1 // SPDX-License-Identifier: GPL-2.0-only
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
38 #define pr_fmt(fmt) "TCP: " fmt
41 #include <net/mptcp.h>
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
48 #include <trace/events/tcp.h>
50 /* Refresh clocks of a TCP socket,
51 * ensuring monotically increasing values.
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
55 u64 val = tcp_clock_ns();
57 tp->tcp_clock_cache = val;
58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 int push_one, gfp_t gfp);
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
67 struct inet_connection_sock *icsk = inet_csk(sk);
68 struct tcp_sock *tp = tcp_sk(sk);
69 unsigned int prior_packets = tp->packets_out;
71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
73 __skb_unlink(skb, &sk->sk_write_queue);
74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
76 if (tp->highest_sack == NULL)
77 tp->highest_sack = skb;
79 tp->packets_out += tcp_skb_pcount(skb);
80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89 * window scaling factor due to loss of precision.
90 * If window has been shrunk, what should we make? It is not clear at all.
91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93 * invalid. OK, let's make this for now:
95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
97 const struct tcp_sock *tp = tcp_sk(sk);
99 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 (tp->rx_opt.wscale_ok &&
101 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
104 return tcp_wnd_end(tp);
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
121 static __u16 tcp_advertise_mss(struct sock *sk)
123 struct tcp_sock *tp = tcp_sk(sk);
124 const struct dst_entry *dst = __sk_dst_get(sk);
125 int mss = tp->advmss;
128 unsigned int metric = dst_metric_advmss(dst);
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism.
142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
144 struct tcp_sock *tp = tcp_sk(sk);
145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 u32 cwnd = tcp_snd_cwnd(tp);
148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
150 tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 restart_cwnd = min(restart_cwnd, cwnd);
153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
155 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 tp->snd_cwnd_stamp = tcp_jiffies32;
157 tp->snd_cwnd_used = 0;
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const u32 now = tcp_jiffies32;
167 if (tcp_packets_in_flight(tp) == 0)
168 tcp_ca_event(sk, CA_EVENT_TX_START);
172 /* If it is a reply for ato after last received
173 * packet, enter pingpong mode.
175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 inet_csk_enter_pingpong_mode(sk);
179 /* Account for an ACK we sent. */
180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
183 struct tcp_sock *tp = tcp_sk(sk);
185 if (unlikely(tp->compressed_ack)) {
186 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
188 tp->compressed_ack = 0;
189 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
193 if (unlikely(rcv_nxt != tp->rcv_nxt))
194 return; /* Special ACK sent by DCTCP to reflect ECN */
195 tcp_dec_quickack_mode(sk, pkts);
196 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
199 /* Determine a window scaling and initial window to offer.
200 * Based on the assumption that the given amount of space
201 * will be offered. Store the results in the tp structure.
202 * NOTE: for smooth operation initial space offering should
203 * be a multiple of mss if possible. We assume here that mss >= 1.
204 * This MUST be enforced by all callers.
206 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
207 __u32 *rcv_wnd, __u32 *window_clamp,
208 int wscale_ok, __u8 *rcv_wscale,
211 unsigned int space = (__space < 0 ? 0 : __space);
213 /* If no clamp set the clamp to the max possible scaled window */
214 if (*window_clamp == 0)
215 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
216 space = min(*window_clamp, space);
218 /* Quantize space offering to a multiple of mss if possible. */
220 space = rounddown(space, mss);
222 /* NOTE: offering an initial window larger than 32767
223 * will break some buggy TCP stacks. If the admin tells us
224 * it is likely we could be speaking with such a buggy stack
225 * we will truncate our initial window offering to 32K-1
226 * unless the remote has sent us a window scaling option,
227 * which we interpret as a sign the remote TCP is not
228 * misinterpreting the window field as a signed quantity.
230 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
233 (*rcv_wnd) = min_t(u32, space, U16_MAX);
236 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
240 /* Set window scaling on max possible window */
241 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
242 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
243 space = min_t(u32, space, *window_clamp);
244 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
247 /* Set the clamp no higher than max representable value */
248 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
250 EXPORT_SYMBOL(tcp_select_initial_window);
252 /* Chose a new window to advertise, update state in tcp_sock for the
253 * socket, and return result with RFC1323 scaling applied. The return
254 * value can be stuffed directly into th->window for an outgoing
257 static u16 tcp_select_window(struct sock *sk)
259 struct tcp_sock *tp = tcp_sk(sk);
260 u32 old_win = tp->rcv_wnd;
261 u32 cur_win = tcp_receive_window(tp);
262 u32 new_win = __tcp_select_window(sk);
264 /* Never shrink the offered window */
265 if (new_win < cur_win) {
266 /* Danger Will Robinson!
267 * Don't update rcv_wup/rcv_wnd here or else
268 * we will not be able to advertise a zero
269 * window in time. --DaveM
271 * Relax Will Robinson.
274 NET_INC_STATS(sock_net(sk),
275 LINUX_MIB_TCPWANTZEROWINDOWADV);
276 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
278 tp->rcv_wnd = new_win;
279 tp->rcv_wup = tp->rcv_nxt;
281 /* Make sure we do not exceed the maximum possible
284 if (!tp->rx_opt.rcv_wscale &&
285 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
286 new_win = min(new_win, MAX_TCP_WINDOW);
288 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
290 /* RFC1323 scaling applied */
291 new_win >>= tp->rx_opt.rcv_wscale;
293 /* If we advertise zero window, disable fast path. */
297 NET_INC_STATS(sock_net(sk),
298 LINUX_MIB_TCPTOZEROWINDOWADV);
299 } else if (old_win == 0) {
300 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
306 /* Packet ECN state for a SYN-ACK */
307 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
309 const struct tcp_sock *tp = tcp_sk(sk);
311 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
312 if (!(tp->ecn_flags & TCP_ECN_OK))
313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
314 else if (tcp_ca_needs_ecn(sk) ||
315 tcp_bpf_ca_needs_ecn(sk))
319 /* Packet ECN state for a SYN. */
320 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
322 struct tcp_sock *tp = tcp_sk(sk);
323 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
324 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
325 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
328 const struct dst_entry *dst = __sk_dst_get(sk);
330 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
337 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
338 tp->ecn_flags = TCP_ECN_OK;
339 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
344 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
346 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
347 /* tp->ecn_flags are cleared at a later point in time when
348 * SYN ACK is ultimatively being received.
350 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
354 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
356 if (inet_rsk(req)->ecn_ok)
360 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
363 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
364 struct tcphdr *th, int tcp_header_len)
366 struct tcp_sock *tp = tcp_sk(sk);
368 if (tp->ecn_flags & TCP_ECN_OK) {
369 /* Not-retransmitted data segment: set ECT and inject CWR. */
370 if (skb->len != tcp_header_len &&
371 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
373 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
374 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
376 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
378 } else if (!tcp_ca_needs_ecn(sk)) {
379 /* ACK or retransmitted segment: clear ECT|CE */
380 INET_ECN_dontxmit(sk);
382 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
387 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
388 * auto increment end seqno.
390 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
392 skb->ip_summed = CHECKSUM_PARTIAL;
394 TCP_SKB_CB(skb)->tcp_flags = flags;
396 tcp_skb_pcount_set(skb, 1);
398 TCP_SKB_CB(skb)->seq = seq;
399 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
401 TCP_SKB_CB(skb)->end_seq = seq;
404 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
406 return tp->snd_una != tp->snd_up;
409 #define OPTION_SACK_ADVERTISE BIT(0)
410 #define OPTION_TS BIT(1)
411 #define OPTION_MD5 BIT(2)
412 #define OPTION_WSCALE BIT(3)
413 #define OPTION_FAST_OPEN_COOKIE BIT(8)
414 #define OPTION_SMC BIT(9)
415 #define OPTION_MPTCP BIT(10)
417 static void smc_options_write(__be32 *ptr, u16 *options)
419 #if IS_ENABLED(CONFIG_SMC)
420 if (static_branch_unlikely(&tcp_have_smc)) {
421 if (unlikely(OPTION_SMC & *options)) {
422 *ptr++ = htonl((TCPOPT_NOP << 24) |
425 (TCPOLEN_EXP_SMC_BASE));
426 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
432 struct tcp_out_options {
433 u16 options; /* bit field of OPTION_* */
434 u16 mss; /* 0 to disable */
435 u8 ws; /* window scale, 0 to disable */
436 u8 num_sack_blocks; /* number of SACK blocks to include */
437 u8 hash_size; /* bytes in hash_location */
438 u8 bpf_opt_len; /* length of BPF hdr option */
439 __u8 *hash_location; /* temporary pointer, overloaded */
440 __u32 tsval, tsecr; /* need to include OPTION_TS */
441 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
442 struct mptcp_out_options mptcp;
445 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
447 struct tcp_out_options *opts)
449 #if IS_ENABLED(CONFIG_MPTCP)
450 if (unlikely(OPTION_MPTCP & opts->options))
451 mptcp_write_options(th, ptr, tp, &opts->mptcp);
455 #ifdef CONFIG_CGROUP_BPF
456 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
457 enum tcp_synack_type synack_type)
460 return BPF_WRITE_HDR_TCP_CURRENT_MSS;
462 if (unlikely(synack_type == TCP_SYNACK_COOKIE))
463 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
468 /* req, syn_skb and synack_type are used when writing synack */
469 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
470 struct request_sock *req,
471 struct sk_buff *syn_skb,
472 enum tcp_synack_type synack_type,
473 struct tcp_out_options *opts,
474 unsigned int *remaining)
476 struct bpf_sock_ops_kern sock_ops;
479 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
480 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
484 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
487 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
489 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
492 /* The listen "sk" cannot be passed here because
493 * it is not locked. It would not make too much
494 * sense to do bpf_setsockopt(listen_sk) based
495 * on individual connection request also.
497 * Thus, "req" is passed here and the cgroup-bpf-progs
498 * of the listen "sk" will be run.
500 * "req" is also used here for fastopen even the "sk" here is
501 * a fullsock "child" sk. It is to keep the behavior
502 * consistent between fastopen and non-fastopen on
503 * the bpf programming side.
505 sock_ops.sk = (struct sock *)req;
506 sock_ops.syn_skb = syn_skb;
508 sock_owned_by_me(sk);
510 sock_ops.is_fullsock = 1;
514 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
515 sock_ops.remaining_opt_len = *remaining;
516 /* tcp_current_mss() does not pass a skb */
518 bpf_skops_init_skb(&sock_ops, skb, 0);
520 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
522 if (err || sock_ops.remaining_opt_len == *remaining)
525 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
526 /* round up to 4 bytes */
527 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
529 *remaining -= opts->bpf_opt_len;
532 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
533 struct request_sock *req,
534 struct sk_buff *syn_skb,
535 enum tcp_synack_type synack_type,
536 struct tcp_out_options *opts)
538 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
539 struct bpf_sock_ops_kern sock_ops;
542 if (likely(!max_opt_len))
545 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
547 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
550 sock_ops.sk = (struct sock *)req;
551 sock_ops.syn_skb = syn_skb;
553 sock_owned_by_me(sk);
555 sock_ops.is_fullsock = 1;
559 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
560 sock_ops.remaining_opt_len = max_opt_len;
561 first_opt_off = tcp_hdrlen(skb) - max_opt_len;
562 bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
564 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
569 nr_written = max_opt_len - sock_ops.remaining_opt_len;
571 if (nr_written < max_opt_len)
572 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
573 max_opt_len - nr_written);
576 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
577 struct request_sock *req,
578 struct sk_buff *syn_skb,
579 enum tcp_synack_type synack_type,
580 struct tcp_out_options *opts,
581 unsigned int *remaining)
585 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
586 struct request_sock *req,
587 struct sk_buff *syn_skb,
588 enum tcp_synack_type synack_type,
589 struct tcp_out_options *opts)
594 /* Write previously computed TCP options to the packet.
596 * Beware: Something in the Internet is very sensitive to the ordering of
597 * TCP options, we learned this through the hard way, so be careful here.
598 * Luckily we can at least blame others for their non-compliance but from
599 * inter-operability perspective it seems that we're somewhat stuck with
600 * the ordering which we have been using if we want to keep working with
601 * those broken things (not that it currently hurts anybody as there isn't
602 * particular reason why the ordering would need to be changed).
604 * At least SACK_PERM as the first option is known to lead to a disaster
605 * (but it may well be that other scenarios fail similarly).
