1 // SPDX-License-Identifier: GPL-2.0-only
3 * fs/kernfs/file.c - kernfs file implementation
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
11 #include <linux/seq_file.h>
12 #include <linux/slab.h>
13 #include <linux/poll.h>
14 #include <linux/pagemap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/fsnotify.h>
17 #include <linux/uio.h>
19 #include "kernfs-internal.h"
21 struct kernfs_open_node {
22 struct rcu_head rcu_head;
24 wait_queue_head_t poll;
25 struct list_head files; /* goes through kernfs_open_file.list */
26 unsigned int nr_mmapped;
27 unsigned int nr_to_release;
31 * kernfs_notify() may be called from any context and bounces notifications
32 * through a work item. To minimize space overhead in kernfs_node, the
33 * pending queue is implemented as a singly linked list of kernfs_nodes.
34 * The list is terminated with the self pointer so that whether a
35 * kernfs_node is on the list or not can be determined by testing the next
38 #define KERNFS_NOTIFY_EOL ((void *)&kernfs_notify_list)
40 static DEFINE_SPINLOCK(kernfs_notify_lock);
41 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
43 static inline struct mutex *kernfs_open_file_mutex_ptr(struct kernfs_node *kn)
45 int idx = hash_ptr(kn, NR_KERNFS_LOCK_BITS);
47 return &kernfs_locks->open_file_mutex[idx];
50 static inline struct mutex *kernfs_open_file_mutex_lock(struct kernfs_node *kn)
54 lock = kernfs_open_file_mutex_ptr(kn);
62 * of_on - Get the kernfs_open_node of the specified kernfs_open_file
63 * @of: target kernfs_open_file
65 * Return: the kernfs_open_node of the kernfs_open_file
67 static struct kernfs_open_node *of_on(struct kernfs_open_file *of)
69 return rcu_dereference_protected(of->kn->attr.open,
70 !list_empty(&of->list));
74 * kernfs_deref_open_node_locked - Get kernfs_open_node corresponding to @kn
76 * @kn: target kernfs_node.
78 * Fetch and return ->attr.open of @kn when caller holds the
79 * kernfs_open_file_mutex_ptr(kn).
81 * Update of ->attr.open happens under kernfs_open_file_mutex_ptr(kn). So when
82 * the caller guarantees that this mutex is being held, other updaters can't
83 * change ->attr.open and this means that we can safely deref ->attr.open
84 * outside RCU read-side critical section.
86 * The caller needs to make sure that kernfs_open_file_mutex is held.
88 * Return: @kn->attr.open when kernfs_open_file_mutex is held.
90 static struct kernfs_open_node *
91 kernfs_deref_open_node_locked(struct kernfs_node *kn)
93 return rcu_dereference_protected(kn->attr.open,
94 lockdep_is_held(kernfs_open_file_mutex_ptr(kn)));
97 static struct kernfs_open_file *kernfs_of(struct file *file)
99 return ((struct seq_file *)file->private_data)->private;
103 * Determine the kernfs_ops for the given kernfs_node. This function must
104 * be called while holding an active reference.
106 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
108 if (kn->flags & KERNFS_LOCKDEP)
109 lockdep_assert_held(kn);
114 * As kernfs_seq_stop() is also called after kernfs_seq_start() or
115 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
116 * a seq_file iteration which is fully initialized with an active reference
117 * or an aborted kernfs_seq_start() due to get_active failure. The
118 * position pointer is the only context for each seq_file iteration and
119 * thus the stop condition should be encoded in it. As the return value is
120 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
121 * choice to indicate get_active failure.
123 * Unfortunately, this is complicated due to the optional custom seq_file
124 * operations which may return ERR_PTR(-ENODEV) too. kernfs_seq_stop()
125 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
126 * custom seq_file operations and thus can't decide whether put_active
127 * should be performed or not only on ERR_PTR(-ENODEV).
129 * This is worked around by factoring out the custom seq_stop() and
130 * put_active part into kernfs_seq_stop_active(), skipping it from
131 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
132 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
133 * that kernfs_seq_stop_active() is skipped only after get_active failure.
135 static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
137 struct kernfs_open_file *of = sf->private;
138 const struct kernfs_ops *ops = kernfs_ops(of->kn);
141 ops->seq_stop(sf, v);
142 kernfs_put_active(of->kn);
145 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
147 struct kernfs_open_file *of = sf->private;
148 const struct kernfs_ops *ops;
151 * @of->mutex nests outside active ref and is primarily to ensure that
152 * the ops aren't called concurrently for the same open file.
