1 // SPDX-License-Identifier: GPL-2.0-only
3 * (C) 1997 Linus Torvalds
6 #include <linux/export.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fscrypt.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/prefetch.h>
20 #include <linux/buffer_head.h> /* for inode_has_buffers */
21 #include <linux/ratelimit.h>
22 #include <linux/list_lru.h>
23 #include <linux/iversion.h>
24 #include <trace/events/writeback.h>
28 * Inode locking rules:
30 * inode->i_lock protects:
31 * inode->i_state, inode->i_hash, __iget()
32 * Inode LRU list locks protect:
33 * inode->i_sb->s_inode_lru, inode->i_lru
34 * inode->i_sb->s_inode_list_lock protects:
35 * inode->i_sb->s_inodes, inode->i_sb_list
36 * bdi->wb.list_lock protects:
37 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38 * inode_hash_lock protects:
39 * inode_hashtable, inode->i_hash
43 * inode->i_sb->s_inode_list_lock
45 * Inode LRU list locks
51 * inode->i_sb->s_inode_list_lock
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 static struct hlist_head *inode_hashtable __read_mostly;
61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
64 * Empty aops. Can be used for the cases where the user does not
65 * define any of the address_space operations.
67 const struct address_space_operations empty_aops = {
69 EXPORT_SYMBOL(empty_aops);
72 * Statistics gathering..
74 struct inodes_stat_t inodes_stat;
76 static DEFINE_PER_CPU(unsigned long, nr_inodes);
77 static DEFINE_PER_CPU(unsigned long, nr_unused);
79 static struct kmem_cache *inode_cachep __read_mostly;
81 static long get_nr_inodes(void)
85 for_each_possible_cpu(i)
86 sum += per_cpu(nr_inodes, i);
87 return sum < 0 ? 0 : sum;
90 static inline long get_nr_inodes_unused(void)
94 for_each_possible_cpu(i)
95 sum += per_cpu(nr_unused, i);
96 return sum < 0 ? 0 : sum;
99 long get_nr_dirty_inodes(void)
101 /* not actually dirty inodes, but a wild approximation */
102 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 return nr_dirty > 0 ? nr_dirty : 0;
107 * Handle nr_inode sysctl
110 int proc_nr_inodes(struct ctl_table *table, int write,
111 void __user *buffer, size_t *lenp, loff_t *ppos)
113 inodes_stat.nr_inodes = get_nr_inodes();
114 inodes_stat.nr_unused = get_nr_inodes_unused();
115 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
119 static int no_open(struct inode *inode, struct file *file)
125 * inode_init_always - perform inode structure initialisation
126 * @sb: superblock inode belongs to
127 * @inode: inode to initialise
129 * These are initializations that need to be done on every inode
130 * allocation as the fields are not initialised by slab allocation.
132 int inode_init_always(struct super_block *sb, struct inode *inode)
134 static const struct inode_operations empty_iops;
135 static const struct file_operations no_open_fops = {.open = no_open};
136 struct address_space *const mapping = &inode->i_data;
139 inode->i_blkbits = sb->s_blocksize_bits;
141 atomic_set(&inode->i_count, 1);
142 inode->i_op = &empty_iops;
143 inode->i_fop = &no_open_fops;
144 inode->__i_nlink = 1;
145 inode->i_opflags = 0;
147 inode->i_opflags |= IOP_XATTR;
148 i_uid_write(inode, 0);
149 i_gid_write(inode, 0);
150 atomic_set(&inode->i_writecount, 0);
152 inode->i_write_hint = WRITE_LIFE_NOT_SET;
155 inode->i_generation = 0;
156 inode->i_pipe = NULL;
157 inode->i_bdev = NULL;
158 inode->i_cdev = NULL;
159 inode->i_link = NULL;
160 inode->i_dir_seq = 0;
162 inode->dirtied_when = 0;
164 #ifdef CONFIG_CGROUP_WRITEBACK
165 inode->i_wb_frn_winner = 0;
166 inode->i_wb_frn_avg_time = 0;
167 inode->i_wb_frn_history = 0;
170 if (security_inode_alloc(inode))
172 spin_lock_init(&inode->i_lock);
173 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
