable for swapping.  Disallow them here.
2780                  */
2781                 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2782                         return -EINVAL;
2783                 p->flags |= SWP_BLKDEV;
2784         } else if (S_ISREG(inode->i_mode)) {
2785                 p->bdev = inode->i_sb->s_bdev;
2786         }
2787
2788         return 0;
2789 }
2790
2791
2792 /*
2793  * Find out how many pages are allowed for a single swap device. There
2794  * are two limiting factors:
2795  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2796  * 2) the number of bits in the swap pte, as defined by the different
2797  * architectures.
2798  *
2799  * In order to find the largest possible bit mask, a swap entry with
2800  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2801  * decoded to a swp_entry_t again, and finally the swap offset is
2802  * extracted.
2803  *
2804  * This will mask all the bits from the initial ~0UL mask that can't
2805  * be encoded in either the swp_entry_t or the architecture definition
2806  * of a swap pte.
2807  */
2808 unsigned long generic_max_swapfile_size(void)
2809 {
2810         return swp_offset(pte_to_swp_entry(
2811                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2812 }
2813
2814 /* Can be overridden by an architecture for additional checks. */
2815 __weak unsigned long max_swapfile_size(void)
2816 {
2817         return generic_max_swapfile_size();
2818 }
2819
2820 static unsigned long read_swap_header(struct swap_info_struct *p,
2821                                         union swap_header *swap_header,
2822                                         struct inode *inode)
2823 {
2824         int i;
2825         unsigned long maxpages;
2826         unsigned long swapfilepages;
2827         unsigned long last_page;
2828
2829         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2830                 pr_err("Unable to find swap-space signature\n");
2831                 return 0;
2832         }
2833
2834         /* swap partition endianness hack... */
2835         if (swab32(swap_header->info.version) == 1) {
2836                 swab32s(&swap_header->info.version);
2837                 swab32s(&swap_header->info.last_page);
2838                 swab32s(&swap_header->info.nr_badpages);
2839                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2840                         return 0;
2841                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2842                         swab32s(&swap_header->info.badpages[i]);
2843         }
2844         /* Check the swap header's sub-version */
2845         if (swap_header->info.version != 1) {
2846                 pr_warn("Unable to handle swap header version %d\n",
2847                         swap_header->info.version);
2848                 return 0;
2849         }
2850
2851         p->lowest_bit  = 1;
2852         p->cluster_next = 1;
2853         p->cluster_nr = 0;
2854
2855         maxpages = max_swapfile_size();
2856         last_page = swap_header->info.last_page;
2857         if (!last_page) {
2858                 pr_warn("Empty swap-file\n");
2859                 return 0;
2860         }
2861         if (last_page > maxpages) {
2862                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2863                         maxpages << (PAGE_SHIFT - 10),
2864                         last_page << (PAGE_SHIFT - 10));
2865         }
2866         if (maxpages > last_page) {
2867                 maxpages = last_page + 1;
2868                 /* p->max is an unsigned int: don't overflow it */
2869                 if ((unsigned int)maxpages == 0)
2870                         maxpages = UINT_MAX;
2871         }
2872         p->highest_bit = maxpages - 1;
2873
2874         if (!maxpages)
2875                 return 0;
2876         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2877         if (swapfilepages && maxpages > swapfilepages) {
2878                 pr_warn("Swap area shorter than signature indicates\n");
2879                 return 0;
2880         }
2881         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2882                 return 0;
2883         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2884                 return 0;
2885
2886         return maxpages;
2887 }
2888
2889 #define SWAP_CLUSTER_INFO_COLS                                          \
2890         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2891 #define SWAP_CLUSTER_SPACE_COLS                                         \
2892         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2893 #define SWAP_CLUSTER_COLS                                               \
2894         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2895
2896 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2897                                         union swap_header *swap_header,
2898                                         unsigned char *swap_map,
2899                                         struct swap_cluster_info *cluster_info,
2900                                         unsigned long maxpages,
2901                                         sector_t *span)
2902 {
2903         unsigned int j, k;
2904         unsigned int nr_good_pages;
2905         int nr_extents;
2906         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2907         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2908         unsigned long i, idx;
2909
2910         nr_good_pages = maxpages - 1;   /* omit header page */