607 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
608 struct tcp_out_options *opts)
610 __be32 *ptr = (__be32 *)(th + 1);
611 u16 options = opts->options; /* mungable copy */
613 if (unlikely(OPTION_MD5 & options)) {
614 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
615 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
616 /* overload cookie hash location */
617 opts->hash_location = (__u8 *)ptr;
621 if (unlikely(opts->mss)) {
622 *ptr++ = htonl((TCPOPT_MSS << 24) |
623 (TCPOLEN_MSS << 16) |
627 if (likely(OPTION_TS & options)) {
628 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
629 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
630 (TCPOLEN_SACK_PERM << 16) |
631 (TCPOPT_TIMESTAMP << 8) |
633 options &= ~OPTION_SACK_ADVERTISE;
635 *ptr++ = htonl((TCPOPT_NOP << 24) |
637 (TCPOPT_TIMESTAMP << 8) |
640 *ptr++ = htonl(opts->tsval);
641 *ptr++ = htonl(opts->tsecr);
644 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
645 *ptr++ = htonl((TCPOPT_NOP << 24) |
647 (TCPOPT_SACK_PERM << 8) |
651 if (unlikely(OPTION_WSCALE & options)) {
652 *ptr++ = htonl((TCPOPT_NOP << 24) |
653 (TCPOPT_WINDOW << 16) |
654 (TCPOLEN_WINDOW << 8) |
658 if (unlikely(opts->num_sack_blocks)) {
659 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
660 tp->duplicate_sack : tp->selective_acks;
663 *ptr++ = htonl((TCPOPT_NOP << 24) |
666 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
667 TCPOLEN_SACK_PERBLOCK)));
669 for (this_sack = 0; this_sack < opts->num_sack_blocks;
671 *ptr++ = htonl(sp[this_sack].start_seq);
672 *ptr++ = htonl(sp[this_sack].end_seq);
675 tp->rx_opt.dsack = 0;
678 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
679 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
681 u32 len; /* Fast Open option length */
684 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
685 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
686 TCPOPT_FASTOPEN_MAGIC);
687 p += TCPOLEN_EXP_FASTOPEN_BASE;
689 len = TCPOLEN_FASTOPEN_BASE + foc->len;
690 *p++ = TCPOPT_FASTOPEN;
694 memcpy(p, foc->val, foc->len);
695 if ((len & 3) == 2) {
696 p[foc->len] = TCPOPT_NOP;
697 p[foc->len + 1] = TCPOPT_NOP;
699 ptr += (len + 3) >> 2;
702 smc_options_write(ptr, &options);
704 mptcp_options_write(th, ptr, tp, opts);
707 static void smc_set_option(const struct tcp_sock *tp,
708 struct tcp_out_options *opts,
709 unsigned int *remaining)
711 #if IS_ENABLED(CONFIG_SMC)
712 if (static_branch_unlikely(&tcp_have_smc)) {
714 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
715 opts->options |= OPTION_SMC;
716 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
723 static void smc_set_option_cond(const struct tcp_sock *tp,
724 const struct inet_request_sock *ireq,
725 struct tcp_out_options *opts,
726 unsigned int *remaining)
728 #if IS_ENABLED(CONFIG_SMC)
729 if (static_branch_unlikely(&tcp_have_smc)) {
730 if (tp->syn_smc && ireq->smc_ok) {
731 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
732 opts->options |= OPTION_SMC;
733 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
740 static void mptcp_set_option_cond(const struct request_sock *req,
741 struct tcp_out_options *opts,
742 unsigned int *remaining)
744 if (rsk_is_mptcp(req)) {
747 if (mptcp_synack_options(req, &size, &opts->mptcp)) {
748 if (*remaining >= size) {
749 opts->options |= OPTION_MPTCP;
756 /* Compute TCP options for SYN packets. This is not the final
757 * network wire format yet.
759 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
760 struct tcp_out_options *opts,
761 struct tcp_md5sig_key **md5)
763 struct tcp_sock *tp = tcp_sk(sk);
764 unsigned int remaining = MAX_TCP_OPTION_SPACE;
765 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
768 #ifdef CONFIG_TCP_MD5SIG
769 if (static_branch_unlikely(&tcp_md5_needed.key) &&
770 rcu_access_pointer(tp->md5sig_info)) {
771 *md5 = tp->af_specific->md5_lookup(sk, sk);
773 opts->options |= OPTION_MD5;
774 remaining -= TCPOLEN_MD5SIG_ALIGNED;
779 /* We always get an MSS option. The option bytes which will be seen in
780 * normal data packets should timestamps be used, must be in the MSS
781 * advertised. But we subtract them from tp->mss_cache so that
782 * calculations in tcp_sendmsg are simpler etc. So account for this
783 * fact here if necessary. If we don't do this correctly, as a
784 * receiver we won't recognize data packets as being full sized when we
785 * should, and thus we won't abide by the delayed ACK rules correctly.
786 * SACKs don't matter, we never delay an ACK when we have any of those
788 opts->mss = tcp_advertise_mss(sk);
789 remaining -= TCPOLEN_MSS_ALIGNED;
791 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
792 opts->options |= OPTION_TS;
793 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
794 opts->tsecr = tp->rx_opt.ts_recent;
795 remaining -= TCPOLEN_TSTAMP_ALIGNED;
797 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
798 opts->ws = tp->rx_opt.rcv_wscale;
799 opts->options |= OPTION_WSCALE;
800 remaining -= TCPOLEN_WSCALE_ALIGNED;
802 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
803 opts->options |= OPTION_SACK_ADVERTISE;
804 if (unlikely(!(OPTION_TS & opts->options)))
805 remaining -= TCPOLEN_SACKPERM_ALIGNED;
808 if (fastopen && fastopen->cookie.len >= 0) {
809 u32 need = fastopen->cookie.len;
811 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
812 TCPOLEN_FASTOPEN_BASE;
813 need = (need + 3) & ~3U; /* Align to 32 bits */
814 if (remaining >= need) {
815 opts->options |= OPTION_FAST_OPEN_COOKIE;
816 opts->fastopen_cookie = &fastopen->cookie;
818 tp->syn_fastopen = 1;
819 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
823 smc_set_option(tp, opts, &remaining);
825 if (sk_is_mptcp(sk)) {
828 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
829 opts->options |= OPTION_MPTCP;
834 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
836 return MAX_TCP_OPTION_SPACE - remaining;
839 /* Set up TCP options for SYN-ACKs. */
840 static unsigned int tcp_synack_options(const struct sock *sk,
841 struct request_sock *req,
842 unsigned int mss, struct sk_buff *skb,
843 struct tcp_out_options *opts,
844 const struct tcp_md5sig_key *md5,
845 struct tcp_fastopen_cookie *foc,
846 enum tcp_synack_type synack_type,
847 struct sk_buff *syn_skb)
849 struct inet_request_sock *ireq = inet_rsk(req);
850 unsigned int remaining = MAX_TCP_OPTION_SPACE;
852 #ifdef CONFIG_TCP_MD5SIG
854 opts->options |= OPTION_MD5;
855 remaining -= TCPOLEN_MD5SIG_ALIGNED;
857 /* We can't fit any SACK blocks in a packet with MD5 + TS
858 * options. There was discussion about disabling SACK
859 * rather than TS in order to fit in better with old,
860 * buggy kernels, but that was deemed to be unnecessary.
862 if (synack_type != TCP_SYNACK_COOKIE)
863 ireq->tstamp_ok &= !ireq->sack_ok;
867 /* We always send an MSS option. */
869 remaining -= TCPOLEN_MSS_ALIGNED;
871 if (likely(ireq->wscale_ok)) {
872 opts->ws = ireq->rcv_wscale;
873 opts->options |= OPTION_WSCALE;
874 remaining -= TCPOLEN_WSCALE_ALIGNED;
876 if (likely(ireq->tstamp_ok)) {
877 opts->options |= OPTION_TS;
878 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
879 opts->tsecr = req->ts_recent;
880 remaining -= TCPOLEN_TSTAMP_ALIGNED;
882 if (likely(ireq->sack_ok)) {
883 opts->options |= OPTION_SACK_ADVERTISE;
884 if (unlikely(!ireq->tstamp_ok))
885 remaining -= TCPOLEN_SACKPERM_ALIGNED;
887 if (foc != NULL && foc->len >= 0) {
890 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
891 TCPOLEN_FASTOPEN_BASE;
892 need = (need + 3) & ~3U; /* Align to 32 bits */
893 if (remaining >= need) {
894 opts->options |= OPTION_FAST_OPEN_COOKIE;
895 opts->fastopen_cookie = foc;
900 mptcp_set_option_cond(req, opts, &remaining);
902 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
904 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
905 synack_type, opts, &remaining);
907 return MAX_TCP_OPTION_SPACE - remaining;
910 /* Compute TCP options for ESTABLISHED sockets. This is not the
911 * final wire format yet.
913 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
914 struct tcp_out_options *opts,
915 struct tcp_md5sig_key **md5)
917 struct tcp_sock *tp = tcp_sk(sk);
918 unsigned int size = 0;
919 unsigned int eff_sacks;
924 #ifdef CONFIG_TCP_MD5SIG
925 if (static_branch_unlikely(&tcp_md5_needed.key) &&
926 rcu_access_pointer(tp->md5sig_info)) {
927 *md5 = tp->af_specific->md5_lookup(sk, sk);
929 opts->options |= OPTION_MD5;
930 size += TCPOLEN_MD5SIG_ALIGNED;
935 if (likely(tp->rx_opt.tstamp_ok)) {
936 opts->options |= OPTION_TS;
937 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
938 opts->tsecr = tp->rx_opt.ts_recent;
939 size += TCPOLEN_TSTAMP_ALIGNED;
942 /* MPTCP options have precedence over SACK for the limited TCP
943 * option space because a MPTCP connection would be forced to
944 * fall back to regular TCP if a required multipath option is
945 * missing. SACK still gets a chance to use whatever space is
948 if (sk_is_mptcp(sk)) {
949 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
950 unsigned int opt_size = 0;
952 if (mptcp_established_options(sk, skb, &opt_size, remaining,
954 opts->options |= OPTION_MPTCP;
959 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
960 if (unlikely(eff_sacks)) {
961 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
962 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
963 TCPOLEN_SACK_PERBLOCK))
966 opts->num_sack_blocks =
967 min_t(unsigned int, eff_sacks,
968 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
969 TCPOLEN_SACK_PERBLOCK);
971 size += TCPOLEN_SACK_BASE_ALIGNED +
972 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
975 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
976 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
977 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
979 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
981 size = MAX_TCP_OPTION_SPACE - remaining;
988 /* TCP SMALL QUEUES (TSQ)
990 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
991 * to reduce RTT and bufferbloat.
992 * We do this using a special skb destructor (tcp_wfree).
994 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
995 * needs to be reallocated in a driver.
996 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
998 * Since transmit from skb destructor is forbidden, we use a tasklet
999 * to process all sockets that eventually need to send more skbs.
1000 * We use one tasklet per cpu, with its own queue of sockets.
1002 struct tsq_tasklet {
1003 struct tasklet_struct tasklet;
1004 struct list_head head; /* queue of tcp sockets */
1006 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1008 static void tcp_tsq_write(struct sock *sk)
1010 if ((1 << sk->sk_state) &
1011 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1012 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
1013 struct tcp_sock *tp = tcp_sk(sk);
1015 if (tp->lost_out > tp->retrans_out &&
1016 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1017 tcp_mstamp_refresh(tp);
1018 tcp_xmit_retransmit_queue(sk);
1021 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1026 static void tcp_tsq_handler(struct sock *sk)
1029 if (!sock_owned_by_user(sk))
1031 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1036 * One tasklet per cpu tries to send more skbs.
1037 * We run in tasklet context but need to disable irqs when
1038 * transferring tsq->head because tcp_wfree() might
1039 * interrupt us (non NAPI drivers)
1041 static void tcp_tasklet_func(struct tasklet_struct *t)
1043 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet);
1045 unsigned long flags;
1046 struct list_head *q, *n;
1047 struct tcp_sock *tp;
1050 local_irq_save(flags);
1051 list_splice_init(&tsq->head, &list);
1052 local_irq_restore(flags);
1054 list_for_each_safe(q, n, &list) {
1055 tp = list_entry(q, struct tcp_sock, tsq_node);
1056 list_del(&tp->tsq_node);
1058 sk = (struct sock *)tp;
1059 smp_mb__before_atomic();
1060 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1062 tcp_tsq_handler(sk);
1067 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
1068 TCPF_WRITE_TIMER_DEFERRED | \
1069 TCPF_DELACK_TIMER_DEFERRED | \
1070 TCPF_MTU_REDUCED_DEFERRED)
1072 * tcp_release_cb - tcp release_sock() callback
1075 * called from release_sock() to perform protocol dependent
1076 * actions before socket release.