175 init_rwsem(&inode->i_rwsem);
176 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
178 atomic_set(&inode->i_dio_count, 0);
180 mapping->a_ops = &empty_aops;
181 mapping->host = inode;
184 atomic_set(&mapping->i_mmap_writable, 0);
185 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
186 atomic_set(&mapping->nr_thps, 0);
188 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
189 mapping->private_data = NULL;
190 mapping->writeback_index = 0;
191 inode->i_private = NULL;
192 inode->i_mapping = mapping;
193 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
194 #ifdef CONFIG_FS_POSIX_ACL
195 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
198 #ifdef CONFIG_FSNOTIFY
199 inode->i_fsnotify_mask = 0;
201 inode->i_flctx = NULL;
202 this_cpu_inc(nr_inodes);
208 EXPORT_SYMBOL(inode_init_always);
210 void free_inode_nonrcu(struct inode *inode)
212 kmem_cache_free(inode_cachep, inode);
214 EXPORT_SYMBOL(free_inode_nonrcu);
216 static void i_callback(struct rcu_head *head)
218 struct inode *inode = container_of(head, struct inode, i_rcu);
219 if (inode->free_inode)
220 inode->free_inode(inode);
222 free_inode_nonrcu(inode);
225 static struct inode *alloc_inode(struct super_block *sb)
227 const struct super_operations *ops = sb->s_op;
230 if (ops->alloc_inode)
231 inode = ops->alloc_inode(sb);
233 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
238 if (unlikely(inode_init_always(sb, inode))) {
239 if (ops->destroy_inode) {
240 ops->destroy_inode(inode);
241 if (!ops->free_inode)
244 inode->free_inode = ops->free_inode;
245 i_callback(&inode->i_rcu);
252 void __destroy_inode(struct inode *inode)
254 BUG_ON(inode_has_buffers(inode));
255 inode_detach_wb(inode);
256 security_inode_free(inode);
257 fsnotify_inode_delete(inode);
258 locks_free_lock_context(inode);
259 if (!inode->i_nlink) {
260 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
261 atomic_long_dec(&inode->i_sb->s_remove_count);
264 #ifdef CONFIG_FS_POSIX_ACL
265 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
266 posix_acl_release(inode->i_acl);
267 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
268 posix_acl_release(inode->i_default_acl);
270 this_cpu_dec(nr_inodes);
272 EXPORT_SYMBOL(__destroy_inode);
274 static void destroy_inode(struct inode *inode)
276 const struct super_operations *ops = inode->i_sb->s_op;
278 BUG_ON(!list_empty(&inode->i_lru));
279 __destroy_inode(inode);
280 if (ops->destroy_inode) {
281 ops->destroy_inode(inode);
282 if (!ops->free_inode)
285 inode->free_inode = ops->free_inode;
286 call_rcu(&inode->i_rcu, i_callback);
290 * drop_nlink - directly drop an inode's link count
293 * This is a low-level filesystem helper to replace any
294 * direct filesystem manipulation of i_nlink. In cases
295 * where we are attempting to track writes to the
296 * filesystem, a decrement to zero means an imminent
297 * write when the file is truncated and actually unlinked
300 void drop_nlink(struct inode *inode)
302 WARN_ON(inode->i_nlink == 0);
305 atomic_long_inc(&inode->i_sb->s_remove_count);
307 EXPORT_SYMBOL(drop_nlink);
310 * clear_nlink - directly zero an inode's link count
313 * This is a low-level filesystem helper to replace any
314 * direct filesystem manipulation of i_nlink. See
315 * drop_nlink() for why we care about i_nlink hitting zero.
317 void clear_nlink(struct inode *inode)
319 if (inode->i_nlink) {
320 inode->__i_nlink = 0;
321 atomic_long_inc(&inode->i_sb->s_remove_count);
324 EXPORT_SYMBOL(clear_nlink);
327 * set_nlink - directly set an inode's link count
329 * @nlink: new nlink (should be non-zero)
331 * This is a low-level filesystem helper to replace any
332 * direct filesystem manipulation of i_nlink.