2911
2912         cluster_list_init(&p->free_clusters);
2913         cluster_list_init(&p->discard_clusters);
2914
2915         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2916                 unsigned int page_nr = swap_header->info.badpages[i];
2917                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2918                         return -EINVAL;
2919                 if (page_nr < maxpages) {
2920                         swap_map[page_nr] = SWAP_MAP_BAD;
2921                         nr_good_pages--;
2922                         /*
2923                          * Haven't marked the cluster free yet, no list
2924                          * operation involved
2925                          */
2926                         inc_cluster_info_page(p, cluster_info, page_nr);
2927                 }
2928         }
2929
2930         /* Haven't marked the cluster free yet, no list operation involved */
2931         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2932                 inc_cluster_info_page(p, cluster_info, i);
2933
2934         if (nr_good_pages) {
2935                 swap_map[0] = SWAP_MAP_BAD;
2936                 /*
2937                  * Not mark the cluster free yet, no list
2938                  * operation involved
2939                  */
2940                 inc_cluster_info_page(p, cluster_info, 0);
2941                 p->max = maxpages;
2942                 p->pages = nr_good_pages;
2943                 nr_extents = setup_swap_extents(p, span);
2944                 if (nr_extents < 0)
2945                         return nr_extents;
2946                 nr_good_pages = p->pages;
2947         }
2948         if (!nr_good_pages) {
2949                 pr_warn("Empty swap-file\n");
2950                 return -EINVAL;
2951         }
2952
2953         if (!cluster_info)
2954                 return nr_extents;
2955
2956
2957         /*
2958          * Reduce false cache line sharing between cluster_info and
2959          * sharing same address space.
2960          */
2961         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2962                 j = (k + col) % SWAP_CLUSTER_COLS;
2963                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2964                         idx = i * SWAP_CLUSTER_COLS + j;
2965                         if (idx >= nr_clusters)
2966                                 continue;
2967                         if (cluster_count(&cluster_info[idx]))
2968                                 continue;
2969                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2970                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2971                                               idx);
2972                 }
2973         }
2974         return nr_extents;
2975 }
2976
2977 /*
2978  * Helper to sys_swapon determining if a given swap
2979  * backing device queue supports DISCARD operations.
2980  */
2981 static bool swap_discardable(struct swap_info_struct *si)
2982 {
2983         struct request_queue *q = bdev_get_queue(si->bdev);
2984
2985         if (!blk_queue_discard(q))
2986                 return false;
2987
2988         return true;
2989 }
2990
2991 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2992 {
2993         struct swap_info_struct *p;
2994         struct filename *name;
2995         struct file *swap_file = NULL;
2996         struct address_space *mapping;
2997         struct dentry *dentry;
2998         int prio;
2999         int error;
3000         union swap_header *swap_header;
3001         int nr_extents;
3002         sector_t span;
3003         unsigned long maxpages;
3004         unsigned char *swap_map = NULL;
3005         struct swap_cluster_info *cluster_info = NULL;
3006         unsigned long *frontswap_map = NULL;
3007         struct page *page = NULL;
3008         struct inode *inode = NULL;
3009         bool inced_nr_rotate_swap = false;
3010
3011         if (swap_flags & ~SWAP_FLAGS_VALID)
3012                 return -EINVAL;
3013
3014         if (!capable(CAP_SYS_ADMIN))
3015                 return -EPERM;
3016
3017         if (!swap_avail_heads)
3018                 return -ENOMEM;
3019
3020         p = alloc_swap_info();
3021         if (IS_ERR(p))
3022                 return PTR_ERR(p);
3023
3024         INIT_WORK(&p->discard_work, swap_discard_work);
3025
3026         name = getname(specialfile);
3027         if (IS_ERR(name)) {
3028                 error = PTR_ERR(name);
3029                 name = NULL;
3030                 goto bad_swap;
3031         }
3032         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3033         if (IS_ERR(swap_file)) {
3034                 error = PTR_ERR(swap_file);
3035                 swap_file = NULL;
3036                 goto bad_swap;
3037         }
3038
3039         p->swap_file = swap_file;
3040         mapping = swap_file->f_mapping;
3041         dentry = swap_file->f_path.dentry;
3042         inode = mapping->host;
3043
3044         error = claim_swapfile(p, inode);
3045         if (unlikely(error))
3046                 goto bad_swap;
3047
3048         inode_lock(inode);
3049         if (d_unlinked(dentry) || cant_mount(dentry)) {
3050                 error = -ENOENT;
3051                 goto bad_swap_unlock_inode;
3052         }
3053         if (IS_SWAPFILE(inode)) {
3054                 error = -EBUSY;
3055                 goto bad_swap_unlock_inode;
3056         }
3057
3058         /*
3059          * Read the swap header.