154 mutex_lock(&of->mutex);
155 if (!kernfs_get_active(of->kn))
156 return ERR_PTR(-ENODEV);
158 ops = kernfs_ops(of->kn);
159 if (ops->seq_start) {
160 void *next = ops->seq_start(sf, ppos);
161 /* see the comment above kernfs_seq_stop_active() */
162 if (next == ERR_PTR(-ENODEV))
163 kernfs_seq_stop_active(sf, next);
166 return single_start(sf, ppos);
169 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
171 struct kernfs_open_file *of = sf->private;
172 const struct kernfs_ops *ops = kernfs_ops(of->kn);
175 void *next = ops->seq_next(sf, v, ppos);
176 /* see the comment above kernfs_seq_stop_active() */
177 if (next == ERR_PTR(-ENODEV))
178 kernfs_seq_stop_active(sf, next);
182 * The same behavior and code as single_open(), always
183 * terminate after the initial read.
190 static void kernfs_seq_stop(struct seq_file *sf, void *v)
192 struct kernfs_open_file *of = sf->private;
194 if (v != ERR_PTR(-ENODEV))
195 kernfs_seq_stop_active(sf, v);
196 mutex_unlock(&of->mutex);
199 static int kernfs_seq_show(struct seq_file *sf, void *v)
201 struct kernfs_open_file *of = sf->private;
203 of->event = atomic_read(&of_on(of)->event);
205 return of->kn->attr.ops->seq_show(sf, v);
208 static const struct seq_operations kernfs_seq_ops = {
209 .start = kernfs_seq_start,
210 .next = kernfs_seq_next,
211 .stop = kernfs_seq_stop,
212 .show = kernfs_seq_show,
216 * As reading a bin file can have side-effects, the exact offset and bytes
217 * specified in read(2) call should be passed to the read callback making
218 * it difficult to use seq_file. Implement simplistic custom buffering for
221 static ssize_t kernfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
223 struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
224 ssize_t len = min_t(size_t, iov_iter_count(iter), PAGE_SIZE);
225 const struct kernfs_ops *ops;
228 buf = of->prealloc_buf;
230 mutex_lock(&of->prealloc_mutex);
232 buf = kmalloc(len, GFP_KERNEL);
237 * @of->mutex nests outside active ref and is used both to ensure that
238 * the ops aren't called concurrently for the same open file.
240 mutex_lock(&of->mutex);
241 if (!kernfs_get_active(of->kn)) {
243 mutex_unlock(&of->mutex);
247 of->event = atomic_read(&of_on(of)->event);
249 ops = kernfs_ops(of->kn);
251 len = ops->read(of, buf, len, iocb->ki_pos);
255 kernfs_put_active(of->kn);
256 mutex_unlock(&of->mutex);
261 if (copy_to_iter(buf, len, iter) != len) {
269 if (buf == of->prealloc_buf)
270 mutex_unlock(&of->prealloc_mutex);
276 static ssize_t kernfs_fop_read_iter(struct kiocb *iocb, struct iov_iter *iter)
278 if (kernfs_of(iocb->ki_filp)->kn->flags & KERNFS_HAS_SEQ_SHOW)
279 return seq_read_iter(iocb, iter);
280 return kernfs_file_read_iter(iocb, iter);
284 * Copy data in from userland and pass it to the matching kernfs write
287 * There is no easy way for us to know if userspace is only doing a partial
288 * write, so we don't support them. We expect the entire buffer to come on
289 * the first write. Hint: if you're writing a value, first read the file,
290 * modify only the value you're changing, then write entire buffer
293 static ssize_t kernfs_fop_write_iter(struct kiocb *iocb, struct iov_iter *iter)
295 struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
296 ssize_t len = iov_iter_count(iter);
297 const struct kernfs_ops *ops;
300 if (of->atomic_write_len) {
301 if (len > of->atomic_write_len)
304 len = min_t(size_t, len, PAGE_SIZE);
307 buf = of->prealloc_buf;
309 mutex_lock(&of->prealloc_mutex);
311 buf = kmalloc(len + 1, GFP_KERNEL);
315 if (copy_from_iter(buf, len, iter) != len) {
319 buf[len] = '\0'; /* guarantee string termination */
322 * @of->mutex nests outside active ref and is used both to ensure that
323 * the ops aren't called concurrently for the same open file.