334 void set_nlink(struct inode *inode, unsigned int nlink)
339 /* Yes, some filesystems do change nlink from zero to one */
340 if (inode->i_nlink == 0)
341 atomic_long_dec(&inode->i_sb->s_remove_count);
343 inode->__i_nlink = nlink;
346 EXPORT_SYMBOL(set_nlink);
349 * inc_nlink - directly increment an inode's link count
352 * This is a low-level filesystem helper to replace any
353 * direct filesystem manipulation of i_nlink. Currently,
354 * it is only here for parity with dec_nlink().
356 void inc_nlink(struct inode *inode)
358 if (unlikely(inode->i_nlink == 0)) {
359 WARN_ON(!(inode->i_state & I_LINKABLE));
360 atomic_long_dec(&inode->i_sb->s_remove_count);
365 EXPORT_SYMBOL(inc_nlink);
367 static void __address_space_init_once(struct address_space *mapping)
369 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
370 init_rwsem(&mapping->i_mmap_rwsem);
371 INIT_LIST_HEAD(&mapping->private_list);
372 spin_lock_init(&mapping->private_lock);
373 mapping->i_mmap = RB_ROOT_CACHED;
376 void address_space_init_once(struct address_space *mapping)
378 memset(mapping, 0, sizeof(*mapping));
379 __address_space_init_once(mapping);
381 EXPORT_SYMBOL(address_space_init_once);
384 * These are initializations that only need to be done
385 * once, because the fields are idempotent across use
386 * of the inode, so let the slab aware of that.
388 void inode_init_once(struct inode *inode)
390 memset(inode, 0, sizeof(*inode));
391 INIT_HLIST_NODE(&inode->i_hash);
392 INIT_LIST_HEAD(&inode->i_devices);
393 INIT_LIST_HEAD(&inode->i_io_list);
394 INIT_LIST_HEAD(&inode->i_wb_list);
395 INIT_LIST_HEAD(&inode->i_lru);
396 __address_space_init_once(&inode->i_data);
397 i_size_ordered_init(inode);
399 EXPORT_SYMBOL(inode_init_once);
401 static void init_once(void *foo)
403 struct inode *inode = (struct inode *) foo;
405 inode_init_once(inode);
409 * inode->i_lock must be held
411 void __iget(struct inode *inode)
413 atomic_inc(&inode->i_count);
417 * get additional reference to inode; caller must already hold one.
419 void ihold(struct inode *inode)
421 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
423 EXPORT_SYMBOL(ihold);
425 static void inode_lru_list_add(struct inode *inode)
427 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
428 this_cpu_inc(nr_unused);
430 inode->i_state |= I_REFERENCED;
434 * Add inode to LRU if needed (inode is unused and clean).
436 * Needs inode->i_lock held.
438 void inode_add_lru(struct inode *inode)
440 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
441 I_FREEING | I_WILL_FREE)) &&
442 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
443 inode_lru_list_add(inode);
447 static void inode_lru_list_del(struct inode *inode)
450 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
451 this_cpu_dec(nr_unused);
455 * inode_sb_list_add - add inode to the superblock list of inodes
456 * @inode: inode to add
458 void inode_sb_list_add(struct inode *inode)
460 spin_lock(&inode->i_sb->s_inode_list_lock);
461 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
462 spin_unlock(&inode->i_sb->s_inode_list_lock);
464 EXPORT_SYMBOL_GPL(inode_sb_list_add);
466 static inline void inode_sb_list_del(struct inode *inode)
468 if (!list_empty(&inode->i_sb_list)) {
469 spin_lock(&inode->i_sb->s_inode_list_lock);
470 list_del_init(&inode->i_sb_list);
471 spin_unlock(&inode->i_sb->s_inode_list_lock);
475 static unsigned long hash(struct super_block *sb, unsigned long hashval)
479 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
481 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
482 return tmp & i_hash_mask;
486 * __insert_inode_hash - hash an inode
487 * @inode: unhashed inode
488 * @hashval: unsigned long value used to locate this object in the
491 * Add an inode to the inode hash for this superblock.
493 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
495 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
497 spin_lock(&inode_hash_lock);
498 spin_lock(&inode->i_lock);
499 hlist_add_head(&inode->i_hash, b);
500 spin_unlock(&inode->i_lock);
501 spin_unlock(&inode_hash_lock);
503 EXPORT_SYMBOL(__insert_inode_hash);
506 * __remove_inode_hash - remove an inode from the hash
507 * @inode: inode to unhash
509 * Remove an inode from the superblock.
