1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
52 #include <linux/sched/signal.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
64 #include <net/af_unix.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/io_uring.h>
85 #include <uapi/linux/io_uring.h>
90 #define IORING_MAX_ENTRIES 32768
91 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
94 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
96 #define IORING_FILE_TABLE_SHIFT 9
97 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
98 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
99 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
100 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
101 IORING_REGISTER_LAST + IORING_OP_LAST)
103 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
104 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
128 struct io_uring sq, cq;
130 * Bitmasks to apply to head and tail offsets (constant, equals
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
152 * Written by the kernel, shouldn't be modified by the
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
162 * Written by the application, shouldn't be modified by the
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
181 * Ring buffer of completion events.
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
190 enum io_uring_cmd_flags {
191 IO_URING_F_NONBLOCK = 1,
192 IO_URING_F_COMPLETE_DEFER = 2,
195 struct io_mapped_ubuf {
198 unsigned int nr_bvecs;
199 unsigned long acct_pages;
200 struct bio_vec bvec[];
205 struct io_overflow_cqe {
206 struct io_uring_cqe cqe;
207 struct list_head list;
210 struct io_fixed_file {
211 /* file * with additional FFS_* flags */
212 unsigned long file_ptr;
216 struct list_head list;
221 struct io_mapped_ubuf *buf;
225 struct io_file_table {
226 /* two level table */
227 struct io_fixed_file **files;
230 struct io_rsrc_node {
231 struct percpu_ref refs;
232 struct list_head node;
233 struct list_head rsrc_list;
234 struct io_rsrc_data *rsrc_data;
235 struct llist_node llist;
239 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
241 struct io_rsrc_data {
242 struct io_ring_ctx *ctx;
247 struct completion done;
252 struct list_head list;
258 struct io_restriction {
259 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
260 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
261 u8 sqe_flags_allowed;
262 u8 sqe_flags_required;
267 IO_SQ_THREAD_SHOULD_STOP = 0,
268 IO_SQ_THREAD_SHOULD_PARK,
273 atomic_t park_pending;
276 /* ctx's that are using this sqd */
277 struct list_head ctx_list;
279 struct task_struct *thread;
280 struct wait_queue_head wait;
282 unsigned sq_thread_idle;
288 struct completion exited;
289 struct callback_head *park_task_work;
292 #define IO_IOPOLL_BATCH 8
293 #define IO_COMPL_BATCH 32
294 #define IO_REQ_CACHE_SIZE 32
295 #define IO_REQ_ALLOC_BATCH 8
297 struct io_comp_state {
298 struct io_kiocb *reqs[IO_COMPL_BATCH];
300 unsigned int locked_free_nr;
301 /* inline/task_work completion list, under ->uring_lock */
302 struct list_head free_list;
303 /* IRQ completion list, under ->completion_lock */
304 struct list_head locked_free_list;
307 struct io_submit_link {
308 struct io_kiocb *head;
309 struct io_kiocb *last;
312 struct io_submit_state {
313 struct blk_plug plug;
314 struct io_submit_link link;
317 * io_kiocb alloc cache
319 void *reqs[IO_REQ_CACHE_SIZE];
320 unsigned int free_reqs;
325 * Batch completion logic
327 struct io_comp_state comp;
330 * File reference cache
334 unsigned int file_refs;
335 unsigned int ios_left;
340 struct percpu_ref refs;
341 } ____cacheline_aligned_in_smp;
345 unsigned int compat: 1;
346 unsigned int drain_next: 1;
347 unsigned int eventfd_async: 1;
348 unsigned int restricted: 1;
351 * Ring buffer of indices into array of io_uring_sqe, which is
352 * mmapped by the application using the IORING_OFF_SQES offset.
354 * This indirection could e.g. be used to assign fixed
355 * io_uring_sqe entries to operations and only submit them to
356 * the queue when needed.
358 * The kernel modifies neither the indices array nor the entries
362 unsigned cached_sq_head;
365 unsigned sq_thread_idle;
366 unsigned cached_sq_dropped;
367 unsigned cached_cq_overflow;
368 unsigned long sq_check_overflow;
370 /* hashed buffered write serialization */
371 struct io_wq_hash *hash_map;
373 struct list_head defer_list;
374 struct list_head timeout_list;
375 struct list_head cq_overflow_list;
377 struct io_uring_sqe *sq_sqes;
378 } ____cacheline_aligned_in_smp;
381 struct mutex uring_lock;
382 wait_queue_head_t wait;
383 } ____cacheline_aligned_in_smp;
385 struct io_submit_state submit_state;
387 struct io_rings *rings;
389 /* Only used for accounting purposes */
390 struct mm_struct *mm_account;
392 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
393 struct io_sq_data *sq_data; /* if using sq thread polling */
395 struct wait_queue_head sqo_sq_wait;
396 struct list_head sqd_list;
399 * If used, fixed file set. Writers must ensure that ->refs is dead,
400 * readers must ensure that ->refs is alive as long as the file* is
401 * used. Only updated through io_uring_register(2).
403 struct io_rsrc_data *file_data;
404 struct io_file_table file_table;
405 unsigned nr_user_files;
407 /* if used, fixed mapped user buffers */
408 struct io_rsrc_data *buf_data;
409 unsigned nr_user_bufs;
410 struct io_mapped_ubuf **user_bufs;
412 struct user_struct *user;
414 struct completion ref_comp;
416 #if defined(CONFIG_UNIX)
417 struct socket *ring_sock;
420 struct xarray io_buffers;
422 struct xarray personalities;
426 unsigned cached_cq_tail;
429 atomic_t cq_timeouts;
430 unsigned cq_last_tm_flush;
432 unsigned long cq_check_overflow;
433 struct wait_queue_head cq_wait;
434 struct fasync_struct *cq_fasync;
435 struct eventfd_ctx *cq_ev_fd;
436 } ____cacheline_aligned_in_smp;
439 spinlock_t completion_lock;
442 * ->iopoll_list is protected by the ctx->uring_lock for
443 * io_uring instances that don't use IORING_SETUP_SQPOLL.
444 * For SQPOLL, only the single threaded io_sq_thread() will
445 * manipulate the list, hence no extra locking is needed there.
447 struct list_head iopoll_list;
448 struct hlist_head *cancel_hash;
449 unsigned cancel_hash_bits;
450 bool poll_multi_file;
451 } ____cacheline_aligned_in_smp;
453 struct delayed_work rsrc_put_work;
454 struct llist_head rsrc_put_llist;
455 struct list_head rsrc_ref_list;
456 spinlock_t rsrc_ref_lock;
457 struct io_rsrc_node *rsrc_node;
458 struct io_rsrc_node *rsrc_backup_node;
460 struct io_restriction restrictions;
463 struct callback_head *exit_task_work;
465 /* Keep this last, we don't need it for the fast path */
466 struct work_struct exit_work;
467 struct list_head tctx_list;
470 struct io_uring_task {
471 /* submission side */
473 struct wait_queue_head wait;
474 const struct io_ring_ctx *last;
476 struct percpu_counter inflight;
477 atomic_t inflight_tracked;
480 spinlock_t task_lock;
481 struct io_wq_work_list task_list;
482 unsigned long task_state;
483 struct callback_head task_work;
487 * First field must be the file pointer in all the
488 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
490 struct io_poll_iocb {
492 struct wait_queue_head *head;
496 struct wait_queue_entry wait;
499 struct io_poll_update {
505 bool update_user_data;
513 struct io_timeout_data {
514 struct io_kiocb *req;
515 struct hrtimer timer;
516 struct timespec64 ts;
517 enum hrtimer_mode mode;
522 struct sockaddr __user *addr;
523 int __user *addr_len;
525 unsigned long nofile;
545 struct list_head list;
546 /* head of the link, used by linked timeouts only */
547 struct io_kiocb *head;
550 struct io_timeout_rem {
555 struct timespec64 ts;
560 /* NOTE: kiocb has the file as the first member, so don't do it here */
568 struct sockaddr __user *addr;
575 struct compat_msghdr __user *umsg_compat;
576 struct user_msghdr __user *umsg;
582 struct io_buffer *kbuf;
588 struct filename *filename;
590 unsigned long nofile;
593 struct io_rsrc_update {
619 struct epoll_event event;
623 struct file *file_out;
624 struct file *file_in;
631 struct io_provide_buf {
645 const char __user *filename;
646 struct statx __user *buffer;
658 struct filename *oldpath;
659 struct filename *newpath;
667 struct filename *filename;
670 struct io_completion {
672 struct list_head list;
676 struct io_async_connect {
677 struct sockaddr_storage address;
680 struct io_async_msghdr {
681 struct iovec fast_iov[UIO_FASTIOV];
682 /* points to an allocated iov, if NULL we use fast_iov instead */
683 struct iovec *free_iov;
684 struct sockaddr __user *uaddr;
686 struct sockaddr_storage addr;
690 struct iovec fast_iov[UIO_FASTIOV];
691 const struct iovec *free_iovec;
692 struct iov_iter iter;
694 struct wait_page_queue wpq;
698 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
699 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
700 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
701 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
702 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
703 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
709 REQ_F_LINK_TIMEOUT_BIT,
710 REQ_F_NEED_CLEANUP_BIT,
712 REQ_F_BUFFER_SELECTED_BIT,
713 REQ_F_LTIMEOUT_ACTIVE_BIT,
714 REQ_F_COMPLETE_INLINE_BIT,
716 REQ_F_DONT_REISSUE_BIT,
717 /* keep async read/write and isreg together and in order */
718 REQ_F_ASYNC_READ_BIT,
719 REQ_F_ASYNC_WRITE_BIT,
722 /* not a real bit, just to check we're not overflowing the space */
728 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
729 /* drain existing IO first */
730 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
732 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
733 /* doesn't sever on completion < 0 */
734 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
736 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
737 /* IOSQE_BUFFER_SELECT */
738 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
740 /* fail rest of links */
741 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
742 /* on inflight list, should be cancelled and waited on exit reliably */
743 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
744 /* read/write uses file position */
745 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
746 /* must not punt to workers */
747 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
748 /* has or had linked timeout */
749 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
751 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
752 /* already went through poll handler */
753 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
754 /* buffer already selected */
755 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
756 /* linked timeout is active, i.e. prepared by link's head */
757 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
758 /* completion is deferred through io_comp_state */
759 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
760 /* caller should reissue async */
761 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
762 /* don't attempt request reissue, see io_rw_reissue() */
763 REQ_F_DONT_REISSUE = BIT(REQ_F_DONT_REISSUE_BIT),
764 /* supports async reads */
765 REQ_F_ASYNC_READ = BIT(REQ_F_ASYNC_READ_BIT),
766 /* supports async writes */
767 REQ_F_ASYNC_WRITE = BIT(REQ_F_ASYNC_WRITE_BIT),
769 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
773 struct io_poll_iocb poll;
774 struct io_poll_iocb *double_poll;
777 struct io_task_work {
778 struct io_wq_work_node node;
779 task_work_func_t func;
783 * NOTE! Each of the iocb union members has the file pointer
784 * as the first entry in their struct definition. So you can
785 * access the file pointer through any of the sub-structs,
786 * or directly as just 'ki_filp' in this struct.
792 struct io_poll_iocb poll;
793 struct io_poll_update poll_update;
794 struct io_accept accept;
796 struct io_cancel cancel;
797 struct io_timeout timeout;
798 struct io_timeout_rem timeout_rem;
799 struct io_connect connect;
800 struct io_sr_msg sr_msg;
802 struct io_close close;
803 struct io_rsrc_update rsrc_update;
804 struct io_fadvise fadvise;
805 struct io_madvise madvise;
806 struct io_epoll epoll;
807 struct io_splice splice;
808 struct io_provide_buf pbuf;
809 struct io_statx statx;
810 struct io_shutdown shutdown;
811 struct io_rename rename;
812 struct io_unlink unlink;
813 /* use only after cleaning per-op data, see io_clean_op() */
814 struct io_completion compl;
817 /* opcode allocated if it needs to store data for async defer */
820 /* polled IO has completed */
826 struct io_ring_ctx *ctx;
829 struct task_struct *task;
832 struct io_kiocb *link;
833 struct percpu_ref *fixed_rsrc_refs;
835 /* used with ctx->iopoll_list with reads/writes */
836 struct list_head inflight_entry;
838 struct io_task_work io_task_work;
839 struct callback_head task_work;
841 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
842 struct hlist_node hash_node;
843 struct async_poll *apoll;
844 struct io_wq_work work;
845 /* store used ubuf, so we can prevent reloading */
846 struct io_mapped_ubuf *imu;
849 struct io_tctx_node {
850 struct list_head ctx_node;
851 struct task_struct *task;
852 struct io_ring_ctx *ctx;
855 struct io_defer_entry {
856 struct list_head list;
857 struct io_kiocb *req;
862 /* needs req->file assigned */
863 unsigned needs_file : 1;
864 /* hash wq insertion if file is a regular file */
865 unsigned hash_reg_file : 1;
866 /* unbound wq insertion if file is a non-regular file */
867 unsigned unbound_nonreg_file : 1;
868 /* opcode is not supported by this kernel */
869 unsigned not_supported : 1;
870 /* set if opcode supports polled "wait" */
872 unsigned pollout : 1;
873 /* op supports buffer selection */
874 unsigned buffer_select : 1;
875 /* do prep async if is going to be punted */
876 unsigned needs_async_setup : 1;
877 /* should block plug */
879 /* size of async data needed, if any */
880 unsigned short async_size;
883 static const struct io_op_def io_op_defs[] = {
884 [IORING_OP_NOP] = {},
885 [IORING_OP_READV] = {
887 .unbound_nonreg_file = 1,
890 .needs_async_setup = 1,
892 .async_size = sizeof(struct io_async_rw),
894 [IORING_OP_WRITEV] = {
897 .unbound_nonreg_file = 1,
899 .needs_async_setup = 1,
901 .async_size = sizeof(struct io_async_rw),
903 [IORING_OP_FSYNC] = {
906 [IORING_OP_READ_FIXED] = {
908 .unbound_nonreg_file = 1,
911 .async_size = sizeof(struct io_async_rw),
913 [IORING_OP_WRITE_FIXED] = {
916 .unbound_nonreg_file = 1,
919 .async_size = sizeof(struct io_async_rw),
921 [IORING_OP_POLL_ADD] = {
923 .unbound_nonreg_file = 1,
925 [IORING_OP_POLL_REMOVE] = {},
926 [IORING_OP_SYNC_FILE_RANGE] = {
929 [IORING_OP_SENDMSG] = {
931 .unbound_nonreg_file = 1,
933 .needs_async_setup = 1,
934 .async_size = sizeof(struct io_async_msghdr),
936 [IORING_OP_RECVMSG] = {
938 .unbound_nonreg_file = 1,
941 .needs_async_setup = 1,
942 .async_size = sizeof(struct io_async_msghdr),
944 [IORING_OP_TIMEOUT] = {
945 .async_size = sizeof(struct io_timeout_data),
947 [IORING_OP_TIMEOUT_REMOVE] = {
948 /* used by timeout updates' prep() */
950 [IORING_OP_ACCEPT] = {
952 .unbound_nonreg_file = 1,
955 [IORING_OP_ASYNC_CANCEL] = {},
956 [IORING_OP_LINK_TIMEOUT] = {
957 .async_size = sizeof(struct io_timeout_data),
959 [IORING_OP_CONNECT] = {
961 .unbound_nonreg_file = 1,
963 .needs_async_setup = 1,
964 .async_size = sizeof(struct io_async_connect),
966 [IORING_OP_FALLOCATE] = {
969 [IORING_OP_OPENAT] = {},
970 [IORING_OP_CLOSE] = {},
971 [IORING_OP_FILES_UPDATE] = {},
972 [IORING_OP_STATX] = {},
975 .unbound_nonreg_file = 1,
979 .async_size = sizeof(struct io_async_rw),
981 [IORING_OP_WRITE] = {
983 .unbound_nonreg_file = 1,
986 .async_size = sizeof(struct io_async_rw),
988 [IORING_OP_FADVISE] = {
991 [IORING_OP_MADVISE] = {},
994 .unbound_nonreg_file = 1,
999 .unbound_nonreg_file = 1,
1003 [IORING_OP_OPENAT2] = {
1005 [IORING_OP_EPOLL_CTL] = {
1006 .unbound_nonreg_file = 1,
1008 [IORING_OP_SPLICE] = {
1011 .unbound_nonreg_file = 1,
1013 [IORING_OP_PROVIDE_BUFFERS] = {},
1014 [IORING_OP_REMOVE_BUFFERS] = {},
1018 .unbound_nonreg_file = 1,
1020 [IORING_OP_SHUTDOWN] = {
1023 [IORING_OP_RENAMEAT] = {},
1024 [IORING_OP_UNLINKAT] = {},
1027 static bool io_disarm_next(struct io_kiocb *req);
1028 static void io_uring_del_task_file(unsigned long index);
1029 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1030 struct task_struct *task,
1031 struct files_struct *files);
1032 static void io_uring_cancel_sqpoll(struct io_sq_data *sqd);
1033 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx);
1035 static bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1036 long res, unsigned int cflags);
1037 static void io_put_req(struct io_kiocb *req);
1038 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1039 static void io_dismantle_req(struct io_kiocb *req);
1040 static void io_put_task(struct task_struct *task, int nr);
1041 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1042 static void io_queue_linked_timeout(struct io_kiocb *req);
1043 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1044 struct io_uring_rsrc_update2 *up,
1046 static void io_clean_op(struct io_kiocb *req);
1047 static struct file *io_file_get(struct io_submit_state *state,
1048 struct io_kiocb *req, int fd, bool fixed);
1049 static void __io_queue_sqe(struct io_kiocb *req);
1050 static void io_rsrc_put_work(struct work_struct *work);
1052 static void io_req_task_queue(struct io_kiocb *req);
1053 static void io_submit_flush_completions(struct io_comp_state *cs,
1054 struct io_ring_ctx *ctx);
1055 static bool io_poll_remove_waitqs(struct io_kiocb *req);
1056 static int io_req_prep_async(struct io_kiocb *req);
1058 static struct kmem_cache *req_cachep;
1060 static const struct file_operations io_uring_fops;
1062 struct sock *io_uring_get_socket(struct file *file)
1064 #if defined(CONFIG_UNIX)
1065 if (file->f_op == &io_uring_fops) {
1066 struct io_ring_ctx *ctx = file->private_data;
1068 return ctx->ring_sock->sk;
1073 EXPORT_SYMBOL(io_uring_get_socket);
1075 #define io_for_each_link(pos, head) \
1076 for (pos = (head); pos; pos = pos->link)
1078 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1080 struct io_ring_ctx *ctx = req->ctx;
1082 if (!req->fixed_rsrc_refs) {
1083 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1084 percpu_ref_get(req->fixed_rsrc_refs);
1088 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1090 bool got = percpu_ref_tryget(ref);
1092 /* already at zero, wait for ->release() */
1094 wait_for_completion(compl);
1095 percpu_ref_resurrect(ref);
1097 percpu_ref_put(ref);
1100 static bool io_match_task(struct io_kiocb *head,
1101 struct task_struct *task,
1102 struct files_struct *files)
1104 struct io_kiocb *req;
1106 if (task && head->task != task)
1111 io_for_each_link(req, head) {
1112 if (req->flags & REQ_F_INFLIGHT)
1118 static inline void req_set_fail_links(struct io_kiocb *req)
1120 if (req->flags & REQ_F_LINK)
1121 req->flags |= REQ_F_FAIL_LINK;
1124 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1126 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1128 complete(&ctx->ref_comp);
1131 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1133 return !req->timeout.off;
1136 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1138 struct io_ring_ctx *ctx;
1141 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1146 * Use 5 bits less than the max cq entries, that should give us around
1147 * 32 entries per hash list if totally full and uniformly spread.
1149 hash_bits = ilog2(p->cq_entries);
1153 ctx->cancel_hash_bits = hash_bits;
1154 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1156 if (!ctx->cancel_hash)
1158 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1160 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1161 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1164 ctx->flags = p->flags;
1165 init_waitqueue_head(&ctx->sqo_sq_wait);
1166 INIT_LIST_HEAD(&ctx->sqd_list);
1167 init_waitqueue_head(&ctx->cq_wait);
1168 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1169 init_completion(&ctx->ref_comp);
1170 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1171 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1172 mutex_init(&ctx->uring_lock);
1173 init_waitqueue_head(&ctx->wait);
1174 spin_lock_init(&ctx->completion_lock);
1175 INIT_LIST_HEAD(&ctx->iopoll_list);
1176 INIT_LIST_HEAD(&ctx->defer_list);
1177 INIT_LIST_HEAD(&ctx->timeout_list);
1178 spin_lock_init(&ctx->rsrc_ref_lock);
1179 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1180 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1181 init_llist_head(&ctx->rsrc_put_llist);
1182 INIT_LIST_HEAD(&ctx->tctx_list);
1183 INIT_LIST_HEAD(&ctx->submit_state.comp.free_list);
1184 INIT_LIST_HEAD(&ctx->submit_state.comp.locked_free_list);
1187 kfree(ctx->cancel_hash);
1192 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1194 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1195 struct io_ring_ctx *ctx = req->ctx;
1197 return seq + ctx->cq_extra != ctx->cached_cq_tail
1198 + READ_ONCE(ctx->cached_cq_overflow);
1204 static void io_req_track_inflight(struct io_kiocb *req)
1206 if (!(req->flags & REQ_F_INFLIGHT)) {
1207 req->flags |= REQ_F_INFLIGHT;
1208 atomic_inc(¤t->io_uring->inflight_tracked);
1212 static void io_prep_async_work(struct io_kiocb *req)
1214 const struct io_op_def *def = &io_op_defs[req->opcode];
1215 struct io_ring_ctx *ctx = req->ctx;
1217 if (!req->work.creds)
1218 req->work.creds = get_current_cred();
1220 req->work.list.next = NULL;
1221 req->work.flags = 0;
1222 if (req->flags & REQ_F_FORCE_ASYNC)
1223 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1225 if (req->flags & REQ_F_ISREG) {
1226 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1227 io_wq_hash_work(&req->work, file_inode(req->file));
1228 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1229 if (def->unbound_nonreg_file)
1230 req->work.flags |= IO_WQ_WORK_UNBOUND;
1233 switch (req->opcode) {
1234 case IORING_OP_SPLICE:
1236 if (!S_ISREG(file_inode(req->splice.file_in)->i_mode))
1237 req->work.flags |= IO_WQ_WORK_UNBOUND;
1242 static void io_prep_async_link(struct io_kiocb *req)
1244 struct io_kiocb *cur;
1246 io_for_each_link(cur, req)
1247 io_prep_async_work(cur);
1250 static void io_queue_async_work(struct io_kiocb *req)
1252 struct io_ring_ctx *ctx = req->ctx;
1253 struct io_kiocb *link = io_prep_linked_timeout(req);
1254 struct io_uring_task *tctx = req->task->io_uring;
1257 BUG_ON(!tctx->io_wq);
1259 /* init ->work of the whole link before punting */
1260 io_prep_async_link(req);
1261 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1262 &req->work, req->flags);
1263 io_wq_enqueue(tctx->io_wq, &req->work);
1265 io_queue_linked_timeout(link);
1268 static void io_kill_timeout(struct io_kiocb *req, int status)
1269 __must_hold(&req->ctx->completion_lock)
1271 struct io_timeout_data *io = req->async_data;
1273 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1274 atomic_set(&req->ctx->cq_timeouts,
1275 atomic_read(&req->ctx->cq_timeouts) + 1);
1276 list_del_init(&req->timeout.list);
1277 io_cqring_fill_event(req->ctx, req->user_data, status, 0);
1278 io_put_req_deferred(req, 1);
1282 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1285 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1286 struct io_defer_entry, list);
1288 if (req_need_defer(de->req, de->seq))
1290 list_del_init(&de->list);
1291 io_req_task_queue(de->req);
1293 } while (!list_empty(&ctx->defer_list));
1296 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1300 if (list_empty(&ctx->timeout_list))
1303 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1306 u32 events_needed, events_got;
1307 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1308 struct io_kiocb, timeout.list);
1310 if (io_is_timeout_noseq(req))
1314 * Since seq can easily wrap around over time, subtract
1315 * the last seq at which timeouts were flushed before comparing.
1316 * Assuming not more than 2^31-1 events have happened since,
1317 * these subtractions won't have wrapped, so we can check if
1318 * target is in [last_seq, current_seq] by comparing the two.
1320 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1321 events_got = seq - ctx->cq_last_tm_flush;
1322 if (events_got < events_needed)
1325 list_del_init(&req->timeout.list);
1326 io_kill_timeout(req, 0);
1327 } while (!list_empty(&ctx->timeout_list));
1329 ctx->cq_last_tm_flush = seq;
1332 static void io_commit_cqring(struct io_ring_ctx *ctx)
1334 io_flush_timeouts(ctx);
1336 /* order cqe stores with ring update */
1337 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1339 if (unlikely(!list_empty(&ctx->defer_list)))
1340 __io_queue_deferred(ctx);
1343 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1345 struct io_rings *r = ctx->rings;
1347 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1350 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1352 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1355 static inline struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1357 struct io_rings *rings = ctx->rings;
1361 * writes to the cq entry need to come after reading head; the
1362 * control dependency is enough as we're using WRITE_ONCE to
1365 if (__io_cqring_events(ctx) == rings->cq_ring_entries)
1368 tail = ctx->cached_cq_tail++;
1369 return &rings->cqes[tail & ctx->cq_mask];
1372 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1374 if (likely(!ctx->cq_ev_fd))
1376 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1378 return !ctx->eventfd_async || io_wq_current_is_worker();
1381 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1383 /* see waitqueue_active() comment */
1386 if (waitqueue_active(&ctx->wait))
1387 wake_up(&ctx->wait);
1388 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1389 wake_up(&ctx->sq_data->wait);
1390 if (io_should_trigger_evfd(ctx))
1391 eventfd_signal(ctx->cq_ev_fd, 1);
1392 if (waitqueue_active(&ctx->cq_wait)) {
1393 wake_up_interruptible(&ctx->cq_wait);
1394 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1398 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1400 /* see waitqueue_active() comment */
1403 if (ctx->flags & IORING_SETUP_SQPOLL) {
1404 if (waitqueue_active(&ctx->wait))
1405 wake_up(&ctx->wait);
1407 if (io_should_trigger_evfd(ctx))
1408 eventfd_signal(ctx->cq_ev_fd, 1);
1409 if (waitqueue_active(&ctx->cq_wait)) {
1410 wake_up_interruptible(&ctx->cq_wait);
1411 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1415 /* Returns true if there are no backlogged entries after the flush */
1416 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1418 struct io_rings *rings = ctx->rings;
1419 unsigned long flags;
1420 bool all_flushed, posted;
1422 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1426 spin_lock_irqsave(&ctx->completion_lock, flags);
1427 while (!list_empty(&ctx->cq_overflow_list)) {
1428 struct io_uring_cqe *cqe = io_get_cqring(ctx);
1429 struct io_overflow_cqe *ocqe;
1433 ocqe = list_first_entry(&ctx->cq_overflow_list,
1434 struct io_overflow_cqe, list);
1436 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1438 WRITE_ONCE(ctx->rings->cq_overflow,
1439 ++ctx->cached_cq_overflow);
1441 list_del(&ocqe->list);
1445 all_flushed = list_empty(&ctx->cq_overflow_list);
1447 clear_bit(0, &ctx->sq_check_overflow);
1448 clear_bit(0, &ctx->cq_check_overflow);
1449 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1453 io_commit_cqring(ctx);
1454 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1456 io_cqring_ev_posted(ctx);
1460 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1464 if (test_bit(0, &ctx->cq_check_overflow)) {
1465 /* iopoll syncs against uring_lock, not completion_lock */
1466 if (ctx->flags & IORING_SETUP_IOPOLL)
1467 mutex_lock(&ctx->uring_lock);
1468 ret = __io_cqring_overflow_flush(ctx, force);
1469 if (ctx->flags & IORING_SETUP_IOPOLL)
1470 mutex_unlock(&ctx->uring_lock);
1477 * Shamelessly stolen from the mm implementation of page reference checking,
1478 * see commit f958d7b528b1 for details.