325 mutex_lock(&of->mutex);
326 if (!kernfs_get_active(of->kn)) {
327 mutex_unlock(&of->mutex);
332 ops = kernfs_ops(of->kn);
334 len = ops->write(of, buf, len, iocb->ki_pos);
338 kernfs_put_active(of->kn);
339 mutex_unlock(&of->mutex);
345 if (buf == of->prealloc_buf)
346 mutex_unlock(&of->prealloc_mutex);
352 static void kernfs_vma_open(struct vm_area_struct *vma)
354 struct file *file = vma->vm_file;
355 struct kernfs_open_file *of = kernfs_of(file);
360 if (!kernfs_get_active(of->kn))
363 if (of->vm_ops->open)
364 of->vm_ops->open(vma);
366 kernfs_put_active(of->kn);
369 static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf)
371 struct file *file = vmf->vma->vm_file;
372 struct kernfs_open_file *of = kernfs_of(file);
376 return VM_FAULT_SIGBUS;
378 if (!kernfs_get_active(of->kn))
379 return VM_FAULT_SIGBUS;
381 ret = VM_FAULT_SIGBUS;
382 if (of->vm_ops->fault)
383 ret = of->vm_ops->fault(vmf);
385 kernfs_put_active(of->kn);
389 static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf)
391 struct file *file = vmf->vma->vm_file;
392 struct kernfs_open_file *of = kernfs_of(file);
396 return VM_FAULT_SIGBUS;
398 if (!kernfs_get_active(of->kn))
399 return VM_FAULT_SIGBUS;
402 if (of->vm_ops->page_mkwrite)
403 ret = of->vm_ops->page_mkwrite(vmf);
405 file_update_time(file);
407 kernfs_put_active(of->kn);
411 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
412 void *buf, int len, int write)
414 struct file *file = vma->vm_file;
415 struct kernfs_open_file *of = kernfs_of(file);
421 if (!kernfs_get_active(of->kn))
425 if (of->vm_ops->access)
426 ret = of->vm_ops->access(vma, addr, buf, len, write);
428 kernfs_put_active(of->kn);
432 static const struct vm_operations_struct kernfs_vm_ops = {
433 .open = kernfs_vma_open,
434 .fault = kernfs_vma_fault,
435 .page_mkwrite = kernfs_vma_page_mkwrite,
436 .access = kernfs_vma_access,
439 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
441 struct kernfs_open_file *of = kernfs_of(file);
442 const struct kernfs_ops *ops;
446 * mmap path and of->mutex are prone to triggering spurious lockdep
447 * warnings and we don't want to add spurious locking dependency
448 * between the two. Check whether mmap is actually implemented
449 * without grabbing @of->mutex by testing HAS_MMAP flag. See the
450 * comment in kernfs_file_open() for more details.
452 if (!(of->kn->flags & KERNFS_HAS_MMAP))
455 mutex_lock(&of->mutex);
458 if (!kernfs_get_active(of->kn))
461 ops = kernfs_ops(of->kn);
462 rc = ops->mmap(of, vma);
467 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
468 * to satisfy versions of X which crash if the mmap fails: that
469 * substitutes a new vm_file, and we don't then want bin_vm_ops.
471 if (vma->vm_file != file)
475 if (of->mmapped && of->vm_ops != vma->vm_ops)
479 * It is not possible to successfully wrap close.
480 * So error if someone is trying to use close.
482 if (vma->vm_ops && vma->vm_ops->close)
487 of_on(of)->nr_mmapped++;
488 of->vm_ops = vma->vm_ops;
489 vma->vm_ops = &kernfs_vm_ops;
491 kernfs_put_active(of->kn);
493 mutex_unlock(&of->mutex);
499 * kernfs_get_open_node - get or create kernfs_open_node
500 * @kn: target kernfs_node
501 * @of: kernfs_open_file for this instance of open
503 * If @kn->attr.open exists, increment its reference count; otherwise,
504 * create one. @of is chained to the files list.
507 * Kernel thread context (may sleep).
510 * %0 on success, -errno on failure.