511 void __remove_inode_hash(struct inode *inode)
513 spin_lock(&inode_hash_lock);
514 spin_lock(&inode->i_lock);
515 hlist_del_init(&inode->i_hash);
516 spin_unlock(&inode->i_lock);
517 spin_unlock(&inode_hash_lock);
519 EXPORT_SYMBOL(__remove_inode_hash);
521 void clear_inode(struct inode *inode)
524 * We have to cycle the i_pages lock here because reclaim can be in the
525 * process of removing the last page (in __delete_from_page_cache())
526 * and we must not free the mapping under it.
528 xa_lock_irq(&inode->i_data.i_pages);
529 BUG_ON(inode->i_data.nrpages);
530 BUG_ON(inode->i_data.nrexceptional);
531 xa_unlock_irq(&inode->i_data.i_pages);
532 BUG_ON(!list_empty(&inode->i_data.private_list));
533 BUG_ON(!(inode->i_state & I_FREEING));
534 BUG_ON(inode->i_state & I_CLEAR);
535 BUG_ON(!list_empty(&inode->i_wb_list));
536 /* don't need i_lock here, no concurrent mods to i_state */
537 inode->i_state = I_FREEING | I_CLEAR;
539 EXPORT_SYMBOL(clear_inode);
542 * Free the inode passed in, removing it from the lists it is still connected
543 * to. We remove any pages still attached to the inode and wait for any IO that
544 * is still in progress before finally destroying the inode.
546 * An inode must already be marked I_FREEING so that we avoid the inode being
547 * moved back onto lists if we race with other code that manipulates the lists
548 * (e.g. writeback_single_inode). The caller is responsible for setting this.
550 * An inode must already be removed from the LRU list before being evicted from
551 * the cache. This should occur atomically with setting the I_FREEING state
552 * flag, so no inodes here should ever be on the LRU when being evicted.
554 static void evict(struct inode *inode)
556 const struct super_operations *op = inode->i_sb->s_op;
558 BUG_ON(!(inode->i_state & I_FREEING));
559 BUG_ON(!list_empty(&inode->i_lru));
561 if (!list_empty(&inode->i_io_list))
562 inode_io_list_del(inode);
564 inode_sb_list_del(inode);
567 * Wait for flusher thread to be done with the inode so that filesystem
568 * does not start destroying it while writeback is still running. Since
569 * the inode has I_FREEING set, flusher thread won't start new work on
570 * the inode. We just have to wait for running writeback to finish.
572 inode_wait_for_writeback(inode);
574 if (op->evict_inode) {
575 op->evict_inode(inode);
577 truncate_inode_pages_final(&inode->i_data);
580 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
582 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
585 remove_inode_hash(inode);
587 spin_lock(&inode->i_lock);
588 wake_up_bit(&inode->i_state, __I_NEW);
589 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
590 spin_unlock(&inode->i_lock);
592 destroy_inode(inode);
596 * dispose_list - dispose of the contents of a local list
597 * @head: the head of the list to free
599 * Dispose-list gets a local list with local inodes in it, so it doesn't
600 * need to worry about list corruption and SMP locks.
602 static void dispose_list(struct list_head *head)
604 while (!list_empty(head)) {
607 inode = list_first_entry(head, struct inode, i_lru);
608 list_del_init(&inode->i_lru);
616 * evict_inodes - evict all evictable inodes for a superblock
617 * @sb: superblock to operate on
619 * Make sure that no inodes with zero refcount are retained. This is
620 * called by superblock shutdown after having SB_ACTIVE flag removed,
621 * so any inode reaching zero refcount during or after that call will
622 * be immediately evicted.
624 void evict_inodes(struct super_block *sb)
626 struct inode *inode, *next;
630 spin_lock(&sb->s_inode_list_lock);
631 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
632 if (atomic_read(&inode->i_count))
635 spin_lock(&inode->i_lock);
636 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
637 spin_unlock(&inode->i_lock);
641 inode->i_state |= I_FREEING;
642 inode_lru_list_del(inode);
643 spin_unlock(&inode->i_lock);
644 list_add(&inode->i_lru, &dispose);
647 * We can have a ton of inodes to evict at unmount time given
648 * enough memory, check to see if we need to go to sleep for a
649 * bit so we don't livelock.