1480 #define req_ref_zero_or_close_to_overflow(req) \
1481 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1483 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1485 return atomic_inc_not_zero(&req->refs);
1488 static inline bool req_ref_sub_and_test(struct io_kiocb *req, int refs)
1490 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1491 return atomic_sub_and_test(refs, &req->refs);
1494 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1496 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1497 return atomic_dec_and_test(&req->refs);
1500 static inline void req_ref_put(struct io_kiocb *req)
1502 WARN_ON_ONCE(req_ref_put_and_test(req));
1505 static inline void req_ref_get(struct io_kiocb *req)
1507 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1508 atomic_inc(&req->refs);
1511 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1512 long res, unsigned int cflags)
1514 struct io_overflow_cqe *ocqe;
1516 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1519 * If we're in ring overflow flush mode, or in task cancel mode,
1520 * or cannot allocate an overflow entry, then we need to drop it
1523 WRITE_ONCE(ctx->rings->cq_overflow, ++ctx->cached_cq_overflow);
1526 if (list_empty(&ctx->cq_overflow_list)) {
1527 set_bit(0, &ctx->sq_check_overflow);
1528 set_bit(0, &ctx->cq_check_overflow);
1529 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1531 ocqe->cqe.user_data = user_data;
1532 ocqe->cqe.res = res;
1533 ocqe->cqe.flags = cflags;
1534 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1538 static inline bool __io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1539 long res, unsigned int cflags)
1541 struct io_uring_cqe *cqe;
1543 trace_io_uring_complete(ctx, user_data, res, cflags);
1546 * If we can't get a cq entry, userspace overflowed the
1547 * submission (by quite a lot). Increment the overflow count in
1550 cqe = io_get_cqring(ctx);
1552 WRITE_ONCE(cqe->user_data, user_data);
1553 WRITE_ONCE(cqe->res, res);
1554 WRITE_ONCE(cqe->flags, cflags);
1557 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1560 /* not as hot to bloat with inlining */
1561 static noinline bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1562 long res, unsigned int cflags)
1564 return __io_cqring_fill_event(ctx, user_data, res, cflags);
1567 static void io_req_complete_post(struct io_kiocb *req, long res,
1568 unsigned int cflags)
1570 struct io_ring_ctx *ctx = req->ctx;
1571 unsigned long flags;
1573 spin_lock_irqsave(&ctx->completion_lock, flags);
1574 __io_cqring_fill_event(ctx, req->user_data, res, cflags);
1576 * If we're the last reference to this request, add to our locked
1579 if (req_ref_put_and_test(req)) {
1580 struct io_comp_state *cs = &ctx->submit_state.comp;
1582 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1583 if (req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_FAIL_LINK))
1584 io_disarm_next(req);
1586 io_req_task_queue(req->link);
1590 io_dismantle_req(req);
1591 io_put_task(req->task, 1);
1592 list_add(&req->compl.list, &cs->locked_free_list);
1593 cs->locked_free_nr++;
1595 if (!percpu_ref_tryget(&ctx->refs))
1598 io_commit_cqring(ctx);
1599 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1602 io_cqring_ev_posted(ctx);
1603 percpu_ref_put(&ctx->refs);
1607 static inline bool io_req_needs_clean(struct io_kiocb *req)
1609 return req->flags & (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP |
1610 REQ_F_POLLED | REQ_F_INFLIGHT);
1613 static void io_req_complete_state(struct io_kiocb *req, long res,
1614 unsigned int cflags)
1616 if (io_req_needs_clean(req))
1619 req->compl.cflags = cflags;
1620 req->flags |= REQ_F_COMPLETE_INLINE;
1623 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1624 long res, unsigned cflags)
1626 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1627 io_req_complete_state(req, res, cflags);
1629 io_req_complete_post(req, res, cflags);
1632 static inline void io_req_complete(struct io_kiocb *req, long res)
1634 __io_req_complete(req, 0, res, 0);
1637 static void io_req_complete_failed(struct io_kiocb *req, long res)
1639 req_set_fail_links(req);
1641 io_req_complete_post(req, res, 0);
1644 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1645 struct io_comp_state *cs)
1647 spin_lock_irq(&ctx->completion_lock);
1648 list_splice_init(&cs->locked_free_list, &cs->free_list);
1649 cs->locked_free_nr = 0;
1650 spin_unlock_irq(&ctx->completion_lock);
1653 /* Returns true IFF there are requests in the cache */
1654 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1656 struct io_submit_state *state = &ctx->submit_state;
1657 struct io_comp_state *cs = &state->comp;
1661 * If we have more than a batch's worth of requests in our IRQ side
1662 * locked cache, grab the lock and move them over to our submission
1665 if (READ_ONCE(cs->locked_free_nr) > IO_COMPL_BATCH)
1666 io_flush_cached_locked_reqs(ctx, cs);
1668 nr = state->free_reqs;
1669 while (!list_empty(&cs->free_list)) {
1670 struct io_kiocb *req = list_first_entry(&cs->free_list,
1671 struct io_kiocb, compl.list);
1673 list_del(&req->compl.list);
1674 state->reqs[nr++] = req;
1675 if (nr == ARRAY_SIZE(state->reqs))
1679 state->free_reqs = nr;
1683 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1685 struct io_submit_state *state = &ctx->submit_state;
1687 BUILD_BUG_ON(IO_REQ_ALLOC_BATCH > ARRAY_SIZE(state->reqs));
1689 if (!state->free_reqs) {
1690 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1693 if (io_flush_cached_reqs(ctx))
1696 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1700 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1701 * retry single alloc to be on the safe side.
1703 if (unlikely(ret <= 0)) {
1704 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1705 if (!state->reqs[0])
1709 state->free_reqs = ret;
1713 return state->reqs[state->free_reqs];
1716 static inline void io_put_file(struct file *file)
1722 static void io_dismantle_req(struct io_kiocb *req)
1724 unsigned int flags = req->flags;
1726 if (io_req_needs_clean(req))
1728 if (!(flags & REQ_F_FIXED_FILE))
1729 io_put_file(req->file);
1730 if (req->fixed_rsrc_refs)
1731 percpu_ref_put(req->fixed_rsrc_refs);
1732 if (req->async_data)
1733 kfree(req->async_data);
1734 if (req->work.creds) {
1735 put_cred(req->work.creds);
1736 req->work.creds = NULL;
1740 /* must to be called somewhat shortly after putting a request */
1741 static inline void io_put_task(struct task_struct *task, int nr)
1743 struct io_uring_task *tctx = task->io_uring;
1745 percpu_counter_sub(&tctx->inflight, nr);
1746 if (unlikely(atomic_read(&tctx->in_idle)))
1747 wake_up(&tctx->wait);
1748 put_task_struct_many(task, nr);
1751 static void __io_free_req(struct io_kiocb *req)
1753 struct io_ring_ctx *ctx = req->ctx;
1755 io_dismantle_req(req);
1756 io_put_task(req->task, 1);
1758 kmem_cache_free(req_cachep, req);
1759 percpu_ref_put(&ctx->refs);
1762 static inline void io_remove_next_linked(struct io_kiocb *req)
1764 struct io_kiocb *nxt = req->link;
1766 req->link = nxt->link;
1770 static bool io_kill_linked_timeout(struct io_kiocb *req)
1771 __must_hold(&req->ctx->completion_lock)
1773 struct io_kiocb *link = req->link;
1776 * Can happen if a linked timeout fired and link had been like
1777 * req -> link t-out -> link t-out [-> ...]
1779 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
1780 struct io_timeout_data *io = link->async_data;
1782 io_remove_next_linked(req);
1783 link->timeout.head = NULL;
1784 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1785 io_cqring_fill_event(link->ctx, link->user_data,
1787 io_put_req_deferred(link, 1);
1794 static void io_fail_links(struct io_kiocb *req)
1795 __must_hold(&req->ctx->completion_lock)
1797 struct io_kiocb *nxt, *link = req->link;
1804 trace_io_uring_fail_link(req, link);
1805 io_cqring_fill_event(link->ctx, link->user_data, -ECANCELED, 0);
1806 io_put_req_deferred(link, 2);
1811 static bool io_disarm_next(struct io_kiocb *req)
1812 __must_hold(&req->ctx->completion_lock)
1814 bool posted = false;
1816 if (likely(req->flags & REQ_F_LINK_TIMEOUT))
1817 posted = io_kill_linked_timeout(req);
1818 if (unlikely((req->flags & REQ_F_FAIL_LINK) &&
1819 !(req->flags & REQ_F_HARDLINK))) {
1820 posted |= (req->link != NULL);
1826 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
1828 struct io_kiocb *nxt;
1831 * If LINK is set, we have dependent requests in this chain. If we
1832 * didn't fail this request, queue the first one up, moving any other
1833 * dependencies to the next request. In case of failure, fail the rest
1836 if (req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_FAIL_LINK)) {
1837 struct io_ring_ctx *ctx = req->ctx;
1838 unsigned long flags;
1841 spin_lock_irqsave(&ctx->completion_lock, flags);
1842 posted = io_disarm_next(req);
1844 io_commit_cqring(req->ctx);
1845 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1847 io_cqring_ev_posted(ctx);
1854 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1856 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
1858 return __io_req_find_next(req);
1861 static void ctx_flush_and_put(struct io_ring_ctx *ctx)
1865 if (ctx->submit_state.comp.nr) {
1866 mutex_lock(&ctx->uring_lock);
1867 io_submit_flush_completions(&ctx->submit_state.comp, ctx);
1868 mutex_unlock(&ctx->uring_lock);
1870 percpu_ref_put(&ctx->refs);
1873 static bool __tctx_task_work(struct io_uring_task *tctx)
1875 struct io_ring_ctx *ctx = NULL;
1876 struct io_wq_work_list list;
1877 struct io_wq_work_node *node;
1879 if (wq_list_empty(&tctx->task_list))
1882 spin_lock_irq(&tctx->task_lock);
1883 list = tctx->task_list;
1884 INIT_WQ_LIST(&tctx->task_list);
1885 spin_unlock_irq(&tctx->task_lock);
1889 struct io_wq_work_node *next = node->next;
1890 struct io_kiocb *req;
1892 req = container_of(node, struct io_kiocb, io_task_work.node);
1893 if (req->ctx != ctx) {
1894 ctx_flush_and_put(ctx);
1896 percpu_ref_get(&ctx->refs);
1899 req->task_work.func(&req->task_work);
1903 ctx_flush_and_put(ctx);
1904 return list.first != NULL;
1907 static void tctx_task_work(struct callback_head *cb)
1909 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, task_work);
1911 clear_bit(0, &tctx->task_state);
1913 while (__tctx_task_work(tctx))
1917 static int io_req_task_work_add(struct io_kiocb *req)
1919 struct task_struct *tsk = req->task;
1920 struct io_uring_task *tctx = tsk->io_uring;
1921 enum task_work_notify_mode notify;
1922 struct io_wq_work_node *node, *prev;
1923 unsigned long flags;
1926 if (unlikely(tsk->flags & PF_EXITING))
1929 WARN_ON_ONCE(!tctx);
1931 spin_lock_irqsave(&tctx->task_lock, flags);
1932 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
1933 spin_unlock_irqrestore(&tctx->task_lock, flags);
1935 /* task_work already pending, we're done */
1936 if (test_bit(0, &tctx->task_state) ||
1937 test_and_set_bit(0, &tctx->task_state))
1941 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
1942 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
1943 * processing task_work. There's no reliable way to tell if TWA_RESUME
1946 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
1948 if (!task_work_add(tsk, &tctx->task_work, notify)) {
1949 wake_up_process(tsk);
1954 * Slow path - we failed, find and delete work. if the work is not
1955 * in the list, it got run and we're fine.
1957 spin_lock_irqsave(&tctx->task_lock, flags);
1958 wq_list_for_each(node, prev, &tctx->task_list) {
1959 if (&req->io_task_work.node == node) {
1960 wq_list_del(&tctx->task_list, node, prev);
1965 spin_unlock_irqrestore(&tctx->task_lock, flags);
1966 clear_bit(0, &tctx->task_state);
1970 static bool io_run_task_work_head(struct callback_head **work_head)
1972 struct callback_head *work, *next;
1973 bool executed = false;
1976 work = xchg(work_head, NULL);
1992 static void io_task_work_add_head(struct callback_head **work_head,
1993 struct callback_head *task_work)
1995 struct callback_head *head;
1998 head = READ_ONCE(*work_head);
1999 task_work->next = head;
2000 } while (cmpxchg(work_head, head, task_work) != head);
2003 static void io_req_task_work_add_fallback(struct io_kiocb *req,
2004 task_work_func_t cb)
2006 init_task_work(&req->task_work, cb);
2007 io_task_work_add_head(&req->ctx->exit_task_work, &req->task_work);
2010 static void io_req_task_cancel(struct callback_head *cb)
2012 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2013 struct io_ring_ctx *ctx = req->ctx;
2015 /* ctx is guaranteed to stay alive while we hold uring_lock */
2016 mutex_lock(&ctx->uring_lock);
2017 io_req_complete_failed(req, req->result);
2018 mutex_unlock(&ctx->uring_lock);
2021 static void __io_req_task_submit(struct io_kiocb *req)
2023 struct io_ring_ctx *ctx = req->ctx;
2025 /* ctx stays valid until unlock, even if we drop all ours ctx->refs */
2026 mutex_lock(&ctx->uring_lock);
2027 if (!(current->flags & PF_EXITING) && !current->in_execve)
2028 __io_queue_sqe(req);
2030 io_req_complete_failed(req, -EFAULT);
2031 mutex_unlock(&ctx->uring_lock);
2034 static void io_req_task_submit(struct callback_head *cb)
2036 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2038 __io_req_task_submit(req);
2041 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2044 req->task_work.func = io_req_task_cancel;
2046 if (unlikely(io_req_task_work_add(req)))
2047 io_req_task_work_add_fallback(req, io_req_task_cancel);
2050 static void io_req_task_queue(struct io_kiocb *req)
2052 req->task_work.func = io_req_task_submit;
2054 if (unlikely(io_req_task_work_add(req)))
2055 io_req_task_queue_fail(req, -ECANCELED);
2058 static inline void io_queue_next(struct io_kiocb *req)
2060 struct io_kiocb *nxt = io_req_find_next(req);
2063 io_req_task_queue(nxt);
2066 static void io_free_req(struct io_kiocb *req)
2073 struct task_struct *task;
2078 static inline void io_init_req_batch(struct req_batch *rb)
2085 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2086 struct req_batch *rb)
2089 io_put_task(rb->task, rb->task_refs);
2091 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2094 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2095 struct io_submit_state *state)
2098 io_dismantle_req(req);
2100 if (req->task != rb->task) {
2102 io_put_task(rb->task, rb->task_refs);
2103 rb->task = req->task;
2109 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2110 state->reqs[state->free_reqs++] = req;
2112 list_add(&req->compl.list, &state->comp.free_list);
2115 static void io_submit_flush_completions(struct io_comp_state *cs,
2116 struct io_ring_ctx *ctx)
2119 struct io_kiocb *req;
2120 struct req_batch rb;
2122 io_init_req_batch(&rb);
2123 spin_lock_irq(&ctx->completion_lock);
2124 for (i = 0; i < nr; i++) {
2126 __io_cqring_fill_event(ctx, req->user_data, req->result,
2129 io_commit_cqring(ctx);
2130 spin_unlock_irq(&ctx->completion_lock);
2132 io_cqring_ev_posted(ctx);
2133 for (i = 0; i < nr; i++) {
2136 /* submission and completion refs */
2137 if (req_ref_sub_and_test(req, 2))
2138 io_req_free_batch(&rb, req, &ctx->submit_state);
2141 io_req_free_batch_finish(ctx, &rb);
2146 * Drop reference to request, return next in chain (if there is one) if this
2147 * was the last reference to this request.
2149 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2151 struct io_kiocb *nxt = NULL;
2153 if (req_ref_put_and_test(req)) {
2154 nxt = io_req_find_next(req);
2160 static inline void io_put_req(struct io_kiocb *req)
2162 if (req_ref_put_and_test(req))
2166 static void io_put_req_deferred_cb(struct callback_head *cb)
2168 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2173 static void io_free_req_deferred(struct io_kiocb *req)
2175 req->task_work.func = io_put_req_deferred_cb;
2176 if (unlikely(io_req_task_work_add(req)))
2177 io_req_task_work_add_fallback(req, io_put_req_deferred_cb);
2180 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2182 if (req_ref_sub_and_test(req, refs))
2183 io_free_req_deferred(req);
2186 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2188 /* See comment at the top of this file */
2190 return __io_cqring_events(ctx);
2193 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2195 struct io_rings *rings = ctx->rings;
2197 /* make sure SQ entry isn't read before tail */
2198 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2201 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2203 unsigned int cflags;
2205 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2206 cflags |= IORING_CQE_F_BUFFER;
2207 req->flags &= ~REQ_F_BUFFER_SELECTED;
2212 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2214 struct io_buffer *kbuf;
2216 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2217 return io_put_kbuf(req, kbuf);
2220 static inline bool io_run_task_work(void)
2223 * Not safe to run on exiting task, and the task_work handling will
2224 * not add work to such a task.
2226 if (unlikely(current->flags & PF_EXITING))
2228 if (current->task_works) {
2229 __set_current_state(TASK_RUNNING);
2238 * Find and free completed poll iocbs
2240 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2241 struct list_head *done)
2243 struct req_batch rb;
2244 struct io_kiocb *req;
2246 /* order with ->result store in io_complete_rw_iopoll() */
2249 io_init_req_batch(&rb);
2250 while (!list_empty(done)) {
2253 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2254 list_del(&req->inflight_entry);
2256 if (READ_ONCE(req->result) == -EAGAIN &&
2257 !(req->flags & REQ_F_DONT_REISSUE)) {
2258 req->iopoll_completed = 0;
2260 io_queue_async_work(req);
2264 if (req->flags & REQ_F_BUFFER_SELECTED)
2265 cflags = io_put_rw_kbuf(req);
2267 __io_cqring_fill_event(ctx, req->user_data, req->result, cflags);
2270 if (req_ref_put_and_test(req))
2271 io_req_free_batch(&rb, req, &ctx->submit_state);
2274 io_commit_cqring(ctx);
2275 io_cqring_ev_posted_iopoll(ctx);
2276 io_req_free_batch_finish(ctx, &rb);
2279 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2282 struct io_kiocb *req, *tmp;
2288 * Only spin for completions if we don't have multiple devices hanging
2289 * off our complete list, and we're under the requested amount.
2291 spin = !ctx->poll_multi_file && *nr_events < min;
2294 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2295 struct kiocb *kiocb = &req->rw.kiocb;
2298 * Move completed and retryable entries to our local lists.
2299 * If we find a request that requires polling, break out
2300 * and complete those lists first, if we have entries there.
2302 if (READ_ONCE(req->iopoll_completed)) {
2303 list_move_tail(&req->inflight_entry, &done);
2306 if (!list_empty(&done))
2309 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2313 /* iopoll may have completed current req */
2314 if (READ_ONCE(req->iopoll_completed))
2315 list_move_tail(&req->inflight_entry, &done);
2322 if (!list_empty(&done))
2323 io_iopoll_complete(ctx, nr_events, &done);
2329 * We can't just wait for polled events to come to us, we have to actively
2330 * find and complete them.
2332 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2334 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2337 mutex_lock(&ctx->uring_lock);
2338 while (!list_empty(&ctx->iopoll_list)) {
2339 unsigned int nr_events = 0;
2341 io_do_iopoll(ctx, &nr_events, 0);
2343 /* let it sleep and repeat later if can't complete a request */
2347 * Ensure we allow local-to-the-cpu processing to take place,
2348 * in this case we need to ensure that we reap all events.
2349 * Also let task_work, etc. to progress by releasing the mutex
2351 if (need_resched()) {
2352 mutex_unlock(&ctx->uring_lock);
2354 mutex_lock(&ctx->uring_lock);
2357 mutex_unlock(&ctx->uring_lock);
2360 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2362 unsigned int nr_events = 0;
2366 * We disallow the app entering submit/complete with polling, but we
2367 * still need to lock the ring to prevent racing with polled issue
2368 * that got punted to a workqueue.
2370 mutex_lock(&ctx->uring_lock);
2372 * Don't enter poll loop if we already have events pending.
2373 * If we do, we can potentially be spinning for commands that
2374 * already triggered a CQE (eg in error).
2376 if (test_bit(0, &ctx->cq_check_overflow))
2377 __io_cqring_overflow_flush(ctx, false);
2378 if (io_cqring_events(ctx))
2382 * If a submit got punted to a workqueue, we can have the
2383 * application entering polling for a command before it gets
2384 * issued. That app will hold the uring_lock for the duration
2385 * of the poll right here, so we need to take a breather every
2386 * now and then to ensure that the issue has a chance to add
2387 * the poll to the issued list. Otherwise we can spin here
2388 * forever, while the workqueue is stuck trying to acquire the
2391 if (list_empty(&ctx->iopoll_list)) {
2392 mutex_unlock(&ctx->uring_lock);
2394 mutex_lock(&ctx->uring_lock);
2396 if (list_empty(&ctx->iopoll_list))
2399 ret = io_do_iopoll(ctx, &nr_events, min);
2400 } while (!ret && nr_events < min && !need_resched());
2402 mutex_unlock(&ctx->uring_lock);
2406 static void kiocb_end_write(struct io_kiocb *req)
2409 * Tell lockdep we inherited freeze protection from submission
2412 if (req->flags & REQ_F_ISREG) {
2413 struct super_block *sb = file_inode(req->file)->i_sb;
2415 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2421 static bool io_resubmit_prep(struct io_kiocb *req)
2423 struct io_async_rw *rw = req->async_data;
2426 return !io_req_prep_async(req);
2427 /* may have left rw->iter inconsistent on -EIOCBQUEUED */
2428 iov_iter_revert(&rw->iter, req->result - iov_iter_count(&rw->iter));
2432 static bool io_rw_should_reissue(struct io_kiocb *req)
2434 umode_t mode = file_inode(req->file)->i_mode;
2435 struct io_ring_ctx *ctx = req->ctx;
2437 if (!S_ISBLK(mode) && !S_ISREG(mode))
2439 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2440 !(ctx->flags & IORING_SETUP_IOPOLL)))
2443 * If ref is dying, we might be running poll reap from the exit work.
2444 * Don't attempt to reissue from that path, just let it fail with
2447 if (percpu_ref_is_dying(&ctx->refs))
2452 static bool io_resubmit_prep(struct io_kiocb *req)
2456 static bool io_rw_should_reissue(struct io_kiocb *req)
2462 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2463 unsigned int issue_flags)
2467 if (req->rw.kiocb.ki_flags & IOCB_WRITE)
2468 kiocb_end_write(req);
2469 if (res != req->result) {
2470 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2471 io_rw_should_reissue(req)) {
2472 req->flags |= REQ_F_REISSUE;
2475 req_set_fail_links(req);
2477 if (req->flags & REQ_F_BUFFER_SELECTED)
2478 cflags = io_put_rw_kbuf(req);
2479 __io_req_complete(req, issue_flags, res, cflags);
2482 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2484 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2486 __io_complete_rw(req, res, res2, 0);
2489 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2491 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2493 if (kiocb->ki_flags & IOCB_WRITE)
2494 kiocb_end_write(req);
2495 if (unlikely(res != req->result)) {
2496 if (!(res == -EAGAIN && io_rw_should_reissue(req) &&
2497 io_resubmit_prep(req))) {
2498 req_set_fail_links(req);
2499 req->flags |= REQ_F_DONT_REISSUE;
2503 WRITE_ONCE(req->result, res);
2504 /* order with io_iopoll_complete() checking ->result */
2506 WRITE_ONCE(req->iopoll_completed, 1);
2510 * After the iocb has been issued, it's safe to be found on the poll list.
2511 * Adding the kiocb to the list AFTER submission ensures that we don't
2512 * find it from a io_do_iopoll() thread before the issuer is done
2513 * accessing the kiocb cookie.
2515 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2517 struct io_ring_ctx *ctx = req->ctx;
2520 * Track whether we have multiple files in our lists. This will impact
2521 * how we do polling eventually, not spinning if we're on potentially
2522 * different devices.
2524 if (list_empty(&ctx->iopoll_list)) {
2525 ctx->poll_multi_file = false;
2526 } else if (!ctx->poll_multi_file) {
2527 struct io_kiocb *list_req;
2529 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2531 if (list_req->file != req->file)
2532 ctx->poll_multi_file = true;
2536 * For fast devices, IO may have already completed. If it has, add
2537 * it to the front so we find it first.
2539 if (READ_ONCE(req->iopoll_completed))
2540 list_add(&req->inflight_entry, &ctx->iopoll_list);
2542 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2545 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2546 * task context or in io worker task context. If current task context is
2547 * sq thread, we don't need to check whether should wake up sq thread.
2549 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2550 wq_has_sleeper(&ctx->sq_data->wait))
2551 wake_up(&ctx->sq_data->wait);
2554 static inline void io_state_file_put(struct io_submit_state *state)
2556 if (state->file_refs) {
2557 fput_many(state->file, state->file_refs);
2558 state->file_refs = 0;
2563 * Get as many references to a file as we have IOs left in this submission,
2564 * assuming most submissions are for one file, or at least that each file
2565 * has more than one submission.