512 static int kernfs_get_open_node(struct kernfs_node *kn,
513 struct kernfs_open_file *of)
515 struct kernfs_open_node *on;
518 mutex = kernfs_open_file_mutex_lock(kn);
519 on = kernfs_deref_open_node_locked(kn);
522 /* not there, initialize a new one */
523 on = kzalloc(sizeof(*on), GFP_KERNEL);
528 atomic_set(&on->event, 1);
529 init_waitqueue_head(&on->poll);
530 INIT_LIST_HEAD(&on->files);
531 rcu_assign_pointer(kn->attr.open, on);
534 list_add_tail(&of->list, &on->files);
535 if (kn->flags & KERNFS_HAS_RELEASE)
543 * kernfs_unlink_open_file - Unlink @of from @kn.
545 * @kn: target kernfs_node
546 * @of: associated kernfs_open_file
547 * @open_failed: ->open() failed, cancel ->release()
549 * Unlink @of from list of @kn's associated open files. If list of
550 * associated open files becomes empty, disassociate and free
556 static void kernfs_unlink_open_file(struct kernfs_node *kn,
557 struct kernfs_open_file *of,
560 struct kernfs_open_node *on;
563 mutex = kernfs_open_file_mutex_lock(kn);
565 on = kernfs_deref_open_node_locked(kn);
572 if (kn->flags & KERNFS_HAS_RELEASE) {
573 WARN_ON_ONCE(of->released == open_failed);
582 if (list_empty(&on->files)) {
583 rcu_assign_pointer(kn->attr.open, NULL);
584 kfree_rcu(on, rcu_head);
590 static int kernfs_fop_open(struct inode *inode, struct file *file)
592 struct kernfs_node *kn = inode->i_private;
593 struct kernfs_root *root = kernfs_root(kn);
594 const struct kernfs_ops *ops;
595 struct kernfs_open_file *of;
596 bool has_read, has_write, has_mmap;
599 if (!kernfs_get_active(kn))
602 ops = kernfs_ops(kn);
604 has_read = ops->seq_show || ops->read || ops->mmap;
605 has_write = ops->write || ops->mmap;
606 has_mmap = ops->mmap;
608 /* see the flag definition for details */
609 if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
610 if ((file->f_mode & FMODE_WRITE) &&
611 (!(inode->i_mode & S_IWUGO) || !has_write))
614 if ((file->f_mode & FMODE_READ) &&
615 (!(inode->i_mode & S_IRUGO) || !has_read))
619 /* allocate a kernfs_open_file for the file */
621 of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
626 * The following is done to give a different lockdep key to
627 * @of->mutex for files which implement mmap. This is a rather
628 * crude way to avoid false positive lockdep warning around
629 * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and
630 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
631 * which mm->mmap_lock nests, while holding @of->mutex. As each
632 * open file has a separate mutex, it's okay as long as those don't
633 * happen on the same file. At this point, we can't easily give
634 * each file a separate locking class. Let's differentiate on
635 * whether the file has mmap or not for now.
637 * Both paths of the branch look the same. They're supposed to
638 * look that way and give @of->mutex different static lockdep keys.
641 mutex_init(&of->mutex);
643 mutex_init(&of->mutex);
649 * Write path needs to atomic_write_len outside active reference.
650 * Cache it in open_file. See kernfs_fop_write_iter() for details.
652 of->atomic_write_len = ops->atomic_write_len;
656 * ->seq_show is incompatible with ->prealloc,
657 * as seq_read does its own allocation.
658 * ->read must be used instead.
660 if (ops->prealloc && ops->seq_show)
663 int len = of->atomic_write_len ?: PAGE_SIZE;
664 of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
666 if (!of->prealloc_buf)
668 mutex_init(&of->prealloc_mutex);
672 * Always instantiate seq_file even if read access doesn't use
673 * seq_file or is not requested. This unifies private data access
674 * and readable regular files are the vast majority anyway.
677 error = seq_open(file, &kernfs_seq_ops);
679 error = seq_open(file, NULL);
683 of->seq_file = file->private_data;
684 of->seq_file->private = of;
686 /* seq_file clears PWRITE unconditionally, restore it if WRITE */
687 if (file->f_mode & FMODE_WRITE)
688 file->f_mode |= FMODE_PWRITE;
690 /* make sure we have open node struct */
691 error = kernfs_get_open_node(kn, of);
693 goto err_seq_release;
696 /* nobody has access to @of yet, skip @of->mutex */
697 error = ops->open(of);
702 /* open succeeded, put active references */
703 kernfs_put_active(kn);
707 kernfs_unlink_open_file(kn, of, true);
709 seq_release(inode, file);
711 kfree(of->prealloc_buf);
714 kernfs_put_active(kn);
718 /* used from release/drain to ensure that ->release() is called exactly once */
719 static void kernfs_release_file(struct kernfs_node *kn,
720 struct kernfs_open_file *of)
723 * @of is guaranteed to have no other file operations in flight and
724 * we just want to synchronize release and drain paths.