3060          */
3061         if (!mapping->a_ops->readpage) {
3062                 error = -EINVAL;
3063                 goto bad_swap_unlock_inode;
3064         }
3065         page = read_mapping_page(mapping, 0, swap_file);
3066         if (IS_ERR(page)) {
3067                 error = PTR_ERR(page);
3068                 goto bad_swap_unlock_inode;
3069         }
3070         swap_header = kmap(page);
3071
3072         maxpages = read_swap_header(p, swap_header, inode);
3073         if (unlikely(!maxpages)) {
3074                 error = -EINVAL;
3075                 goto bad_swap_unlock_inode;
3076         }
3077
3078         /* OK, set up the swap map and apply the bad block list */
3079         swap_map = vzalloc(maxpages);
3080         if (!swap_map) {
3081                 error = -ENOMEM;
3082                 goto bad_swap_unlock_inode;
3083         }
3084
3085         if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3086                 p->flags |= SWP_STABLE_WRITES;
3087
3088         if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3089                 p->flags |= SWP_SYNCHRONOUS_IO;
3090
3091         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3092                 int cpu;
3093                 unsigned long ci, nr_cluster;
3094
3095                 p->flags |= SWP_SOLIDSTATE;
3096                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3097                 if (!p->cluster_next_cpu) {
3098                         error = -ENOMEM;
3099                         goto bad_swap_unlock_inode;
3100                 }
3101                 /*
3102                  * select a random position to start with to help wear leveling
3103                  * SSD
3104                  */
3105                 for_each_possible_cpu(cpu) {
3106                         per_cpu(*p->cluster_next_cpu, cpu) =
3107                                 1 + prandom_u32_max(p->highest_bit);
3108                 }
3109                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3110
3111                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3112                                         GFP_KERNEL);
3113                 if (!cluster_info) {
3114                         error = -ENOMEM;
3115                         goto bad_swap_unlock_inode;
3116                 }
3117
3118                 for (ci = 0; ci < nr_cluster; ci++)
3119                         spin_lock_init(&((cluster_info + ci)->lock));
3120
3121                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3122                 if (!p->percpu_cluster) {
3123                         error = -ENOMEM;
3124                         goto bad_swap_unlock_inode;
3125                 }
3126                 for_each_possible_cpu(cpu) {
3127                         struct percpu_cluster *cluster;
3128                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3129                         cluster_set_null(&cluster->index);
3130                 }
3131         } else {
3132                 atomic_inc(&nr_rotate_swap);
3133                 inced_nr_rotate_swap = true;
3134         }
3135
3136         error = swap_cgroup_swapon(p->type, maxpages);
3137         if (error)
3138                 goto bad_swap_unlock_inode;
3139
3140         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3141                 cluster_info, maxpages, &span);
3142         if (unlikely(nr_extents < 0)) {
3143                 error = nr_extents;
3144                 goto bad_swap_unlock_inode;
3145         }
3146         /* frontswap enabled? set up bit-per-page map for frontswap */
3147         if (IS_ENABLED(CONFIG_FRONTSWAP))
3148                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3149                                          sizeof(long),
3150                                          GFP_KERNEL);
3151
3152         if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3153                 /*
3154                  * When discard is enabled for swap with no particular
3155                  * policy flagged, we set all swap discard flags here in
3156                  * order to sustain backward compatibility with older
3157                  * swapon(8) releases.