1078 void tcp_release_cb(struct sock *sk)
1080 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1081 unsigned long nflags;
1083 /* perform an atomic operation only if at least one flag is set */
1085 if (!(flags & TCP_DEFERRED_ALL))
1087 nflags = flags & ~TCP_DEFERRED_ALL;
1088 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1090 if (flags & TCPF_TSQ_DEFERRED) {
1094 /* Here begins the tricky part :
1095 * We are called from release_sock() with :
1097 * 2) sk_lock.slock spinlock held
1098 * 3) socket owned by us (sk->sk_lock.owned == 1)
1100 * But following code is meant to be called from BH handlers,
1101 * so we should keep BH disabled, but early release socket ownership
1103 sock_release_ownership(sk);
1105 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1106 tcp_write_timer_handler(sk);
1109 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1110 tcp_delack_timer_handler(sk);
1113 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1114 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1118 EXPORT_SYMBOL(tcp_release_cb);
1120 void __init tcp_tasklet_init(void)
1124 for_each_possible_cpu(i) {
1125 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1127 INIT_LIST_HEAD(&tsq->head);
1128 tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1133 * Write buffer destructor automatically called from kfree_skb.
1134 * We can't xmit new skbs from this context, as we might already
1137 void tcp_wfree(struct sk_buff *skb)
1139 struct sock *sk = skb->sk;
1140 struct tcp_sock *tp = tcp_sk(sk);
1141 unsigned long flags, nval, oval;
1142 struct tsq_tasklet *tsq;
1145 /* Keep one reference on sk_wmem_alloc.
1146 * Will be released by sk_free() from here or tcp_tasklet_func()
1148 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1150 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
1151 * Wait until our queues (qdisc + devices) are drained.
1153 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1154 * - chance for incoming ACK (processed by another cpu maybe)
1155 * to migrate this flow (skb->ooo_okay will be eventually set)
1157 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1160 oval = smp_load_acquire(&sk->sk_tsq_flags);
1162 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1165 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1166 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1168 /* queue this socket to tasklet queue */
1169 local_irq_save(flags);
1170 tsq = this_cpu_ptr(&tsq_tasklet);
1171 empty = list_empty(&tsq->head);
1172 list_add(&tp->tsq_node, &tsq->head);
1174 tasklet_schedule(&tsq->tasklet);
1175 local_irq_restore(flags);
1181 /* Note: Called under soft irq.
1182 * We can call TCP stack right away, unless socket is owned by user.
1184 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1186 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1187 struct sock *sk = (struct sock *)tp;
1189 tcp_tsq_handler(sk);
1192 return HRTIMER_NORESTART;
1195 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1198 struct tcp_sock *tp = tcp_sk(sk);
1200 if (sk->sk_pacing_status != SK_PACING_NONE) {
1201 unsigned long rate = sk->sk_pacing_rate;
1203 /* Original sch_fq does not pace first 10 MSS
1204 * Note that tp->data_segs_out overflows after 2^32 packets,
1205 * this is a minor annoyance.
1207 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1208 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1209 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1211 /* take into account OS jitter */
1212 len_ns -= min_t(u64, len_ns / 2, credit);
1213 tp->tcp_wstamp_ns += len_ns;
1216 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1219 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1220 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1221 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1223 /* This routine actually transmits TCP packets queued in by
1224 * tcp_do_sendmsg(). This is used by both the initial
1225 * transmission and possible later retransmissions.
1226 * All SKB's seen here are completely headerless. It is our
1227 * job to build the TCP header, and pass the packet down to
1228 * IP so it can do the same plus pass the packet off to the
1231 * We are working here with either a clone of the original
1232 * SKB, or a fresh unique copy made by the retransmit engine.
1234 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1235 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1237 const struct inet_connection_sock *icsk = inet_csk(sk);
1238 struct inet_sock *inet;
1239 struct tcp_sock *tp;
1240 struct tcp_skb_cb *tcb;
1241 struct tcp_out_options opts;
1242 unsigned int tcp_options_size, tcp_header_size;
1243 struct sk_buff *oskb = NULL;
1244 struct tcp_md5sig_key *md5;
1249 BUG_ON(!skb || !tcp_skb_pcount(skb));
1251 prior_wstamp = tp->tcp_wstamp_ns;
1252 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1253 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1257 tcp_skb_tsorted_save(oskb) {
1258 if (unlikely(skb_cloned(oskb)))
1259 skb = pskb_copy(oskb, gfp_mask);
1261 skb = skb_clone(oskb, gfp_mask);
1262 } tcp_skb_tsorted_restore(oskb);
1266 /* retransmit skbs might have a non zero value in skb->dev
1267 * because skb->dev is aliased with skb->rbnode.rb_left
1273 tcb = TCP_SKB_CB(skb);
1274 memset(&opts, 0, sizeof(opts));
1276 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1277 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1279 tcp_options_size = tcp_established_options(sk, skb, &opts,
1281 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1282 * at receiver : This slightly improve GRO performance.
1283 * Note that we do not force the PSH flag for non GSO packets,
1284 * because they might be sent under high congestion events,
1285 * and in this case it is better to delay the delivery of 1-MSS
1286 * packets and thus the corresponding ACK packet that would
1287 * release the following packet.
1289 if (tcp_skb_pcount(skb) > 1)
1290 tcb->tcp_flags |= TCPHDR_PSH;
1292 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1294 /* if no packet is in qdisc/device queue, then allow XPS to select
1295 * another queue. We can be called from tcp_tsq_handler()
1296 * which holds one reference to sk.
1298 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1299 * One way to get this would be to set skb->truesize = 2 on them.
1301 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1303 /* If we had to use memory reserve to allocate this skb,
1304 * this might cause drops if packet is looped back :
1305 * Other socket might not have SOCK_MEMALLOC.
1306 * Packets not looped back do not care about pfmemalloc.
1308 skb->pfmemalloc = 0;
1310 skb_push(skb, tcp_header_size);
1311 skb_reset_transport_header(skb);
1315 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1316 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1318 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1320 /* Build TCP header and checksum it. */
1321 th = (struct tcphdr *)skb->data;
1322 th->source = inet->inet_sport;
1323 th->dest = inet->inet_dport;
1324 th->seq = htonl(tcb->seq);
1325 th->ack_seq = htonl(rcv_nxt);
1326 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1332 /* The urg_mode check is necessary during a below snd_una win probe */
1333 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1334 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1335 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1337 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1338 th->urg_ptr = htons(0xFFFF);
1343 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1344 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1345 th->window = htons(tcp_select_window(sk));
1346 tcp_ecn_send(sk, skb, th, tcp_header_size);
1348 /* RFC1323: The window in SYN & SYN/ACK segments
1351 th->window = htons(min(tp->rcv_wnd, 65535U));
1354 tcp_options_write(th, tp, &opts);
1356 #ifdef CONFIG_TCP_MD5SIG
1357 /* Calculate the MD5 hash, as we have all we need now */
1360 tp->af_specific->calc_md5_hash(opts.hash_location,
1365 /* BPF prog is the last one writing header option */
1366 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1368 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1369 tcp_v6_send_check, tcp_v4_send_check,
1372 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1373 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1375 if (skb->len != tcp_header_size) {
1376 tcp_event_data_sent(tp, sk);
1377 tp->data_segs_out += tcp_skb_pcount(skb);
1378 tp->bytes_sent += skb->len - tcp_header_size;
1381 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1382 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1383 tcp_skb_pcount(skb));
1385 tp->segs_out += tcp_skb_pcount(skb);
1386 skb_set_hash_from_sk(skb, sk);
1387 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1388 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1389 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1391 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1393 /* Cleanup our debris for IP stacks */
1394 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1395 sizeof(struct inet6_skb_parm)));
1397 tcp_add_tx_delay(skb, tp);
1399 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1400 inet6_csk_xmit, ip_queue_xmit,
1401 sk, skb, &inet->cork.fl);
1403 if (unlikely(err > 0)) {
1405 err = net_xmit_eval(err);
1408 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1409 tcp_rate_skb_sent(sk, oskb);
1414 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1417 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1418 tcp_sk(sk)->rcv_nxt);
1421 /* This routine just queues the buffer for sending.
1423 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1424 * otherwise socket can stall.
1426 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1428 struct tcp_sock *tp = tcp_sk(sk);
1430 /* Advance write_seq and place onto the write_queue. */
1431 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1432 __skb_header_release(skb);
1433 tcp_add_write_queue_tail(sk, skb);
1434 sk_wmem_queued_add(sk, skb->truesize);
1435 sk_mem_charge(sk, skb->truesize);
1438 /* Initialize TSO segments for a packet. */
1439 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1441 if (skb->len <= mss_now) {
1442 /* Avoid the costly divide in the normal
1445 tcp_skb_pcount_set(skb, 1);
1446 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1448 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1449 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1453 /* Pcount in the middle of the write queue got changed, we need to do various
1454 * tweaks to fix counters
1456 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1458 struct tcp_sock *tp = tcp_sk(sk);
1460 tp->packets_out -= decr;
1462 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1463 tp->sacked_out -= decr;
1464 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1465 tp->retrans_out -= decr;
1466 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1467 tp->lost_out -= decr;
1469 /* Reno case is special. Sigh... */
1470 if (tcp_is_reno(tp) && decr > 0)
1471 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1473 if (tp->lost_skb_hint &&
1474 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1475 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1476 tp->lost_cnt_hint -= decr;
1478 tcp_verify_left_out(tp);
1481 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1483 return TCP_SKB_CB(skb)->txstamp_ack ||
1484 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1487 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1489 struct skb_shared_info *shinfo = skb_shinfo(skb);
1491 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1492 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1493 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1494 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1496 shinfo->tx_flags &= ~tsflags;
1497 shinfo2->tx_flags |= tsflags;
1498 swap(shinfo->tskey, shinfo2->tskey);
1499 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1500 TCP_SKB_CB(skb)->txstamp_ack = 0;
1504 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1506 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1507 TCP_SKB_CB(skb)->eor = 0;
1510 /* Insert buff after skb on the write or rtx queue of sk. */
1511 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1512 struct sk_buff *buff,
1514 enum tcp_queue tcp_queue)
1516 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1517 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1519 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1522 /* Function to create two new TCP segments. Shrinks the given segment
1523 * to the specified size and appends a new segment with the rest of the
1524 * packet to the list. This won't be called frequently, I hope.
1525 * Remember, these are still headerless SKBs at this point.
1527 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1528 struct sk_buff *skb, u32 len,
1529 unsigned int mss_now, gfp_t gfp)
1531 struct tcp_sock *tp = tcp_sk(sk);
1532 struct sk_buff *buff;
1533 int nsize, old_factor;
1538 if (WARN_ON(len > skb->len))
1541 nsize = skb_headlen(skb) - len;
1545 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1546 * We need some allowance to not penalize applications setting small
1548 * Also allow first and last skb in retransmit queue to be split.
1550 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1551 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1552 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1553 skb != tcp_rtx_queue_head(sk) &&
1554 skb != tcp_rtx_queue_tail(sk))) {
1555 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1559 if (skb_unclone_keeptruesize(skb, gfp))
1562 /* Get a new skb... force flag on. */
1563 buff = tcp_stream_alloc_skb(sk, nsize, gfp, true);
1565 return -ENOMEM; /* We'll just try again later. */
1566 skb_copy_decrypted(buff, skb);
1567 mptcp_skb_ext_copy(buff, skb);
1569 sk_wmem_queued_add(sk, buff->truesize);
1570 sk_mem_charge(sk, buff->truesize);
1571 nlen = skb->len - len - nsize;
1572 buff->truesize += nlen;
1573 skb->truesize -= nlen;
1575 /* Correct the sequence numbers. */
1576 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1577 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1578 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1580 /* PSH and FIN should only be set in the second packet. */
1581 flags = TCP_SKB_CB(skb)->tcp_flags;
1582 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1583 TCP_SKB_CB(buff)->tcp_flags = flags;
1584 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1585 tcp_skb_fragment_eor(skb, buff);
1587 skb_split(skb, buff, len);
1589 skb_set_delivery_time(buff, skb->tstamp, true);
1590 tcp_fragment_tstamp(skb, buff);
1592 old_factor = tcp_skb_pcount(skb);
1594 /* Fix up tso_factor for both original and new SKB. */
1595 tcp_set_skb_tso_segs(skb, mss_now);
1596 tcp_set_skb_tso_segs(buff, mss_now);
1598 /* Update delivered info for the new segment */
1599 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1601 /* If this packet has been sent out already, we must
1602 * adjust the various packet counters.
1604 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1605 int diff = old_factor - tcp_skb_pcount(skb) -
1606 tcp_skb_pcount(buff);
1609 tcp_adjust_pcount(sk, skb, diff);
1612 /* Link BUFF into the send queue. */
1613 __skb_header_release(buff);
1614 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1615 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1616 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1621 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1622 * data is not copied, but immediately discarded.