725 * @kernfs_open_file_mutex_ptr(kn) is enough. @of->mutex can't be used
726 * here because drain path may be called from places which can
727 * cause circular dependency.
729 lockdep_assert_held(kernfs_open_file_mutex_ptr(kn));
733 * A file is never detached without being released and we
734 * need to be able to release files which are deactivated
735 * and being drained. Don't use kernfs_ops().
737 kn->attr.ops->release(of);
739 of_on(of)->nr_to_release--;
743 static int kernfs_fop_release(struct inode *inode, struct file *filp)
745 struct kernfs_node *kn = inode->i_private;
746 struct kernfs_open_file *of = kernfs_of(filp);
748 if (kn->flags & KERNFS_HAS_RELEASE) {
751 mutex = kernfs_open_file_mutex_lock(kn);
752 kernfs_release_file(kn, of);
756 kernfs_unlink_open_file(kn, of, false);
757 seq_release(inode, filp);
758 kfree(of->prealloc_buf);
764 bool kernfs_should_drain_open_files(struct kernfs_node *kn)
766 struct kernfs_open_node *on;
770 * @kn being deactivated guarantees that @kn->attr.open can't change
771 * beneath us making the lockless test below safe.
773 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
776 on = rcu_dereference(kn->attr.open);
777 ret = on && (on->nr_mmapped || on->nr_to_release);
783 void kernfs_drain_open_files(struct kernfs_node *kn)
785 struct kernfs_open_node *on;
786 struct kernfs_open_file *of;
789 mutex = kernfs_open_file_mutex_lock(kn);
790 on = kernfs_deref_open_node_locked(kn);
796 list_for_each_entry(of, &on->files, list) {
797 struct inode *inode = file_inode(of->file);
800 unmap_mapping_range(inode->i_mapping, 0, 0, 1);
805 if (kn->flags & KERNFS_HAS_RELEASE)
806 kernfs_release_file(kn, of);
809 WARN_ON_ONCE(on->nr_mmapped || on->nr_to_release);
814 * Kernfs attribute files are pollable. The idea is that you read
815 * the content and then you use 'poll' or 'select' to wait for
816 * the content to change. When the content changes (assuming the
817 * manager for the kobject supports notification), poll will
818 * return EPOLLERR|EPOLLPRI, and select will return the fd whether
819 * it is waiting for read, write, or exceptions.
820 * Once poll/select indicates that the value has changed, you
821 * need to close and re-open the file, or seek to 0 and read again.
822 * Reminder: this only works for attributes which actively support
823 * it, and it is not possible to test an attribute from userspace
824 * to see if it supports poll (Neither 'poll' nor 'select' return
825 * an appropriate error code). When in doubt, set a suitable timeout value.
827 __poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait)
829 struct kernfs_open_node *on = of_on(of);
831 poll_wait(of->file, &on->poll, wait);
833 if (of->event != atomic_read(&on->event))
834 return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
836 return DEFAULT_POLLMASK;
839 static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
841 struct kernfs_open_file *of = kernfs_of(filp);
842 struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
845 if (!kernfs_get_active(kn))
846 return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
848 if (kn->attr.ops->poll)
849 ret = kn->attr.ops->poll(of, wait);
851 ret = kernfs_generic_poll(of, wait);
853 kernfs_put_active(kn);
857 static loff_t kernfs_fop_llseek(struct file *file, loff_t offset, int whence)
859 struct kernfs_open_file *of = kernfs_of(file);
860 const struct kernfs_ops *ops;
864 * @of->mutex nests outside active ref and is primarily to ensure that
865 * the ops aren't called concurrently for the same open file.