2567 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2572 if (state->file_refs) {
2573 if (state->fd == fd) {
2577 io_state_file_put(state);
2579 state->file = fget_many(fd, state->ios_left);
2580 if (unlikely(!state->file))
2584 state->file_refs = state->ios_left - 1;
2588 static bool io_bdev_nowait(struct block_device *bdev)
2590 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2594 * If we tracked the file through the SCM inflight mechanism, we could support
2595 * any file. For now, just ensure that anything potentially problematic is done
2598 static bool __io_file_supports_async(struct file *file, int rw)
2600 umode_t mode = file_inode(file)->i_mode;
2602 if (S_ISBLK(mode)) {
2603 if (IS_ENABLED(CONFIG_BLOCK) &&
2604 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2608 if (S_ISCHR(mode) || S_ISSOCK(mode))
2610 if (S_ISREG(mode)) {
2611 if (IS_ENABLED(CONFIG_BLOCK) &&
2612 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2613 file->f_op != &io_uring_fops)
2618 /* any ->read/write should understand O_NONBLOCK */
2619 if (file->f_flags & O_NONBLOCK)
2622 if (!(file->f_mode & FMODE_NOWAIT))
2626 return file->f_op->read_iter != NULL;
2628 return file->f_op->write_iter != NULL;
2631 static bool io_file_supports_async(struct io_kiocb *req, int rw)
2633 if (rw == READ && (req->flags & REQ_F_ASYNC_READ))
2635 else if (rw == WRITE && (req->flags & REQ_F_ASYNC_WRITE))
2638 return __io_file_supports_async(req->file, rw);
2641 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2643 struct io_ring_ctx *ctx = req->ctx;
2644 struct kiocb *kiocb = &req->rw.kiocb;
2645 struct file *file = req->file;
2649 if (!(req->flags & REQ_F_ISREG) && S_ISREG(file_inode(file)->i_mode))
2650 req->flags |= REQ_F_ISREG;
2652 kiocb->ki_pos = READ_ONCE(sqe->off);
2653 if (kiocb->ki_pos == -1 && !(file->f_mode & FMODE_STREAM)) {
2654 req->flags |= REQ_F_CUR_POS;
2655 kiocb->ki_pos = file->f_pos;
2657 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2658 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2659 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2663 /* don't allow async punt for O_NONBLOCK or RWF_NOWAIT */
2664 if ((kiocb->ki_flags & IOCB_NOWAIT) || (file->f_flags & O_NONBLOCK))
2665 req->flags |= REQ_F_NOWAIT;
2667 ioprio = READ_ONCE(sqe->ioprio);
2669 ret = ioprio_check_cap(ioprio);
2673 kiocb->ki_ioprio = ioprio;
2675 kiocb->ki_ioprio = get_current_ioprio();
2677 if (ctx->flags & IORING_SETUP_IOPOLL) {
2678 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2679 !kiocb->ki_filp->f_op->iopoll)
2682 kiocb->ki_flags |= IOCB_HIPRI;
2683 kiocb->ki_complete = io_complete_rw_iopoll;
2684 req->iopoll_completed = 0;
2686 if (kiocb->ki_flags & IOCB_HIPRI)
2688 kiocb->ki_complete = io_complete_rw;
2691 if (req->opcode == IORING_OP_READ_FIXED ||
2692 req->opcode == IORING_OP_WRITE_FIXED) {
2694 io_req_set_rsrc_node(req);
2697 req->rw.addr = READ_ONCE(sqe->addr);
2698 req->rw.len = READ_ONCE(sqe->len);
2699 req->buf_index = READ_ONCE(sqe->buf_index);
2703 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2709 case -ERESTARTNOINTR:
2710 case -ERESTARTNOHAND:
2711 case -ERESTART_RESTARTBLOCK:
2713 * We can't just restart the syscall, since previously
2714 * submitted sqes may already be in progress. Just fail this
2720 kiocb->ki_complete(kiocb, ret, 0);
2724 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2725 unsigned int issue_flags)
2727 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2728 struct io_async_rw *io = req->async_data;
2729 bool check_reissue = kiocb->ki_complete == io_complete_rw;
2731 /* add previously done IO, if any */
2732 if (io && io->bytes_done > 0) {
2734 ret = io->bytes_done;
2736 ret += io->bytes_done;
2739 if (req->flags & REQ_F_CUR_POS)
2740 req->file->f_pos = kiocb->ki_pos;
2741 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2742 __io_complete_rw(req, ret, 0, issue_flags);
2744 io_rw_done(kiocb, ret);
2746 if (check_reissue && req->flags & REQ_F_REISSUE) {
2747 req->flags &= ~REQ_F_REISSUE;
2748 if (io_resubmit_prep(req)) {
2750 io_queue_async_work(req);
2754 req_set_fail_links(req);
2755 if (req->flags & REQ_F_BUFFER_SELECTED)
2756 cflags = io_put_rw_kbuf(req);
2757 __io_req_complete(req, issue_flags, ret, cflags);
2762 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
2763 struct io_mapped_ubuf *imu)
2765 size_t len = req->rw.len;
2766 u64 buf_end, buf_addr = req->rw.addr;
2769 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
2771 /* not inside the mapped region */
2772 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
2776 * May not be a start of buffer, set size appropriately
2777 * and advance us to the beginning.
2779 offset = buf_addr - imu->ubuf;
2780 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2784 * Don't use iov_iter_advance() here, as it's really slow for
2785 * using the latter parts of a big fixed buffer - it iterates
2786 * over each segment manually. We can cheat a bit here, because
2789 * 1) it's a BVEC iter, we set it up
2790 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2791 * first and last bvec
2793 * So just find our index, and adjust the iterator afterwards.
2794 * If the offset is within the first bvec (or the whole first
2795 * bvec, just use iov_iter_advance(). This makes it easier
2796 * since we can just skip the first segment, which may not
2797 * be PAGE_SIZE aligned.
2799 const struct bio_vec *bvec = imu->bvec;
2801 if (offset <= bvec->bv_len) {
2802 iov_iter_advance(iter, offset);
2804 unsigned long seg_skip;
2806 /* skip first vec */
2807 offset -= bvec->bv_len;
2808 seg_skip = 1 + (offset >> PAGE_SHIFT);
2810 iter->bvec = bvec + seg_skip;
2811 iter->nr_segs -= seg_skip;
2812 iter->count -= bvec->bv_len + offset;
2813 iter->iov_offset = offset & ~PAGE_MASK;
2820 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
2822 struct io_ring_ctx *ctx = req->ctx;
2823 struct io_mapped_ubuf *imu = req->imu;
2824 u16 index, buf_index = req->buf_index;
2827 if (unlikely(buf_index >= ctx->nr_user_bufs))
2829 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2830 imu = READ_ONCE(ctx->user_bufs[index]);
2833 return __io_import_fixed(req, rw, iter, imu);
2836 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
2839 mutex_unlock(&ctx->uring_lock);
2842 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
2845 * "Normal" inline submissions always hold the uring_lock, since we
2846 * grab it from the system call. Same is true for the SQPOLL offload.
2847 * The only exception is when we've detached the request and issue it
2848 * from an async worker thread, grab the lock for that case.
2851 mutex_lock(&ctx->uring_lock);
2854 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
2855 int bgid, struct io_buffer *kbuf,
2858 struct io_buffer *head;
2860 if (req->flags & REQ_F_BUFFER_SELECTED)
2863 io_ring_submit_lock(req->ctx, needs_lock);
2865 lockdep_assert_held(&req->ctx->uring_lock);
2867 head = xa_load(&req->ctx->io_buffers, bgid);
2869 if (!list_empty(&head->list)) {
2870 kbuf = list_last_entry(&head->list, struct io_buffer,
2872 list_del(&kbuf->list);
2875 xa_erase(&req->ctx->io_buffers, bgid);
2877 if (*len > kbuf->len)
2880 kbuf = ERR_PTR(-ENOBUFS);
2883 io_ring_submit_unlock(req->ctx, needs_lock);
2888 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
2891 struct io_buffer *kbuf;
2894 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2895 bgid = req->buf_index;
2896 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
2899 req->rw.addr = (u64) (unsigned long) kbuf;
2900 req->flags |= REQ_F_BUFFER_SELECTED;
2901 return u64_to_user_ptr(kbuf->addr);
2904 #ifdef CONFIG_COMPAT
2905 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
2908 struct compat_iovec __user *uiov;
2909 compat_ssize_t clen;
2913 uiov = u64_to_user_ptr(req->rw.addr);
2914 if (!access_ok(uiov, sizeof(*uiov)))
2916 if (__get_user(clen, &uiov->iov_len))
2922 buf = io_rw_buffer_select(req, &len, needs_lock);
2924 return PTR_ERR(buf);
2925 iov[0].iov_base = buf;
2926 iov[0].iov_len = (compat_size_t) len;
2931 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2934 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
2938 if (copy_from_user(iov, uiov, sizeof(*uiov)))
2941 len = iov[0].iov_len;
2944 buf = io_rw_buffer_select(req, &len, needs_lock);
2946 return PTR_ERR(buf);
2947 iov[0].iov_base = buf;
2948 iov[0].iov_len = len;
2952 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2955 if (req->flags & REQ_F_BUFFER_SELECTED) {
2956 struct io_buffer *kbuf;
2958 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2959 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
2960 iov[0].iov_len = kbuf->len;
2963 if (req->rw.len != 1)
2966 #ifdef CONFIG_COMPAT
2967 if (req->ctx->compat)
2968 return io_compat_import(req, iov, needs_lock);
2971 return __io_iov_buffer_select(req, iov, needs_lock);
2974 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
2975 struct iov_iter *iter, bool needs_lock)
2977 void __user *buf = u64_to_user_ptr(req->rw.addr);
2978 size_t sqe_len = req->rw.len;
2979 u8 opcode = req->opcode;
2982 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
2984 return io_import_fixed(req, rw, iter);
2987 /* buffer index only valid with fixed read/write, or buffer select */
2988 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
2991 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
2992 if (req->flags & REQ_F_BUFFER_SELECT) {
2993 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
2995 return PTR_ERR(buf);
2996 req->rw.len = sqe_len;
2999 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3004 if (req->flags & REQ_F_BUFFER_SELECT) {
3005 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3007 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3012 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3016 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3018 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3022 * For files that don't have ->read_iter() and ->write_iter(), handle them
3023 * by looping over ->read() or ->write() manually.
3025 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3027 struct kiocb *kiocb = &req->rw.kiocb;
3028 struct file *file = req->file;
3032 * Don't support polled IO through this interface, and we can't
3033 * support non-blocking either. For the latter, this just causes
3034 * the kiocb to be handled from an async context.
3036 if (kiocb->ki_flags & IOCB_HIPRI)
3038 if (kiocb->ki_flags & IOCB_NOWAIT)
3041 while (iov_iter_count(iter)) {
3045 if (!iov_iter_is_bvec(iter)) {
3046 iovec = iov_iter_iovec(iter);
3048 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3049 iovec.iov_len = req->rw.len;
3053 nr = file->f_op->read(file, iovec.iov_base,
3054 iovec.iov_len, io_kiocb_ppos(kiocb));
3056 nr = file->f_op->write(file, iovec.iov_base,
3057 iovec.iov_len, io_kiocb_ppos(kiocb));
3066 if (nr != iovec.iov_len)
3070 iov_iter_advance(iter, nr);
3076 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3077 const struct iovec *fast_iov, struct iov_iter *iter)
3079 struct io_async_rw *rw = req->async_data;
3081 memcpy(&rw->iter, iter, sizeof(*iter));
3082 rw->free_iovec = iovec;
3084 /* can only be fixed buffers, no need to do anything */
3085 if (iov_iter_is_bvec(iter))
3088 unsigned iov_off = 0;
3090 rw->iter.iov = rw->fast_iov;
3091 if (iter->iov != fast_iov) {
3092 iov_off = iter->iov - fast_iov;
3093 rw->iter.iov += iov_off;
3095 if (rw->fast_iov != fast_iov)
3096 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3097 sizeof(struct iovec) * iter->nr_segs);
3099 req->flags |= REQ_F_NEED_CLEANUP;
3103 static inline int io_alloc_async_data(struct io_kiocb *req)
3105 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3106 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3107 return req->async_data == NULL;
3110 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3111 const struct iovec *fast_iov,
3112 struct iov_iter *iter, bool force)
3114 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3116 if (!req->async_data) {
3117 if (io_alloc_async_data(req)) {
3122 io_req_map_rw(req, iovec, fast_iov, iter);
3127 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3129 struct io_async_rw *iorw = req->async_data;
3130 struct iovec *iov = iorw->fast_iov;
3133 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3134 if (unlikely(ret < 0))
3137 iorw->bytes_done = 0;
3138 iorw->free_iovec = iov;
3140 req->flags |= REQ_F_NEED_CLEANUP;
3144 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3146 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3148 return io_prep_rw(req, sqe);
3152 * This is our waitqueue callback handler, registered through lock_page_async()
3153 * when we initially tried to do the IO with the iocb armed our waitqueue.
3154 * This gets called when the page is unlocked, and we generally expect that to
3155 * happen when the page IO is completed and the page is now uptodate. This will
3156 * queue a task_work based retry of the operation, attempting to copy the data
3157 * again. If the latter fails because the page was NOT uptodate, then we will
3158 * do a thread based blocking retry of the operation. That's the unexpected
3161 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3162 int sync, void *arg)
3164 struct wait_page_queue *wpq;
3165 struct io_kiocb *req = wait->private;
3166 struct wait_page_key *key = arg;
3168 wpq = container_of(wait, struct wait_page_queue, wait);
3170 if (!wake_page_match(wpq, key))
3173 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3174 list_del_init(&wait->entry);
3176 /* submit ref gets dropped, acquire a new one */
3178 io_req_task_queue(req);
3183 * This controls whether a given IO request should be armed for async page
3184 * based retry. If we return false here, the request is handed to the async
3185 * worker threads for retry. If we're doing buffered reads on a regular file,
3186 * we prepare a private wait_page_queue entry and retry the operation. This
3187 * will either succeed because the page is now uptodate and unlocked, or it
3188 * will register a callback when the page is unlocked at IO completion. Through
3189 * that callback, io_uring uses task_work to setup a retry of the operation.
3190 * That retry will attempt the buffered read again. The retry will generally
3191 * succeed, or in rare cases where it fails, we then fall back to using the
3192 * async worker threads for a blocking retry.
3194 static bool io_rw_should_retry(struct io_kiocb *req)
3196 struct io_async_rw *rw = req->async_data;
3197 struct wait_page_queue *wait = &rw->wpq;
3198 struct kiocb *kiocb = &req->rw.kiocb;
3200 /* never retry for NOWAIT, we just complete with -EAGAIN */
3201 if (req->flags & REQ_F_NOWAIT)
3204 /* Only for buffered IO */
3205 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3209 * just use poll if we can, and don't attempt if the fs doesn't
3210 * support callback based unlocks
3212 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3215 wait->wait.func = io_async_buf_func;
3216 wait->wait.private = req;
3217 wait->wait.flags = 0;
3218 INIT_LIST_HEAD(&wait->wait.entry);
3219 kiocb->ki_flags |= IOCB_WAITQ;
3220 kiocb->ki_flags &= ~IOCB_NOWAIT;
3221 kiocb->ki_waitq = wait;
3225 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3227 if (req->file->f_op->read_iter)
3228 return call_read_iter(req->file, &req->rw.kiocb, iter);
3229 else if (req->file->f_op->read)
3230 return loop_rw_iter(READ, req, iter);
3235 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3237 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3238 struct kiocb *kiocb = &req->rw.kiocb;
3239 struct iov_iter __iter, *iter = &__iter;
3240 struct io_async_rw *rw = req->async_data;
3241 ssize_t io_size, ret, ret2;
3242 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3248 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3252 io_size = iov_iter_count(iter);
3253 req->result = io_size;
3255 /* Ensure we clear previously set non-block flag */
3256 if (!force_nonblock)
3257 kiocb->ki_flags &= ~IOCB_NOWAIT;
3259 kiocb->ki_flags |= IOCB_NOWAIT;
3261 /* If the file doesn't support async, just async punt */
3262 if (force_nonblock && !io_file_supports_async(req, READ)) {
3263 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3264 return ret ?: -EAGAIN;
3267 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3268 if (unlikely(ret)) {
3273 ret = io_iter_do_read(req, iter);
3275 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3276 req->flags &= ~REQ_F_REISSUE;
3277 /* IOPOLL retry should happen for io-wq threads */
3278 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3280 /* no retry on NONBLOCK nor RWF_NOWAIT */
3281 if (req->flags & REQ_F_NOWAIT)
3283 /* some cases will consume bytes even on error returns */
3284 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3286 } else if (ret == -EIOCBQUEUED) {
3288 } else if (ret <= 0 || ret == io_size || !force_nonblock ||
3289 (req->flags & REQ_F_NOWAIT) || !(req->flags & REQ_F_ISREG)) {
3290 /* read all, failed, already did sync or don't want to retry */
3294 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3299 rw = req->async_data;
3300 /* now use our persistent iterator, if we aren't already */
3305 rw->bytes_done += ret;
3306 /* if we can retry, do so with the callbacks armed */
3307 if (!io_rw_should_retry(req)) {
3308 kiocb->ki_flags &= ~IOCB_WAITQ;
3313 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3314 * we get -EIOCBQUEUED, then we'll get a notification when the
3315 * desired page gets unlocked. We can also get a partial read
3316 * here, and if we do, then just retry at the new offset.
3318 ret = io_iter_do_read(req, iter);
3319 if (ret == -EIOCBQUEUED)
3321 /* we got some bytes, but not all. retry. */
3322 kiocb->ki_flags &= ~IOCB_WAITQ;
3323 } while (ret > 0 && ret < io_size);
3325 kiocb_done(kiocb, ret, issue_flags);
3327 /* it's faster to check here then delegate to kfree */
3333 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3335 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3337 return io_prep_rw(req, sqe);
3340 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3342 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3343 struct kiocb *kiocb = &req->rw.kiocb;
3344 struct iov_iter __iter, *iter = &__iter;
3345 struct io_async_rw *rw = req->async_data;
3346 ssize_t ret, ret2, io_size;
3347 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3353 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3357 io_size = iov_iter_count(iter);
3358 req->result = io_size;
3360 /* Ensure we clear previously set non-block flag */
3361 if (!force_nonblock)
3362 kiocb->ki_flags &= ~IOCB_NOWAIT;
3364 kiocb->ki_flags |= IOCB_NOWAIT;
3366 /* If the file doesn't support async, just async punt */
3367 if (force_nonblock && !io_file_supports_async(req, WRITE))
3370 /* file path doesn't support NOWAIT for non-direct_IO */
3371 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3372 (req->flags & REQ_F_ISREG))
3375 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3380 * Open-code file_start_write here to grab freeze protection,
3381 * which will be released by another thread in
3382 * io_complete_rw(). Fool lockdep by telling it the lock got
3383 * released so that it doesn't complain about the held lock when
3384 * we return to userspace.
3386 if (req->flags & REQ_F_ISREG) {
3387 sb_start_write(file_inode(req->file)->i_sb);
3388 __sb_writers_release(file_inode(req->file)->i_sb,
3391 kiocb->ki_flags |= IOCB_WRITE;
3393 if (req->file->f_op->write_iter)
3394 ret2 = call_write_iter(req->file, kiocb, iter);
3395 else if (req->file->f_op->write)
3396 ret2 = loop_rw_iter(WRITE, req, iter);
3400 if (req->flags & REQ_F_REISSUE) {
3401 req->flags &= ~REQ_F_REISSUE;
3406 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3407 * retry them without IOCB_NOWAIT.
3409 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3411 /* no retry on NONBLOCK nor RWF_NOWAIT */
3412 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3414 if (!force_nonblock || ret2 != -EAGAIN) {
3415 /* IOPOLL retry should happen for io-wq threads */
3416 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3419 kiocb_done(kiocb, ret2, issue_flags);
3422 /* some cases will consume bytes even on error returns */
3423 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3424 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3425 return ret ?: -EAGAIN;
3428 /* it's reportedly faster than delegating the null check to kfree() */
3434 static int io_renameat_prep(struct io_kiocb *req,
3435 const struct io_uring_sqe *sqe)
3437 struct io_rename *ren = &req->rename;
3438 const char __user *oldf, *newf;
3440 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3443 ren->old_dfd = READ_ONCE(sqe->fd);
3444 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3445 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3446 ren->new_dfd = READ_ONCE(sqe->len);
3447 ren->flags = READ_ONCE(sqe->rename_flags);
3449 ren->oldpath = getname(oldf);
3450 if (IS_ERR(ren->oldpath))
3451 return PTR_ERR(ren->oldpath);
3453 ren->newpath = getname(newf);
3454 if (IS_ERR(ren->newpath)) {
3455 putname(ren->oldpath);
3456 return PTR_ERR(ren->newpath);
3459 req->flags |= REQ_F_NEED_CLEANUP;
3463 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3465 struct io_rename *ren = &req->rename;
3468 if (issue_flags & IO_URING_F_NONBLOCK)
3471 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3472 ren->newpath, ren->flags);
3474 req->flags &= ~REQ_F_NEED_CLEANUP;
3476 req_set_fail_links(req);
3477 io_req_complete(req, ret);
3481 static int io_unlinkat_prep(struct io_kiocb *req,
3482 const struct io_uring_sqe *sqe)
3484 struct io_unlink *un = &req->unlink;
3485 const char __user *fname;
3487 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3490 un->dfd = READ_ONCE(sqe->fd);
3492 un->flags = READ_ONCE(sqe->unlink_flags);
3493 if (un->flags & ~AT_REMOVEDIR)
3496 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3497 un->filename = getname(fname);
3498 if (IS_ERR(un->filename))
3499 return PTR_ERR(un->filename);
3501 req->flags |= REQ_F_NEED_CLEANUP;
3505 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3507 struct io_unlink *un = &req->unlink;
3510 if (issue_flags & IO_URING_F_NONBLOCK)
3513 if (un->flags & AT_REMOVEDIR)
3514 ret = do_rmdir(un->dfd, un->filename);
3516 ret = do_unlinkat(un->dfd, un->filename);
3518 req->flags &= ~REQ_F_NEED_CLEANUP;
3520 req_set_fail_links(req);
3521 io_req_complete(req, ret);
3525 static int io_shutdown_prep(struct io_kiocb *req,
3526 const struct io_uring_sqe *sqe)
3528 #if defined(CONFIG_NET)
3529 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3531 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3535 req->shutdown.how = READ_ONCE(sqe->len);
3542 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3544 #if defined(CONFIG_NET)
3545 struct socket *sock;
3548 if (issue_flags & IO_URING_F_NONBLOCK)
3551 sock = sock_from_file(req->file);
3552 if (unlikely(!sock))
3555 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3557 req_set_fail_links(req);
3558 io_req_complete(req, ret);
3565 static int __io_splice_prep(struct io_kiocb *req,
3566 const struct io_uring_sqe *sqe)
3568 struct io_splice* sp = &req->splice;
3569 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3571 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3575 sp->len = READ_ONCE(sqe->len);
3576 sp->flags = READ_ONCE(sqe->splice_flags);
3578 if (unlikely(sp->flags & ~valid_flags))
3581 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3582 (sp->flags & SPLICE_F_FD_IN_FIXED));
3585 req->flags |= REQ_F_NEED_CLEANUP;
3589 static int io_tee_prep(struct io_kiocb *req,
3590 const struct io_uring_sqe *sqe)
3592 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3594 return __io_splice_prep(req, sqe);
3597 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
3599 struct io_splice *sp = &req->splice;
3600 struct file *in = sp->file_in;
3601 struct file *out = sp->file_out;
3602 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3605 if (issue_flags & IO_URING_F_NONBLOCK)
3608 ret = do_tee(in, out, sp->len, flags);
3610 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
3612 req->flags &= ~REQ_F_NEED_CLEANUP;
3615 req_set_fail_links(req);
3616 io_req_complete(req, ret);
3620 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3622 struct io_splice* sp = &req->splice;
3624 sp->off_in = READ_ONCE(sqe->splice_off_in);
3625 sp->off_out = READ_ONCE(sqe->off);
3626 return __io_splice_prep(req, sqe);
3629 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
3631 struct io_splice *sp = &req->splice;
3632 struct file *in = sp->file_in;
3633 struct file *out = sp->file_out;
3634 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3635 loff_t *poff_in, *poff_out;
3638 if (issue_flags & IO_URING_F_NONBLOCK)
3641 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3642 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3645 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3647 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
3649 req->flags &= ~REQ_F_NEED_CLEANUP;
3652 req_set_fail_links(req);
3653 io_req_complete(req, ret);
3658 * IORING_OP_NOP just posts a completion event, nothing else.
3660 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
3662 struct io_ring_ctx *ctx = req->ctx;
3664 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3667 __io_req_complete(req, issue_flags, 0, 0);
3671 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3673 struct io_ring_ctx *ctx = req->ctx;
3678 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3680 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3683 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3684 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3687 req->sync.off = READ_ONCE(sqe->off);
3688 req->sync.len = READ_ONCE(sqe->len);
3692 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
3694 loff_t end = req->sync.off + req->sync.len;
3697 /* fsync always requires a blocking context */
3698 if (issue_flags & IO_URING_F_NONBLOCK)
3701 ret = vfs_fsync_range(req->file, req->sync.off,
3702 end > 0 ? end : LLONG_MAX,
3703 req->sync.flags & IORING_FSYNC_DATASYNC);
3705 req_set_fail_links(req);
3706 io_req_complete(req, ret);
3710 static int io_fallocate_prep(struct io_kiocb *req,
3711 const struct io_uring_sqe *sqe)
3713 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3715 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3718 req->sync.off = READ_ONCE(sqe->off);
3719 req->sync.len = READ_ONCE(sqe->addr);
3720 req->sync.mode = READ_ONCE(sqe->len);
3724 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
3728 /* fallocate always requiring blocking context */
3729 if (issue_flags & IO_URING_F_NONBLOCK)
3731 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3734 req_set_fail_links(req);
3735 io_req_complete(req, ret);
3739 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3741 const char __user *fname;
3744 if (unlikely(sqe->ioprio || sqe->buf_index))
3746 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3749 /* open.how should be already initialised */
3750 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3751 req->open.how.flags |= O_LARGEFILE;
3753 req->open.dfd = READ_ONCE(sqe->fd);
3754 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3755 req->open.filename = getname(fname);
3756 if (IS_ERR(req->open.filename)) {
3757 ret = PTR_ERR(req->open.filename);
3758 req->open.filename = NULL;
3761 req->open.nofile = rlimit(RLIMIT_NOFILE);
3762 req->flags |= REQ_F_NEED_CLEANUP;
3766 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3770 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3772 mode = READ_ONCE(sqe->len);
3773 flags = READ_ONCE(sqe->open_flags);
3774 req->open.how = build_open_how(flags, mode);
3775 return __io_openat_prep(req, sqe);
3778 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3780 struct open_how __user *how;
3784 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3786 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3787 len = READ_ONCE(sqe->len);
3788 if (len < OPEN_HOW_SIZE_VER0)
3791 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
3796 return __io_openat_prep(req, sqe);
3799 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
3801 struct open_flags op;
3804 bool resolve_nonblock;
3807 ret = build_open_flags(&req->open.how, &op);
3810 nonblock_set = op.open_flag & O_NONBLOCK;
3811 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
3812 if (issue_flags & IO_URING_F_NONBLOCK) {
3814 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
3815 * it'll always -EAGAIN
3817 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
3819 op.lookup_flags |= LOOKUP_CACHED;
3820 op.open_flag |= O_NONBLOCK;
3823 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
3827 file = do_filp_open(req->open.dfd, req->open.filename, &op);
3828 /* only retry if RESOLVE_CACHED wasn't already set by application */
3829 if ((!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)) &&
3830 file == ERR_PTR(-EAGAIN)) {
3832 * We could hang on to this 'fd', but seems like marginal
3833 * gain for something that is now known to be a slower path.
3834 * So just put it, and we'll get a new one when we retry.