1624 static int __pskb_trim_head(struct sk_buff *skb, int len)
1626 struct skb_shared_info *shinfo;
1629 eat = min_t(int, len, skb_headlen(skb));
1631 __skb_pull(skb, eat);
1638 shinfo = skb_shinfo(skb);
1639 for (i = 0; i < shinfo->nr_frags; i++) {
1640 int size = skb_frag_size(&shinfo->frags[i]);
1643 skb_frag_unref(skb, i);
1646 shinfo->frags[k] = shinfo->frags[i];
1648 skb_frag_off_add(&shinfo->frags[k], eat);
1649 skb_frag_size_sub(&shinfo->frags[k], eat);
1655 shinfo->nr_frags = k;
1657 skb->data_len -= len;
1658 skb->len = skb->data_len;
1662 /* Remove acked data from a packet in the transmit queue. */
1663 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1667 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1670 delta_truesize = __pskb_trim_head(skb, len);
1672 TCP_SKB_CB(skb)->seq += len;
1674 if (delta_truesize) {
1675 skb->truesize -= delta_truesize;
1676 sk_wmem_queued_add(sk, -delta_truesize);
1677 if (!skb_zcopy_pure(skb))
1678 sk_mem_uncharge(sk, delta_truesize);
1681 /* Any change of skb->len requires recalculation of tso factor. */
1682 if (tcp_skb_pcount(skb) > 1)
1683 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1688 /* Calculate MSS not accounting any TCP options. */
1689 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1691 const struct tcp_sock *tp = tcp_sk(sk);
1692 const struct inet_connection_sock *icsk = inet_csk(sk);
1695 /* Calculate base mss without TCP options:
1696 It is MMS_S - sizeof(tcphdr) of rfc1122
1698 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1700 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1701 if (icsk->icsk_af_ops->net_frag_header_len) {
1702 const struct dst_entry *dst = __sk_dst_get(sk);
1704 if (dst && dst_allfrag(dst))
1705 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1708 /* Clamp it (mss_clamp does not include tcp options) */
1709 if (mss_now > tp->rx_opt.mss_clamp)
1710 mss_now = tp->rx_opt.mss_clamp;
1712 /* Now subtract optional transport overhead */
1713 mss_now -= icsk->icsk_ext_hdr_len;
1715 /* Then reserve room for full set of TCP options and 8 bytes of data */
1716 mss_now = max(mss_now,
1717 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1721 /* Calculate MSS. Not accounting for SACKs here. */
1722 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1724 /* Subtract TCP options size, not including SACKs */
1725 return __tcp_mtu_to_mss(sk, pmtu) -
1726 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1728 EXPORT_SYMBOL(tcp_mtu_to_mss);
1730 /* Inverse of above */
1731 int tcp_mss_to_mtu(struct sock *sk, int mss)
1733 const struct tcp_sock *tp = tcp_sk(sk);
1734 const struct inet_connection_sock *icsk = inet_csk(sk);
1738 tp->tcp_header_len +
1739 icsk->icsk_ext_hdr_len +
1740 icsk->icsk_af_ops->net_header_len;
1742 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1743 if (icsk->icsk_af_ops->net_frag_header_len) {
1744 const struct dst_entry *dst = __sk_dst_get(sk);
1746 if (dst && dst_allfrag(dst))
1747 mtu += icsk->icsk_af_ops->net_frag_header_len;
1751 EXPORT_SYMBOL(tcp_mss_to_mtu);
1753 /* MTU probing init per socket */
1754 void tcp_mtup_init(struct sock *sk)
1756 struct tcp_sock *tp = tcp_sk(sk);
1757 struct inet_connection_sock *icsk = inet_csk(sk);
1758 struct net *net = sock_net(sk);
1760 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1761 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1762 icsk->icsk_af_ops->net_header_len;
1763 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1764 icsk->icsk_mtup.probe_size = 0;
1765 if (icsk->icsk_mtup.enabled)
1766 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1768 EXPORT_SYMBOL(tcp_mtup_init);
1770 /* This function synchronize snd mss to current pmtu/exthdr set.
1772 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1773 for TCP options, but includes only bare TCP header.
1775 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1776 It is minimum of user_mss and mss received with SYN.
1777 It also does not include TCP options.
1779 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1781 tp->mss_cache is current effective sending mss, including
1782 all tcp options except for SACKs. It is evaluated,
1783 taking into account current pmtu, but never exceeds
1784 tp->rx_opt.mss_clamp.
1786 NOTE1. rfc1122 clearly states that advertised MSS
1787 DOES NOT include either tcp or ip options.
1789 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1790 are READ ONLY outside this function. --ANK (980731)
1792 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1794 struct tcp_sock *tp = tcp_sk(sk);
1795 struct inet_connection_sock *icsk = inet_csk(sk);
1798 if (icsk->icsk_mtup.search_high > pmtu)
1799 icsk->icsk_mtup.search_high = pmtu;
1801 mss_now = tcp_mtu_to_mss(sk, pmtu);
1802 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1804 /* And store cached results */
1805 icsk->icsk_pmtu_cookie = pmtu;
1806 if (icsk->icsk_mtup.enabled)
1807 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1808 tp->mss_cache = mss_now;
1812 EXPORT_SYMBOL(tcp_sync_mss);
1814 /* Compute the current effective MSS, taking SACKs and IP options,
1815 * and even PMTU discovery events into account.
1817 unsigned int tcp_current_mss(struct sock *sk)
1819 const struct tcp_sock *tp = tcp_sk(sk);
1820 const struct dst_entry *dst = __sk_dst_get(sk);
1822 unsigned int header_len;
1823 struct tcp_out_options opts;
1824 struct tcp_md5sig_key *md5;
1826 mss_now = tp->mss_cache;
1829 u32 mtu = dst_mtu(dst);
1830 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1831 mss_now = tcp_sync_mss(sk, mtu);
1834 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1835 sizeof(struct tcphdr);
1836 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1837 * some common options. If this is an odd packet (because we have SACK
1838 * blocks etc) then our calculated header_len will be different, and
1839 * we have to adjust mss_now correspondingly */
1840 if (header_len != tp->tcp_header_len) {
1841 int delta = (int) header_len - tp->tcp_header_len;
1848 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1849 * As additional protections, we do not touch cwnd in retransmission phases,
1850 * and if application hit its sndbuf limit recently.
1852 static void tcp_cwnd_application_limited(struct sock *sk)
1854 struct tcp_sock *tp = tcp_sk(sk);
1856 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1857 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1858 /* Limited by application or receiver window. */
1859 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1860 u32 win_used = max(tp->snd_cwnd_used, init_win);
1861 if (win_used < tcp_snd_cwnd(tp)) {
1862 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1863 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1865 tp->snd_cwnd_used = 0;
1867 tp->snd_cwnd_stamp = tcp_jiffies32;
1870 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1872 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1873 struct tcp_sock *tp = tcp_sk(sk);
1875 /* Track the strongest available signal of the degree to which the cwnd
1876 * is fully utilized. If cwnd-limited then remember that fact for the
1877 * current window. If not cwnd-limited then track the maximum number of
1878 * outstanding packets in the current window. (If cwnd-limited then we
1879 * chose to not update tp->max_packets_out to avoid an extra else
1880 * clause with no functional impact.)
1882 if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1884 (!tp->is_cwnd_limited &&
1885 tp->packets_out > tp->max_packets_out)) {
1886 tp->is_cwnd_limited = is_cwnd_limited;
1887 tp->max_packets_out = tp->packets_out;
1888 tp->cwnd_usage_seq = tp->snd_nxt;
1891 if (tcp_is_cwnd_limited(sk)) {
1892 /* Network is feed fully. */
1893 tp->snd_cwnd_used = 0;
1894 tp->snd_cwnd_stamp = tcp_jiffies32;
1896 /* Network starves. */
1897 if (tp->packets_out > tp->snd_cwnd_used)
1898 tp->snd_cwnd_used = tp->packets_out;
1900 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1901 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1902 !ca_ops->cong_control)
1903 tcp_cwnd_application_limited(sk);
1905 /* The following conditions together indicate the starvation
1906 * is caused by insufficient sender buffer:
1907 * 1) just sent some data (see tcp_write_xmit)
1908 * 2) not cwnd limited (this else condition)
1909 * 3) no more data to send (tcp_write_queue_empty())
1910 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1912 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1913 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1914 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1915 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1919 /* Minshall's variant of the Nagle send check. */
1920 static bool tcp_minshall_check(const struct tcp_sock *tp)
1922 return after(tp->snd_sml, tp->snd_una) &&
1923 !after(tp->snd_sml, tp->snd_nxt);
1926 /* Update snd_sml if this skb is under mss
1927 * Note that a TSO packet might end with a sub-mss segment
1928 * The test is really :
1929 * if ((skb->len % mss) != 0)
1930 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1931 * But we can avoid doing the divide again given we already have
1932 * skb_pcount = skb->len / mss_now
1934 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1935 const struct sk_buff *skb)
1937 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1938 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1941 /* Return false, if packet can be sent now without violation Nagle's rules:
1942 * 1. It is full sized. (provided by caller in %partial bool)
1943 * 2. Or it contains FIN. (already checked by caller)
1944 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1945 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1946 * With Minshall's modification: all sent small packets are ACKed.
1948 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1952 ((nonagle & TCP_NAGLE_CORK) ||
1953 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1956 /* Return how many segs we'd like on a TSO packet,
1957 * depending on current pacing rate, and how close the peer is.
1960 * - For close peers, we rather send bigger packets to reduce
1961 * cpu costs, because occasional losses will be repaired fast.
1962 * - For long distance/rtt flows, we would like to get ACK clocking
1963 * with 1 ACK per ms.
1965 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1966 * in bigger TSO bursts. We we cut the RTT-based allowance in half
1967 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1968 * is below 1500 bytes after 6 * ~500 usec = 3ms.
1970 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1973 unsigned long bytes;
1976 bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift);
1978 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
1979 if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1980 bytes += sk->sk_gso_max_size >> r;
1982 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1984 return max_t(u32, bytes / mss_now, min_tso_segs);
1987 /* Return the number of segments we want in the skb we are transmitting.
1988 * See if congestion control module wants to decide; otherwise, autosize.
1990 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1992 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1993 u32 min_tso, tso_segs;
1995 min_tso = ca_ops->min_tso_segs ?
1996 ca_ops->min_tso_segs(sk) :
1997 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1999 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2000 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2003 /* Returns the portion of skb which can be sent right away */
2004 static unsigned int tcp_mss_split_point(const struct sock *sk,
2005 const struct sk_buff *skb,
2006 unsigned int mss_now,
2007 unsigned int max_segs,
2010 const struct tcp_sock *tp = tcp_sk(sk);
2011 u32 partial, needed, window, max_len;
2013 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2014 max_len = mss_now * max_segs;
2016 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2019 needed = min(skb->len, window);
2021 if (max_len <= needed)
2024 partial = needed % mss_now;
2025 /* If last segment is not a full MSS, check if Nagle rules allow us
2026 * to include this last segment in this skb.
2027 * Otherwise, we'll split the skb at last MSS boundary
2029 if (tcp_nagle_check(partial != 0, tp, nonagle))
2030 return needed - partial;
2035 /* Can at least one segment of SKB be sent right now, according to the
2036 * congestion window rules? If so, return how many segments are allowed.
2038 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2039 const struct sk_buff *skb)
2041 u32 in_flight, cwnd, halfcwnd;
2043 /* Don't be strict about the congestion window for the final FIN. */
2044 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2045 tcp_skb_pcount(skb) == 1)
2048 in_flight = tcp_packets_in_flight(tp);
2049 cwnd = tcp_snd_cwnd(tp);
2050 if (in_flight >= cwnd)
2053 /* For better scheduling, ensure we have at least
2054 * 2 GSO packets in flight.
2056 halfcwnd = max(cwnd >> 1, 1U);
2057 return min(halfcwnd, cwnd - in_flight);
2060 /* Initialize TSO state of a skb.
2061 * This must be invoked the first time we consider transmitting
2062 * SKB onto the wire.
2064 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2066 int tso_segs = tcp_skb_pcount(skb);
2068 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2069 tcp_set_skb_tso_segs(skb, mss_now);
2070 tso_segs = tcp_skb_pcount(skb);
2076 /* Return true if the Nagle test allows this packet to be
2079 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2080 unsigned int cur_mss, int nonagle)
2082 /* Nagle rule does not apply to frames, which sit in the middle of the
2083 * write_queue (they have no chances to get new data).
2085 * This is implemented in the callers, where they modify the 'nonagle'
2086 * argument based upon the location of SKB in the send queue.