3158                  */
3159                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3160                              SWP_PAGE_DISCARD);
3161
3162                 /*
3163                  * By flagging sys_swapon, a sysadmin can tell us to
3164                  * either do single-time area discards only, or to just
3165                  * perform discards for released swap page-clusters.
3166                  * Now it's time to adjust the p->flags accordingly.
3167                  */
3168                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3169                         p->flags &= ~SWP_PAGE_DISCARD;
3170                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3171                         p->flags &= ~SWP_AREA_DISCARD;
3172
3173                 /* issue a swapon-time discard if it's still required */
3174                 if (p->flags & SWP_AREA_DISCARD) {
3175                         int err = discard_swap(p);
3176                         if (unlikely(err))
3177                                 pr_err("swapon: discard_swap(%p): %d\n",
3178                                         p, err);
3179                 }
3180         }
3181
3182         error = init_swap_address_space(p->type, maxpages);
3183         if (error)
3184                 goto bad_swap_unlock_inode;
3185
3186         /*
3187          * Flush any pending IO and dirty mappings before we start using this
3188          * swap device.
3189          */
3190         inode->i_flags |= S_SWAPFILE;
3191         error = inode_drain_writes(inode);
3192         if (error) {
3193                 inode->i_flags &= ~S_SWAPFILE;
3194                 goto free_swap_address_space;
3195         }
3196
3197         mutex_lock(&swapon_mutex);
3198         prio = -1;
3199         if (swap_flags & SWAP_FLAG_PREFER)
3200                 prio =
3201                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3202         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3203
3204         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3205                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3206                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3207                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3208                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3209                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3210                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3211                 (frontswap_map) ? "FS" : "");
3212
3213         mutex_unlock(&swapon_mutex);
3214         atomic_inc(&proc_poll_event);
3215         wake_up_interruptible(&proc_poll_wait);
3216
3217         error = 0;
3218         goto out;
3219 free_swap_address_space:
3220         exit_swap_address_space(p->type);
3221 bad_swap_unlock_inode:
3222         inode_unlock(inode);
3223 bad_swap:
3224         free_percpu(p->percpu_cluster);
3225         p->percpu_cluster = NULL;
3226         free_percpu(p->cluster_next_cpu);
3227         p->cluster_next_cpu = NULL;
3228         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3229                 set_blocksize(p->bdev, p->old_block_size);
3230                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3231         }
3232         inode = NULL;
3233         destroy_swap_extents(p);
3234         swap_cgroup_swapoff(p->type);
3235         spin_lock(&swap_lock);
3236         p->swap_file = NULL;
3237         p->flags = 0;
3238         spin_unlock(&swap_lock);
3239         vfree(swap_map);
3240         kvfree(cluster_info);
3241         kvfree(frontswap_map);
3242         if (inced_nr_rotate_swap)
3243                 atomic_dec(&nr_rotate_swap);
3244         if (swap_file)
3245                 filp_close(swap_file, NULL);
3246 out:
3247         if (page && !IS_ERR(page)) {
3248                 kunmap(page);
3249                 put_page(page);
3250         }
3251         if (name)
3252                 putname(name);
3253         if (inode)
3254                 inode_unlock(inode);
3255         if (!error)
3256                 enable_swap_slots_cache();
3257         return error;
3258 }
3259
3260 void si_swapinfo(struct sysinfo *val)
3261 {
3262         unsigned int type;
3263         unsigned long nr_to_be_unused = 0;
3264
3265         spin_lock(&swap_lock);
3266         for (type = 0; type < nr_swapfiles; type++) {
3267                 struct swap_info_struct *si = swap_info[type];
3268
3269                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3270                         nr_to_be_unused += si->inuse_pages;
3271         }
3272         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3273         val->totalswap = total_swap_pages + nr_to_be_unused;
3274         spin_unlock(&swap_lock);
3275 }
3276
3277 /*
3278  * Verify that a swap entry is valid and increment its swap map count.
3279  *
3280  * Returns error code in following case.