3842 ret = PTR_ERR(file);
3844 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
3845 file->f_flags &= ~O_NONBLOCK;
3846 fsnotify_open(file);
3847 fd_install(ret, file);
3850 putname(req->open.filename);
3851 req->flags &= ~REQ_F_NEED_CLEANUP;
3853 req_set_fail_links(req);
3854 __io_req_complete(req, issue_flags, ret, 0);
3858 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
3860 return io_openat2(req, issue_flags);
3863 static int io_remove_buffers_prep(struct io_kiocb *req,
3864 const struct io_uring_sqe *sqe)
3866 struct io_provide_buf *p = &req->pbuf;
3869 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
3872 tmp = READ_ONCE(sqe->fd);
3873 if (!tmp || tmp > USHRT_MAX)
3876 memset(p, 0, sizeof(*p));
3878 p->bgid = READ_ONCE(sqe->buf_group);
3882 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
3883 int bgid, unsigned nbufs)
3887 /* shouldn't happen */
3891 /* the head kbuf is the list itself */
3892 while (!list_empty(&buf->list)) {
3893 struct io_buffer *nxt;
3895 nxt = list_first_entry(&buf->list, struct io_buffer, list);
3896 list_del(&nxt->list);
3903 xa_erase(&ctx->io_buffers, bgid);
3908 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
3910 struct io_provide_buf *p = &req->pbuf;
3911 struct io_ring_ctx *ctx = req->ctx;
3912 struct io_buffer *head;
3914 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3916 io_ring_submit_lock(ctx, !force_nonblock);
3918 lockdep_assert_held(&ctx->uring_lock);
3921 head = xa_load(&ctx->io_buffers, p->bgid);
3923 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
3925 req_set_fail_links(req);
3927 /* complete before unlock, IOPOLL may need the lock */
3928 __io_req_complete(req, issue_flags, ret, 0);
3929 io_ring_submit_unlock(ctx, !force_nonblock);
3933 static int io_provide_buffers_prep(struct io_kiocb *req,
3934 const struct io_uring_sqe *sqe)
3936 unsigned long size, tmp_check;
3937 struct io_provide_buf *p = &req->pbuf;
3940 if (sqe->ioprio || sqe->rw_flags)
3943 tmp = READ_ONCE(sqe->fd);
3944 if (!tmp || tmp > USHRT_MAX)
3947 p->addr = READ_ONCE(sqe->addr);
3948 p->len = READ_ONCE(sqe->len);
3950 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
3953 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
3956 size = (unsigned long)p->len * p->nbufs;
3957 if (!access_ok(u64_to_user_ptr(p->addr), size))
3960 p->bgid = READ_ONCE(sqe->buf_group);
3961 tmp = READ_ONCE(sqe->off);
3962 if (tmp > USHRT_MAX)
3968 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
3970 struct io_buffer *buf;
3971 u64 addr = pbuf->addr;
3972 int i, bid = pbuf->bid;
3974 for (i = 0; i < pbuf->nbufs; i++) {
3975 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
3980 buf->len = pbuf->len;
3985 INIT_LIST_HEAD(&buf->list);
3988 list_add_tail(&buf->list, &(*head)->list);
3992 return i ? i : -ENOMEM;
3995 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
3997 struct io_provide_buf *p = &req->pbuf;
3998 struct io_ring_ctx *ctx = req->ctx;
3999 struct io_buffer *head, *list;
4001 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4003 io_ring_submit_lock(ctx, !force_nonblock);
4005 lockdep_assert_held(&ctx->uring_lock);
4007 list = head = xa_load(&ctx->io_buffers, p->bgid);
4009 ret = io_add_buffers(p, &head);
4010 if (ret >= 0 && !list) {
4011 ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4013 __io_remove_buffers(ctx, head, p->bgid, -1U);
4016 req_set_fail_links(req);
4017 /* complete before unlock, IOPOLL may need the lock */
4018 __io_req_complete(req, issue_flags, ret, 0);
4019 io_ring_submit_unlock(ctx, !force_nonblock);
4023 static int io_epoll_ctl_prep(struct io_kiocb *req,
4024 const struct io_uring_sqe *sqe)
4026 #if defined(CONFIG_EPOLL)
4027 if (sqe->ioprio || sqe->buf_index)
4029 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4032 req->epoll.epfd = READ_ONCE(sqe->fd);
4033 req->epoll.op = READ_ONCE(sqe->len);
4034 req->epoll.fd = READ_ONCE(sqe->off);
4036 if (ep_op_has_event(req->epoll.op)) {
4037 struct epoll_event __user *ev;
4039 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4040 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4050 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4052 #if defined(CONFIG_EPOLL)
4053 struct io_epoll *ie = &req->epoll;
4055 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4057 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4058 if (force_nonblock && ret == -EAGAIN)
4062 req_set_fail_links(req);
4063 __io_req_complete(req, issue_flags, ret, 0);
4070 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4072 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4073 if (sqe->ioprio || sqe->buf_index || sqe->off)
4075 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4078 req->madvise.addr = READ_ONCE(sqe->addr);
4079 req->madvise.len = READ_ONCE(sqe->len);
4080 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4087 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4089 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4090 struct io_madvise *ma = &req->madvise;
4093 if (issue_flags & IO_URING_F_NONBLOCK)
4096 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4098 req_set_fail_links(req);
4099 io_req_complete(req, ret);
4106 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4108 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4110 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4113 req->fadvise.offset = READ_ONCE(sqe->off);
4114 req->fadvise.len = READ_ONCE(sqe->len);
4115 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4119 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4121 struct io_fadvise *fa = &req->fadvise;
4124 if (issue_flags & IO_URING_F_NONBLOCK) {
4125 switch (fa->advice) {
4126 case POSIX_FADV_NORMAL:
4127 case POSIX_FADV_RANDOM:
4128 case POSIX_FADV_SEQUENTIAL:
4135 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4137 req_set_fail_links(req);
4138 __io_req_complete(req, issue_flags, ret, 0);
4142 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4144 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4146 if (sqe->ioprio || sqe->buf_index)
4148 if (req->flags & REQ_F_FIXED_FILE)
4151 req->statx.dfd = READ_ONCE(sqe->fd);
4152 req->statx.mask = READ_ONCE(sqe->len);
4153 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4154 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4155 req->statx.flags = READ_ONCE(sqe->statx_flags);
4160 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4162 struct io_statx *ctx = &req->statx;
4165 if (issue_flags & IO_URING_F_NONBLOCK)
4168 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4172 req_set_fail_links(req);
4173 io_req_complete(req, ret);
4177 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4179 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4181 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4182 sqe->rw_flags || sqe->buf_index)
4184 if (req->flags & REQ_F_FIXED_FILE)
4187 req->close.fd = READ_ONCE(sqe->fd);
4191 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4193 struct files_struct *files = current->files;
4194 struct io_close *close = &req->close;
4195 struct fdtable *fdt;
4196 struct file *file = NULL;
4199 spin_lock(&files->file_lock);
4200 fdt = files_fdtable(files);
4201 if (close->fd >= fdt->max_fds) {
4202 spin_unlock(&files->file_lock);
4205 file = fdt->fd[close->fd];
4206 if (!file || file->f_op == &io_uring_fops) {
4207 spin_unlock(&files->file_lock);
4212 /* if the file has a flush method, be safe and punt to async */
4213 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4214 spin_unlock(&files->file_lock);
4218 ret = __close_fd_get_file(close->fd, &file);
4219 spin_unlock(&files->file_lock);
4226 /* No ->flush() or already async, safely close from here */
4227 ret = filp_close(file, current->files);
4230 req_set_fail_links(req);
4233 __io_req_complete(req, issue_flags, ret, 0);
4237 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4239 struct io_ring_ctx *ctx = req->ctx;
4241 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4243 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4246 req->sync.off = READ_ONCE(sqe->off);
4247 req->sync.len = READ_ONCE(sqe->len);
4248 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4252 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4256 /* sync_file_range always requires a blocking context */
4257 if (issue_flags & IO_URING_F_NONBLOCK)
4260 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4263 req_set_fail_links(req);
4264 io_req_complete(req, ret);
4268 #if defined(CONFIG_NET)
4269 static int io_setup_async_msg(struct io_kiocb *req,
4270 struct io_async_msghdr *kmsg)
4272 struct io_async_msghdr *async_msg = req->async_data;
4276 if (io_alloc_async_data(req)) {
4277 kfree(kmsg->free_iov);
4280 async_msg = req->async_data;
4281 req->flags |= REQ_F_NEED_CLEANUP;
4282 memcpy(async_msg, kmsg, sizeof(*kmsg));
4283 async_msg->msg.msg_name = &async_msg->addr;
4284 /* if were using fast_iov, set it to the new one */
4285 if (!async_msg->free_iov)
4286 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4291 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4292 struct io_async_msghdr *iomsg)
4294 iomsg->msg.msg_name = &iomsg->addr;
4295 iomsg->free_iov = iomsg->fast_iov;
4296 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4297 req->sr_msg.msg_flags, &iomsg->free_iov);
4300 static int io_sendmsg_prep_async(struct io_kiocb *req)
4304 ret = io_sendmsg_copy_hdr(req, req->async_data);
4306 req->flags |= REQ_F_NEED_CLEANUP;
4310 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4312 struct io_sr_msg *sr = &req->sr_msg;
4314 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4317 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4318 sr->len = READ_ONCE(sqe->len);
4319 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4320 if (sr->msg_flags & MSG_DONTWAIT)
4321 req->flags |= REQ_F_NOWAIT;
4323 #ifdef CONFIG_COMPAT
4324 if (req->ctx->compat)
4325 sr->msg_flags |= MSG_CMSG_COMPAT;
4330 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4332 struct io_async_msghdr iomsg, *kmsg;
4333 struct socket *sock;
4338 sock = sock_from_file(req->file);
4339 if (unlikely(!sock))
4342 kmsg = req->async_data;
4344 ret = io_sendmsg_copy_hdr(req, &iomsg);
4350 flags = req->sr_msg.msg_flags;
4351 if (issue_flags & IO_URING_F_NONBLOCK)
4352 flags |= MSG_DONTWAIT;
4353 if (flags & MSG_WAITALL)
4354 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4356 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4357 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4358 return io_setup_async_msg(req, kmsg);
4359 if (ret == -ERESTARTSYS)
4362 /* fast path, check for non-NULL to avoid function call */
4364 kfree(kmsg->free_iov);
4365 req->flags &= ~REQ_F_NEED_CLEANUP;
4367 req_set_fail_links(req);
4368 __io_req_complete(req, issue_flags, ret, 0);
4372 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4374 struct io_sr_msg *sr = &req->sr_msg;
4377 struct socket *sock;
4382 sock = sock_from_file(req->file);
4383 if (unlikely(!sock))
4386 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4390 msg.msg_name = NULL;
4391 msg.msg_control = NULL;
4392 msg.msg_controllen = 0;
4393 msg.msg_namelen = 0;
4395 flags = req->sr_msg.msg_flags;
4396 if (issue_flags & IO_URING_F_NONBLOCK)
4397 flags |= MSG_DONTWAIT;
4398 if (flags & MSG_WAITALL)
4399 min_ret = iov_iter_count(&msg.msg_iter);
4401 msg.msg_flags = flags;
4402 ret = sock_sendmsg(sock, &msg);
4403 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4405 if (ret == -ERESTARTSYS)
4409 req_set_fail_links(req);
4410 __io_req_complete(req, issue_flags, ret, 0);
4414 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4415 struct io_async_msghdr *iomsg)
4417 struct io_sr_msg *sr = &req->sr_msg;
4418 struct iovec __user *uiov;
4422 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4423 &iomsg->uaddr, &uiov, &iov_len);
4427 if (req->flags & REQ_F_BUFFER_SELECT) {
4430 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4432 sr->len = iomsg->fast_iov[0].iov_len;
4433 iomsg->free_iov = NULL;
4435 iomsg->free_iov = iomsg->fast_iov;
4436 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4437 &iomsg->free_iov, &iomsg->msg.msg_iter,
4446 #ifdef CONFIG_COMPAT
4447 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4448 struct io_async_msghdr *iomsg)
4450 struct io_sr_msg *sr = &req->sr_msg;
4451 struct compat_iovec __user *uiov;
4456 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4461 uiov = compat_ptr(ptr);
4462 if (req->flags & REQ_F_BUFFER_SELECT) {
4463 compat_ssize_t clen;
4467 if (!access_ok(uiov, sizeof(*uiov)))
4469 if (__get_user(clen, &uiov->iov_len))
4474 iomsg->free_iov = NULL;
4476 iomsg->free_iov = iomsg->fast_iov;
4477 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4478 UIO_FASTIOV, &iomsg->free_iov,
4479 &iomsg->msg.msg_iter, true);
4488 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4489 struct io_async_msghdr *iomsg)
4491 iomsg->msg.msg_name = &iomsg->addr;
4493 #ifdef CONFIG_COMPAT
4494 if (req->ctx->compat)
4495 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4498 return __io_recvmsg_copy_hdr(req, iomsg);
4501 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4504 struct io_sr_msg *sr = &req->sr_msg;
4505 struct io_buffer *kbuf;
4507 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4512 req->flags |= REQ_F_BUFFER_SELECTED;
4516 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4518 return io_put_kbuf(req, req->sr_msg.kbuf);
4521 static int io_recvmsg_prep_async(struct io_kiocb *req)
4525 ret = io_recvmsg_copy_hdr(req, req->async_data);
4527 req->flags |= REQ_F_NEED_CLEANUP;
4531 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4533 struct io_sr_msg *sr = &req->sr_msg;
4535 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4538 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4539 sr->len = READ_ONCE(sqe->len);
4540 sr->bgid = READ_ONCE(sqe->buf_group);
4541 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4542 if (sr->msg_flags & MSG_DONTWAIT)
4543 req->flags |= REQ_F_NOWAIT;
4545 #ifdef CONFIG_COMPAT
4546 if (req->ctx->compat)
4547 sr->msg_flags |= MSG_CMSG_COMPAT;
4552 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
4554 struct io_async_msghdr iomsg, *kmsg;
4555 struct socket *sock;
4556 struct io_buffer *kbuf;
4559 int ret, cflags = 0;
4560 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4562 sock = sock_from_file(req->file);
4563 if (unlikely(!sock))
4566 kmsg = req->async_data;
4568 ret = io_recvmsg_copy_hdr(req, &iomsg);
4574 if (req->flags & REQ_F_BUFFER_SELECT) {
4575 kbuf = io_recv_buffer_select(req, !force_nonblock);
4577 return PTR_ERR(kbuf);
4578 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4579 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
4580 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
4581 1, req->sr_msg.len);
4584 flags = req->sr_msg.msg_flags;
4586 flags |= MSG_DONTWAIT;
4587 if (flags & MSG_WAITALL)
4588 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4590 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4591 kmsg->uaddr, flags);
4592 if (force_nonblock && ret == -EAGAIN)
4593 return io_setup_async_msg(req, kmsg);
4594 if (ret == -ERESTARTSYS)
4597 if (req->flags & REQ_F_BUFFER_SELECTED)
4598 cflags = io_put_recv_kbuf(req);
4599 /* fast path, check for non-NULL to avoid function call */
4601 kfree(kmsg->free_iov);
4602 req->flags &= ~REQ_F_NEED_CLEANUP;
4603 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4604 req_set_fail_links(req);
4605 __io_req_complete(req, issue_flags, ret, cflags);
4609 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
4611 struct io_buffer *kbuf;
4612 struct io_sr_msg *sr = &req->sr_msg;
4614 void __user *buf = sr->buf;
4615 struct socket *sock;
4619 int ret, cflags = 0;
4620 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4622 sock = sock_from_file(req->file);
4623 if (unlikely(!sock))
4626 if (req->flags & REQ_F_BUFFER_SELECT) {
4627 kbuf = io_recv_buffer_select(req, !force_nonblock);
4629 return PTR_ERR(kbuf);
4630 buf = u64_to_user_ptr(kbuf->addr);
4633 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4637 msg.msg_name = NULL;
4638 msg.msg_control = NULL;
4639 msg.msg_controllen = 0;
4640 msg.msg_namelen = 0;
4641 msg.msg_iocb = NULL;
4644 flags = req->sr_msg.msg_flags;
4646 flags |= MSG_DONTWAIT;
4647 if (flags & MSG_WAITALL)
4648 min_ret = iov_iter_count(&msg.msg_iter);
4650 ret = sock_recvmsg(sock, &msg, flags);
4651 if (force_nonblock && ret == -EAGAIN)
4653 if (ret == -ERESTARTSYS)
4656 if (req->flags & REQ_F_BUFFER_SELECTED)
4657 cflags = io_put_recv_kbuf(req);
4658 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4659 req_set_fail_links(req);
4660 __io_req_complete(req, issue_flags, ret, cflags);
4664 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4666 struct io_accept *accept = &req->accept;
4668 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4670 if (sqe->ioprio || sqe->len || sqe->buf_index)
4673 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4674 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4675 accept->flags = READ_ONCE(sqe->accept_flags);
4676 accept->nofile = rlimit(RLIMIT_NOFILE);
4680 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
4682 struct io_accept *accept = &req->accept;
4683 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4684 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4687 if (req->file->f_flags & O_NONBLOCK)
4688 req->flags |= REQ_F_NOWAIT;
4690 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4691 accept->addr_len, accept->flags,
4693 if (ret == -EAGAIN && force_nonblock)
4696 if (ret == -ERESTARTSYS)
4698 req_set_fail_links(req);
4700 __io_req_complete(req, issue_flags, ret, 0);
4704 static int io_connect_prep_async(struct io_kiocb *req)
4706 struct io_async_connect *io = req->async_data;
4707 struct io_connect *conn = &req->connect;
4709 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
4712 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4714 struct io_connect *conn = &req->connect;
4716 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4718 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4721 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4722 conn->addr_len = READ_ONCE(sqe->addr2);
4726 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
4728 struct io_async_connect __io, *io;
4729 unsigned file_flags;
4731 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4733 if (req->async_data) {
4734 io = req->async_data;
4736 ret = move_addr_to_kernel(req->connect.addr,
4737 req->connect.addr_len,
4744 file_flags = force_nonblock ? O_NONBLOCK : 0;
4746 ret = __sys_connect_file(req->file, &io->address,
4747 req->connect.addr_len, file_flags);
4748 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4749 if (req->async_data)
4751 if (io_alloc_async_data(req)) {
4755 memcpy(req->async_data, &__io, sizeof(__io));
4758 if (ret == -ERESTARTSYS)
4762 req_set_fail_links(req);
4763 __io_req_complete(req, issue_flags, ret, 0);
4766 #else /* !CONFIG_NET */
4767 #define IO_NETOP_FN(op) \
4768 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
4770 return -EOPNOTSUPP; \
4773 #define IO_NETOP_PREP(op) \
4775 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
4777 return -EOPNOTSUPP; \
4780 #define IO_NETOP_PREP_ASYNC(op) \
4782 static int io_##op##_prep_async(struct io_kiocb *req) \
4784 return -EOPNOTSUPP; \
4787 IO_NETOP_PREP_ASYNC(sendmsg);
4788 IO_NETOP_PREP_ASYNC(recvmsg);
4789 IO_NETOP_PREP_ASYNC(connect);
4790 IO_NETOP_PREP(accept);
4793 #endif /* CONFIG_NET */
4795 struct io_poll_table {
4796 struct poll_table_struct pt;
4797 struct io_kiocb *req;
4801 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
4802 __poll_t mask, task_work_func_t func)
4806 /* for instances that support it check for an event match first: */
4807 if (mask && !(mask & poll->events))
4810 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
4812 list_del_init(&poll->wait.entry);
4815 req->task_work.func = func;
4818 * If this fails, then the task is exiting. When a task exits, the
4819 * work gets canceled, so just cancel this request as well instead
4820 * of executing it. We can't safely execute it anyway, as we may not
4821 * have the needed state needed for it anyway.
4823 ret = io_req_task_work_add(req);
4824 if (unlikely(ret)) {
4825 WRITE_ONCE(poll->canceled, true);
4826 io_req_task_work_add_fallback(req, func);
4831 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
4832 __acquires(&req->ctx->completion_lock)
4834 struct io_ring_ctx *ctx = req->ctx;
4836 if (!req->result && !READ_ONCE(poll->canceled)) {
4837 struct poll_table_struct pt = { ._key = poll->events };
4839 req->result = vfs_poll(req->file, &pt) & poll->events;
4842 spin_lock_irq(&ctx->completion_lock);
4843 if (!req->result && !READ_ONCE(poll->canceled)) {
4844 add_wait_queue(poll->head, &poll->wait);
4851 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
4853 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
4854 if (req->opcode == IORING_OP_POLL_ADD)
4855 return req->async_data;
4856 return req->apoll->double_poll;
4859 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
4861 if (req->opcode == IORING_OP_POLL_ADD)
4863 return &req->apoll->poll;
4866 static void io_poll_remove_double(struct io_kiocb *req)
4867 __must_hold(&req->ctx->completion_lock)
4869 struct io_poll_iocb *poll = io_poll_get_double(req);
4871 lockdep_assert_held(&req->ctx->completion_lock);
4873 if (poll && poll->head) {
4874 struct wait_queue_head *head = poll->head;
4876 spin_lock(&head->lock);
4877 list_del_init(&poll->wait.entry);
4878 if (poll->wait.private)
4881 spin_unlock(&head->lock);
4885 static bool io_poll_complete(struct io_kiocb *req, __poll_t mask)
4886 __must_hold(&req->ctx->completion_lock)
4888 struct io_ring_ctx *ctx = req->ctx;
4889 unsigned flags = IORING_CQE_F_MORE;
4892 if (READ_ONCE(req->poll.canceled)) {
4894 req->poll.events |= EPOLLONESHOT;
4896 error = mangle_poll(mask);
4898 if (req->poll.events & EPOLLONESHOT)
4900 if (!io_cqring_fill_event(ctx, req->user_data, error, flags)) {
4901 io_poll_remove_waitqs(req);
4902 req->poll.done = true;
4905 if (flags & IORING_CQE_F_MORE)
4908 io_commit_cqring(ctx);
4909 return !(flags & IORING_CQE_F_MORE);
4912 static void io_poll_task_func(struct callback_head *cb)
4914 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
4915 struct io_ring_ctx *ctx = req->ctx;
4916 struct io_kiocb *nxt;
4918 if (io_poll_rewait(req, &req->poll)) {
4919 spin_unlock_irq(&ctx->completion_lock);
4923 done = io_poll_complete(req, req->result);
4925 hash_del(&req->hash_node);
4928 add_wait_queue(req->poll.head, &req->poll.wait);
4930 spin_unlock_irq(&ctx->completion_lock);
4931 io_cqring_ev_posted(ctx);
4934 nxt = io_put_req_find_next(req);
4936 __io_req_task_submit(nxt);
4941 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
4942 int sync, void *key)
4944 struct io_kiocb *req = wait->private;
4945 struct io_poll_iocb *poll = io_poll_get_single(req);
4946 __poll_t mask = key_to_poll(key);
4948 /* for instances that support it check for an event match first: */
4949 if (mask && !(mask & poll->events))
4951 if (!(poll->events & EPOLLONESHOT))
4952 return poll->wait.func(&poll->wait, mode, sync, key);
4954 list_del_init(&wait->entry);
4956 if (poll && poll->head) {
4959 spin_lock(&poll->head->lock);
4960 done = list_empty(&poll->wait.entry);
4962 list_del_init(&poll->wait.entry);
4963 /* make sure double remove sees this as being gone */
4964 wait->private = NULL;
4965 spin_unlock(&poll->head->lock);
4967 /* use wait func handler, so it matches the rq type */
4968 poll->wait.func(&poll->wait, mode, sync, key);
4975 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
4976 wait_queue_func_t wake_func)
4980 poll->canceled = false;
4981 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
4982 /* mask in events that we always want/need */
4983 poll->events = events | IO_POLL_UNMASK;
4984 INIT_LIST_HEAD(&poll->wait.entry);
4985 init_waitqueue_func_entry(&poll->wait, wake_func);
4988 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
4989 struct wait_queue_head *head,
4990 struct io_poll_iocb **poll_ptr)
4992 struct io_kiocb *req = pt->req;
4995 * If poll->head is already set, it's because the file being polled
4996 * uses multiple waitqueues for poll handling (eg one for read, one
4997 * for write). Setup a separate io_poll_iocb if this happens.
4999 if (unlikely(poll->head)) {
5000 struct io_poll_iocb *poll_one = poll;
5002 /* already have a 2nd entry, fail a third attempt */
5004 pt->error = -EINVAL;
5008 * Can't handle multishot for double wait for now, turn it
5009 * into one-shot mode.