2088 if (nonagle & TCP_NAGLE_PUSH)
2091 /* Don't use the nagle rule for urgent data (or for the final FIN). */
2092 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2095 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2101 /* Does at least the first segment of SKB fit into the send window? */
2102 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2103 const struct sk_buff *skb,
2104 unsigned int cur_mss)
2106 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2108 if (skb->len > cur_mss)
2109 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2111 return !after(end_seq, tcp_wnd_end(tp));
2114 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2115 * which is put after SKB on the list. It is very much like
2116 * tcp_fragment() except that it may make several kinds of assumptions
2117 * in order to speed up the splitting operation. In particular, we
2118 * know that all the data is in scatter-gather pages, and that the
2119 * packet has never been sent out before (and thus is not cloned).
2121 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2122 unsigned int mss_now, gfp_t gfp)
2124 int nlen = skb->len - len;
2125 struct sk_buff *buff;
2128 /* All of a TSO frame must be composed of paged data. */
2129 if (skb->len != skb->data_len)
2130 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2131 skb, len, mss_now, gfp);
2133 buff = tcp_stream_alloc_skb(sk, 0, gfp, true);
2134 if (unlikely(!buff))
2136 skb_copy_decrypted(buff, skb);
2137 mptcp_skb_ext_copy(buff, skb);
2139 sk_wmem_queued_add(sk, buff->truesize);
2140 sk_mem_charge(sk, buff->truesize);
2141 buff->truesize += nlen;
2142 skb->truesize -= nlen;
2144 /* Correct the sequence numbers. */
2145 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2146 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2147 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2149 /* PSH and FIN should only be set in the second packet. */
2150 flags = TCP_SKB_CB(skb)->tcp_flags;
2151 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2152 TCP_SKB_CB(buff)->tcp_flags = flags;
2154 tcp_skb_fragment_eor(skb, buff);
2156 skb_split(skb, buff, len);
2157 tcp_fragment_tstamp(skb, buff);
2159 /* Fix up tso_factor for both original and new SKB. */
2160 tcp_set_skb_tso_segs(skb, mss_now);
2161 tcp_set_skb_tso_segs(buff, mss_now);
2163 /* Link BUFF into the send queue. */
2164 __skb_header_release(buff);
2165 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2170 /* Try to defer sending, if possible, in order to minimize the amount
2171 * of TSO splitting we do. View it as a kind of TSO Nagle test.
2173 * This algorithm is from John Heffner.
2175 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2176 bool *is_cwnd_limited,
2177 bool *is_rwnd_limited,
2180 const struct inet_connection_sock *icsk = inet_csk(sk);
2181 u32 send_win, cong_win, limit, in_flight;
2182 struct tcp_sock *tp = tcp_sk(sk);
2183 struct sk_buff *head;
2187 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2190 /* Avoid bursty behavior by allowing defer
2191 * only if the last write was recent (1 ms).
2192 * Note that tp->tcp_wstamp_ns can be in the future if we have
2193 * packets waiting in a qdisc or device for EDT delivery.
2195 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2199 in_flight = tcp_packets_in_flight(tp);
2201 BUG_ON(tcp_skb_pcount(skb) <= 1);
2202 BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2204 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2206 /* From in_flight test above, we know that cwnd > in_flight. */
2207 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2209 limit = min(send_win, cong_win);
2211 /* If a full-sized TSO skb can be sent, do it. */
2212 if (limit >= max_segs * tp->mss_cache)
2215 /* Middle in queue won't get any more data, full sendable already? */
2216 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2219 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2221 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2223 /* If at least some fraction of a window is available,
2226 chunk /= win_divisor;
2230 /* Different approach, try not to defer past a single
2231 * ACK. Receiver should ACK every other full sized
2232 * frame, so if we have space for more than 3 frames
2235 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2239 /* TODO : use tsorted_sent_queue ? */
2240 head = tcp_rtx_queue_head(sk);
2243 delta = tp->tcp_clock_cache - head->tstamp;
2244 /* If next ACK is likely to come too late (half srtt), do not defer */
2245 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2248 /* Ok, it looks like it is advisable to defer.
2249 * Three cases are tracked :
2250 * 1) We are cwnd-limited
2251 * 2) We are rwnd-limited
2252 * 3) We are application limited.
2254 if (cong_win < send_win) {
2255 if (cong_win <= skb->len) {
2256 *is_cwnd_limited = true;
2260 if (send_win <= skb->len) {
2261 *is_rwnd_limited = true;
2266 /* If this packet won't get more data, do not wait. */
2267 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2268 TCP_SKB_CB(skb)->eor)
2277 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2279 struct inet_connection_sock *icsk = inet_csk(sk);
2280 struct tcp_sock *tp = tcp_sk(sk);
2281 struct net *net = sock_net(sk);
2285 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2286 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2287 if (unlikely(delta >= interval * HZ)) {
2288 int mss = tcp_current_mss(sk);
2290 /* Update current search range */
2291 icsk->icsk_mtup.probe_size = 0;
2292 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2293 sizeof(struct tcphdr) +
2294 icsk->icsk_af_ops->net_header_len;
2295 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2297 /* Update probe time stamp */
2298 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2302 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2304 struct sk_buff *skb, *next;
2306 skb = tcp_send_head(sk);
2307 tcp_for_write_queue_from_safe(skb, next, sk) {
2308 if (len <= skb->len)
2311 if (unlikely(TCP_SKB_CB(skb)->eor) ||
2312 tcp_has_tx_tstamp(skb) ||
2313 !skb_pure_zcopy_same(skb, next))
2322 /* Create a new MTU probe if we are ready.
2323 * MTU probe is regularly attempting to increase the path MTU by
2324 * deliberately sending larger packets. This discovers routing
2325 * changes resulting in larger path MTUs.
2327 * Returns 0 if we should wait to probe (no cwnd available),
2328 * 1 if a probe was sent,
2331 static int tcp_mtu_probe(struct sock *sk)
2333 struct inet_connection_sock *icsk = inet_csk(sk);
2334 struct tcp_sock *tp = tcp_sk(sk);
2335 struct sk_buff *skb, *nskb, *next;
2336 struct net *net = sock_net(sk);
2343 /* Not currently probing/verifying,
2345 * have enough cwnd, and
2346 * not SACKing (the variable headers throw things off)
2348 if (likely(!icsk->icsk_mtup.enabled ||
2349 icsk->icsk_mtup.probe_size ||
2350 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2351 tcp_snd_cwnd(tp) < 11 ||
2352 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2355 /* Use binary search for probe_size between tcp_mss_base,
2356 * and current mss_clamp. if (search_high - search_low)
2357 * smaller than a threshold, backoff from probing.
2359 mss_now = tcp_current_mss(sk);
2360 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2361 icsk->icsk_mtup.search_low) >> 1);
2362 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2363 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2364 /* When misfortune happens, we are reprobing actively,
2365 * and then reprobe timer has expired. We stick with current
2366 * probing process by not resetting search range to its orignal.
2368 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2369 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2370 /* Check whether enough time has elaplased for
2371 * another round of probing.
2373 tcp_mtu_check_reprobe(sk);
2377 /* Have enough data in the send queue to probe? */
2378 if (tp->write_seq - tp->snd_nxt < size_needed)
2381 if (tp->snd_wnd < size_needed)
2383 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2386 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2387 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2388 if (!tcp_packets_in_flight(tp))
2394 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2397 /* We're allowed to probe. Build it now. */
2398 nskb = tcp_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2401 sk_wmem_queued_add(sk, nskb->truesize);
2402 sk_mem_charge(sk, nskb->truesize);
2404 skb = tcp_send_head(sk);
2405 skb_copy_decrypted(nskb, skb);
2406 mptcp_skb_ext_copy(nskb, skb);
2408 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2409 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2410 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2412 tcp_insert_write_queue_before(nskb, skb, sk);
2413 tcp_highest_sack_replace(sk, skb, nskb);
2416 tcp_for_write_queue_from_safe(skb, next, sk) {
2417 copy = min_t(int, skb->len, probe_size - len);
2418 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2420 if (skb->len <= copy) {
2421 /* We've eaten all the data from this skb.
2423 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2424 /* If this is the last SKB we copy and eor is set
2425 * we need to propagate it to the new skb.
2427 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2428 tcp_skb_collapse_tstamp(nskb, skb);
2429 tcp_unlink_write_queue(skb, sk);
2430 tcp_wmem_free_skb(sk, skb);
2432 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2433 ~(TCPHDR_FIN|TCPHDR_PSH);
2434 if (!skb_shinfo(skb)->nr_frags) {
2435 skb_pull(skb, copy);
2437 __pskb_trim_head(skb, copy);
2438 tcp_set_skb_tso_segs(skb, mss_now);
2440 TCP_SKB_CB(skb)->seq += copy;
2445 if (len >= probe_size)
2448 tcp_init_tso_segs(nskb, nskb->len);
2450 /* We're ready to send. If this fails, the probe will
2451 * be resegmented into mss-sized pieces by tcp_write_xmit().
2453 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2454 /* Decrement cwnd here because we are sending
2455 * effectively two packets. */
2456 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2457 tcp_event_new_data_sent(sk, nskb);
2459 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2460 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2461 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2469 static bool tcp_pacing_check(struct sock *sk)
2471 struct tcp_sock *tp = tcp_sk(sk);
2473 if (!tcp_needs_internal_pacing(sk))
2476 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2479 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2480 hrtimer_start(&tp->pacing_timer,
2481 ns_to_ktime(tp->tcp_wstamp_ns),
2482 HRTIMER_MODE_ABS_PINNED_SOFT);
2488 /* TCP Small Queues :
2489 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2490 * (These limits are doubled for retransmits)
2492 * - better RTT estimation and ACK scheduling
2495 * Alas, some drivers / subsystems require a fair amount
2496 * of queued bytes to ensure line rate.
2497 * One example is wifi aggregation (802.11 AMPDU)
2499 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2500 unsigned int factor)
2502 unsigned long limit;
2504 limit = max_t(unsigned long,
2506 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2507 if (sk->sk_pacing_status == SK_PACING_NONE)
2508 limit = min_t(unsigned long, limit,
2509 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2512 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2513 tcp_sk(sk)->tcp_tx_delay) {
2514 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2516 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2517 * approximate our needs assuming an ~100% skb->truesize overhead.
2518 * USEC_PER_SEC is approximated by 2^20.
2519 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2521 extra_bytes >>= (20 - 1);
2522 limit += extra_bytes;
2524 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2525 /* Always send skb if rtx queue is empty.
2526 * No need to wait for TX completion to call us back,
2527 * after softirq/tasklet schedule.
2528 * This helps when TX completions are delayed too much.
2530 if (tcp_rtx_queue_empty(sk))
2533 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2534 /* It is possible TX completion already happened
2535 * before we set TSQ_THROTTLED, so we must
2536 * test again the condition.
2538 smp_mb__after_atomic();
2539 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2545 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2547 const u32 now = tcp_jiffies32;
2548 enum tcp_chrono old = tp->chrono_type;
2550 if (old > TCP_CHRONO_UNSPEC)
2551 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2552 tp->chrono_start = now;
2553 tp->chrono_type = new;
2556 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2558 struct tcp_sock *tp = tcp_sk(sk);
2560 /* If there are multiple conditions worthy of tracking in a
2561 * chronograph then the highest priority enum takes precedence
2562 * over the other conditions. So that if something "more interesting"
2563 * starts happening, stop the previous chrono and start a new one.
2565 if (type > tp->chrono_type)
2566 tcp_chrono_set(tp, type);
2569 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2571 struct tcp_sock *tp = tcp_sk(sk);
2574 /* There are multiple conditions worthy of tracking in a
2575 * chronograph, so that the highest priority enum takes
2576 * precedence over the other conditions (see tcp_chrono_start).
2577 * If a condition stops, we only stop chrono tracking if
2578 * it's the "most interesting" or current chrono we are
2579 * tracking and starts busy chrono if we have pending data.
2581 if (tcp_rtx_and_write_queues_empty(sk))
2582 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2583 else if (type == tp->chrono_type)
2584 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2587 /* This routine writes packets to the network. It advances the
2588 * send_head. This happens as incoming acks open up the remote
2591 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2592 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2593 * account rare use of URG, this is not a big flaw.
2595 * Send at most one packet when push_one > 0. Temporarily ignore
2596 * cwnd limit to force at most one packet out when push_one == 2.
2598 * Returns true, if no segments are in flight and we have queued segments,
2599 * but cannot send anything now because of SWS or another problem.