3281  * - success -> 0
3282  * - swp_entry is invalid -> EINVAL
3283  * - swp_entry is migration entry -> EINVAL
3284  * - swap-cache reference is requested but there is already one. -> EEXIST
3285  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3286  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3287  */
3288 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3289 {
3290         struct swap_info_struct *p;
3291         struct swap_cluster_info *ci;
3292         unsigned long offset;
3293         unsigned char count;
3294         unsigned char has_cache;
3295         int err;
3296
3297         p = get_swap_device(entry);
3298         if (!p)
3299                 return -EINVAL;
3300
3301         offset = swp_offset(entry);
3302         ci = lock_cluster_or_swap_info(p, offset);
3303
3304         count = p->swap_map[offset];
3305
3306         /*
3307          * swapin_readahead() doesn't check if a swap entry is valid, so the
3308          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3309          */
3310         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3311                 err = -ENOENT;
3312                 goto unlock_out;
3313         }
3314
3315         has_cache = count & SWAP_HAS_CACHE;
3316         count &= ~SWAP_HAS_CACHE;
3317         err = 0;
3318
3319         if (usage == SWAP_HAS_CACHE) {
3320
3321                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3322                 if (!has_cache && count)
3323                         has_cache = SWAP_HAS_CACHE;
3324                 else if (has_cache)             /* someone else added cache */
3325                         err = -EEXIST;
3326                 else                            /* no users remaining */
3327                         err = -ENOENT;
3328
3329         } else if (count || has_cache) {
3330
3331                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3332                         count += usage;
3333                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3334                         err = -EINVAL;
3335                 else if (swap_count_continued(p, offset, count))
3336                         count = COUNT_CONTINUED;
3337                 else
3338                         err = -ENOMEM;
3339         } else
3340                 err = -ENOENT;                  /* unused swap entry */
3341
3342         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3343
3344 unlock_out:
3345         unlock_cluster_or_swap_info(p, ci);
3346         if (p)
3347                 put_swap_device(p);
3348         return err;
3349 }
3350
3351 /*
3352  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3353  * (in which case its reference count is never incremented).
3354  */
3355 void swap_shmem_alloc(swp_entry_t entry)
3356 {
3357         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3358 }
3359
3360 /*
3361  * Increase reference count of swap entry by 1.
3362  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3363  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3364  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3365  * might occur if a page table entry has got corrupted.
3366  */
3367 int swap_duplicate(swp_entry_t entry)
3368 {
3369         int err = 0;
3370
3371         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3372                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3373         return err;
3374 }
3375
3376 /*
3377  * @entry: swap entry for which we allocate swap cache.
3378  *
3379  * Called when allocating swap cache for existing swap entry,
3380  * This can return error codes. Returns 0 at success.
3381  * -EEXIST means there is a swap cache.
3382  * Note: return code is different from swap_duplicate().
3383  */
3384 int swapcache_prepare(swp_entry_t entry)
3385 {
3386         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3387 }
3388
3389 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3390 {
3391         return swap_type_to_swap_info(swp_type(entry));
3392 }
3393
3394 struct swap_info_struct *page_swap_info(struct page *page)
3395 {
3396         swp_entry_t entry = { .val = page_private(page) };
3397         return swp_swap_info(entry);
3398 }
3399
3400 /*
3401  * out-of-line methods to avoid include hell.
3402  */
3403 struct address_space *swapcache_mapping(struct folio *folio)
3404 {
3405         return page_swap_info(&folio->page)->swap_file->f_mapping;
3406 }
3407 EXPORT_SYMBOL_GPL(swapcache_mapping);
3408
3409 pgoff_t __page_file_index(struct page *page)
3410 {
3411         swp_entry_t swap = { .val = page_private(page) };
3412         return swp_offset(swap);
3413 }
3414 EXPORT_SYMBOL_GPL(__page_file_index);
3415
3416 /*
3417  * add_swap_count_continuation - called when a swap count is duplicated
3418  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3419  * page of the original vmalloc'ed swap_map, to hold the continuation count
3420  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3421  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3422  *
3423  * These continuation pages are seldom referenced: the common paths all work
3424  * on the original swap_map, only referring to a continuation page when the
3425  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3426  *
3427  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3428  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3429  * can be called after dropping locks.