651 if (need_resched()) {
652 spin_unlock(&sb->s_inode_list_lock);
654 dispose_list(&dispose);
658 spin_unlock(&sb->s_inode_list_lock);
660 dispose_list(&dispose);
662 EXPORT_SYMBOL_GPL(evict_inodes);
665 * invalidate_inodes - attempt to free all inodes on a superblock
666 * @sb: superblock to operate on
667 * @kill_dirty: flag to guide handling of dirty inodes
669 * Attempts to free all inodes for a given superblock. If there were any
670 * busy inodes return a non-zero value, else zero.
671 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
674 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
677 struct inode *inode, *next;
681 spin_lock(&sb->s_inode_list_lock);
682 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
683 spin_lock(&inode->i_lock);
684 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
685 spin_unlock(&inode->i_lock);
688 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
689 spin_unlock(&inode->i_lock);
693 if (atomic_read(&inode->i_count)) {
694 spin_unlock(&inode->i_lock);
699 inode->i_state |= I_FREEING;
700 inode_lru_list_del(inode);
701 spin_unlock(&inode->i_lock);
702 list_add(&inode->i_lru, &dispose);
703 if (need_resched()) {
704 spin_unlock(&sb->s_inode_list_lock);
706 dispose_list(&dispose);
710 spin_unlock(&sb->s_inode_list_lock);
712 dispose_list(&dispose);
718 * Isolate the inode from the LRU in preparation for freeing it.
720 * Any inodes which are pinned purely because of attached pagecache have their
721 * pagecache removed. If the inode has metadata buffers attached to
722 * mapping->private_list then try to remove them.
724 * If the inode has the I_REFERENCED flag set, then it means that it has been
725 * used recently - the flag is set in iput_final(). When we encounter such an
726 * inode, clear the flag and move it to the back of the LRU so it gets another
727 * pass through the LRU before it gets reclaimed. This is necessary because of
728 * the fact we are doing lazy LRU updates to minimise lock contention so the
729 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
730 * with this flag set because they are the inodes that are out of order.
732 static enum lru_status inode_lru_isolate(struct list_head *item,
733 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
735 struct list_head *freeable = arg;
736 struct inode *inode = container_of(item, struct inode, i_lru);
739 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
740 * If we fail to get the lock, just skip it.
742 if (!spin_trylock(&inode->i_lock))
746 * Referenced or dirty inodes are still in use. Give them another pass
747 * through the LRU as we canot reclaim them now.
749 if (atomic_read(&inode->i_count) ||
750 (inode->i_state & ~I_REFERENCED)) {
751 list_lru_isolate(lru, &inode->i_lru);
752 spin_unlock(&inode->i_lock);
753 this_cpu_dec(nr_unused);
757 /* recently referenced inodes get one more pass */
758 if (inode->i_state & I_REFERENCED) {
759 inode->i_state &= ~I_REFERENCED;
760 spin_unlock(&inode->i_lock);
764 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
766 spin_unlock(&inode->i_lock);
767 spin_unlock(lru_lock);
768 if (remove_inode_buffers(inode)) {
770 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
771 if (current_is_kswapd())
772 __count_vm_events(KSWAPD_INODESTEAL, reap);
774 __count_vm_events(PGINODESTEAL, reap);
775 if (current->reclaim_state)
776 current->reclaim_state->reclaimed_slab += reap;
783 WARN_ON(inode->i_state & I_NEW);
784 inode->i_state |= I_FREEING;
785 list_lru_isolate_move(lru, &inode->i_lru, freeable);
786 spin_unlock(&inode->i_lock);
788 this_cpu_dec(nr_unused);
793 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
794 * This is called from the superblock shrinker function with a number of inodes
795 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
796 * then are freed outside inode_lock by dispose_list().
798 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
803 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
804 inode_lru_isolate, &freeable);
805 dispose_list(&freeable);
809 static void __wait_on_freeing_inode(struct inode *inode);
811 * Called with the inode lock held.