2601 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2602 int push_one, gfp_t gfp)
2604 struct tcp_sock *tp = tcp_sk(sk);
2605 struct sk_buff *skb;
2606 unsigned int tso_segs, sent_pkts;
2609 bool is_cwnd_limited = false, is_rwnd_limited = false;
2614 tcp_mstamp_refresh(tp);
2616 /* Do MTU probing. */
2617 result = tcp_mtu_probe(sk);
2620 } else if (result > 0) {
2625 max_segs = tcp_tso_segs(sk, mss_now);
2626 while ((skb = tcp_send_head(sk))) {
2629 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2630 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2631 tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2632 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2633 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2634 tcp_init_tso_segs(skb, mss_now);
2635 goto repair; /* Skip network transmission */
2638 if (tcp_pacing_check(sk))
2641 tso_segs = tcp_init_tso_segs(skb, mss_now);
2644 cwnd_quota = tcp_cwnd_test(tp, skb);
2647 /* Force out a loss probe pkt. */
2653 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2654 is_rwnd_limited = true;
2658 if (tso_segs == 1) {
2659 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2660 (tcp_skb_is_last(sk, skb) ?
2661 nonagle : TCP_NAGLE_PUSH))))
2665 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2666 &is_rwnd_limited, max_segs))
2671 if (tso_segs > 1 && !tcp_urg_mode(tp))
2672 limit = tcp_mss_split_point(sk, skb, mss_now,
2678 if (skb->len > limit &&
2679 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2682 if (tcp_small_queue_check(sk, skb, 0))
2685 /* Argh, we hit an empty skb(), presumably a thread
2686 * is sleeping in sendmsg()/sk_stream_wait_memory().
2687 * We do not want to send a pure-ack packet and have
2688 * a strange looking rtx queue with empty packet(s).
2690 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2693 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2697 /* Advance the send_head. This one is sent out.
2698 * This call will increment packets_out.
2700 tcp_event_new_data_sent(sk, skb);
2702 tcp_minshall_update(tp, mss_now, skb);
2703 sent_pkts += tcp_skb_pcount(skb);
2709 if (is_rwnd_limited)
2710 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2712 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2714 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2715 if (likely(sent_pkts || is_cwnd_limited))
2716 tcp_cwnd_validate(sk, is_cwnd_limited);
2718 if (likely(sent_pkts)) {
2719 if (tcp_in_cwnd_reduction(sk))
2720 tp->prr_out += sent_pkts;
2722 /* Send one loss probe per tail loss episode. */
2724 tcp_schedule_loss_probe(sk, false);
2727 return !tp->packets_out && !tcp_write_queue_empty(sk);
2730 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2732 struct inet_connection_sock *icsk = inet_csk(sk);
2733 struct tcp_sock *tp = tcp_sk(sk);
2734 u32 timeout, rto_delta_us;
2737 /* Don't do any loss probe on a Fast Open connection before 3WHS
2740 if (rcu_access_pointer(tp->fastopen_rsk))
2743 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2744 /* Schedule a loss probe in 2*RTT for SACK capable connections
2745 * not in loss recovery, that are either limited by cwnd or application.
2747 if ((early_retrans != 3 && early_retrans != 4) ||
2748 !tp->packets_out || !tcp_is_sack(tp) ||
2749 (icsk->icsk_ca_state != TCP_CA_Open &&
2750 icsk->icsk_ca_state != TCP_CA_CWR))
2753 /* Probe timeout is 2*rtt. Add minimum RTO to account
2754 * for delayed ack when there's one outstanding packet. If no RTT
2755 * sample is available then probe after TCP_TIMEOUT_INIT.
2758 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2759 if (tp->packets_out == 1)
2760 timeout += TCP_RTO_MIN;
2762 timeout += TCP_TIMEOUT_MIN;
2764 timeout = TCP_TIMEOUT_INIT;
2767 /* If the RTO formula yields an earlier time, then use that time. */
2768 rto_delta_us = advancing_rto ?
2769 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2770 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2771 if (rto_delta_us > 0)
2772 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2774 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2778 /* Thanks to skb fast clones, we can detect if a prior transmit of
2779 * a packet is still in a qdisc or driver queue.
2780 * In this case, there is very little point doing a retransmit !
2782 static bool skb_still_in_host_queue(struct sock *sk,
2783 const struct sk_buff *skb)
2785 if (unlikely(skb_fclone_busy(sk, skb))) {
2786 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2787 smp_mb__after_atomic();
2788 if (skb_fclone_busy(sk, skb)) {
2789 NET_INC_STATS(sock_net(sk),
2790 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2797 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2798 * retransmit the last segment.
2800 void tcp_send_loss_probe(struct sock *sk)
2802 struct tcp_sock *tp = tcp_sk(sk);
2803 struct sk_buff *skb;
2805 int mss = tcp_current_mss(sk);
2807 /* At most one outstanding TLP */
2808 if (tp->tlp_high_seq)
2811 tp->tlp_retrans = 0;
2812 skb = tcp_send_head(sk);
2813 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2814 pcount = tp->packets_out;
2815 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2816 if (tp->packets_out > pcount)
2820 skb = skb_rb_last(&sk->tcp_rtx_queue);
2821 if (unlikely(!skb)) {
2822 WARN_ONCE(tp->packets_out,
2823 "invalid inflight: %u state %u cwnd %u mss %d\n",
2824 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2825 inet_csk(sk)->icsk_pending = 0;
2829 if (skb_still_in_host_queue(sk, skb))
2832 pcount = tcp_skb_pcount(skb);
2833 if (WARN_ON(!pcount))
2836 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2837 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2838 (pcount - 1) * mss, mss,
2841 skb = skb_rb_next(skb);
2844 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2847 if (__tcp_retransmit_skb(sk, skb, 1))
2850 tp->tlp_retrans = 1;
2853 /* Record snd_nxt for loss detection. */
2854 tp->tlp_high_seq = tp->snd_nxt;
2856 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2857 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2858 inet_csk(sk)->icsk_pending = 0;
2863 /* Push out any pending frames which were held back due to
2864 * TCP_CORK or attempt at coalescing tiny packets.
2865 * The socket must be locked by the caller.
2867 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2870 /* If we are closed, the bytes will have to remain here.
2871 * In time closedown will finish, we empty the write queue and
2872 * all will be happy.
2874 if (unlikely(sk->sk_state == TCP_CLOSE))
2877 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2878 sk_gfp_mask(sk, GFP_ATOMIC)))
2879 tcp_check_probe_timer(sk);
2882 /* Send _single_ skb sitting at the send head. This function requires
2883 * true push pending frames to setup probe timer etc.
2885 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2887 struct sk_buff *skb = tcp_send_head(sk);
2889 BUG_ON(!skb || skb->len < mss_now);
2891 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2894 /* This function returns the amount that we can raise the
2895 * usable window based on the following constraints
2897 * 1. The window can never be shrunk once it is offered (RFC 793)
2898 * 2. We limit memory per socket
2901 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2902 * RECV.NEXT + RCV.WIN fixed until:
2903 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2905 * i.e. don't raise the right edge of the window until you can raise
2906 * it at least MSS bytes.
2908 * Unfortunately, the recommended algorithm breaks header prediction,
2909 * since header prediction assumes th->window stays fixed.
2911 * Strictly speaking, keeping th->window fixed violates the receiver
2912 * side SWS prevention criteria. The problem is that under this rule
2913 * a stream of single byte packets will cause the right side of the
2914 * window to always advance by a single byte.
2916 * Of course, if the sender implements sender side SWS prevention
2917 * then this will not be a problem.
2919 * BSD seems to make the following compromise:
2921 * If the free space is less than the 1/4 of the maximum
2922 * space available and the free space is less than 1/2 mss,
2923 * then set the window to 0.
2924 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2925 * Otherwise, just prevent the window from shrinking
2926 * and from being larger than the largest representable value.
2928 * This prevents incremental opening of the window in the regime
2929 * where TCP is limited by the speed of the reader side taking
2930 * data out of the TCP receive queue. It does nothing about
2931 * those cases where the window is constrained on the sender side
2932 * because the pipeline is full.
2934 * BSD also seems to "accidentally" limit itself to windows that are a
2935 * multiple of MSS, at least until the free space gets quite small.
2936 * This would appear to be a side effect of the mbuf implementation.
2937 * Combining these two algorithms results in the observed behavior
2938 * of having a fixed window size at almost all times.
2940 * Below we obtain similar behavior by forcing the offered window to
2941 * a multiple of the mss when it is feasible to do so.
2943 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2944 * Regular options like TIMESTAMP are taken into account.
2946 u32 __tcp_select_window(struct sock *sk)
2948 struct inet_connection_sock *icsk = inet_csk(sk);
2949 struct tcp_sock *tp = tcp_sk(sk);
2950 /* MSS for the peer's data. Previous versions used mss_clamp
2951 * here. I don't know if the value based on our guesses
2952 * of peer's MSS is better for the performance. It's more correct
2953 * but may be worse for the performance because of rcv_mss
2954 * fluctuations. --SAW 1998/11/1
2956 int mss = icsk->icsk_ack.rcv_mss;
2957 int free_space = tcp_space(sk);
2958 int allowed_space = tcp_full_space(sk);
2959 int full_space, window;
2961 if (sk_is_mptcp(sk))
2962 mptcp_space(sk, &free_space, &allowed_space);
2964 full_space = min_t(int, tp->window_clamp, allowed_space);
2966 if (unlikely(mss > full_space)) {
2971 if (free_space < (full_space >> 1)) {
2972 icsk->icsk_ack.quick = 0;
2974 if (tcp_under_memory_pressure(sk))
2975 tcp_adjust_rcv_ssthresh(sk);
2977 /* free_space might become our new window, make sure we don't
2978 * increase it due to wscale.
2980 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2982 /* if free space is less than mss estimate, or is below 1/16th
2983 * of the maximum allowed, try to move to zero-window, else
2984 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2985 * new incoming data is dropped due to memory limits.
2986 * With large window, mss test triggers way too late in order
2987 * to announce zero window in time before rmem limit kicks in.
2989 if (free_space < (allowed_space >> 4) || free_space < mss)
2993 if (free_space > tp->rcv_ssthresh)
2994 free_space = tp->rcv_ssthresh;
2996 /* Don't do rounding if we are using window scaling, since the
2997 * scaled window will not line up with the MSS boundary anyway.
2999 if (tp->rx_opt.rcv_wscale) {
3000 window = free_space;
3002 /* Advertise enough space so that it won't get scaled away.
3003 * Import case: prevent zero window announcement if
3004 * 1<<rcv_wscale > mss.
3006 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3008 window = tp->rcv_wnd;
3009 /* Get the largest window that is a nice multiple of mss.
3010 * Window clamp already applied above.
3011 * If our current window offering is within 1 mss of the
3012 * free space we just keep it. This prevents the divide
3013 * and multiply from happening most of the time.
3014 * We also don't do any window rounding when the free space
3017 if (window <= free_space - mss || window > free_space)
3018 window = rounddown(free_space, mss);
3019 else if (mss == full_space &&
3020 free_space > window + (full_space >> 1))
3021 window = free_space;
3027 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3028 const struct sk_buff *next_skb)
3030 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3031 const struct skb_shared_info *next_shinfo =
3032 skb_shinfo(next_skb);
3033 struct skb_shared_info *shinfo = skb_shinfo(skb);
3035 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3036 shinfo->tskey = next_shinfo->tskey;
3037 TCP_SKB_CB(skb)->txstamp_ack |=
3038 TCP_SKB_CB(next_skb)->txstamp_ack;
3042 /* Collapses two adjacent SKB's during retransmission. */
3043 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3045 struct tcp_sock *tp = tcp_sk(sk);
3046 struct sk_buff *next_skb = skb_rb_next(skb);
3049 next_skb_size = next_skb->len;
3051 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3053 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3056 tcp_highest_sack_replace(sk, next_skb, skb);
3058 /* Update sequence range on original skb. */
3059 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3061 /* Merge over control information. This moves PSH/FIN etc. over */
3062 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3064 /* All done, get rid of second SKB and account for it so
3065 * packet counting does not break.
3067 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3068 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3070 /* changed transmit queue under us so clear hints */
3071 tcp_clear_retrans_hints_partial(tp);
3072 if (next_skb == tp->retransmit_skb_hint)
3073 tp->retransmit_skb_hint = skb;
3075 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3077 tcp_skb_collapse_tstamp(skb, next_skb);
3079 tcp_rtx_queue_unlink_and_free(next_skb, sk);
3083 /* Check if coalescing SKBs is legal. */
3084 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3086 if (tcp_skb_pcount(skb) > 1)
3088 if (skb_cloned(skb))
3090 /* Some heuristics for collapsing over SACK'd could be invented */
3091 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3097 /* Collapse packets in the retransmit queue to make to create
3098 * less packets on the wire. This is only done on retransmission.