5011 if (!(req->poll.events & EPOLLONESHOT))
5012 req->poll.events |= EPOLLONESHOT;
5013 /* double add on the same waitqueue head, ignore */
5014 if (poll->head == head)
5016 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5018 pt->error = -ENOMEM;
5021 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5023 poll->wait.private = req;
5030 if (poll->events & EPOLLEXCLUSIVE)
5031 add_wait_queue_exclusive(head, &poll->wait);
5033 add_wait_queue(head, &poll->wait);
5036 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5037 struct poll_table_struct *p)
5039 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5040 struct async_poll *apoll = pt->req->apoll;
5042 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5045 static void io_async_task_func(struct callback_head *cb)
5047 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5048 struct async_poll *apoll = req->apoll;
5049 struct io_ring_ctx *ctx = req->ctx;
5051 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5053 if (io_poll_rewait(req, &apoll->poll)) {
5054 spin_unlock_irq(&ctx->completion_lock);
5058 hash_del(&req->hash_node);
5059 io_poll_remove_double(req);
5060 spin_unlock_irq(&ctx->completion_lock);
5062 if (!READ_ONCE(apoll->poll.canceled))
5063 __io_req_task_submit(req);
5065 io_req_complete_failed(req, -ECANCELED);
5068 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5071 struct io_kiocb *req = wait->private;
5072 struct io_poll_iocb *poll = &req->apoll->poll;
5074 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5077 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5080 static void io_poll_req_insert(struct io_kiocb *req)
5082 struct io_ring_ctx *ctx = req->ctx;
5083 struct hlist_head *list;
5085 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5086 hlist_add_head(&req->hash_node, list);
5089 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5090 struct io_poll_iocb *poll,
5091 struct io_poll_table *ipt, __poll_t mask,
5092 wait_queue_func_t wake_func)
5093 __acquires(&ctx->completion_lock)
5095 struct io_ring_ctx *ctx = req->ctx;
5096 bool cancel = false;
5098 INIT_HLIST_NODE(&req->hash_node);
5099 io_init_poll_iocb(poll, mask, wake_func);
5100 poll->file = req->file;
5101 poll->wait.private = req;
5103 ipt->pt._key = mask;
5105 ipt->error = -EINVAL;
5107 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5109 spin_lock_irq(&ctx->completion_lock);
5110 if (likely(poll->head)) {
5111 spin_lock(&poll->head->lock);
5112 if (unlikely(list_empty(&poll->wait.entry))) {
5118 if ((mask && (poll->events & EPOLLONESHOT)) || ipt->error)
5119 list_del_init(&poll->wait.entry);
5121 WRITE_ONCE(poll->canceled, true);
5122 else if (!poll->done) /* actually waiting for an event */
5123 io_poll_req_insert(req);
5124 spin_unlock(&poll->head->lock);
5130 static bool io_arm_poll_handler(struct io_kiocb *req)
5132 const struct io_op_def *def = &io_op_defs[req->opcode];
5133 struct io_ring_ctx *ctx = req->ctx;
5134 struct async_poll *apoll;
5135 struct io_poll_table ipt;
5139 if (!req->file || !file_can_poll(req->file))
5141 if (req->flags & REQ_F_POLLED)
5145 else if (def->pollout)
5149 /* if we can't nonblock try, then no point in arming a poll handler */
5150 if (!io_file_supports_async(req, rw))
5153 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5154 if (unlikely(!apoll))
5156 apoll->double_poll = NULL;
5158 req->flags |= REQ_F_POLLED;
5161 mask = EPOLLONESHOT;
5163 mask |= POLLIN | POLLRDNORM;
5165 mask |= POLLOUT | POLLWRNORM;
5167 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5168 if ((req->opcode == IORING_OP_RECVMSG) &&
5169 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5172 mask |= POLLERR | POLLPRI;
5174 ipt.pt._qproc = io_async_queue_proc;
5176 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5178 if (ret || ipt.error) {
5179 io_poll_remove_double(req);
5180 spin_unlock_irq(&ctx->completion_lock);
5183 spin_unlock_irq(&ctx->completion_lock);
5184 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5185 apoll->poll.events);
5189 static bool __io_poll_remove_one(struct io_kiocb *req,
5190 struct io_poll_iocb *poll, bool do_cancel)
5191 __must_hold(&req->ctx->completion_lock)
5193 bool do_complete = false;
5197 spin_lock(&poll->head->lock);
5199 WRITE_ONCE(poll->canceled, true);
5200 if (!list_empty(&poll->wait.entry)) {
5201 list_del_init(&poll->wait.entry);
5204 spin_unlock(&poll->head->lock);
5205 hash_del(&req->hash_node);
5209 static bool io_poll_remove_waitqs(struct io_kiocb *req)
5210 __must_hold(&req->ctx->completion_lock)
5214 io_poll_remove_double(req);
5215 do_complete = __io_poll_remove_one(req, io_poll_get_single(req), true);
5217 if (req->opcode != IORING_OP_POLL_ADD && do_complete) {
5218 /* non-poll requests have submit ref still */
5224 static bool io_poll_remove_one(struct io_kiocb *req)
5225 __must_hold(&req->ctx->completion_lock)
5229 do_complete = io_poll_remove_waitqs(req);
5231 io_cqring_fill_event(req->ctx, req->user_data, -ECANCELED, 0);
5232 io_commit_cqring(req->ctx);
5233 req_set_fail_links(req);
5234 io_put_req_deferred(req, 1);
5241 * Returns true if we found and killed one or more poll requests
5243 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5244 struct files_struct *files)
5246 struct hlist_node *tmp;
5247 struct io_kiocb *req;
5250 spin_lock_irq(&ctx->completion_lock);
5251 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5252 struct hlist_head *list;
5254 list = &ctx->cancel_hash[i];
5255 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5256 if (io_match_task(req, tsk, files))
5257 posted += io_poll_remove_one(req);
5260 spin_unlock_irq(&ctx->completion_lock);
5263 io_cqring_ev_posted(ctx);
5268 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5270 __must_hold(&ctx->completion_lock)
5272 struct hlist_head *list;
5273 struct io_kiocb *req;
5275 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5276 hlist_for_each_entry(req, list, hash_node) {
5277 if (sqe_addr != req->user_data)
5279 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5286 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5288 __must_hold(&ctx->completion_lock)
5290 struct io_kiocb *req;
5292 req = io_poll_find(ctx, sqe_addr, poll_only);
5295 if (io_poll_remove_one(req))
5301 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5306 events = READ_ONCE(sqe->poll32_events);
5308 events = swahw32(events);
5310 if (!(flags & IORING_POLL_ADD_MULTI))
5311 events |= EPOLLONESHOT;
5312 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5315 static int io_poll_update_prep(struct io_kiocb *req,
5316 const struct io_uring_sqe *sqe)
5318 struct io_poll_update *upd = &req->poll_update;
5321 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5323 if (sqe->ioprio || sqe->buf_index)
5325 flags = READ_ONCE(sqe->len);
5326 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5327 IORING_POLL_ADD_MULTI))
5329 /* meaningless without update */
5330 if (flags == IORING_POLL_ADD_MULTI)
5333 upd->old_user_data = READ_ONCE(sqe->addr);
5334 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5335 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5337 upd->new_user_data = READ_ONCE(sqe->off);
5338 if (!upd->update_user_data && upd->new_user_data)
5340 if (upd->update_events)
5341 upd->events = io_poll_parse_events(sqe, flags);
5342 else if (sqe->poll32_events)
5348 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5351 struct io_kiocb *req = wait->private;
5352 struct io_poll_iocb *poll = &req->poll;
5354 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5357 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5358 struct poll_table_struct *p)
5360 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5362 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5365 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5367 struct io_poll_iocb *poll = &req->poll;
5370 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5372 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5374 flags = READ_ONCE(sqe->len);
5375 if (flags & ~IORING_POLL_ADD_MULTI)
5378 poll->events = io_poll_parse_events(sqe, flags);
5382 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5384 struct io_poll_iocb *poll = &req->poll;
5385 struct io_ring_ctx *ctx = req->ctx;
5386 struct io_poll_table ipt;
5389 ipt.pt._qproc = io_poll_queue_proc;
5391 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5394 if (mask) { /* no async, we'd stolen it */
5396 io_poll_complete(req, mask);
5398 spin_unlock_irq(&ctx->completion_lock);
5401 io_cqring_ev_posted(ctx);
5402 if (poll->events & EPOLLONESHOT)
5408 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5410 struct io_ring_ctx *ctx = req->ctx;
5411 struct io_kiocb *preq;
5415 spin_lock_irq(&ctx->completion_lock);
5416 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5422 if (!req->poll_update.update_events && !req->poll_update.update_user_data) {
5424 ret = io_poll_remove_one(preq) ? 0 : -EALREADY;
5429 * Don't allow racy completion with singleshot, as we cannot safely
5430 * update those. For multishot, if we're racing with completion, just
5431 * let completion re-add it.
5433 completing = !__io_poll_remove_one(preq, &preq->poll, false);
5434 if (completing && (preq->poll.events & EPOLLONESHOT)) {
5438 /* we now have a detached poll request. reissue. */
5442 spin_unlock_irq(&ctx->completion_lock);
5443 req_set_fail_links(req);
5444 io_req_complete(req, ret);
5447 /* only mask one event flags, keep behavior flags */
5448 if (req->poll_update.update_events) {
5449 preq->poll.events &= ~0xffff;
5450 preq->poll.events |= req->poll_update.events & 0xffff;
5451 preq->poll.events |= IO_POLL_UNMASK;
5453 if (req->poll_update.update_user_data)
5454 preq->user_data = req->poll_update.new_user_data;
5455 spin_unlock_irq(&ctx->completion_lock);
5457 /* complete update request, we're done with it */
5458 io_req_complete(req, ret);
5461 ret = io_poll_add(preq, issue_flags);
5463 req_set_fail_links(preq);
5464 io_req_complete(preq, ret);
5470 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5472 struct io_timeout_data *data = container_of(timer,
5473 struct io_timeout_data, timer);
5474 struct io_kiocb *req = data->req;
5475 struct io_ring_ctx *ctx = req->ctx;
5476 unsigned long flags;
5478 spin_lock_irqsave(&ctx->completion_lock, flags);
5479 list_del_init(&req->timeout.list);
5480 atomic_set(&req->ctx->cq_timeouts,
5481 atomic_read(&req->ctx->cq_timeouts) + 1);
5483 io_cqring_fill_event(ctx, req->user_data, -ETIME, 0);
5484 io_commit_cqring(ctx);
5485 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5487 io_cqring_ev_posted(ctx);
5488 req_set_fail_links(req);
5490 return HRTIMER_NORESTART;
5493 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5495 __must_hold(&ctx->completion_lock)
5497 struct io_timeout_data *io;
5498 struct io_kiocb *req;
5501 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5502 found = user_data == req->user_data;
5507 return ERR_PTR(-ENOENT);
5509 io = req->async_data;
5510 if (hrtimer_try_to_cancel(&io->timer) == -1)
5511 return ERR_PTR(-EALREADY);
5512 list_del_init(&req->timeout.list);
5516 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5517 __must_hold(&ctx->completion_lock)
5519 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5522 return PTR_ERR(req);
5524 req_set_fail_links(req);
5525 io_cqring_fill_event(ctx, req->user_data, -ECANCELED, 0);
5526 io_put_req_deferred(req, 1);
5530 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5531 struct timespec64 *ts, enum hrtimer_mode mode)
5532 __must_hold(&ctx->completion_lock)
5534 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5535 struct io_timeout_data *data;
5538 return PTR_ERR(req);
5540 req->timeout.off = 0; /* noseq */
5541 data = req->async_data;
5542 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5543 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5544 data->timer.function = io_timeout_fn;
5545 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5549 static int io_timeout_remove_prep(struct io_kiocb *req,
5550 const struct io_uring_sqe *sqe)
5552 struct io_timeout_rem *tr = &req->timeout_rem;
5554 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5556 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5558 if (sqe->ioprio || sqe->buf_index || sqe->len)
5561 tr->addr = READ_ONCE(sqe->addr);
5562 tr->flags = READ_ONCE(sqe->timeout_flags);
5563 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5564 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5566 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5568 } else if (tr->flags) {
5569 /* timeout removal doesn't support flags */
5576 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
5578 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
5583 * Remove or update an existing timeout command
5585 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
5587 struct io_timeout_rem *tr = &req->timeout_rem;
5588 struct io_ring_ctx *ctx = req->ctx;
5591 spin_lock_irq(&ctx->completion_lock);
5592 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE))
5593 ret = io_timeout_cancel(ctx, tr->addr);
5595 ret = io_timeout_update(ctx, tr->addr, &tr->ts,
5596 io_translate_timeout_mode(tr->flags));
5598 io_cqring_fill_event(ctx, req->user_data, ret, 0);
5599 io_commit_cqring(ctx);
5600 spin_unlock_irq(&ctx->completion_lock);
5601 io_cqring_ev_posted(ctx);
5603 req_set_fail_links(req);
5608 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5609 bool is_timeout_link)
5611 struct io_timeout_data *data;
5613 u32 off = READ_ONCE(sqe->off);
5615 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5617 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5619 if (off && is_timeout_link)
5621 flags = READ_ONCE(sqe->timeout_flags);
5622 if (flags & ~IORING_TIMEOUT_ABS)
5625 req->timeout.off = off;
5627 if (!req->async_data && io_alloc_async_data(req))
5630 data = req->async_data;
5633 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5636 data->mode = io_translate_timeout_mode(flags);
5637 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5638 if (is_timeout_link)
5639 io_req_track_inflight(req);
5643 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
5645 struct io_ring_ctx *ctx = req->ctx;
5646 struct io_timeout_data *data = req->async_data;
5647 struct list_head *entry;
5648 u32 tail, off = req->timeout.off;
5650 spin_lock_irq(&ctx->completion_lock);
5653 * sqe->off holds how many events that need to occur for this
5654 * timeout event to be satisfied. If it isn't set, then this is
5655 * a pure timeout request, sequence isn't used.
5657 if (io_is_timeout_noseq(req)) {
5658 entry = ctx->timeout_list.prev;
5662 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5663 req->timeout.target_seq = tail + off;
5665 /* Update the last seq here in case io_flush_timeouts() hasn't.
5666 * This is safe because ->completion_lock is held, and submissions
5667 * and completions are never mixed in the same ->completion_lock section.
5669 ctx->cq_last_tm_flush = tail;
5672 * Insertion sort, ensuring the first entry in the list is always
5673 * the one we need first.
5675 list_for_each_prev(entry, &ctx->timeout_list) {
5676 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5679 if (io_is_timeout_noseq(nxt))
5681 /* nxt.seq is behind @tail, otherwise would've been completed */
5682 if (off >= nxt->timeout.target_seq - tail)
5686 list_add(&req->timeout.list, entry);
5687 data->timer.function = io_timeout_fn;
5688 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5689 spin_unlock_irq(&ctx->completion_lock);
5693 struct io_cancel_data {
5694 struct io_ring_ctx *ctx;
5698 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5700 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5701 struct io_cancel_data *cd = data;
5703 return req->ctx == cd->ctx && req->user_data == cd->user_data;
5706 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
5707 struct io_ring_ctx *ctx)
5709 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
5710 enum io_wq_cancel cancel_ret;
5713 if (!tctx || !tctx->io_wq)
5716 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
5717 switch (cancel_ret) {
5718 case IO_WQ_CANCEL_OK:
5721 case IO_WQ_CANCEL_RUNNING:
5724 case IO_WQ_CANCEL_NOTFOUND:
5732 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5733 struct io_kiocb *req, __u64 sqe_addr,
5736 unsigned long flags;
5739 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
5740 spin_lock_irqsave(&ctx->completion_lock, flags);
5743 ret = io_timeout_cancel(ctx, sqe_addr);
5746 ret = io_poll_cancel(ctx, sqe_addr, false);
5750 io_cqring_fill_event(ctx, req->user_data, ret, 0);
5751 io_commit_cqring(ctx);
5752 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5753 io_cqring_ev_posted(ctx);
5756 req_set_fail_links(req);
5759 static int io_async_cancel_prep(struct io_kiocb *req,
5760 const struct io_uring_sqe *sqe)
5762 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5764 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5766 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5769 req->cancel.addr = READ_ONCE(sqe->addr);
5773 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
5775 struct io_ring_ctx *ctx = req->ctx;
5776 u64 sqe_addr = req->cancel.addr;
5777 struct io_tctx_node *node;
5780 /* tasks should wait for their io-wq threads, so safe w/o sync */
5781 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
5782 spin_lock_irq(&ctx->completion_lock);
5785 ret = io_timeout_cancel(ctx, sqe_addr);
5788 ret = io_poll_cancel(ctx, sqe_addr, false);
5791 spin_unlock_irq(&ctx->completion_lock);
5793 /* slow path, try all io-wq's */
5794 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
5796 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
5797 struct io_uring_task *tctx = node->task->io_uring;
5799 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
5803 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
5805 spin_lock_irq(&ctx->completion_lock);
5807 io_cqring_fill_event(ctx, req->user_data, ret, 0);
5808 io_commit_cqring(ctx);
5809 spin_unlock_irq(&ctx->completion_lock);
5810 io_cqring_ev_posted(ctx);
5813 req_set_fail_links(req);
5818 static int io_rsrc_update_prep(struct io_kiocb *req,
5819 const struct io_uring_sqe *sqe)
5821 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5823 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5825 if (sqe->ioprio || sqe->rw_flags)
5828 req->rsrc_update.offset = READ_ONCE(sqe->off);
5829 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
5830 if (!req->rsrc_update.nr_args)
5832 req->rsrc_update.arg = READ_ONCE(sqe->addr);
5836 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
5838 struct io_ring_ctx *ctx = req->ctx;
5839 struct io_uring_rsrc_update2 up;
5842 if (issue_flags & IO_URING_F_NONBLOCK)
5845 up.offset = req->rsrc_update.offset;
5846 up.data = req->rsrc_update.arg;
5851 mutex_lock(&ctx->uring_lock);
5852 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
5853 &up, req->rsrc_update.nr_args);
5854 mutex_unlock(&ctx->uring_lock);
5857 req_set_fail_links(req);
5858 __io_req_complete(req, issue_flags, ret, 0);
5862 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5864 switch (req->opcode) {
5867 case IORING_OP_READV:
5868 case IORING_OP_READ_FIXED:
5869 case IORING_OP_READ:
5870 return io_read_prep(req, sqe);
5871 case IORING_OP_WRITEV:
5872 case IORING_OP_WRITE_FIXED:
5873 case IORING_OP_WRITE:
5874 return io_write_prep(req, sqe);
5875 case IORING_OP_POLL_ADD:
5876 return io_poll_add_prep(req, sqe);
5877 case IORING_OP_POLL_REMOVE:
5878 return io_poll_update_prep(req, sqe);
5879 case IORING_OP_FSYNC:
5880 return io_fsync_prep(req, sqe);
5881 case IORING_OP_SYNC_FILE_RANGE:
5882 return io_sfr_prep(req, sqe);
5883 case IORING_OP_SENDMSG:
5884 case IORING_OP_SEND:
5885 return io_sendmsg_prep(req, sqe);
5886 case IORING_OP_RECVMSG:
5887 case IORING_OP_RECV:
5888 return io_recvmsg_prep(req, sqe);
5889 case IORING_OP_CONNECT:
5890 return io_connect_prep(req, sqe);
5891 case IORING_OP_TIMEOUT:
5892 return io_timeout_prep(req, sqe, false);
5893 case IORING_OP_TIMEOUT_REMOVE:
5894 return io_timeout_remove_prep(req, sqe);
5895 case IORING_OP_ASYNC_CANCEL:
5896 return io_async_cancel_prep(req, sqe);
5897 case IORING_OP_LINK_TIMEOUT:
5898 return io_timeout_prep(req, sqe, true);
5899 case IORING_OP_ACCEPT:
5900 return io_accept_prep(req, sqe);
5901 case IORING_OP_FALLOCATE:
5902 return io_fallocate_prep(req, sqe);
5903 case IORING_OP_OPENAT:
5904 return io_openat_prep(req, sqe);
5905 case IORING_OP_CLOSE:
5906 return io_close_prep(req, sqe);
5907 case IORING_OP_FILES_UPDATE:
5908 return io_rsrc_update_prep(req, sqe);
5909 case IORING_OP_STATX:
5910 return io_statx_prep(req, sqe);
5911 case IORING_OP_FADVISE:
5912 return io_fadvise_prep(req, sqe);
5913 case IORING_OP_MADVISE:
5914 return io_madvise_prep(req, sqe);
5915 case IORING_OP_OPENAT2:
5916 return io_openat2_prep(req, sqe);
5917 case IORING_OP_EPOLL_CTL:
5918 return io_epoll_ctl_prep(req, sqe);
5919 case IORING_OP_SPLICE:
5920 return io_splice_prep(req, sqe);
5921 case IORING_OP_PROVIDE_BUFFERS:
5922 return io_provide_buffers_prep(req, sqe);
5923 case IORING_OP_REMOVE_BUFFERS:
5924 return io_remove_buffers_prep(req, sqe);
5926 return io_tee_prep(req, sqe);
5927 case IORING_OP_SHUTDOWN:
5928 return io_shutdown_prep(req, sqe);
5929 case IORING_OP_RENAMEAT:
5930 return io_renameat_prep(req, sqe);
5931 case IORING_OP_UNLINKAT:
5932 return io_unlinkat_prep(req, sqe);
5935 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
5940 static int io_req_prep_async(struct io_kiocb *req)
5942 if (!io_op_defs[req->opcode].needs_async_setup)
5944 if (WARN_ON_ONCE(req->async_data))
5946 if (io_alloc_async_data(req))
5949 switch (req->opcode) {
5950 case IORING_OP_READV:
5951 return io_rw_prep_async(req, READ);
5952 case IORING_OP_WRITEV:
5953 return io_rw_prep_async(req, WRITE);
5954 case IORING_OP_SENDMSG:
5955 return io_sendmsg_prep_async(req);
5956 case IORING_OP_RECVMSG:
5957 return io_recvmsg_prep_async(req);
5958 case IORING_OP_CONNECT:
5959 return io_connect_prep_async(req);
5961 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
5966 static u32 io_get_sequence(struct io_kiocb *req)
5968 struct io_kiocb *pos;
5969 struct io_ring_ctx *ctx = req->ctx;
5970 u32 total_submitted, nr_reqs = 0;
5972 io_for_each_link(pos, req)
5975 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
5976 return total_submitted - nr_reqs;
5979 static int io_req_defer(struct io_kiocb *req)
5981 struct io_ring_ctx *ctx = req->ctx;
5982 struct io_defer_entry *de;
5986 /* Still need defer if there is pending req in defer list. */
5987 if (likely(list_empty_careful(&ctx->defer_list) &&
5988 !(req->flags & REQ_F_IO_DRAIN)))
5991 seq = io_get_sequence(req);
5992 /* Still a chance to pass the sequence check */
5993 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
5996 ret = io_req_prep_async(req);
5999 io_prep_async_link(req);
6000 de = kmalloc(sizeof(*de), GFP_KERNEL);
6004 spin_lock_irq(&ctx->completion_lock);
6005 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6006 spin_unlock_irq(&ctx->completion_lock);
6008 io_queue_async_work(req);
6009 return -EIOCBQUEUED;
6012 trace_io_uring_defer(ctx, req, req->user_data);
6015 list_add_tail(&de->list, &ctx->defer_list);
6016 spin_unlock_irq(&ctx->completion_lock);
6017 return -EIOCBQUEUED;
6020 static void io_clean_op(struct io_kiocb *req)
6022 if (req->flags & REQ_F_BUFFER_SELECTED) {
6023 switch (req->opcode) {
6024 case IORING_OP_READV:
6025 case IORING_OP_READ_FIXED:
6026 case IORING_OP_READ:
6027 kfree((void *)(unsigned long)req->rw.addr);
6029 case IORING_OP_RECVMSG:
6030 case IORING_OP_RECV:
6031 kfree(req->sr_msg.kbuf);
6034 req->flags &= ~REQ_F_BUFFER_SELECTED;
6037 if (req->flags & REQ_F_NEED_CLEANUP) {
6038 switch (req->opcode) {
6039 case IORING_OP_READV:
6040 case IORING_OP_READ_FIXED:
6041 case IORING_OP_READ:
6042 case IORING_OP_WRITEV:
6043 case IORING_OP_WRITE_FIXED:
6044 case IORING_OP_WRITE: {
6045 struct io_async_rw *io = req->async_data;
6047 kfree(io->free_iovec);
6050 case IORING_OP_RECVMSG:
6051 case IORING_OP_SENDMSG: {
6052 struct io_async_msghdr *io = req->async_data;
6054 kfree(io->free_iov);
6057 case IORING_OP_SPLICE:
6059 if (!(req->splice.flags & SPLICE_F_FD_IN_FIXED))
6060 io_put_file(req->splice.file_in);
6062 case IORING_OP_OPENAT:
6063 case IORING_OP_OPENAT2:
6064 if (req->open.filename)
6065 putname(req->open.filename);
6067 case IORING_OP_RENAMEAT:
6068 putname(req->rename.oldpath);
6069 putname(req->rename.newpath);
6071 case IORING_OP_UNLINKAT:
6072 putname(req->unlink.filename);
6075 req->flags &= ~REQ_F_NEED_CLEANUP;
6077 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6078 kfree(req->apoll->double_poll);
6082 if (req->flags & REQ_F_INFLIGHT) {
6083 struct io_uring_task *tctx = req->task->io_uring;
6085 atomic_dec(&tctx->inflight_tracked);
6086 req->flags &= ~REQ_F_INFLIGHT;
6090 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6092 struct io_ring_ctx *ctx = req->ctx;
6093 const struct cred *creds = NULL;
6096 if (req->work.creds && req->work.creds != current_cred())
6097 creds = override_creds(req->work.creds);
6099 switch (req->opcode) {
6101 ret = io_nop(req, issue_flags);
6103 case IORING_OP_READV:
6104 case IORING_OP_READ_FIXED:
6105 case IORING_OP_READ:
6106 ret = io_read(req, issue_flags);
6108 case IORING_OP_WRITEV:
6109 case IORING_OP_WRITE_FIXED:
6110 case IORING_OP_WRITE:
6111 ret = io_write(req, issue_flags);
6113 case IORING_OP_FSYNC:
6114 ret = io_fsync(req, issue_flags);
6116 case IORING_OP_POLL_ADD:
6117 ret = io_poll_add(req, issue_flags);
6119 case IORING_OP_POLL_REMOVE:
6120 ret = io_poll_update(req, issue_flags);
6122 case IORING_OP_SYNC_FILE_RANGE:
6123 ret = io_sync_file_range(req, issue_flags);
6125 case IORING_OP_SENDMSG:
6126 ret = io_sendmsg(req, issue_flags);
6128 case IORING_OP_SEND:
6129 ret = io_send(req, issue_flags);
6131 case IORING_OP_RECVMSG:
6132 ret = io_recvmsg(req, issue_flags);
6134 case IORING_OP_RECV:
6135 ret = io_recv(req, issue_flags);
6137 case IORING_OP_TIMEOUT:
6138 ret = io_timeout(req, issue_flags);
6140 case IORING_OP_TIMEOUT_REMOVE:
6141 ret = io_timeout_remove(req, issue_flags);
6143 case IORING_OP_ACCEPT:
6144 ret = io_accept(req, issue_flags);
6146 case IORING_OP_CONNECT:
6147 ret = io_connect(req, issue_flags);
6149 case IORING_OP_ASYNC_CANCEL:
6150 ret = io_async_cancel(req, issue_flags);
6152 case IORING_OP_FALLOCATE:
6153 ret = io_fallocate(req, issue_flags);
6155 case IORING_OP_OPENAT:
6156 ret = io_openat(req, issue_flags);
6158 case IORING_OP_CLOSE:
6159 ret = io_close(req, issue_flags);
6161 case IORING_OP_FILES_UPDATE:
6162 ret = io_files_update(req, issue_flags);
6164 case IORING_OP_STATX:
6165 ret = io_statx(req, issue_flags);
6167 case IORING_OP_FADVISE:
6168 ret = io_fadvise(req, issue_flags);
6170 case IORING_OP_MADVISE:
6171 ret = io_madvise(req, issue_flags);
6173 case IORING_OP_OPENAT2:
6174 ret = io_openat2(req, issue_flags);
6176 case IORING_OP_EPOLL_CTL:
6177 ret = io_epoll_ctl(req, issue_flags);
6179 case IORING_OP_SPLICE:
6180 ret = io_splice(req, issue_flags);
6182 case IORING_OP_PROVIDE_BUFFERS:
6183 ret = io_provide_buffers(req, issue_flags);
6185 case IORING_OP_REMOVE_BUFFERS:
6186 ret = io_remove_buffers(req, issue_flags);
6189 ret = io_tee(req, issue_flags);
6191 case IORING_OP_SHUTDOWN:
6192 ret = io_shutdown(req, issue_flags);
6194 case IORING_OP_RENAMEAT:
6195 ret = io_renameat(req, issue_flags);
6197 case IORING_OP_UNLINKAT:
6198 ret = io_unlinkat(req, issue_flags);
6206 revert_creds(creds);
6211 /* If the op doesn't have a file, we're not polling for it */
6212 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6213 const bool in_async = io_wq_current_is_worker();
6215 /* workqueue context doesn't hold uring_lock, grab it now */
6217 mutex_lock(&ctx->uring_lock);
6219 io_iopoll_req_issued(req, in_async);
6222 mutex_unlock(&ctx->uring_lock);
6228 static void io_wq_submit_work(struct io_wq_work *work)
6230 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6231 struct io_kiocb *timeout;
6234 timeout = io_prep_linked_timeout(req);
6236 io_queue_linked_timeout(timeout);
6238 if (work->flags & IO_WQ_WORK_CANCEL)
6243 ret = io_issue_sqe(req, 0);
6245 * We can get EAGAIN for polled IO even though we're
6246 * forcing a sync submission from here, since we can't
6247 * wait for request slots on the block side.