3430  */
3431 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3432 {
3433         struct swap_info_struct *si;
3434         struct swap_cluster_info *ci;
3435         struct page *head;
3436         struct page *page;
3437         struct page *list_page;
3438         pgoff_t offset;
3439         unsigned char count;
3440         int ret = 0;
3441
3442         /*
3443          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3444          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3445          */
3446         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3447
3448         si = get_swap_device(entry);
3449         if (!si) {
3450                 /*
3451                  * An acceptable race has occurred since the failing
3452                  * __swap_duplicate(): the swap device may be swapoff
3453                  */
3454                 goto outer;
3455         }
3456         spin_lock(&si->lock);
3457
3458         offset = swp_offset(entry);
3459
3460         ci = lock_cluster(si, offset);
3461
3462         count = swap_count(si->swap_map[offset]);
3463
3464         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3465                 /*
3466                  * The higher the swap count, the more likely it is that tasks
3467                  * will race to add swap count continuation: we need to avoid
3468                  * over-provisioning.
3469                  */
3470                 goto out;
3471         }
3472
3473         if (!page) {
3474                 ret = -ENOMEM;
3475                 goto out;
3476         }
3477
3478         /*
3479          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3480          * no architecture is using highmem pages for kernel page tables: so it
3481          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3482          */
3483         head = vmalloc_to_page(si->swap_map + offset);
3484         offset &= ~PAGE_MASK;
3485
3486         spin_lock(&si->cont_lock);
3487         /*
3488          * Page allocation does not initialize the page's lru field,
3489          * but it does always reset its private field.
3490          */
3491         if (!page_private(head)) {
3492                 BUG_ON(count & COUNT_CONTINUED);
3493                 INIT_LIST_HEAD(&head->lru);
3494                 set_page_private(head, SWP_CONTINUED);
3495                 si->flags |= SWP_CONTINUED;
3496         }
3497
3498         list_for_each_entry(list_page, &head->lru, lru) {
3499                 unsigned char *map;
3500
3501                 /*
3502                  * If the previous map said no continuation, but we've found
3503                  * a continuation page, free our allocation and use this one.
3504                  */
3505                 if (!(count & COUNT_CONTINUED))
3506                         goto out_unlock_cont;
3507
3508                 map = kmap_atomic(list_page) + offset;
3509                 count = *map;
3510                 kunmap_atomic(map);
3511
3512                 /*
3513                  * If this continuation count now has some space in it,
3514                  * free our allocation and use this one.
3515                  */
3516                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3517                         goto out_unlock_cont;
3518         }
3519
3520         list_add_tail(&page->lru, &head->lru);
3521         page = NULL;                    /* now it's attached, don't free it */
3522 out_unlock_cont:
3523         spin_unlock(&si->cont_lock);
3524 out:
3525         unlock_cluster(ci);
3526         spin_unlock(&si->lock);
3527         put_swap_device(si);
3528 outer:
3529         if (page)
3530                 __free_page(page);
3531         return ret;
3532 }
3533
3534 /*
3535  * swap_count_continued - when the original swap_map count is incremented
3536  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3537  * into, carry if so, or else fail until a new continuation page is allocated;
3538  * when the original swap_map count is decremented from 0 with continuation,
3539  * borrow from the continuation and report whether it still holds more.
3540  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3541  * lock.