3100 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3103 struct tcp_sock *tp = tcp_sk(sk);
3104 struct sk_buff *skb = to, *tmp;
3107 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3109 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3112 skb_rbtree_walk_from_safe(skb, tmp) {
3113 if (!tcp_can_collapse(sk, skb))
3116 if (!tcp_skb_can_collapse(to, skb))
3129 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3132 if (!tcp_collapse_retrans(sk, to))
3137 /* This retransmits one SKB. Policy decisions and retransmit queue
3138 * state updates are done by the caller. Returns non-zero if an
3139 * error occurred which prevented the send.
3141 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3143 struct inet_connection_sock *icsk = inet_csk(sk);
3144 struct tcp_sock *tp = tcp_sk(sk);
3145 unsigned int cur_mss;
3149 /* Inconclusive MTU probe */
3150 if (icsk->icsk_mtup.probe_size)
3151 icsk->icsk_mtup.probe_size = 0;
3153 if (skb_still_in_host_queue(sk, skb))
3156 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3157 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3161 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3165 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3166 return -EHOSTUNREACH; /* Routing failure or similar. */
3168 cur_mss = tcp_current_mss(sk);
3169 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3171 /* If receiver has shrunk his window, and skb is out of
3172 * new window, do not retransmit it. The exception is the
3173 * case, when window is shrunk to zero. In this case
3174 * our retransmit of one segment serves as a zero window probe.
3176 if (avail_wnd <= 0) {
3177 if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3179 avail_wnd = cur_mss;
3182 len = cur_mss * segs;
3183 if (len > avail_wnd) {
3184 len = rounddown(avail_wnd, cur_mss);
3188 if (skb->len > len) {
3189 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3190 cur_mss, GFP_ATOMIC))
3191 return -ENOMEM; /* We'll try again later. */
3193 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3196 diff = tcp_skb_pcount(skb);
3197 tcp_set_skb_tso_segs(skb, cur_mss);
3198 diff -= tcp_skb_pcount(skb);
3200 tcp_adjust_pcount(sk, skb, diff);
3201 avail_wnd = min_t(int, avail_wnd, cur_mss);
3202 if (skb->len < avail_wnd)
3203 tcp_retrans_try_collapse(sk, skb, avail_wnd);
3206 /* RFC3168, section 6.1.1.1. ECN fallback */
3207 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3208 tcp_ecn_clear_syn(sk, skb);
3210 /* Update global and local TCP statistics. */
3211 segs = tcp_skb_pcount(skb);
3212 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3213 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3214 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3215 tp->total_retrans += segs;
3216 tp->bytes_retrans += skb->len;
3218 /* make sure skb->data is aligned on arches that require it
3219 * and check if ack-trimming & collapsing extended the headroom
3220 * beyond what csum_start can cover.
3222 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3223 skb_headroom(skb) >= 0xFFFF)) {
3224 struct sk_buff *nskb;
3226 tcp_skb_tsorted_save(skb) {
3227 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3230 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3234 } tcp_skb_tsorted_restore(skb);
3237 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3238 tcp_rate_skb_sent(sk, skb);
3241 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3244 /* To avoid taking spuriously low RTT samples based on a timestamp
3245 * for a transmit that never happened, always mark EVER_RETRANS
3247 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3249 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3250 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3251 TCP_SKB_CB(skb)->seq, segs, err);
3254 trace_tcp_retransmit_skb(sk, skb);
3255 } else if (err != -EBUSY) {
3256 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3261 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3263 struct tcp_sock *tp = tcp_sk(sk);
3264 int err = __tcp_retransmit_skb(sk, skb, segs);
3267 #if FASTRETRANS_DEBUG > 0
3268 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3269 net_dbg_ratelimited("retrans_out leaked\n");
3272 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3273 tp->retrans_out += tcp_skb_pcount(skb);
3276 /* Save stamp of the first (attempted) retransmit. */
3277 if (!tp->retrans_stamp)
3278 tp->retrans_stamp = tcp_skb_timestamp(skb);
3280 if (tp->undo_retrans < 0)
3281 tp->undo_retrans = 0;
3282 tp->undo_retrans += tcp_skb_pcount(skb);
3286 /* This gets called after a retransmit timeout, and the initially
3287 * retransmitted data is acknowledged. It tries to continue
3288 * resending the rest of the retransmit queue, until either
3289 * we've sent it all or the congestion window limit is reached.
3291 void tcp_xmit_retransmit_queue(struct sock *sk)
3293 const struct inet_connection_sock *icsk = inet_csk(sk);
3294 struct sk_buff *skb, *rtx_head, *hole = NULL;
3295 struct tcp_sock *tp = tcp_sk(sk);
3296 bool rearm_timer = false;
3300 if (!tp->packets_out)
3303 rtx_head = tcp_rtx_queue_head(sk);
3304 skb = tp->retransmit_skb_hint ?: rtx_head;
3305 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3306 skb_rbtree_walk_from(skb) {
3310 if (tcp_pacing_check(sk))
3313 /* we could do better than to assign each time */
3315 tp->retransmit_skb_hint = skb;
3317 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3320 sacked = TCP_SKB_CB(skb)->sacked;
3321 /* In case tcp_shift_skb_data() have aggregated large skbs,
3322 * we need to make sure not sending too bigs TSO packets
3324 segs = min_t(int, segs, max_segs);
3326 if (tp->retrans_out >= tp->lost_out) {
3328 } else if (!(sacked & TCPCB_LOST)) {
3329 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3334 if (icsk->icsk_ca_state != TCP_CA_Loss)
3335 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3337 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3340 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3343 if (tcp_small_queue_check(sk, skb, 1))
3346 if (tcp_retransmit_skb(sk, skb, segs))
3349 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3351 if (tcp_in_cwnd_reduction(sk))
3352 tp->prr_out += tcp_skb_pcount(skb);
3354 if (skb == rtx_head &&
3355 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3360 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3361 inet_csk(sk)->icsk_rto,
3365 /* We allow to exceed memory limits for FIN packets to expedite
3366 * connection tear down and (memory) recovery.
3367 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3368 * or even be forced to close flow without any FIN.
3369 * In general, we want to allow one skb per socket to avoid hangs
3370 * with edge trigger epoll()
3372 void sk_forced_mem_schedule(struct sock *sk, int size)
3376 delta = size - sk->sk_forward_alloc;
3379 amt = sk_mem_pages(delta);
3380 sk->sk_forward_alloc += amt << PAGE_SHIFT;
3381 sk_memory_allocated_add(sk, amt);
3383 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3384 mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3385 gfp_memcg_charge() | __GFP_NOFAIL);
3388 /* Send a FIN. The caller locks the socket for us.
3389 * We should try to send a FIN packet really hard, but eventually give up.
3391 void tcp_send_fin(struct sock *sk)
3393 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3394 struct tcp_sock *tp = tcp_sk(sk);
3396 /* Optimization, tack on the FIN if we have one skb in write queue and
3397 * this skb was not yet sent, or we are under memory pressure.
3398 * Note: in the latter case, FIN packet will be sent after a timeout,
3399 * as TCP stack thinks it has already been transmitted.
3402 if (!tskb && tcp_under_memory_pressure(sk))
3403 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3406 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3407 TCP_SKB_CB(tskb)->end_seq++;
3410 /* This means tskb was already sent.
3411 * Pretend we included the FIN on previous transmit.
3412 * We need to set tp->snd_nxt to the value it would have
3413 * if FIN had been sent. This is because retransmit path
3414 * does not change tp->snd_nxt.
3416 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3420 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3424 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3425 skb_reserve(skb, MAX_TCP_HEADER);
3426 sk_forced_mem_schedule(sk, skb->truesize);
3427 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3428 tcp_init_nondata_skb(skb, tp->write_seq,
3429 TCPHDR_ACK | TCPHDR_FIN);
3430 tcp_queue_skb(sk, skb);
3432 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3435 /* We get here when a process closes a file descriptor (either due to
3436 * an explicit close() or as a byproduct of exit()'ing) and there
3437 * was unread data in the receive queue. This behavior is recommended
3438 * by RFC 2525, section 2.17. -DaveM
3440 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3442 struct sk_buff *skb;
3444 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3446 /* NOTE: No TCP options attached and we never retransmit this. */
3447 skb = alloc_skb(MAX_TCP_HEADER, priority);
3449 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3453 /* Reserve space for headers and prepare control bits. */
3454 skb_reserve(skb, MAX_TCP_HEADER);
3455 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3456 TCPHDR_ACK | TCPHDR_RST);
3457 tcp_mstamp_refresh(tcp_sk(sk));
3459 if (tcp_transmit_skb(sk, skb, 0, priority))
3460 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3462 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3463 * skb here is different to the troublesome skb, so use NULL
3465 trace_tcp_send_reset(sk, NULL);
3468 /* Send a crossed SYN-ACK during socket establishment.
3469 * WARNING: This routine must only be called when we have already sent
3470 * a SYN packet that crossed the incoming SYN that caused this routine
3471 * to get called. If this assumption fails then the initial rcv_wnd
3472 * and rcv_wscale values will not be correct.
3474 int tcp_send_synack(struct sock *sk)
3476 struct sk_buff *skb;
3478 skb = tcp_rtx_queue_head(sk);
3479 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3480 pr_err("%s: wrong queue state\n", __func__);
3483 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3484 if (skb_cloned(skb)) {
3485 struct sk_buff *nskb;
3487 tcp_skb_tsorted_save(skb) {
3488 nskb = skb_copy(skb, GFP_ATOMIC);
3489 } tcp_skb_tsorted_restore(skb);
3492 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3493 tcp_highest_sack_replace(sk, skb, nskb);
3494 tcp_rtx_queue_unlink_and_free(skb, sk);
3495 __skb_header_release(nskb);
3496 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3497 sk_wmem_queued_add(sk, nskb->truesize);
3498 sk_mem_charge(sk, nskb->truesize);
3502 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3503 tcp_ecn_send_synack(sk, skb);
3505 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3509 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3510 * @sk: listener socket
3511 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3512 * should not use it again.
3513 * @req: request_sock pointer
3514 * @foc: cookie for tcp fast open
3515 * @synack_type: Type of synack to prepare
3516 * @syn_skb: SYN packet just received. It could be NULL for rtx case.
3518 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3519 struct request_sock *req,
3520 struct tcp_fastopen_cookie *foc,
3521 enum tcp_synack_type synack_type,
3522 struct sk_buff *syn_skb)
3524 struct inet_request_sock *ireq = inet_rsk(req);
3525 const struct tcp_sock *tp = tcp_sk(sk);
3526 struct tcp_md5sig_key *md5 = NULL;
3527 struct tcp_out_options opts;
3528 struct sk_buff *skb;
3529 int tcp_header_size;
3534 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3535 if (unlikely(!skb)) {
3539 /* Reserve space for headers. */
3540 skb_reserve(skb, MAX_TCP_HEADER);
3542 switch (synack_type) {
3543 case TCP_SYNACK_NORMAL:
3544 skb_set_owner_w(skb, req_to_sk(req));
3546 case TCP_SYNACK_COOKIE:
3547 /* Under synflood, we do not attach skb to a socket,
3548 * to avoid false sharing.
3551 case TCP_SYNACK_FASTOPEN:
3552 /* sk is a const pointer, because we want to express multiple
3553 * cpu might call us concurrently.
3554 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3556 skb_set_owner_w(skb, (struct sock *)sk);
3559 skb_dst_set(skb, dst);
3561 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3563 memset(&opts, 0, sizeof(opts));
3564 now = tcp_clock_ns();
3565 #ifdef CONFIG_SYN_COOKIES
3566 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3567 skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3572 skb_set_delivery_time(skb, now, true);
3573 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3574 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3577 #ifdef CONFIG_TCP_MD5SIG
3579 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3581 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3582 /* bpf program will be interested in the tcp_flags */
3583 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3584 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3586 syn_skb) + sizeof(*th);
3588 skb_push(skb, tcp_header_size);
3589 skb_reset_transport_header(skb);
3591 th = (struct tcphdr *)skb->data;
3592 memset(th, 0, sizeof(struct tcphdr));
3595 tcp_ecn_make_synack(req, th);
3596 th->source = htons(ireq->ir_num);
3597 th->dest = ireq->ir_rmt_port;
3598 skb->mark = ireq->ir_mark;
3599 skb->ip_summed = CHECKSUM_PARTIAL;
3600 th->seq = htonl(tcp_rsk(req)->snt_isn);
3601 /* XXX data is queued and acked as is. No buffer/window check */
3602 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3604 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3605 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3606 tcp_options_write(th, NULL, &opts);
3607 th->doff = (tcp_header_size >> 2);
3608 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3610 #ifdef CONFIG_TCP_MD5SIG
3611 /* Okay, we have all we need - do the md5 hash if needed */
3613 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3614 md5, req_to_sk(req), skb);
3618 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3619 synack_type, &opts);
3621 skb_set_delivery_time(skb, now, true);
3622 tcp_add_tx_delay(skb, tp);
3626 EXPORT_SYMBOL(tcp_make_synack);
3628 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3630 struct inet_connection_sock *icsk = inet_csk(sk);
3631 const struct tcp_congestion_ops *ca;
3632 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3634 if (ca_key == TCP_CA_UNSPEC)
3638 ca = tcp_ca_find_key(ca_key);
3639 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3640 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3641 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3642 icsk->icsk_ca_ops = ca;
3647 /* Do all connect socket setups that can be done AF independent. */
3648 static void tcp_connect_init(struct sock *sk)
3650 const struct dst_entry *dst = __sk_dst_get(sk);
3651 struct tcp_sock *tp = tcp_sk(sk);
3655 /* We'll fix this up when we get a response from the other end.