6255 /* avoid locking problems by failing it from a clean context */
6257 /* io-wq is going to take one down */
6259 io_req_task_queue_fail(req, ret);
6263 #define FFS_ASYNC_READ 0x1UL
6264 #define FFS_ASYNC_WRITE 0x2UL
6266 #define FFS_ISREG 0x4UL
6268 #define FFS_ISREG 0x0UL
6270 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
6272 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6275 struct io_fixed_file *table_l2;
6277 table_l2 = table->files[i >> IORING_FILE_TABLE_SHIFT];
6278 return &table_l2[i & IORING_FILE_TABLE_MASK];
6281 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6284 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6286 return (struct file *) (slot->file_ptr & FFS_MASK);
6289 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6291 unsigned long file_ptr = (unsigned long) file;
6293 if (__io_file_supports_async(file, READ))
6294 file_ptr |= FFS_ASYNC_READ;
6295 if (__io_file_supports_async(file, WRITE))
6296 file_ptr |= FFS_ASYNC_WRITE;
6297 if (S_ISREG(file_inode(file)->i_mode))
6298 file_ptr |= FFS_ISREG;
6299 file_slot->file_ptr = file_ptr;
6302 static struct file *io_file_get(struct io_submit_state *state,
6303 struct io_kiocb *req, int fd, bool fixed)
6305 struct io_ring_ctx *ctx = req->ctx;
6309 unsigned long file_ptr;
6311 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6313 fd = array_index_nospec(fd, ctx->nr_user_files);
6314 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6315 file = (struct file *) (file_ptr & FFS_MASK);
6316 file_ptr &= ~FFS_MASK;
6317 /* mask in overlapping REQ_F and FFS bits */
6318 req->flags |= (file_ptr << REQ_F_ASYNC_READ_BIT);
6319 io_req_set_rsrc_node(req);
6321 trace_io_uring_file_get(ctx, fd);
6322 file = __io_file_get(state, fd);
6324 /* we don't allow fixed io_uring files */
6325 if (file && unlikely(file->f_op == &io_uring_fops))
6326 io_req_track_inflight(req);
6332 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6334 struct io_timeout_data *data = container_of(timer,
6335 struct io_timeout_data, timer);
6336 struct io_kiocb *prev, *req = data->req;
6337 struct io_ring_ctx *ctx = req->ctx;
6338 unsigned long flags;
6340 spin_lock_irqsave(&ctx->completion_lock, flags);
6341 prev = req->timeout.head;
6342 req->timeout.head = NULL;
6345 * We don't expect the list to be empty, that will only happen if we
6346 * race with the completion of the linked work.
6348 if (prev && req_ref_inc_not_zero(prev))
6349 io_remove_next_linked(prev);
6352 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6355 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6356 io_put_req_deferred(prev, 1);
6358 io_req_complete_post(req, -ETIME, 0);
6360 io_put_req_deferred(req, 1);
6361 return HRTIMER_NORESTART;
6364 static void io_queue_linked_timeout(struct io_kiocb *req)
6366 struct io_ring_ctx *ctx = req->ctx;
6368 spin_lock_irq(&ctx->completion_lock);
6370 * If the back reference is NULL, then our linked request finished
6371 * before we got a chance to setup the timer
6373 if (req->timeout.head) {
6374 struct io_timeout_data *data = req->async_data;
6376 data->timer.function = io_link_timeout_fn;
6377 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6380 spin_unlock_irq(&ctx->completion_lock);
6381 /* drop submission reference */
6385 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6387 struct io_kiocb *nxt = req->link;
6389 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6390 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6393 nxt->timeout.head = req;
6394 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6395 req->flags |= REQ_F_LINK_TIMEOUT;
6399 static void __io_queue_sqe(struct io_kiocb *req)
6401 struct io_kiocb *linked_timeout = io_prep_linked_timeout(req);
6404 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6407 * We async punt it if the file wasn't marked NOWAIT, or if the file
6408 * doesn't support non-blocking read/write attempts
6411 /* drop submission reference */
6412 if (req->flags & REQ_F_COMPLETE_INLINE) {
6413 struct io_ring_ctx *ctx = req->ctx;
6414 struct io_comp_state *cs = &ctx->submit_state.comp;
6416 cs->reqs[cs->nr++] = req;
6417 if (cs->nr == ARRAY_SIZE(cs->reqs))
6418 io_submit_flush_completions(cs, ctx);
6422 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6423 if (!io_arm_poll_handler(req)) {
6425 * Queued up for async execution, worker will release
6426 * submit reference when the iocb is actually submitted.
6428 io_queue_async_work(req);
6431 io_req_complete_failed(req, ret);
6434 io_queue_linked_timeout(linked_timeout);
6437 static void io_queue_sqe(struct io_kiocb *req)
6441 ret = io_req_defer(req);
6443 if (ret != -EIOCBQUEUED) {
6445 io_req_complete_failed(req, ret);
6447 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6448 ret = io_req_prep_async(req);
6451 io_queue_async_work(req);
6453 __io_queue_sqe(req);
6458 * Check SQE restrictions (opcode and flags).
6460 * Returns 'true' if SQE is allowed, 'false' otherwise.
6462 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6463 struct io_kiocb *req,
6464 unsigned int sqe_flags)
6466 if (!ctx->restricted)
6469 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6472 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6473 ctx->restrictions.sqe_flags_required)
6476 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6477 ctx->restrictions.sqe_flags_required))
6483 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6484 const struct io_uring_sqe *sqe)
6486 struct io_submit_state *state;
6487 unsigned int sqe_flags;
6488 int personality, ret = 0;
6490 req->opcode = READ_ONCE(sqe->opcode);
6491 /* same numerical values with corresponding REQ_F_*, safe to copy */
6492 req->flags = sqe_flags = READ_ONCE(sqe->flags);
6493 req->user_data = READ_ONCE(sqe->user_data);
6494 req->async_data = NULL;
6498 req->fixed_rsrc_refs = NULL;
6499 /* one is dropped after submission, the other at completion */
6500 atomic_set(&req->refs, 2);
6501 req->task = current;
6503 req->work.creds = NULL;
6505 /* enforce forwards compatibility on users */
6506 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS)) {
6511 if (unlikely(req->opcode >= IORING_OP_LAST))
6514 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6517 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6518 !io_op_defs[req->opcode].buffer_select)
6521 personality = READ_ONCE(sqe->personality);
6523 req->work.creds = xa_load(&ctx->personalities, personality);
6524 if (!req->work.creds)
6526 get_cred(req->work.creds);
6528 state = &ctx->submit_state;
6531 * Plug now if we have more than 1 IO left after this, and the target
6532 * is potentially a read/write to block based storage.
6534 if (!state->plug_started && state->ios_left > 1 &&
6535 io_op_defs[req->opcode].plug) {
6536 blk_start_plug(&state->plug);
6537 state->plug_started = true;
6540 if (io_op_defs[req->opcode].needs_file) {
6541 bool fixed = req->flags & REQ_F_FIXED_FILE;
6543 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6544 if (unlikely(!req->file))
6552 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
6553 const struct io_uring_sqe *sqe)
6555 struct io_submit_link *link = &ctx->submit_state.link;
6558 ret = io_init_req(ctx, req, sqe);
6559 if (unlikely(ret)) {
6562 /* fail even hard links since we don't submit */
6563 link->head->flags |= REQ_F_FAIL_LINK;
6564 io_req_complete_failed(link->head, -ECANCELED);
6567 io_req_complete_failed(req, ret);
6570 ret = io_req_prep(req, sqe);
6574 /* don't need @sqe from now on */
6575 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6576 true, ctx->flags & IORING_SETUP_SQPOLL);
6579 * If we already have a head request, queue this one for async
6580 * submittal once the head completes. If we don't have a head but
6581 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6582 * submitted sync once the chain is complete. If none of those
6583 * conditions are true (normal request), then just queue it.
6586 struct io_kiocb *head = link->head;
6589 * Taking sequential execution of a link, draining both sides
6590 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6591 * requests in the link. So, it drains the head and the
6592 * next after the link request. The last one is done via
6593 * drain_next flag to persist the effect across calls.
6595 if (req->flags & REQ_F_IO_DRAIN) {
6596 head->flags |= REQ_F_IO_DRAIN;
6597 ctx->drain_next = 1;
6599 ret = io_req_prep_async(req);
6602 trace_io_uring_link(ctx, req, head);
6603 link->last->link = req;
6606 /* last request of a link, enqueue the link */
6607 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6612 if (unlikely(ctx->drain_next)) {
6613 req->flags |= REQ_F_IO_DRAIN;
6614 ctx->drain_next = 0;
6616 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6628 * Batched submission is done, ensure local IO is flushed out.
6630 static void io_submit_state_end(struct io_submit_state *state,
6631 struct io_ring_ctx *ctx)
6633 if (state->link.head)
6634 io_queue_sqe(state->link.head);
6636 io_submit_flush_completions(&state->comp, ctx);
6637 if (state->plug_started)
6638 blk_finish_plug(&state->plug);
6639 io_state_file_put(state);
6643 * Start submission side cache.
6645 static void io_submit_state_start(struct io_submit_state *state,
6646 unsigned int max_ios)
6648 state->plug_started = false;
6649 state->ios_left = max_ios;
6650 /* set only head, no need to init link_last in advance */
6651 state->link.head = NULL;
6654 static void io_commit_sqring(struct io_ring_ctx *ctx)
6656 struct io_rings *rings = ctx->rings;
6659 * Ensure any loads from the SQEs are done at this point,
6660 * since once we write the new head, the application could
6661 * write new data to them.
6663 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6667 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6668 * that is mapped by userspace. This means that care needs to be taken to
6669 * ensure that reads are stable, as we cannot rely on userspace always
6670 * being a good citizen. If members of the sqe are validated and then later
6671 * used, it's important that those reads are done through READ_ONCE() to
6672 * prevent a re-load down the line.
6674 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6676 u32 *sq_array = ctx->sq_array;
6680 * The cached sq head (or cq tail) serves two purposes:
6682 * 1) allows us to batch the cost of updating the user visible
6684 * 2) allows the kernel side to track the head on its own, even
6685 * though the application is the one updating it.
6687 head = READ_ONCE(sq_array[ctx->cached_sq_head++ & ctx->sq_mask]);
6688 if (likely(head < ctx->sq_entries))
6689 return &ctx->sq_sqes[head];
6691 /* drop invalid entries */
6692 ctx->cached_sq_dropped++;
6693 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6697 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6701 /* make sure SQ entry isn't read before tail */
6702 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6704 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6707 percpu_counter_add(¤t->io_uring->inflight, nr);
6708 refcount_add(nr, ¤t->usage);
6709 io_submit_state_start(&ctx->submit_state, nr);
6711 while (submitted < nr) {
6712 const struct io_uring_sqe *sqe;
6713 struct io_kiocb *req;
6715 req = io_alloc_req(ctx);
6716 if (unlikely(!req)) {
6718 submitted = -EAGAIN;
6721 sqe = io_get_sqe(ctx);
6722 if (unlikely(!sqe)) {
6723 kmem_cache_free(req_cachep, req);
6726 /* will complete beyond this point, count as submitted */
6728 if (io_submit_sqe(ctx, req, sqe))
6732 if (unlikely(submitted != nr)) {
6733 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6734 struct io_uring_task *tctx = current->io_uring;
6735 int unused = nr - ref_used;
6737 percpu_ref_put_many(&ctx->refs, unused);
6738 percpu_counter_sub(&tctx->inflight, unused);
6739 put_task_struct_many(current, unused);
6742 io_submit_state_end(&ctx->submit_state, ctx);
6743 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6744 io_commit_sqring(ctx);
6749 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6751 /* Tell userspace we may need a wakeup call */
6752 spin_lock_irq(&ctx->completion_lock);
6753 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6754 spin_unlock_irq(&ctx->completion_lock);
6757 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6759 spin_lock_irq(&ctx->completion_lock);
6760 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6761 spin_unlock_irq(&ctx->completion_lock);
6764 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6766 unsigned int to_submit;
6769 to_submit = io_sqring_entries(ctx);
6770 /* if we're handling multiple rings, cap submit size for fairness */
6771 if (cap_entries && to_submit > 8)
6774 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6775 unsigned nr_events = 0;
6777 mutex_lock(&ctx->uring_lock);
6778 if (!list_empty(&ctx->iopoll_list))
6779 io_do_iopoll(ctx, &nr_events, 0);
6782 * Don't submit if refs are dying, good for io_uring_register(),
6783 * but also it is relied upon by io_ring_exit_work()
6785 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
6786 !(ctx->flags & IORING_SETUP_R_DISABLED))
6787 ret = io_submit_sqes(ctx, to_submit);
6788 mutex_unlock(&ctx->uring_lock);
6791 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6792 wake_up(&ctx->sqo_sq_wait);
6797 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
6799 struct io_ring_ctx *ctx;
6800 unsigned sq_thread_idle = 0;
6802 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6803 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
6804 sqd->sq_thread_idle = sq_thread_idle;
6807 static int io_sq_thread(void *data)
6809 struct io_sq_data *sqd = data;
6810 struct io_ring_ctx *ctx;
6811 unsigned long timeout = 0;
6812 char buf[TASK_COMM_LEN];
6815 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
6816 set_task_comm(current, buf);
6818 if (sqd->sq_cpu != -1)
6819 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
6821 set_cpus_allowed_ptr(current, cpu_online_mask);
6822 current->flags |= PF_NO_SETAFFINITY;
6824 mutex_lock(&sqd->lock);
6825 /* a user may had exited before the thread started */
6826 io_run_task_work_head(&sqd->park_task_work);
6828 while (!test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state)) {
6830 bool cap_entries, sqt_spin, needs_sched;
6832 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
6833 signal_pending(current)) {
6834 bool did_sig = false;
6836 mutex_unlock(&sqd->lock);
6837 if (signal_pending(current)) {
6838 struct ksignal ksig;
6840 did_sig = get_signal(&ksig);
6843 mutex_lock(&sqd->lock);
6845 io_run_task_work_head(&sqd->park_task_work);
6848 timeout = jiffies + sqd->sq_thread_idle;
6852 cap_entries = !list_is_singular(&sqd->ctx_list);
6853 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6854 const struct cred *creds = NULL;
6856 if (ctx->sq_creds != current_cred())
6857 creds = override_creds(ctx->sq_creds);
6858 ret = __io_sq_thread(ctx, cap_entries);
6860 revert_creds(creds);
6861 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
6865 if (sqt_spin || !time_after(jiffies, timeout)) {
6869 timeout = jiffies + sqd->sq_thread_idle;
6873 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
6874 if (!test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state)) {
6875 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6876 io_ring_set_wakeup_flag(ctx);
6879 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6880 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
6881 !list_empty_careful(&ctx->iopoll_list)) {
6882 needs_sched = false;
6885 if (io_sqring_entries(ctx)) {
6886 needs_sched = false;
6892 mutex_unlock(&sqd->lock);
6894 mutex_lock(&sqd->lock);
6896 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6897 io_ring_clear_wakeup_flag(ctx);
6900 finish_wait(&sqd->wait, &wait);
6901 io_run_task_work_head(&sqd->park_task_work);
6902 timeout = jiffies + sqd->sq_thread_idle;
6905 io_uring_cancel_sqpoll(sqd);
6907 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6908 io_ring_set_wakeup_flag(ctx);
6910 io_run_task_work_head(&sqd->park_task_work);
6911 mutex_unlock(&sqd->lock);
6913 complete(&sqd->exited);
6917 struct io_wait_queue {
6918 struct wait_queue_entry wq;
6919 struct io_ring_ctx *ctx;
6921 unsigned nr_timeouts;
6924 static inline bool io_should_wake(struct io_wait_queue *iowq)
6926 struct io_ring_ctx *ctx = iowq->ctx;
6929 * Wake up if we have enough events, or if a timeout occurred since we
6930 * started waiting. For timeouts, we always want to return to userspace,
6931 * regardless of event count.
6933 return io_cqring_events(ctx) >= iowq->to_wait ||
6934 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
6937 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
6938 int wake_flags, void *key)
6940 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
6944 * Cannot safely flush overflowed CQEs from here, ensure we wake up
6945 * the task, and the next invocation will do it.
6947 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
6948 return autoremove_wake_function(curr, mode, wake_flags, key);
6952 static int io_run_task_work_sig(void)
6954 if (io_run_task_work())
6956 if (!signal_pending(current))
6958 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
6959 return -ERESTARTSYS;
6963 /* when returns >0, the caller should retry */
6964 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
6965 struct io_wait_queue *iowq,
6966 signed long *timeout)
6970 /* make sure we run task_work before checking for signals */
6971 ret = io_run_task_work_sig();
6972 if (ret || io_should_wake(iowq))
6974 /* let the caller flush overflows, retry */
6975 if (test_bit(0, &ctx->cq_check_overflow))
6978 *timeout = schedule_timeout(*timeout);
6979 return !*timeout ? -ETIME : 1;
6983 * Wait until events become available, if we don't already have some. The
6984 * application must reap them itself, as they reside on the shared cq ring.
6986 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
6987 const sigset_t __user *sig, size_t sigsz,
6988 struct __kernel_timespec __user *uts)
6990 struct io_wait_queue iowq = {
6993 .func = io_wake_function,
6994 .entry = LIST_HEAD_INIT(iowq.wq.entry),
6997 .to_wait = min_events,
6999 struct io_rings *rings = ctx->rings;
7000 signed long timeout = MAX_SCHEDULE_TIMEOUT;
7004 io_cqring_overflow_flush(ctx, false);
7005 if (io_cqring_events(ctx) >= min_events)
7007 if (!io_run_task_work())
7012 #ifdef CONFIG_COMPAT
7013 if (in_compat_syscall())
7014 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7018 ret = set_user_sigmask(sig, sigsz);
7025 struct timespec64 ts;
7027 if (get_timespec64(&ts, uts))
7029 timeout = timespec64_to_jiffies(&ts);
7032 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7033 trace_io_uring_cqring_wait(ctx, min_events);
7035 /* if we can't even flush overflow, don't wait for more */
7036 if (!io_cqring_overflow_flush(ctx, false)) {
7040 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7041 TASK_INTERRUPTIBLE);
7042 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7043 finish_wait(&ctx->wait, &iowq.wq);
7047 restore_saved_sigmask_unless(ret == -EINTR);
7049 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7052 static void io_free_file_tables(struct io_file_table *table, unsigned nr_files)
7054 unsigned i, nr_tables = DIV_ROUND_UP(nr_files, IORING_MAX_FILES_TABLE);
7056 for (i = 0; i < nr_tables; i++)
7057 kfree(table->files[i]);
7058 kfree(table->files);
7059 table->files = NULL;
7062 static inline void io_rsrc_ref_lock(struct io_ring_ctx *ctx)
7064 spin_lock_bh(&ctx->rsrc_ref_lock);
7067 static inline void io_rsrc_ref_unlock(struct io_ring_ctx *ctx)
7069 spin_unlock_bh(&ctx->rsrc_ref_lock);
7072 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7074 percpu_ref_exit(&ref_node->refs);
7078 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7079 struct io_rsrc_data *data_to_kill)
7081 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7082 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7085 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7087 rsrc_node->rsrc_data = data_to_kill;
7088 io_rsrc_ref_lock(ctx);
7089 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7090 io_rsrc_ref_unlock(ctx);
7092 atomic_inc(&data_to_kill->refs);
7093 percpu_ref_kill(&rsrc_node->refs);
7094 ctx->rsrc_node = NULL;
7097 if (!ctx->rsrc_node) {
7098 ctx->rsrc_node = ctx->rsrc_backup_node;
7099 ctx->rsrc_backup_node = NULL;
7103 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7105 if (ctx->rsrc_backup_node)
7107 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7108 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7111 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7115 /* As we may drop ->uring_lock, other task may have started quiesce */
7119 data->quiesce = true;
7121 ret = io_rsrc_node_switch_start(ctx);
7124 io_rsrc_node_switch(ctx, data);
7126 /* kill initial ref, already quiesced if zero */
7127 if (atomic_dec_and_test(&data->refs))
7129 flush_delayed_work(&ctx->rsrc_put_work);
7130 ret = wait_for_completion_interruptible(&data->done);
7134 atomic_inc(&data->refs);
7135 /* wait for all works potentially completing data->done */
7136 flush_delayed_work(&ctx->rsrc_put_work);
7137 reinit_completion(&data->done);
7139 mutex_unlock(&ctx->uring_lock);
7140 ret = io_run_task_work_sig();
7141 mutex_lock(&ctx->uring_lock);
7143 data->quiesce = false;
7148 static void io_rsrc_data_free(struct io_rsrc_data *data)
7154 static struct io_rsrc_data *io_rsrc_data_alloc(struct io_ring_ctx *ctx,
7155 rsrc_put_fn *do_put,
7158 struct io_rsrc_data *data;
7160 data = kzalloc(sizeof(*data), GFP_KERNEL);
7164 data->tags = kvcalloc(nr, sizeof(*data->tags), GFP_KERNEL);
7170 atomic_set(&data->refs, 1);
7172 data->do_put = do_put;
7173 init_completion(&data->done);
7177 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7179 #if defined(CONFIG_UNIX)
7180 if (ctx->ring_sock) {
7181 struct sock *sock = ctx->ring_sock->sk;
7182 struct sk_buff *skb;
7184 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7190 for (i = 0; i < ctx->nr_user_files; i++) {
7193 file = io_file_from_index(ctx, i);
7198 io_free_file_tables(&ctx->file_table, ctx->nr_user_files);
7199 io_rsrc_data_free(ctx->file_data);
7200 ctx->file_data = NULL;
7201 ctx->nr_user_files = 0;
7204 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7208 if (!ctx->file_data)
7210 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7212 __io_sqe_files_unregister(ctx);
7216 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7217 __releases(&sqd->lock)
7219 WARN_ON_ONCE(sqd->thread == current);
7222 * Do the dance but not conditional clear_bit() because it'd race with
7223 * other threads incrementing park_pending and setting the bit.
7225 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7226 if (atomic_dec_return(&sqd->park_pending))
7227 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7228 mutex_unlock(&sqd->lock);
7231 static void io_sq_thread_park(struct io_sq_data *sqd)
7232 __acquires(&sqd->lock)
7234 WARN_ON_ONCE(sqd->thread == current);
7236 atomic_inc(&sqd->park_pending);
7237 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7238 mutex_lock(&sqd->lock);
7240 wake_up_process(sqd->thread);
7243 static void io_sq_thread_stop(struct io_sq_data *sqd)
7245 WARN_ON_ONCE(sqd->thread == current);
7246 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7248 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7249 mutex_lock(&sqd->lock);
7251 wake_up_process(sqd->thread);
7252 mutex_unlock(&sqd->lock);
7253 wait_for_completion(&sqd->exited);
7256 static void io_put_sq_data(struct io_sq_data *sqd)
7258 if (refcount_dec_and_test(&sqd->refs)) {
7259 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7261 io_sq_thread_stop(sqd);
7266 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
7268 struct io_sq_data *sqd = ctx->sq_data;
7271 io_sq_thread_park(sqd);
7272 list_del_init(&ctx->sqd_list);
7273 io_sqd_update_thread_idle(sqd);
7274 io_sq_thread_unpark(sqd);
7276 io_put_sq_data(sqd);
7277 ctx->sq_data = NULL;
7281 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7283 struct io_ring_ctx *ctx_attach;
7284 struct io_sq_data *sqd;
7287 f = fdget(p->wq_fd);
7289 return ERR_PTR(-ENXIO);
7290 if (f.file->f_op != &io_uring_fops) {
7292 return ERR_PTR(-EINVAL);
7295 ctx_attach = f.file->private_data;
7296 sqd = ctx_attach->sq_data;
7299 return ERR_PTR(-EINVAL);
7301 if (sqd->task_tgid != current->tgid) {
7303 return ERR_PTR(-EPERM);
7306 refcount_inc(&sqd->refs);
7311 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
7314 struct io_sq_data *sqd;
7317 if (p->flags & IORING_SETUP_ATTACH_WQ) {
7318 sqd = io_attach_sq_data(p);
7323 /* fall through for EPERM case, setup new sqd/task */
7324 if (PTR_ERR(sqd) != -EPERM)
7328 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7330 return ERR_PTR(-ENOMEM);
7332 atomic_set(&sqd->park_pending, 0);
7333 refcount_set(&sqd->refs, 1);
7334 INIT_LIST_HEAD(&sqd->ctx_list);
7335 mutex_init(&sqd->lock);
7336 init_waitqueue_head(&sqd->wait);
7337 init_completion(&sqd->exited);
7341 #if defined(CONFIG_UNIX)
7343 * Ensure the UNIX gc is aware of our file set, so we are certain that
7344 * the io_uring can be safely unregistered on process exit, even if we have
7345 * loops in the file referencing.
7347 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7349 struct sock *sk = ctx->ring_sock->sk;
7350 struct scm_fp_list *fpl;
7351 struct sk_buff *skb;
7354 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7358 skb = alloc_skb(0, GFP_KERNEL);
7367 fpl->user = get_uid(current_user());
7368 for (i = 0; i < nr; i++) {
7369 struct file *file = io_file_from_index(ctx, i + offset);
7373 fpl->fp[nr_files] = get_file(file);
7374 unix_inflight(fpl->user, fpl->fp[nr_files]);
7379 fpl->max = SCM_MAX_FD;
7380 fpl->count = nr_files;
7381 UNIXCB(skb).fp = fpl;
7382 skb->destructor = unix_destruct_scm;
7383 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7384 skb_queue_head(&sk->sk_receive_queue, skb);
7386 for (i = 0; i < nr_files; i++)
7397 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7398 * causes regular reference counting to break down. We rely on the UNIX
7399 * garbage collection to take care of this problem for us.
7401 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7403 unsigned left, total;
7407 left = ctx->nr_user_files;
7409 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7411 ret = __io_sqe_files_scm(ctx, this_files, total);
7415 total += this_files;
7421 while (total < ctx->nr_user_files) {
7422 struct file *file = io_file_from_index(ctx, total);
7432 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7438 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7440 unsigned i, nr_tables = DIV_ROUND_UP(nr_files, IORING_MAX_FILES_TABLE);
7442 table->files = kcalloc(nr_tables, sizeof(*table->files), GFP_KERNEL);
7446 for (i = 0; i < nr_tables; i++) {
7447 unsigned int this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7449 table->files[i] = kcalloc(this_files, sizeof(*table->files[i]),
7451 if (!table->files[i])
7453 nr_files -= this_files;
7459 io_free_file_tables(table, nr_tables * IORING_MAX_FILES_TABLE);
7463 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
7465 struct file *file = prsrc->file;
7466 #if defined(CONFIG_UNIX)
7467 struct sock *sock = ctx->ring_sock->sk;
7468 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7469 struct sk_buff *skb;
7472 __skb_queue_head_init(&list);
7475 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7476 * remove this entry and rearrange the file array.