867 mutex_lock(&of->mutex);
868 if (!kernfs_get_active(of->kn)) {
869 mutex_unlock(&of->mutex);
873 ops = kernfs_ops(of->kn);
875 ret = ops->llseek(of, offset, whence);
877 ret = generic_file_llseek(file, offset, whence);
879 kernfs_put_active(of->kn);
880 mutex_unlock(&of->mutex);
884 static void kernfs_notify_workfn(struct work_struct *work)
886 struct kernfs_node *kn;
887 struct kernfs_super_info *info;
888 struct kernfs_root *root;
890 /* pop one off the notify_list */
891 spin_lock_irq(&kernfs_notify_lock);
892 kn = kernfs_notify_list;
893 if (kn == KERNFS_NOTIFY_EOL) {
894 spin_unlock_irq(&kernfs_notify_lock);
897 kernfs_notify_list = kn->attr.notify_next;
898 kn->attr.notify_next = NULL;
899 spin_unlock_irq(&kernfs_notify_lock);
901 root = kernfs_root(kn);
904 down_read(&root->kernfs_supers_rwsem);
905 list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
906 struct kernfs_node *parent;
907 struct inode *p_inode = NULL;
912 * We want fsnotify_modify() on @kn but as the
913 * modifications aren't originating from userland don't
914 * have the matching @file available. Look up the inodes
915 * and generate the events manually.
917 inode = ilookup(info->sb, kernfs_ino(kn));
921 name = (struct qstr)QSTR_INIT(kn->name, strlen(kn->name));
922 parent = kernfs_get_parent(kn);
924 p_inode = ilookup(info->sb, kernfs_ino(parent));
926 fsnotify(FS_MODIFY | FS_EVENT_ON_CHILD,
927 inode, FSNOTIFY_EVENT_INODE,
928 p_inode, &name, inode, 0);
936 fsnotify_inode(inode, FS_MODIFY);
941 up_read(&root->kernfs_supers_rwsem);
947 * kernfs_notify - notify a kernfs file
948 * @kn: file to notify
950 * Notify @kn such that poll(2) on @kn wakes up. Maybe be called from any
953 void kernfs_notify(struct kernfs_node *kn)
955 static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
957 struct kernfs_open_node *on;
959 if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
962 /* kick poll immediately */
964 on = rcu_dereference(kn->attr.open);
966 atomic_inc(&on->event);
967 wake_up_interruptible(&on->poll);
971 /* schedule work to kick fsnotify */
972 spin_lock_irqsave(&kernfs_notify_lock, flags);
973 if (!kn->attr.notify_next) {
975 kn->attr.notify_next = kernfs_notify_list;
976 kernfs_notify_list = kn;
977 schedule_work(&kernfs_notify_work);
979 spin_unlock_irqrestore(&kernfs_notify_lock, flags);
981 EXPORT_SYMBOL_GPL(kernfs_notify);
983 const struct file_operations kernfs_file_fops = {
984 .read_iter = kernfs_fop_read_iter,
985 .write_iter = kernfs_fop_write_iter,
986 .llseek = kernfs_fop_llseek,
987 .mmap = kernfs_fop_mmap,
988 .open = kernfs_fop_open,
989 .release = kernfs_fop_release,
990 .poll = kernfs_fop_poll,
992 .splice_read = copy_splice_read,
993 .splice_write = iter_file_splice_write,
997 * __kernfs_create_file - kernfs internal function to create a file
998 * @parent: directory to create the file in
999 * @name: name of the file
1000 * @mode: mode of the file
1001 * @uid: uid of the file
1002 * @gid: gid of the file
1003 * @size: size of the file
1004 * @ops: kernfs operations for the file
1005 * @priv: private data for the file
1006 * @ns: optional namespace tag of the file
1007 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
1009 * Return: the created node on success, ERR_PTR() value on error.
1011 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
1013 umode_t mode, kuid_t uid, kgid_t gid,
1015 const struct kernfs_ops *ops,
1016 void *priv, const void *ns,
1017 struct lock_class_key *key)
1019 struct kernfs_node *kn;
1023 flags = KERNFS_FILE;
1025 kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG,
1028 return ERR_PTR(-ENOMEM);
1031 kn->attr.size = size;
1035 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1037 lockdep_init_map(&kn->dep_map, "kn->active", key, 0);
1038 kn->flags |= KERNFS_LOCKDEP;
1043 * kn->attr.ops is accessible only while holding active ref. We
1044 * need to know whether some ops are implemented outside active
1045 * ref. Cache their existence in flags.
1048 kn->flags |= KERNFS_HAS_SEQ_SHOW;
1050 kn->flags |= KERNFS_HAS_MMAP;
1052 kn->flags |= KERNFS_HAS_RELEASE;
1054 rc = kernfs_add_one(kn);