813 static struct inode *find_inode(struct super_block *sb,
814 struct hlist_head *head,
815 int (*test)(struct inode *, void *),
818 struct inode *inode = NULL;
821 hlist_for_each_entry(inode, head, i_hash) {
822 if (inode->i_sb != sb)
824 if (!test(inode, data))
826 spin_lock(&inode->i_lock);
827 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
828 __wait_on_freeing_inode(inode);
831 if (unlikely(inode->i_state & I_CREATING)) {
832 spin_unlock(&inode->i_lock);
833 return ERR_PTR(-ESTALE);
836 spin_unlock(&inode->i_lock);
843 * find_inode_fast is the fast path version of find_inode, see the comment at
844 * iget_locked for details.
846 static struct inode *find_inode_fast(struct super_block *sb,
847 struct hlist_head *head, unsigned long ino)
849 struct inode *inode = NULL;
852 hlist_for_each_entry(inode, head, i_hash) {
853 if (inode->i_ino != ino)
855 if (inode->i_sb != sb)
857 spin_lock(&inode->i_lock);
858 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
859 __wait_on_freeing_inode(inode);
862 if (unlikely(inode->i_state & I_CREATING)) {
863 spin_unlock(&inode->i_lock);
864 return ERR_PTR(-ESTALE);
867 spin_unlock(&inode->i_lock);
874 * Each cpu owns a range of LAST_INO_BATCH numbers.
875 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
876 * to renew the exhausted range.
878 * This does not significantly increase overflow rate because every CPU can
879 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
880 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
881 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
882 * overflow rate by 2x, which does not seem too significant.
884 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
885 * error if st_ino won't fit in target struct field. Use 32bit counter
886 * here to attempt to avoid that.
888 #define LAST_INO_BATCH 1024
889 static DEFINE_PER_CPU(unsigned int, last_ino);
891 unsigned int get_next_ino(void)
893 unsigned int *p = &get_cpu_var(last_ino);
894 unsigned int res = *p;
897 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
898 static atomic_t shared_last_ino;
899 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
901 res = next - LAST_INO_BATCH;
906 /* get_next_ino should not provide a 0 inode number */
910 put_cpu_var(last_ino);
913 EXPORT_SYMBOL(get_next_ino);
916 * new_inode_pseudo - obtain an inode
919 * Allocates a new inode for given superblock.
920 * Inode wont be chained in superblock s_inodes list
922 * - fs can't be unmount
923 * - quotas, fsnotify, writeback can't work
925 struct inode *new_inode_pseudo(struct super_block *sb)
927 struct inode *inode = alloc_inode(sb);
930 spin_lock(&inode->i_lock);
932 spin_unlock(&inode->i_lock);
933 INIT_LIST_HEAD(&inode->i_sb_list);
939 * new_inode - obtain an inode
942 * Allocates a new inode for given superblock. The default gfp_mask
943 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
944 * If HIGHMEM pages are unsuitable or it is known that pages allocated
945 * for the page cache are not reclaimable or migratable,
946 * mapping_set_gfp_mask() must be called with suitable flags on the
947 * newly created inode's mapping
950 struct inode *new_inode(struct super_block *sb)
954 spin_lock_prefetch(&sb->s_inode_list_lock);
956 inode = new_inode_pseudo(sb);
958 inode_sb_list_add(inode);
961 EXPORT_SYMBOL(new_inode);
963 #ifdef CONFIG_DEBUG_LOCK_ALLOC
964 void lockdep_annotate_inode_mutex_key(struct inode *inode)
966 if (S_ISDIR(inode->i_mode)) {
967 struct file_system_type *type = inode->i_sb->s_type;
969 /* Set new key only if filesystem hasn't already changed it */
970 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
972 * ensure nobody is actually holding i_mutex
974 // mutex_destroy(&inode->i_mutex);
975 init_rwsem(&inode->i_rwsem);
976 lockdep_set_class(&inode->i_rwsem,
977 &type->i_mutex_dir_key);
981 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
985 * unlock_new_inode - clear the I_NEW state and wake up any waiters
986 * @inode: new inode to unlock
988 * Called when the inode is fully initialised to clear the new state of the
989 * inode and wake up anyone waiting for the inode to finish initialisation.