7478 skb = skb_dequeue(head);
7480 struct scm_fp_list *fp;
7482 fp = UNIXCB(skb).fp;
7483 for (i = 0; i < fp->count; i++) {
7486 if (fp->fp[i] != file)
7489 unix_notinflight(fp->user, fp->fp[i]);
7490 left = fp->count - 1 - i;
7492 memmove(&fp->fp[i], &fp->fp[i + 1],
7493 left * sizeof(struct file *));
7500 __skb_queue_tail(&list, skb);
7510 __skb_queue_tail(&list, skb);
7512 skb = skb_dequeue(head);
7515 if (skb_peek(&list)) {
7516 spin_lock_irq(&head->lock);
7517 while ((skb = __skb_dequeue(&list)) != NULL)
7518 __skb_queue_tail(head, skb);
7519 spin_unlock_irq(&head->lock);
7526 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
7528 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
7529 struct io_ring_ctx *ctx = rsrc_data->ctx;
7530 struct io_rsrc_put *prsrc, *tmp;
7532 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
7533 list_del(&prsrc->list);
7536 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
7537 unsigned long flags;
7539 io_ring_submit_lock(ctx, lock_ring);
7540 spin_lock_irqsave(&ctx->completion_lock, flags);
7541 io_cqring_fill_event(ctx, prsrc->tag, 0, 0);
7542 io_commit_cqring(ctx);
7543 spin_unlock_irqrestore(&ctx->completion_lock, flags);
7544 io_cqring_ev_posted(ctx);
7545 io_ring_submit_unlock(ctx, lock_ring);
7548 rsrc_data->do_put(ctx, prsrc);
7552 io_rsrc_node_destroy(ref_node);
7553 if (atomic_dec_and_test(&rsrc_data->refs))
7554 complete(&rsrc_data->done);
7557 static void io_rsrc_put_work(struct work_struct *work)
7559 struct io_ring_ctx *ctx;
7560 struct llist_node *node;
7562 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
7563 node = llist_del_all(&ctx->rsrc_put_llist);
7566 struct io_rsrc_node *ref_node;
7567 struct llist_node *next = node->next;
7569 ref_node = llist_entry(node, struct io_rsrc_node, llist);
7570 __io_rsrc_put_work(ref_node);
7575 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7577 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7578 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7579 bool first_add = false;
7581 io_rsrc_ref_lock(ctx);
7584 while (!list_empty(&ctx->rsrc_ref_list)) {
7585 node = list_first_entry(&ctx->rsrc_ref_list,
7586 struct io_rsrc_node, node);
7587 /* recycle ref nodes in order */
7590 list_del(&node->node);
7591 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7593 io_rsrc_ref_unlock(ctx);
7596 mod_delayed_work(system_wq, &ctx->rsrc_put_work, HZ);
7599 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7601 struct io_rsrc_node *ref_node;
7603 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7607 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7612 INIT_LIST_HEAD(&ref_node->node);
7613 INIT_LIST_HEAD(&ref_node->rsrc_list);
7614 ref_node->done = false;
7618 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7619 unsigned nr_args, u64 __user *tags)
7621 __s32 __user *fds = (__s32 __user *) arg;
7625 struct io_rsrc_data *file_data;
7631 if (nr_args > IORING_MAX_FIXED_FILES)
7633 ret = io_rsrc_node_switch_start(ctx);
7637 file_data = io_rsrc_data_alloc(ctx, io_rsrc_file_put, nr_args);
7640 ctx->file_data = file_data;
7642 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
7645 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7648 if ((tags && copy_from_user(&tag, &tags[i], sizeof(tag))) ||
7649 copy_from_user(&fd, &fds[i], sizeof(fd))) {
7653 /* allow sparse sets */
7663 if (unlikely(!file))
7667 * Don't allow io_uring instances to be registered. If UNIX
7668 * isn't enabled, then this causes a reference cycle and this
7669 * instance can never get freed. If UNIX is enabled we'll
7670 * handle it just fine, but there's still no point in allowing
7671 * a ring fd as it doesn't support regular read/write anyway.
7673 if (file->f_op == &io_uring_fops) {
7677 ctx->file_data->tags[i] = tag;
7678 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
7681 ret = io_sqe_files_scm(ctx);
7683 __io_sqe_files_unregister(ctx);
7687 io_rsrc_node_switch(ctx, NULL);
7690 for (i = 0; i < ctx->nr_user_files; i++) {
7691 file = io_file_from_index(ctx, i);
7695 io_free_file_tables(&ctx->file_table, nr_args);
7696 ctx->nr_user_files = 0;
7698 io_rsrc_data_free(ctx->file_data);
7699 ctx->file_data = NULL;
7703 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7706 #if defined(CONFIG_UNIX)
7707 struct sock *sock = ctx->ring_sock->sk;
7708 struct sk_buff_head *head = &sock->sk_receive_queue;
7709 struct sk_buff *skb;
7712 * See if we can merge this file into an existing skb SCM_RIGHTS
7713 * file set. If there's no room, fall back to allocating a new skb
7714 * and filling it in.
7716 spin_lock_irq(&head->lock);
7717 skb = skb_peek(head);
7719 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7721 if (fpl->count < SCM_MAX_FD) {
7722 __skb_unlink(skb, head);
7723 spin_unlock_irq(&head->lock);
7724 fpl->fp[fpl->count] = get_file(file);
7725 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7727 spin_lock_irq(&head->lock);
7728 __skb_queue_head(head, skb);
7733 spin_unlock_irq(&head->lock);
7740 return __io_sqe_files_scm(ctx, 1, index);
7746 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
7747 struct io_rsrc_node *node, void *rsrc)
7749 struct io_rsrc_put *prsrc;
7751 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
7755 prsrc->tag = data->tags[idx];
7757 list_add(&prsrc->list, &node->rsrc_list);
7761 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7762 struct io_uring_rsrc_update2 *up,
7765 u64 __user *tags = u64_to_user_ptr(up->tags);
7766 __s32 __user *fds = u64_to_user_ptr(up->data);
7767 struct io_rsrc_data *data = ctx->file_data;
7768 struct io_fixed_file *file_slot;
7772 bool needs_switch = false;
7774 if (!ctx->file_data)
7776 if (up->offset + nr_args > ctx->nr_user_files)
7779 for (done = 0; done < nr_args; done++) {
7782 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
7783 copy_from_user(&fd, &fds[done], sizeof(fd))) {
7787 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
7791 if (fd == IORING_REGISTER_FILES_SKIP)
7794 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
7795 file_slot = io_fixed_file_slot(&ctx->file_table, i);
7797 if (file_slot->file_ptr) {
7798 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
7799 err = io_queue_rsrc_removal(data, up->offset + done,
7800 ctx->rsrc_node, file);
7803 file_slot->file_ptr = 0;
7804 needs_switch = true;
7813 * Don't allow io_uring instances to be registered. If
7814 * UNIX isn't enabled, then this causes a reference
7815 * cycle and this instance can never get freed. If UNIX
7816 * is enabled we'll handle it just fine, but there's
7817 * still no point in allowing a ring fd as it doesn't
7818 * support regular read/write anyway.
7820 if (file->f_op == &io_uring_fops) {
7825 data->tags[up->offset + done] = tag;
7826 io_fixed_file_set(file_slot, file);
7827 err = io_sqe_file_register(ctx, file, i);
7829 file_slot->file_ptr = 0;
7837 io_rsrc_node_switch(ctx, data);
7838 return done ? done : err;
7841 static struct io_wq_work *io_free_work(struct io_wq_work *work)
7843 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7845 req = io_put_req_find_next(req);
7846 return req ? &req->work : NULL;
7849 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
7850 struct task_struct *task)
7852 struct io_wq_hash *hash;
7853 struct io_wq_data data;
7854 unsigned int concurrency;
7856 hash = ctx->hash_map;
7858 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
7860 return ERR_PTR(-ENOMEM);
7861 refcount_set(&hash->refs, 1);
7862 init_waitqueue_head(&hash->wait);
7863 ctx->hash_map = hash;
7868 data.free_work = io_free_work;
7869 data.do_work = io_wq_submit_work;
7871 /* Do QD, or 4 * CPUS, whatever is smallest */
7872 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
7874 return io_wq_create(concurrency, &data);
7877 static int io_uring_alloc_task_context(struct task_struct *task,
7878 struct io_ring_ctx *ctx)
7880 struct io_uring_task *tctx;
7883 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
7884 if (unlikely(!tctx))
7887 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
7888 if (unlikely(ret)) {
7893 tctx->io_wq = io_init_wq_offload(ctx, task);
7894 if (IS_ERR(tctx->io_wq)) {
7895 ret = PTR_ERR(tctx->io_wq);
7896 percpu_counter_destroy(&tctx->inflight);
7902 init_waitqueue_head(&tctx->wait);
7904 atomic_set(&tctx->in_idle, 0);
7905 atomic_set(&tctx->inflight_tracked, 0);
7906 task->io_uring = tctx;
7907 spin_lock_init(&tctx->task_lock);
7908 INIT_WQ_LIST(&tctx->task_list);
7909 tctx->task_state = 0;
7910 init_task_work(&tctx->task_work, tctx_task_work);
7914 void __io_uring_free(struct task_struct *tsk)
7916 struct io_uring_task *tctx = tsk->io_uring;
7918 WARN_ON_ONCE(!xa_empty(&tctx->xa));
7919 WARN_ON_ONCE(tctx->io_wq);
7921 percpu_counter_destroy(&tctx->inflight);
7923 tsk->io_uring = NULL;
7926 static int io_sq_offload_create(struct io_ring_ctx *ctx,
7927 struct io_uring_params *p)
7931 /* Retain compatibility with failing for an invalid attach attempt */
7932 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
7933 IORING_SETUP_ATTACH_WQ) {
7936 f = fdget(p->wq_fd);
7940 if (f.file->f_op != &io_uring_fops)
7943 if (ctx->flags & IORING_SETUP_SQPOLL) {
7944 struct task_struct *tsk;
7945 struct io_sq_data *sqd;
7948 sqd = io_get_sq_data(p, &attached);
7954 ctx->sq_creds = get_current_cred();
7956 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
7957 if (!ctx->sq_thread_idle)
7958 ctx->sq_thread_idle = HZ;
7960 io_sq_thread_park(sqd);
7961 list_add(&ctx->sqd_list, &sqd->ctx_list);
7962 io_sqd_update_thread_idle(sqd);
7963 /* don't attach to a dying SQPOLL thread, would be racy */
7964 ret = (attached && !sqd->thread) ? -ENXIO : 0;
7965 io_sq_thread_unpark(sqd);
7972 if (p->flags & IORING_SETUP_SQ_AFF) {
7973 int cpu = p->sq_thread_cpu;
7976 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
7983 sqd->task_pid = current->pid;
7984 sqd->task_tgid = current->tgid;
7985 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
7992 ret = io_uring_alloc_task_context(tsk, ctx);
7993 wake_up_new_task(tsk);
7996 } else if (p->flags & IORING_SETUP_SQ_AFF) {
7997 /* Can't have SQ_AFF without SQPOLL */
8004 complete(&ctx->sq_data->exited);
8006 io_sq_thread_finish(ctx);
8010 static inline void __io_unaccount_mem(struct user_struct *user,
8011 unsigned long nr_pages)
8013 atomic_long_sub(nr_pages, &user->locked_vm);
8016 static inline int __io_account_mem(struct user_struct *user,
8017 unsigned long nr_pages)
8019 unsigned long page_limit, cur_pages, new_pages;
8021 /* Don't allow more pages than we can safely lock */
8022 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8025 cur_pages = atomic_long_read(&user->locked_vm);
8026 new_pages = cur_pages + nr_pages;
8027 if (new_pages > page_limit)
8029 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8030 new_pages) != cur_pages);
8035 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8038 __io_unaccount_mem(ctx->user, nr_pages);
8040 if (ctx->mm_account)
8041 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8044 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8049 ret = __io_account_mem(ctx->user, nr_pages);
8054 if (ctx->mm_account)
8055 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8060 static void io_mem_free(void *ptr)
8067 page = virt_to_head_page(ptr);
8068 if (put_page_testzero(page))
8069 free_compound_page(page);
8072 static void *io_mem_alloc(size_t size)
8074 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8075 __GFP_NORETRY | __GFP_ACCOUNT;
8077 return (void *) __get_free_pages(gfp_flags, get_order(size));
8080 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8083 struct io_rings *rings;
8084 size_t off, sq_array_size;
8086 off = struct_size(rings, cqes, cq_entries);
8087 if (off == SIZE_MAX)
8091 off = ALIGN(off, SMP_CACHE_BYTES);
8099 sq_array_size = array_size(sizeof(u32), sq_entries);
8100 if (sq_array_size == SIZE_MAX)
8103 if (check_add_overflow(off, sq_array_size, &off))
8109 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8111 struct io_mapped_ubuf *imu = *slot;
8114 for (i = 0; i < imu->nr_bvecs; i++)
8115 unpin_user_page(imu->bvec[i].bv_page);
8116 if (imu->acct_pages)
8117 io_unaccount_mem(ctx, imu->acct_pages);
8122 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8124 io_buffer_unmap(ctx, &prsrc->buf);
8128 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8132 for (i = 0; i < ctx->nr_user_bufs; i++)
8133 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8134 kfree(ctx->user_bufs);
8135 kfree(ctx->buf_data);
8136 ctx->user_bufs = NULL;
8137 ctx->buf_data = NULL;
8138 ctx->nr_user_bufs = 0;
8141 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8148 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8150 __io_sqe_buffers_unregister(ctx);
8154 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8155 void __user *arg, unsigned index)
8157 struct iovec __user *src;
8159 #ifdef CONFIG_COMPAT
8161 struct compat_iovec __user *ciovs;
8162 struct compat_iovec ciov;
8164 ciovs = (struct compat_iovec __user *) arg;
8165 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8168 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8169 dst->iov_len = ciov.iov_len;
8173 src = (struct iovec __user *) arg;
8174 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8180 * Not super efficient, but this is just a registration time. And we do cache
8181 * the last compound head, so generally we'll only do a full search if we don't
8184 * We check if the given compound head page has already been accounted, to
8185 * avoid double accounting it. This allows us to account the full size of the
8186 * page, not just the constituent pages of a huge page.
8188 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8189 int nr_pages, struct page *hpage)
8193 /* check current page array */
8194 for (i = 0; i < nr_pages; i++) {
8195 if (!PageCompound(pages[i]))
8197 if (compound_head(pages[i]) == hpage)
8201 /* check previously registered pages */
8202 for (i = 0; i < ctx->nr_user_bufs; i++) {
8203 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8205 for (j = 0; j < imu->nr_bvecs; j++) {
8206 if (!PageCompound(imu->bvec[j].bv_page))
8208 if (compound_head(imu->bvec[j].bv_page) == hpage)
8216 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8217 int nr_pages, struct io_mapped_ubuf *imu,
8218 struct page **last_hpage)
8222 for (i = 0; i < nr_pages; i++) {
8223 if (!PageCompound(pages[i])) {
8228 hpage = compound_head(pages[i]);
8229 if (hpage == *last_hpage)
8231 *last_hpage = hpage;
8232 if (headpage_already_acct(ctx, pages, i, hpage))
8234 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8238 if (!imu->acct_pages)
8241 ret = io_account_mem(ctx, imu->acct_pages);
8243 imu->acct_pages = 0;
8247 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
8248 struct io_mapped_ubuf **pimu,
8249 struct page **last_hpage)
8251 struct io_mapped_ubuf *imu = NULL;
8252 struct vm_area_struct **vmas = NULL;
8253 struct page **pages = NULL;
8254 unsigned long off, start, end, ubuf;
8256 int ret, pret, nr_pages, i;
8258 ubuf = (unsigned long) iov->iov_base;
8259 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8260 start = ubuf >> PAGE_SHIFT;
8261 nr_pages = end - start;
8266 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
8270 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
8275 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
8280 mmap_read_lock(current->mm);
8281 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
8283 if (pret == nr_pages) {
8284 /* don't support file backed memory */
8285 for (i = 0; i < nr_pages; i++) {
8286 struct vm_area_struct *vma = vmas[i];
8289 !is_file_hugepages(vma->vm_file)) {
8295 ret = pret < 0 ? pret : -EFAULT;
8297 mmap_read_unlock(current->mm);
8300 * if we did partial map, or found file backed vmas,
8301 * release any pages we did get
8304 unpin_user_pages(pages, pret);
8308 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
8310 unpin_user_pages(pages, pret);
8314 off = ubuf & ~PAGE_MASK;
8315 size = iov->iov_len;
8316 for (i = 0; i < nr_pages; i++) {
8319 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8320 imu->bvec[i].bv_page = pages[i];
8321 imu->bvec[i].bv_len = vec_len;
8322 imu->bvec[i].bv_offset = off;
8326 /* store original address for later verification */
8328 imu->ubuf_end = ubuf + iov->iov_len;
8329 imu->nr_bvecs = nr_pages;
8340 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
8342 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
8343 return ctx->user_bufs ? 0 : -ENOMEM;
8346 static int io_buffer_validate(struct iovec *iov)
8348 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
8351 * Don't impose further limits on the size and buffer
8352 * constraints here, we'll -EINVAL later when IO is
8353 * submitted if they are wrong.
8355 if (!iov->iov_base || !iov->iov_len)
8358 /* arbitrary limit, but we need something */
8359 if (iov->iov_len > SZ_1G)
8362 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
8368 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
8369 unsigned int nr_args, u64 __user *tags)
8371 struct page *last_hpage = NULL;
8372 struct io_rsrc_data *data;
8378 if (!nr_args || nr_args > UIO_MAXIOV)
8380 ret = io_rsrc_node_switch_start(ctx);
8383 data = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, nr_args);
8386 ret = io_buffers_map_alloc(ctx, nr_args);
8392 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
8395 if (tags && copy_from_user(&tag, &tags[i], sizeof(tag))) {
8399 ret = io_copy_iov(ctx, &iov, arg, i);
8402 ret = io_buffer_validate(&iov);
8406 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
8410 data->tags[i] = tag;
8413 WARN_ON_ONCE(ctx->buf_data);
8415 ctx->buf_data = data;
8417 __io_sqe_buffers_unregister(ctx);
8419 io_rsrc_node_switch(ctx, NULL);
8423 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
8424 struct io_uring_rsrc_update2 *up,
8425 unsigned int nr_args)
8427 u64 __user *tags = u64_to_user_ptr(up->tags);
8428 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
8429 struct page *last_hpage = NULL;
8430 bool needs_switch = false;
8436 if (up->offset + nr_args > ctx->nr_user_bufs)
8439 for (done = 0; done < nr_args; done++) {
8440 struct io_mapped_ubuf *imu;
8441 int offset = up->offset + done;
8444 err = io_copy_iov(ctx, &iov, iovs, done);
8447 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
8451 err = io_buffer_validate(&iov);
8454 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
8458 i = array_index_nospec(offset, ctx->nr_user_bufs);
8459 if (ctx->user_bufs[i]) {
8460 err = io_queue_rsrc_removal(ctx->buf_data, offset,
8461 ctx->rsrc_node, ctx->user_bufs[i]);
8462 if (unlikely(err)) {
8463 io_buffer_unmap(ctx, &imu);
8466 ctx->user_bufs[i] = NULL;
8467 needs_switch = true;
8470 ctx->user_bufs[i] = imu;
8471 ctx->buf_data->tags[offset] = tag;
8475 io_rsrc_node_switch(ctx, ctx->buf_data);
8476 return done ? done : err;
8479 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8481 __s32 __user *fds = arg;
8487 if (copy_from_user(&fd, fds, sizeof(*fds)))
8490 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8491 if (IS_ERR(ctx->cq_ev_fd)) {
8492 int ret = PTR_ERR(ctx->cq_ev_fd);
8493 ctx->cq_ev_fd = NULL;
8500 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8502 if (ctx->cq_ev_fd) {
8503 eventfd_ctx_put(ctx->cq_ev_fd);
8504 ctx->cq_ev_fd = NULL;
8511 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8513 struct io_buffer *buf;
8514 unsigned long index;
8516 xa_for_each(&ctx->io_buffers, index, buf)
8517 __io_remove_buffers(ctx, buf, index, -1U);
8520 static void io_req_cache_free(struct list_head *list, struct task_struct *tsk)
8522 struct io_kiocb *req, *nxt;
8524 list_for_each_entry_safe(req, nxt, list, compl.list) {
8525 if (tsk && req->task != tsk)
8527 list_del(&req->compl.list);
8528 kmem_cache_free(req_cachep, req);
8532 static void io_req_caches_free(struct io_ring_ctx *ctx)
8534 struct io_submit_state *submit_state = &ctx->submit_state;
8535 struct io_comp_state *cs = &ctx->submit_state.comp;
8537 mutex_lock(&ctx->uring_lock);
8539 if (submit_state->free_reqs) {
8540 kmem_cache_free_bulk(req_cachep, submit_state->free_reqs,
8541 submit_state->reqs);
8542 submit_state->free_reqs = 0;
8545 io_flush_cached_locked_reqs(ctx, cs);
8546 io_req_cache_free(&cs->free_list, NULL);
8547 mutex_unlock(&ctx->uring_lock);
8550 static bool io_wait_rsrc_data(struct io_rsrc_data *data)
8554 if (!atomic_dec_and_test(&data->refs))
8555 wait_for_completion(&data->done);
8559 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8561 io_sq_thread_finish(ctx);
8563 if (ctx->mm_account) {
8564 mmdrop(ctx->mm_account);
8565 ctx->mm_account = NULL;
8568 mutex_lock(&ctx->uring_lock);
8569 if (io_wait_rsrc_data(ctx->buf_data))
8570 __io_sqe_buffers_unregister(ctx);
8571 if (io_wait_rsrc_data(ctx->file_data))
8572 __io_sqe_files_unregister(ctx);
8574 __io_cqring_overflow_flush(ctx, true);
8575 mutex_unlock(&ctx->uring_lock);
8576 io_eventfd_unregister(ctx);
8577 io_destroy_buffers(ctx);
8579 put_cred(ctx->sq_creds);
8581 /* there are no registered resources left, nobody uses it */
8583 io_rsrc_node_destroy(ctx->rsrc_node);
8584 if (ctx->rsrc_backup_node)
8585 io_rsrc_node_destroy(ctx->rsrc_backup_node);
8586 flush_delayed_work(&ctx->rsrc_put_work);
8588 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
8589 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
8591 #if defined(CONFIG_UNIX)
8592 if (ctx->ring_sock) {
8593 ctx->ring_sock->file = NULL; /* so that iput() is called */
8594 sock_release(ctx->ring_sock);
8598 io_mem_free(ctx->rings);
8599 io_mem_free(ctx->sq_sqes);
8601 percpu_ref_exit(&ctx->refs);
8602 free_uid(ctx->user);
8603 io_req_caches_free(ctx);
8605 io_wq_put_hash(ctx->hash_map);
8606 kfree(ctx->cancel_hash);
8610 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8612 struct io_ring_ctx *ctx = file->private_data;
8615 poll_wait(file, &ctx->cq_wait, wait);
8617 * synchronizes with barrier from wq_has_sleeper call in
8621 if (!io_sqring_full(ctx))
8622 mask |= EPOLLOUT | EPOLLWRNORM;
8625 * Don't flush cqring overflow list here, just do a simple check.
8626 * Otherwise there could possible be ABBA deadlock:
8629 * lock(&ctx->uring_lock);
8631 * lock(&ctx->uring_lock);
8634 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
8635 * pushs them to do the flush.
8637 if (io_cqring_events(ctx) || test_bit(0, &ctx->cq_check_overflow))
8638 mask |= EPOLLIN | EPOLLRDNORM;
8643 static int io_uring_fasync(int fd, struct file *file, int on)
8645 struct io_ring_ctx *ctx = file->private_data;
8647 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8650 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
8652 const struct cred *creds;
8654 creds = xa_erase(&ctx->personalities, id);
8663 static inline bool io_run_ctx_fallback(struct io_ring_ctx *ctx)
8665 return io_run_task_work_head(&ctx->exit_task_work);
8668 struct io_tctx_exit {
8669 struct callback_head task_work;
8670 struct completion completion;
8671 struct io_ring_ctx *ctx;
8674 static void io_tctx_exit_cb(struct callback_head *cb)
8676 struct io_uring_task *tctx = current->io_uring;
8677 struct io_tctx_exit *work;
8679 work = container_of(cb, struct io_tctx_exit, task_work);
8681 * When @in_idle, we're in cancellation and it's racy to remove the
8682 * node. It'll be removed by the end of cancellation, just ignore it.
8684 if (!atomic_read(&tctx->in_idle))
8685 io_uring_del_task_file((unsigned long)work->ctx);
8686 complete(&work->completion);
8689 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8691 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8693 return req->ctx == data;
8696 static void io_ring_exit_work(struct work_struct *work)
8698 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
8699 unsigned long timeout = jiffies + HZ * 60 * 5;
8700 struct io_tctx_exit exit;
8701 struct io_tctx_node *node;
8705 * If we're doing polled IO and end up having requests being
8706 * submitted async (out-of-line), then completions can come in while
8707 * we're waiting for refs to drop. We need to reap these manually,
8708 * as nobody else will be looking for them.
8711 io_uring_try_cancel_requests(ctx, NULL, NULL);
8713 struct io_sq_data *sqd = ctx->sq_data;
8714 struct task_struct *tsk;
8716 io_sq_thread_park(sqd);
8718 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
8719 io_wq_cancel_cb(tsk->io_uring->io_wq,
8720 io_cancel_ctx_cb, ctx, true);
8721 io_sq_thread_unpark(sqd);
8724 WARN_ON_ONCE(time_after(jiffies, timeout));
8725 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8727 init_completion(&exit.completion);
8728 init_task_work(&exit.task_work, io_tctx_exit_cb);
8731 * Some may use context even when all refs and requests have been put,
8732 * and they are free to do so while still holding uring_lock or
8733 * completion_lock, see __io_req_task_submit(). Apart from other work,
8734 * this lock/unlock section also waits them to finish.
8736 mutex_lock(&ctx->uring_lock);
8737 while (!list_empty(&ctx->tctx_list)) {
8738 WARN_ON_ONCE(time_after(jiffies, timeout));
8740 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
8742 /* don't spin on a single task if cancellation failed */
8743 list_rotate_left(&ctx->tctx_list);
8744 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
8745 if (WARN_ON_ONCE(ret))
8747 wake_up_process(node->task);
8749 mutex_unlock(&ctx->uring_lock);
8750 wait_for_completion(&exit.completion);
8751 mutex_lock(&ctx->uring_lock);
8753 mutex_unlock(&ctx->uring_lock);
8754 spin_lock_irq(&ctx->completion_lock);
8755 spin_unlock_irq(&ctx->completion_lock);
8757 io_ring_ctx_free(ctx);
8760 /* Returns true if we found and killed one or more timeouts */
8761 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
8762 struct files_struct *files)
8764 struct io_kiocb *req, *tmp;
8767 spin_lock_irq(&ctx->completion_lock);
8768 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
8769 if (io_match_task(req, tsk, files)) {
8770 io_kill_timeout(req, -ECANCELED);
8775 io_commit_cqring(ctx);
8776 spin_unlock_irq(&ctx->completion_lock);
8778 io_cqring_ev_posted(ctx);
8779 return canceled != 0;
8782 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8784 unsigned long index;
8785 struct creds *creds;
8787 mutex_lock(&ctx->uring_lock);
8788 percpu_ref_kill(&ctx->refs);
8790 __io_cqring_overflow_flush(ctx, true);
8791 xa_for_each(&ctx->personalities, index, creds)
8792 io_unregister_personality(ctx, index);
8793 mutex_unlock(&ctx->uring_lock);
8795 io_kill_timeouts(ctx, NULL, NULL);
8796 io_poll_remove_all(ctx, NULL, NULL);
8798 /* if we failed setting up the ctx, we might not have any rings */
8799 io_iopoll_try_reap_events(ctx);
8801 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8803 * Use system_unbound_wq to avoid spawning tons of event kworkers
8804 * if we're exiting a ton of rings at the same time. It just adds
8805 * noise and overhead, there's no discernable change in runtime
8806 * over using system_wq.