3656 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3658 tp->tcp_header_len = sizeof(struct tcphdr);
3659 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3660 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3662 #ifdef CONFIG_TCP_MD5SIG
3663 if (tp->af_specific->md5_lookup(sk, sk))
3664 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3667 /* If user gave his TCP_MAXSEG, record it to clamp */
3668 if (tp->rx_opt.user_mss)
3669 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3672 tcp_sync_mss(sk, dst_mtu(dst));
3674 tcp_ca_dst_init(sk, dst);
3676 if (!tp->window_clamp)
3677 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3678 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3680 tcp_initialize_rcv_mss(sk);
3682 /* limit the window selection if the user enforce a smaller rx buffer */
3683 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3684 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3685 tp->window_clamp = tcp_full_space(sk);
3687 rcv_wnd = tcp_rwnd_init_bpf(sk);
3689 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3691 tcp_select_initial_window(sk, tcp_full_space(sk),
3692 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3695 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3699 tp->rx_opt.rcv_wscale = rcv_wscale;
3700 tp->rcv_ssthresh = tp->rcv_wnd;
3702 WRITE_ONCE(sk->sk_err, 0);
3703 sock_reset_flag(sk, SOCK_DONE);
3706 tcp_write_queue_purge(sk);
3707 tp->snd_una = tp->write_seq;
3708 tp->snd_sml = tp->write_seq;
3709 tp->snd_up = tp->write_seq;
3710 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3712 if (likely(!tp->repair))
3715 tp->rcv_tstamp = tcp_jiffies32;
3716 tp->rcv_wup = tp->rcv_nxt;
3717 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3719 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3720 inet_csk(sk)->icsk_retransmits = 0;
3721 tcp_clear_retrans(tp);
3724 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3726 struct tcp_sock *tp = tcp_sk(sk);
3727 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3729 tcb->end_seq += skb->len;
3730 __skb_header_release(skb);
3731 sk_wmem_queued_add(sk, skb->truesize);
3732 sk_mem_charge(sk, skb->truesize);
3733 WRITE_ONCE(tp->write_seq, tcb->end_seq);
3734 tp->packets_out += tcp_skb_pcount(skb);
3737 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3738 * queue a data-only packet after the regular SYN, such that regular SYNs
3739 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3740 * only the SYN sequence, the data are retransmitted in the first ACK.
3741 * If cookie is not cached or other error occurs, falls back to send a
3742 * regular SYN with Fast Open cookie request option.
3744 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3746 struct inet_connection_sock *icsk = inet_csk(sk);
3747 struct tcp_sock *tp = tcp_sk(sk);
3748 struct tcp_fastopen_request *fo = tp->fastopen_req;
3750 struct sk_buff *syn_data;
3752 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3753 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3756 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3757 * user-MSS. Reserve maximum option space for middleboxes that add
3758 * private TCP options. The cost is reduced data space in SYN :(
3760 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3761 /* Sync mss_cache after updating the mss_clamp */
3762 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3764 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3765 MAX_TCP_OPTION_SPACE;
3767 space = min_t(size_t, space, fo->size);
3769 /* limit to order-0 allocations */
3770 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3772 syn_data = tcp_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3775 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3777 int copied = copy_from_iter(skb_put(syn_data, space), space,
3778 &fo->data->msg_iter);
3779 if (unlikely(!copied)) {
3780 tcp_skb_tsorted_anchor_cleanup(syn_data);
3781 kfree_skb(syn_data);
3784 if (copied != space) {
3785 skb_trim(syn_data, copied);
3788 skb_zcopy_set(syn_data, fo->uarg, NULL);
3790 /* No more data pending in inet_wait_for_connect() */
3791 if (space == fo->size)
3795 tcp_connect_queue_skb(sk, syn_data);
3797 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3799 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3801 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3803 /* Now full SYN+DATA was cloned and sent (or not),
3804 * remove the SYN from the original skb (syn_data)
3805 * we keep in write queue in case of a retransmit, as we
3806 * also have the SYN packet (with no data) in the same queue.
3808 TCP_SKB_CB(syn_data)->seq++;
3809 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3811 tp->syn_data = (fo->copied > 0);
3812 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3813 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3817 /* data was not sent, put it in write_queue */
3818 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3819 tp->packets_out -= tcp_skb_pcount(syn_data);
3822 /* Send a regular SYN with Fast Open cookie request option */
3823 if (fo->cookie.len > 0)
3825 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3827 tp->syn_fastopen = 0;
3829 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3833 /* Build a SYN and send it off. */
3834 int tcp_connect(struct sock *sk)
3836 struct tcp_sock *tp = tcp_sk(sk);
3837 struct sk_buff *buff;
3840 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3842 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3843 return -EHOSTUNREACH; /* Routing failure or similar. */
3845 tcp_connect_init(sk);
3847 if (unlikely(tp->repair)) {
3848 tcp_finish_connect(sk, NULL);
3852 buff = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3853 if (unlikely(!buff))
3856 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3857 tcp_mstamp_refresh(tp);
3858 tp->retrans_stamp = tcp_time_stamp(tp);
3859 tcp_connect_queue_skb(sk, buff);
3860 tcp_ecn_send_syn(sk, buff);
3861 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3863 /* Send off SYN; include data in Fast Open. */
3864 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3865 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3866 if (err == -ECONNREFUSED)
3869 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3870 * in order to make this packet get counted in tcpOutSegs.
3872 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3873 tp->pushed_seq = tp->write_seq;
3874 buff = tcp_send_head(sk);
3875 if (unlikely(buff)) {
3876 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3877 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3879 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3881 /* Timer for repeating the SYN until an answer. */
3882 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3883 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3886 EXPORT_SYMBOL(tcp_connect);
3888 /* Send out a delayed ack, the caller does the policy checking
3889 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3892 void tcp_send_delayed_ack(struct sock *sk)
3894 struct inet_connection_sock *icsk = inet_csk(sk);
3895 int ato = icsk->icsk_ack.ato;
3896 unsigned long timeout;
3898 if (ato > TCP_DELACK_MIN) {
3899 const struct tcp_sock *tp = tcp_sk(sk);
3900 int max_ato = HZ / 2;
3902 if (inet_csk_in_pingpong_mode(sk) ||
3903 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3904 max_ato = TCP_DELACK_MAX;
3906 /* Slow path, intersegment interval is "high". */
3908 /* If some rtt estimate is known, use it to bound delayed ack.
3909 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3913 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3920 ato = min(ato, max_ato);
3923 ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3925 /* Stay within the limit we were given */
3926 timeout = jiffies + ato;
3928 /* Use new timeout only if there wasn't a older one earlier. */
3929 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3930 /* If delack timer is about to expire, send ACK now. */
3931 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3936 if (!time_before(timeout, icsk->icsk_ack.timeout))
3937 timeout = icsk->icsk_ack.timeout;
3939 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3940 icsk->icsk_ack.timeout = timeout;
3941 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3944 /* This routine sends an ack and also updates the window. */
3945 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3947 struct sk_buff *buff;
3949 /* If we have been reset, we may not send again. */
3950 if (sk->sk_state == TCP_CLOSE)
3953 /* We are not putting this on the write queue, so
3954 * tcp_transmit_skb() will set the ownership to this
3957 buff = alloc_skb(MAX_TCP_HEADER,
3958 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3959 if (unlikely(!buff)) {
3960 struct inet_connection_sock *icsk = inet_csk(sk);
3961 unsigned long delay;
3963 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3964 if (delay < TCP_RTO_MAX)
3965 icsk->icsk_ack.retry++;
3966 inet_csk_schedule_ack(sk);
3967 icsk->icsk_ack.ato = TCP_ATO_MIN;
3968 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3972 /* Reserve space for headers and prepare control bits. */
3973 skb_reserve(buff, MAX_TCP_HEADER);
3974 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3976 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3978 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3980 skb_set_tcp_pure_ack(buff);
3982 /* Send it off, this clears delayed acks for us. */
3983 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3985 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3987 void tcp_send_ack(struct sock *sk)
3989 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3992 /* This routine sends a packet with an out of date sequence
3993 * number. It assumes the other end will try to ack it.
3995 * Question: what should we make while urgent mode?
3996 * 4.4BSD forces sending single byte of data. We cannot send
3997 * out of window data, because we have SND.NXT==SND.MAX...
3999 * Current solution: to send TWO zero-length segments in urgent mode:
4000 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4001 * out-of-date with SND.UNA-1 to probe window.
4003 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4005 struct tcp_sock *tp = tcp_sk(sk);
4006 struct sk_buff *skb;
4008 /* We don't queue it, tcp_transmit_skb() sets ownership. */
4009 skb = alloc_skb(MAX_TCP_HEADER,
4010 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4014 /* Reserve space for headers and set control bits. */
4015 skb_reserve(skb, MAX_TCP_HEADER);
4016 /* Use a previous sequence. This should cause the other
4017 * end to send an ack. Don't queue or clone SKB, just
4020 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4021 NET_INC_STATS(sock_net(sk), mib);
4022 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4025 /* Called from setsockopt( ... TCP_REPAIR ) */
4026 void tcp_send_window_probe(struct sock *sk)
4028 if (sk->sk_state == TCP_ESTABLISHED) {
4029 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4030 tcp_mstamp_refresh(tcp_sk(sk));
4031 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4035 /* Initiate keepalive or window probe from timer. */
4036 int tcp_write_wakeup(struct sock *sk, int mib)
4038 struct tcp_sock *tp = tcp_sk(sk);
4039 struct sk_buff *skb;
4041 if (sk->sk_state == TCP_CLOSE)
4044 skb = tcp_send_head(sk);
4045 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4047 unsigned int mss = tcp_current_mss(sk);
4048 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4050 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4051 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4053 /* We are probing the opening of a window
4054 * but the window size is != 0
4055 * must have been a result SWS avoidance ( sender )
4057 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4059 seg_size = min(seg_size, mss);
4060 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4061 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4062 skb, seg_size, mss, GFP_ATOMIC))
4064 } else if (!tcp_skb_pcount(skb))
4065 tcp_set_skb_tso_segs(skb, mss);
4067 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4068 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4070 tcp_event_new_data_sent(sk, skb);
4073 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4074 tcp_xmit_probe_skb(sk, 1, mib);
4075 return tcp_xmit_probe_skb(sk, 0, mib);
4079 /* A window probe timeout has occurred. If window is not closed send
4080 * a partial packet else a zero probe.
4082 void tcp_send_probe0(struct sock *sk)
4084 struct inet_connection_sock *icsk = inet_csk(sk);
4085 struct tcp_sock *tp = tcp_sk(sk);
4086 struct net *net = sock_net(sk);
4087 unsigned long timeout;
4090 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4092 if (tp->packets_out || tcp_write_queue_empty(sk)) {
4093 /* Cancel probe timer, if it is not required. */
4094 icsk->icsk_probes_out = 0;
4095 icsk->icsk_backoff = 0;
4096 icsk->icsk_probes_tstamp = 0;
4100 icsk->icsk_probes_out++;
4102 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4103 icsk->icsk_backoff++;
4104 timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4106 /* If packet was not sent due to local congestion,
4107 * Let senders fight for local resources conservatively.
4109 timeout = TCP_RESOURCE_PROBE_INTERVAL;
4112 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4113 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4116 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4118 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4122 /* Paired with WRITE_ONCE() in sock_setsockopt() */
4123 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4124 tcp_rsk(req)->txhash = net_tx_rndhash();
4125 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4128 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4129 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4130 if (unlikely(tcp_passive_fastopen(sk))) {
4131 /* sk has const attribute because listeners are lockless.
4132 * However in this case, we are dealing with a passive fastopen
4133 * socket thus we can change total_retrans value.
4135 tcp_sk_rw(sk)->total_retrans++;
4137 trace_tcp_retransmit_synack(sk, req);
4141 EXPORT_SYMBOL(tcp_rtx_synack);