3542  */
3543 static bool swap_count_continued(struct swap_info_struct *si,
3544                                  pgoff_t offset, unsigned char count)
3545 {
3546         struct page *head;
3547         struct page *page;
3548         unsigned char *map;
3549         bool ret;
3550
3551         head = vmalloc_to_page(si->swap_map + offset);
3552         if (page_private(head) != SWP_CONTINUED) {
3553                 BUG_ON(count & COUNT_CONTINUED);
3554                 return false;           /* need to add count continuation */
3555         }
3556
3557         spin_lock(&si->cont_lock);
3558         offset &= ~PAGE_MASK;
3559         page = list_next_entry(head, lru);
3560         map = kmap_atomic(page) + offset;
3561
3562         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3563                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3564
3565         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3566                 /*
3567                  * Think of how you add 1 to 999
3568                  */
3569                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3570                         kunmap_atomic(map);
3571                         page = list_next_entry(page, lru);
3572                         BUG_ON(page == head);
3573                         map = kmap_atomic(page) + offset;
3574                 }
3575                 if (*map == SWAP_CONT_MAX) {
3576                         kunmap_atomic(map);
3577                         page = list_next_entry(page, lru);
3578                         if (page == head) {
3579                                 ret = false;    /* add count continuation */
3580                                 goto out;
3581                         }
3582                         map = kmap_atomic(page) + offset;
3583 init_map:               *map = 0;               /* we didn't zero the page */
3584                 }
3585                 *map += 1;
3586                 kunmap_atomic(map);
3587                 while ((page = list_prev_entry(page, lru)) != head) {
3588                         map = kmap_atomic(page) + offset;
3589                         *map = COUNT_CONTINUED;
3590                         kunmap_atomic(map);
3591                 }
3592                 ret = true;                     /* incremented */
3593
3594         } else {                                /* decrementing */
3595                 /*
3596                  * Think of how you subtract 1 from 1000
3597                  */
3598                 BUG_ON(count != COUNT_CONTINUED);
3599                 while (*map == COUNT_CONTINUED) {
3600                         kunmap_atomic(map);
3601                         page = list_next_entry(page, lru);
3602                         BUG_ON(page == head);
3603                         map = kmap_atomic(page) + offset;
3604                 }
3605                 BUG_ON(*map == 0);
3606                 *map -= 1;
3607                 if (*map == 0)
3608                         count = 0;
3609                 kunmap_atomic(map);
3610                 while ((page = list_prev_entry(page, lru)) != head) {
3611                         map = kmap_atomic(page) + offset;
3612                         *map = SWAP_CONT_MAX | count;
3613                         count = COUNT_CONTINUED;
3614                         kunmap_atomic(map);
3615                 }
3616                 ret = count == COUNT_CONTINUED;
3617         }
3618 out:
3619         spin_unlock(&si->cont_lock);
3620         return ret;
3621 }
3622
3623 /*
3624  * free_swap_count_continuations - swapoff free all the continuation pages
3625  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3626  */
3627 static void free_swap_count_continuations(struct swap_info_struct *si)
3628 {
3629         pgoff_t offset;
3630
3631         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3632                 struct page *head;
3633                 head = vmalloc_to_page(si->swap_map + offset);
3634                 if (page_private(head)) {
3635                         struct page *page, *next;
3636
3637                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3638                                 list_del(&page->lru);
3639                                 __free_page(page);
3640                         }
3641                 }
3642         }
3643 }
3644
3645 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3646 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3647 {
3648         struct swap_info_struct *si, *next;
3649         int nid = page_to_nid(page);
3650
3651         if (!(gfp_mask & __GFP_IO))
3652                 return;
3653
3654         if (!blk_cgroup_congested())
3655                 return;
3656
3657         /*
3658          * We've already scheduled a throttle, avoid taking the global swap
3659          * lock.
3660          */
3661         if (current->throttle_queue)
3662                 return;
3663
3664         spin_lock(&swap_avail_lock);
3665         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3666                                   avail_lists[nid]) {
3667                 if (si->bdev) {
3668                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3669                         break;
3670                 }
3671         }
3672         spin_unlock(&swap_avail_lock);
3673 }
3674 #endif
3675
3676 static int __init swapfile_init(void)
3677 {
3678         int nid;
3679
3680         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3681                                          GFP_KERNEL);
3682         if (!swap_avail_heads) {
3683                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3684                 return -ENOMEM;
3685         }
3686
3687         for_each_node(nid)
3688                 plist_head_init(&swap_avail_heads[nid]);
3689
3690         return 0;
3691 }
3692 subsys_initcall(swapfile_init);
This page took 0.23577 seconds and 4 git commands to generate.