8808 queue_work(system_unbound_wq, &ctx->exit_work);
8811 static int io_uring_release(struct inode *inode, struct file *file)
8813 struct io_ring_ctx *ctx = file->private_data;
8815 file->private_data = NULL;
8816 io_ring_ctx_wait_and_kill(ctx);
8820 struct io_task_cancel {
8821 struct task_struct *task;
8822 struct files_struct *files;
8825 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8827 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8828 struct io_task_cancel *cancel = data;
8831 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8832 unsigned long flags;
8833 struct io_ring_ctx *ctx = req->ctx;
8835 /* protect against races with linked timeouts */
8836 spin_lock_irqsave(&ctx->completion_lock, flags);
8837 ret = io_match_task(req, cancel->task, cancel->files);
8838 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8840 ret = io_match_task(req, cancel->task, cancel->files);
8845 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
8846 struct task_struct *task,
8847 struct files_struct *files)
8849 struct io_defer_entry *de;
8852 spin_lock_irq(&ctx->completion_lock);
8853 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8854 if (io_match_task(de->req, task, files)) {
8855 list_cut_position(&list, &ctx->defer_list, &de->list);
8859 spin_unlock_irq(&ctx->completion_lock);
8860 if (list_empty(&list))
8863 while (!list_empty(&list)) {
8864 de = list_first_entry(&list, struct io_defer_entry, list);
8865 list_del_init(&de->list);
8866 io_req_complete_failed(de->req, -ECANCELED);
8872 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
8874 struct io_tctx_node *node;
8875 enum io_wq_cancel cret;
8878 mutex_lock(&ctx->uring_lock);
8879 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
8880 struct io_uring_task *tctx = node->task->io_uring;
8883 * io_wq will stay alive while we hold uring_lock, because it's
8884 * killed after ctx nodes, which requires to take the lock.
8886 if (!tctx || !tctx->io_wq)
8888 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
8889 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8891 mutex_unlock(&ctx->uring_lock);
8896 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
8897 struct task_struct *task,
8898 struct files_struct *files)
8900 struct io_task_cancel cancel = { .task = task, .files = files, };
8901 struct io_uring_task *tctx = task ? task->io_uring : NULL;
8904 enum io_wq_cancel cret;
8908 ret |= io_uring_try_cancel_iowq(ctx);
8909 } else if (tctx && tctx->io_wq) {
8911 * Cancels requests of all rings, not only @ctx, but
8912 * it's fine as the task is in exit/exec.
8914 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
8916 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8919 /* SQPOLL thread does its own polling */
8920 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && !files) ||
8921 (ctx->sq_data && ctx->sq_data->thread == current)) {
8922 while (!list_empty_careful(&ctx->iopoll_list)) {
8923 io_iopoll_try_reap_events(ctx);
8928 ret |= io_cancel_defer_files(ctx, task, files);
8929 ret |= io_poll_remove_all(ctx, task, files);
8930 ret |= io_kill_timeouts(ctx, task, files);
8931 ret |= io_run_task_work();
8932 ret |= io_run_ctx_fallback(ctx);
8939 static int __io_uring_add_task_file(struct io_ring_ctx *ctx)
8941 struct io_uring_task *tctx = current->io_uring;
8942 struct io_tctx_node *node;
8945 if (unlikely(!tctx)) {
8946 ret = io_uring_alloc_task_context(current, ctx);
8949 tctx = current->io_uring;
8951 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
8952 node = kmalloc(sizeof(*node), GFP_KERNEL);
8956 node->task = current;
8958 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
8965 mutex_lock(&ctx->uring_lock);
8966 list_add(&node->ctx_node, &ctx->tctx_list);
8967 mutex_unlock(&ctx->uring_lock);
8974 * Note that this task has used io_uring. We use it for cancelation purposes.
8976 static inline int io_uring_add_task_file(struct io_ring_ctx *ctx)
8978 struct io_uring_task *tctx = current->io_uring;
8980 if (likely(tctx && tctx->last == ctx))
8982 return __io_uring_add_task_file(ctx);
8986 * Remove this io_uring_file -> task mapping.
8988 static void io_uring_del_task_file(unsigned long index)
8990 struct io_uring_task *tctx = current->io_uring;
8991 struct io_tctx_node *node;
8995 node = xa_erase(&tctx->xa, index);
8999 WARN_ON_ONCE(current != node->task);
9000 WARN_ON_ONCE(list_empty(&node->ctx_node));
9002 mutex_lock(&node->ctx->uring_lock);
9003 list_del(&node->ctx_node);
9004 mutex_unlock(&node->ctx->uring_lock);
9006 if (tctx->last == node->ctx)
9011 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9013 struct io_tctx_node *node;
9014 unsigned long index;
9016 xa_for_each(&tctx->xa, index, node)
9017 io_uring_del_task_file(index);
9019 io_wq_put_and_exit(tctx->io_wq);
9024 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9027 return atomic_read(&tctx->inflight_tracked);
9028 return percpu_counter_sum(&tctx->inflight);
9031 static void io_uring_try_cancel(struct files_struct *files)
9033 struct io_uring_task *tctx = current->io_uring;
9034 struct io_tctx_node *node;
9035 unsigned long index;
9037 xa_for_each(&tctx->xa, index, node) {
9038 struct io_ring_ctx *ctx = node->ctx;
9040 /* sqpoll task will cancel all its requests */
9042 io_uring_try_cancel_requests(ctx, current, files);
9046 /* should only be called by SQPOLL task */
9047 static void io_uring_cancel_sqpoll(struct io_sq_data *sqd)
9049 struct io_uring_task *tctx = current->io_uring;
9050 struct io_ring_ctx *ctx;
9054 if (!current->io_uring)
9056 WARN_ON_ONCE(!sqd || sqd->thread != current);
9058 atomic_inc(&tctx->in_idle);
9060 /* read completions before cancelations */
9061 inflight = tctx_inflight(tctx, false);
9064 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9065 io_uring_try_cancel_requests(ctx, current, NULL);
9067 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9069 * If we've seen completions, retry without waiting. This
9070 * avoids a race where a completion comes in before we did
9071 * prepare_to_wait().
9073 if (inflight == tctx_inflight(tctx, false))
9075 finish_wait(&tctx->wait, &wait);
9077 atomic_dec(&tctx->in_idle);
9081 * Find any io_uring fd that this task has registered or done IO on, and cancel
9084 void __io_uring_cancel(struct files_struct *files)
9086 struct io_uring_task *tctx = current->io_uring;
9090 /* make sure overflow events are dropped */
9091 atomic_inc(&tctx->in_idle);
9093 /* read completions before cancelations */
9094 inflight = tctx_inflight(tctx, !!files);
9097 io_uring_try_cancel(files);
9098 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9101 * If we've seen completions, retry without waiting. This
9102 * avoids a race where a completion comes in before we did
9103 * prepare_to_wait().
9105 if (inflight == tctx_inflight(tctx, !!files))
9107 finish_wait(&tctx->wait, &wait);
9109 atomic_dec(&tctx->in_idle);
9111 io_uring_clean_tctx(tctx);
9113 /* for exec all current's requests should be gone, kill tctx */
9114 __io_uring_free(current);
9118 static void *io_uring_validate_mmap_request(struct file *file,
9119 loff_t pgoff, size_t sz)
9121 struct io_ring_ctx *ctx = file->private_data;
9122 loff_t offset = pgoff << PAGE_SHIFT;
9127 case IORING_OFF_SQ_RING:
9128 case IORING_OFF_CQ_RING:
9131 case IORING_OFF_SQES:
9135 return ERR_PTR(-EINVAL);
9138 page = virt_to_head_page(ptr);
9139 if (sz > page_size(page))
9140 return ERR_PTR(-EINVAL);
9147 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9149 size_t sz = vma->vm_end - vma->vm_start;
9153 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9155 return PTR_ERR(ptr);
9157 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9158 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9161 #else /* !CONFIG_MMU */
9163 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9165 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9168 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9170 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9173 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9174 unsigned long addr, unsigned long len,
9175 unsigned long pgoff, unsigned long flags)
9179 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9181 return PTR_ERR(ptr);
9183 return (unsigned long) ptr;
9186 #endif /* !CONFIG_MMU */
9188 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9193 if (!io_sqring_full(ctx))
9195 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9197 if (!io_sqring_full(ctx))
9200 } while (!signal_pending(current));
9202 finish_wait(&ctx->sqo_sq_wait, &wait);
9206 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9207 struct __kernel_timespec __user **ts,
9208 const sigset_t __user **sig)
9210 struct io_uring_getevents_arg arg;
9213 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9214 * is just a pointer to the sigset_t.
9216 if (!(flags & IORING_ENTER_EXT_ARG)) {
9217 *sig = (const sigset_t __user *) argp;
9223 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9224 * timespec and sigset_t pointers if good.
9226 if (*argsz != sizeof(arg))
9228 if (copy_from_user(&arg, argp, sizeof(arg)))
9230 *sig = u64_to_user_ptr(arg.sigmask);
9231 *argsz = arg.sigmask_sz;
9232 *ts = u64_to_user_ptr(arg.ts);
9236 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9237 u32, min_complete, u32, flags, const void __user *, argp,
9240 struct io_ring_ctx *ctx;
9247 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9248 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
9252 if (unlikely(!f.file))
9256 if (unlikely(f.file->f_op != &io_uring_fops))
9260 ctx = f.file->private_data;
9261 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
9265 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
9269 * For SQ polling, the thread will do all submissions and completions.
9270 * Just return the requested submit count, and wake the thread if
9274 if (ctx->flags & IORING_SETUP_SQPOLL) {
9275 io_cqring_overflow_flush(ctx, false);
9278 if (unlikely(ctx->sq_data->thread == NULL)) {
9281 if (flags & IORING_ENTER_SQ_WAKEUP)
9282 wake_up(&ctx->sq_data->wait);
9283 if (flags & IORING_ENTER_SQ_WAIT) {
9284 ret = io_sqpoll_wait_sq(ctx);
9288 submitted = to_submit;
9289 } else if (to_submit) {
9290 ret = io_uring_add_task_file(ctx);
9293 mutex_lock(&ctx->uring_lock);
9294 submitted = io_submit_sqes(ctx, to_submit);
9295 mutex_unlock(&ctx->uring_lock);
9297 if (submitted != to_submit)
9300 if (flags & IORING_ENTER_GETEVENTS) {
9301 const sigset_t __user *sig;
9302 struct __kernel_timespec __user *ts;
9304 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9308 min_complete = min(min_complete, ctx->cq_entries);
9311 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9312 * space applications don't need to do io completion events
9313 * polling again, they can rely on io_sq_thread to do polling
9314 * work, which can reduce cpu usage and uring_lock contention.
9316 if (ctx->flags & IORING_SETUP_IOPOLL &&
9317 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9318 ret = io_iopoll_check(ctx, min_complete);
9320 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9325 percpu_ref_put(&ctx->refs);
9328 return submitted ? submitted : ret;
9331 #ifdef CONFIG_PROC_FS
9332 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
9333 const struct cred *cred)
9335 struct user_namespace *uns = seq_user_ns(m);
9336 struct group_info *gi;
9341 seq_printf(m, "%5d\n", id);
9342 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9343 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9344 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9345 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9346 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9347 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9348 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9349 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9350 seq_puts(m, "\n\tGroups:\t");
9351 gi = cred->group_info;
9352 for (g = 0; g < gi->ngroups; g++) {
9353 seq_put_decimal_ull(m, g ? " " : "",
9354 from_kgid_munged(uns, gi->gid[g]));
9356 seq_puts(m, "\n\tCapEff:\t");
9357 cap = cred->cap_effective;
9358 CAP_FOR_EACH_U32(__capi)
9359 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9364 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9366 struct io_sq_data *sq = NULL;
9371 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9372 * since fdinfo case grabs it in the opposite direction of normal use
9373 * cases. If we fail to get the lock, we just don't iterate any
9374 * structures that could be going away outside the io_uring mutex.
9376 has_lock = mutex_trylock(&ctx->uring_lock);
9378 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
9384 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9385 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9386 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9387 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9388 struct file *f = io_file_from_index(ctx, i);
9391 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9393 seq_printf(m, "%5u: <none>\n", i);
9395 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9396 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9397 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
9398 unsigned int len = buf->ubuf_end - buf->ubuf;
9400 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
9402 if (has_lock && !xa_empty(&ctx->personalities)) {
9403 unsigned long index;
9404 const struct cred *cred;
9406 seq_printf(m, "Personalities:\n");
9407 xa_for_each(&ctx->personalities, index, cred)
9408 io_uring_show_cred(m, index, cred);
9410 seq_printf(m, "PollList:\n");
9411 spin_lock_irq(&ctx->completion_lock);
9412 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9413 struct hlist_head *list = &ctx->cancel_hash[i];
9414 struct io_kiocb *req;
9416 hlist_for_each_entry(req, list, hash_node)
9417 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9418 req->task->task_works != NULL);
9420 spin_unlock_irq(&ctx->completion_lock);
9422 mutex_unlock(&ctx->uring_lock);
9425 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9427 struct io_ring_ctx *ctx = f->private_data;
9429 if (percpu_ref_tryget(&ctx->refs)) {
9430 __io_uring_show_fdinfo(ctx, m);
9431 percpu_ref_put(&ctx->refs);
9436 static const struct file_operations io_uring_fops = {
9437 .release = io_uring_release,
9438 .mmap = io_uring_mmap,
9440 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9441 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9443 .poll = io_uring_poll,
9444 .fasync = io_uring_fasync,
9445 #ifdef CONFIG_PROC_FS
9446 .show_fdinfo = io_uring_show_fdinfo,
9450 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9451 struct io_uring_params *p)
9453 struct io_rings *rings;
9454 size_t size, sq_array_offset;
9456 /* make sure these are sane, as we already accounted them */
9457 ctx->sq_entries = p->sq_entries;
9458 ctx->cq_entries = p->cq_entries;
9460 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9461 if (size == SIZE_MAX)
9464 rings = io_mem_alloc(size);
9469 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9470 rings->sq_ring_mask = p->sq_entries - 1;
9471 rings->cq_ring_mask = p->cq_entries - 1;
9472 rings->sq_ring_entries = p->sq_entries;
9473 rings->cq_ring_entries = p->cq_entries;
9474 ctx->sq_mask = rings->sq_ring_mask;
9475 ctx->cq_mask = rings->cq_ring_mask;
9477 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9478 if (size == SIZE_MAX) {
9479 io_mem_free(ctx->rings);
9484 ctx->sq_sqes = io_mem_alloc(size);
9485 if (!ctx->sq_sqes) {
9486 io_mem_free(ctx->rings);
9494 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9498 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9502 ret = io_uring_add_task_file(ctx);
9507 fd_install(fd, file);
9512 * Allocate an anonymous fd, this is what constitutes the application
9513 * visible backing of an io_uring instance. The application mmaps this
9514 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9515 * we have to tie this fd to a socket for file garbage collection purposes.
9517 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9520 #if defined(CONFIG_UNIX)
9523 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9526 return ERR_PTR(ret);
9529 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9530 O_RDWR | O_CLOEXEC);
9531 #if defined(CONFIG_UNIX)
9533 sock_release(ctx->ring_sock);
9534 ctx->ring_sock = NULL;
9536 ctx->ring_sock->file = file;
9542 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9543 struct io_uring_params __user *params)
9545 struct io_ring_ctx *ctx;
9551 if (entries > IORING_MAX_ENTRIES) {
9552 if (!(p->flags & IORING_SETUP_CLAMP))
9554 entries = IORING_MAX_ENTRIES;
9558 * Use twice as many entries for the CQ ring. It's possible for the
9559 * application to drive a higher depth than the size of the SQ ring,
9560 * since the sqes are only used at submission time. This allows for
9561 * some flexibility in overcommitting a bit. If the application has
9562 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9563 * of CQ ring entries manually.
9565 p->sq_entries = roundup_pow_of_two(entries);
9566 if (p->flags & IORING_SETUP_CQSIZE) {
9568 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9569 * to a power-of-two, if it isn't already. We do NOT impose
9570 * any cq vs sq ring sizing.
9574 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9575 if (!(p->flags & IORING_SETUP_CLAMP))
9577 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9579 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9580 if (p->cq_entries < p->sq_entries)
9583 p->cq_entries = 2 * p->sq_entries;
9586 ctx = io_ring_ctx_alloc(p);
9589 ctx->compat = in_compat_syscall();
9590 if (!capable(CAP_IPC_LOCK))
9591 ctx->user = get_uid(current_user());
9594 * This is just grabbed for accounting purposes. When a process exits,
9595 * the mm is exited and dropped before the files, hence we need to hang
9596 * on to this mm purely for the purposes of being able to unaccount
9597 * memory (locked/pinned vm). It's not used for anything else.
9599 mmgrab(current->mm);
9600 ctx->mm_account = current->mm;
9602 ret = io_allocate_scq_urings(ctx, p);
9606 ret = io_sq_offload_create(ctx, p);
9609 /* always set a rsrc node */
9610 io_rsrc_node_switch_start(ctx);
9611 io_rsrc_node_switch(ctx, NULL);
9613 memset(&p->sq_off, 0, sizeof(p->sq_off));
9614 p->sq_off.head = offsetof(struct io_rings, sq.head);
9615 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9616 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9617 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9618 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9619 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9620 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9622 memset(&p->cq_off, 0, sizeof(p->cq_off));
9623 p->cq_off.head = offsetof(struct io_rings, cq.head);
9624 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9625 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9626 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9627 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9628 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9629 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9631 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9632 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9633 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9634 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9635 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS;
9637 if (copy_to_user(params, p, sizeof(*p))) {
9642 file = io_uring_get_file(ctx);
9644 ret = PTR_ERR(file);
9649 * Install ring fd as the very last thing, so we don't risk someone
9650 * having closed it before we finish setup
9652 ret = io_uring_install_fd(ctx, file);
9654 /* fput will clean it up */
9659 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9662 io_ring_ctx_wait_and_kill(ctx);
9667 * Sets up an aio uring context, and returns the fd. Applications asks for a
9668 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9669 * params structure passed in.
9671 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9673 struct io_uring_params p;
9676 if (copy_from_user(&p, params, sizeof(p)))
9678 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9683 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9684 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9685 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9686 IORING_SETUP_R_DISABLED))
9689 return io_uring_create(entries, &p, params);
9692 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9693 struct io_uring_params __user *, params)
9695 return io_uring_setup(entries, params);
9698 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9700 struct io_uring_probe *p;
9704 size = struct_size(p, ops, nr_args);
9705 if (size == SIZE_MAX)
9707 p = kzalloc(size, GFP_KERNEL);
9712 if (copy_from_user(p, arg, size))
9715 if (memchr_inv(p, 0, size))
9718 p->last_op = IORING_OP_LAST - 1;
9719 if (nr_args > IORING_OP_LAST)
9720 nr_args = IORING_OP_LAST;
9722 for (i = 0; i < nr_args; i++) {
9724 if (!io_op_defs[i].not_supported)
9725 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9730 if (copy_to_user(arg, p, size))
9737 static int io_register_personality(struct io_ring_ctx *ctx)
9739 const struct cred *creds;
9743 creds = get_current_cred();
9745 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
9746 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
9753 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9754 unsigned int nr_args)
9756 struct io_uring_restriction *res;
9760 /* Restrictions allowed only if rings started disabled */
9761 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9764 /* We allow only a single restrictions registration */
9765 if (ctx->restrictions.registered)
9768 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9771 size = array_size(nr_args, sizeof(*res));
9772 if (size == SIZE_MAX)
9775 res = memdup_user(arg, size);
9777 return PTR_ERR(res);
9781 for (i = 0; i < nr_args; i++) {
9782 switch (res[i].opcode) {
9783 case IORING_RESTRICTION_REGISTER_OP:
9784 if (res[i].register_op >= IORING_REGISTER_LAST) {
9789 __set_bit(res[i].register_op,
9790 ctx->restrictions.register_op);
9792 case IORING_RESTRICTION_SQE_OP:
9793 if (res[i].sqe_op >= IORING_OP_LAST) {
9798 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9800 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9801 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9803 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9804 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9813 /* Reset all restrictions if an error happened */
9815 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9817 ctx->restrictions.registered = true;
9823 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9825 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9828 if (ctx->restrictions.registered)
9829 ctx->restricted = 1;
9831 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9832 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
9833 wake_up(&ctx->sq_data->wait);
9837 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
9838 struct io_uring_rsrc_update2 *up,
9846 if (check_add_overflow(up->offset, nr_args, &tmp))
9848 err = io_rsrc_node_switch_start(ctx);
9853 case IORING_RSRC_FILE:
9854 return __io_sqe_files_update(ctx, up, nr_args);
9855 case IORING_RSRC_BUFFER:
9856 return __io_sqe_buffers_update(ctx, up, nr_args);
9861 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
9864 struct io_uring_rsrc_update2 up;
9868 memset(&up, 0, sizeof(up));
9869 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
9871 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
9874 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
9877 struct io_uring_rsrc_update2 up;
9879 if (size != sizeof(up))
9881 if (copy_from_user(&up, arg, sizeof(up)))
9885 return __io_register_rsrc_update(ctx, up.type, &up, up.nr);
9888 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
9891 struct io_uring_rsrc_register rr;
9893 /* keep it extendible */
9894 if (size != sizeof(rr))
9897 memset(&rr, 0, sizeof(rr));
9898 if (copy_from_user(&rr, arg, size))
9904 case IORING_RSRC_FILE:
9905 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
9906 rr.nr, u64_to_user_ptr(rr.tags));
9907 case IORING_RSRC_BUFFER:
9908 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
9909 rr.nr, u64_to_user_ptr(rr.tags));
9914 static bool io_register_op_must_quiesce(int op)
9917 case IORING_REGISTER_BUFFERS:
9918 case IORING_UNREGISTER_BUFFERS:
9919 case IORING_REGISTER_FILES:
9920 case IORING_UNREGISTER_FILES:
9921 case IORING_REGISTER_FILES_UPDATE:
9922 case IORING_REGISTER_PROBE:
9923 case IORING_REGISTER_PERSONALITY:
9924 case IORING_UNREGISTER_PERSONALITY:
9925 case IORING_REGISTER_RSRC:
9926 case IORING_REGISTER_RSRC_UPDATE:
9933 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9934 void __user *arg, unsigned nr_args)
9935 __releases(ctx->uring_lock)
9936 __acquires(ctx->uring_lock)
9941 * We're inside the ring mutex, if the ref is already dying, then
9942 * someone else killed the ctx or is already going through
9943 * io_uring_register().
9945 if (percpu_ref_is_dying(&ctx->refs))
9948 if (ctx->restricted) {
9949 if (opcode >= IORING_REGISTER_LAST)
9951 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
9952 if (!test_bit(opcode, ctx->restrictions.register_op))
9956 if (io_register_op_must_quiesce(opcode)) {
9957 percpu_ref_kill(&ctx->refs);
9960 * Drop uring mutex before waiting for references to exit. If
9961 * another thread is currently inside io_uring_enter() it might
9962 * need to grab the uring_lock to make progress. If we hold it
9963 * here across the drain wait, then we can deadlock. It's safe
9964 * to drop the mutex here, since no new references will come in
9965 * after we've killed the percpu ref.
9967 mutex_unlock(&ctx->uring_lock);
9969 ret = wait_for_completion_interruptible(&ctx->ref_comp);
9972 ret = io_run_task_work_sig();
9976 mutex_lock(&ctx->uring_lock);
9979 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
9985 case IORING_REGISTER_BUFFERS:
9986 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
9988 case IORING_UNREGISTER_BUFFERS:
9992 ret = io_sqe_buffers_unregister(ctx);
9994 case IORING_REGISTER_FILES:
9995 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
9997 case IORING_UNREGISTER_FILES:
10001 ret = io_sqe_files_unregister(ctx);
10003 case IORING_REGISTER_FILES_UPDATE:
10004 ret = io_register_files_update(ctx, arg, nr_args);
10006 case IORING_REGISTER_EVENTFD:
10007 case IORING_REGISTER_EVENTFD_ASYNC:
10011 ret = io_eventfd_register(ctx, arg);
10014 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10015 ctx->eventfd_async = 1;
10017 ctx->eventfd_async = 0;
10019 case IORING_UNREGISTER_EVENTFD:
10021 if (arg || nr_args)
10023 ret = io_eventfd_unregister(ctx);
10025 case IORING_REGISTER_PROBE:
10027 if (!arg || nr_args > 256)
10029 ret = io_probe(ctx, arg, nr_args);
10031 case IORING_REGISTER_PERSONALITY:
10033 if (arg || nr_args)
10035 ret = io_register_personality(ctx);
10037 case IORING_UNREGISTER_PERSONALITY:
10041 ret = io_unregister_personality(ctx, nr_args);
10043 case IORING_REGISTER_ENABLE_RINGS:
10045 if (arg || nr_args)
10047 ret = io_register_enable_rings(ctx);
10049 case IORING_REGISTER_RESTRICTIONS:
10050 ret = io_register_restrictions(ctx, arg, nr_args);
10052 case IORING_REGISTER_RSRC:
10053 ret = io_register_rsrc(ctx, arg, nr_args);
10055 case IORING_REGISTER_RSRC_UPDATE:
10056 ret = io_register_rsrc_update(ctx, arg, nr_args);
10063 if (io_register_op_must_quiesce(opcode)) {
10064 /* bring the ctx back to life */
10065 percpu_ref_reinit(&ctx->refs);
10066 reinit_completion(&ctx->ref_comp);
10071 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10072 void __user *, arg, unsigned int, nr_args)
10074 struct io_ring_ctx *ctx;
10083 if (f.file->f_op != &io_uring_fops)
10086 ctx = f.file->private_data;
10088 io_run_task_work();
10090 mutex_lock(&ctx->uring_lock);
10091 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10092 mutex_unlock(&ctx->uring_lock);
10093 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10094 ctx->cq_ev_fd != NULL, ret);
10100 static int __init io_uring_init(void)
10102 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10103 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10104 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10107 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10108 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10109 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10110 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10111 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10112 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10113 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10114 BUILD_BUG_SQE_ELEM(8, __u64, off);
10115 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10116 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10117 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10118 BUILD_BUG_SQE_ELEM(24, __u32, len);
10119 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10120 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10121 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10122 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10123 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10124 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10125 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10126 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10127 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10128 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10129 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10130 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10131 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10132 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10133 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10134 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10135 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10136 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10137 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10139 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10140 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10141 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
10145 __initcall(io_uring_init);