991 void unlock_new_inode(struct inode *inode)
993 lockdep_annotate_inode_mutex_key(inode);
994 spin_lock(&inode->i_lock);
995 WARN_ON(!(inode->i_state & I_NEW));
996 inode->i_state &= ~I_NEW & ~I_CREATING;
998 wake_up_bit(&inode->i_state, __I_NEW);
999 spin_unlock(&inode->i_lock);
1001 EXPORT_SYMBOL(unlock_new_inode);
1003 void discard_new_inode(struct inode *inode)
1005 lockdep_annotate_inode_mutex_key(inode);
1006 spin_lock(&inode->i_lock);
1007 WARN_ON(!(inode->i_state & I_NEW));
1008 inode->i_state &= ~I_NEW;
1010 wake_up_bit(&inode->i_state, __I_NEW);
1011 spin_unlock(&inode->i_lock);
1014 EXPORT_SYMBOL(discard_new_inode);
1017 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1019 * Lock any non-NULL argument that is not a directory.
1020 * Zero, one or two objects may be locked by this function.
1022 * @inode1: first inode to lock
1023 * @inode2: second inode to lock
1025 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1027 if (inode1 > inode2)
1028 swap(inode1, inode2);
1030 if (inode1 && !S_ISDIR(inode1->i_mode))
1032 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1033 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1035 EXPORT_SYMBOL(lock_two_nondirectories);
1038 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1039 * @inode1: first inode to unlock
1040 * @inode2: second inode to unlock
1042 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1044 if (inode1 && !S_ISDIR(inode1->i_mode))
1045 inode_unlock(inode1);
1046 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1047 inode_unlock(inode2);
1049 EXPORT_SYMBOL(unlock_two_nondirectories);
1052 * inode_insert5 - obtain an inode from a mounted file system
1053 * @inode: pre-allocated inode to use for insert to cache
1054 * @hashval: hash value (usually inode number) to get
1055 * @test: callback used for comparisons between inodes
1056 * @set: callback used to initialize a new struct inode
1057 * @data: opaque data pointer to pass to @test and @set
1059 * Search for the inode specified by @hashval and @data in the inode cache,
1060 * and if present it is return it with an increased reference count. This is
1061 * a variant of iget5_locked() for callers that don't want to fail on memory
1062 * allocation of inode.
1064 * If the inode is not in cache, insert the pre-allocated inode to cache and
1065 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1066 * to fill it in before unlocking it via unlock_new_inode().
1068 * Note both @test and @set are called with the inode_hash_lock held, so can't
1071 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1072 int (*test)(struct inode *, void *),
1073 int (*set)(struct inode *, void *), void *data)
1075 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1077 bool creating = inode->i_state & I_CREATING;
1080 spin_lock(&inode_hash_lock);
1081 old = find_inode(inode->i_sb, head, test, data);
1082 if (unlikely(old)) {
1084 * Uhhuh, somebody else created the same inode under us.
1085 * Use the old inode instead of the preallocated one.
1087 spin_unlock(&inode_hash_lock);
1091 if (unlikely(inode_unhashed(old))) {
1098 if (set && unlikely(set(inode, data))) {
1104 * Return the locked inode with I_NEW set, the
1105 * caller is responsible for filling in the contents
1107 spin_lock(&inode->i_lock);
1108 inode->i_state |= I_NEW;
1109 hlist_add_head(&inode->i_hash, head);
1110 spin_unlock(&inode->i_lock);
1112 inode_sb_list_add(inode);
1114 spin_unlock(&inode_hash_lock);
1118 EXPORT_SYMBOL(inode_insert5);
1121 * iget5_locked - obtain an inode from a mounted file system
1122 * @sb: super block of file system
1123 * @hashval: hash value (usually inode number) to get
1124 * @test: callback used for comparisons between inodes
1125 * @set: callback used to initialize a new struct inode
1126 * @data: opaque data pointer to pass to @test and @set
1128 * Search for the inode specified by @hashval and @data in the inode cache,
1129 * and if present it is return it with an increased reference count. This is
1130 * a generalized version of iget_locked() for file systems where the inode
1131 * number is not sufficient for unique identification of an inode.
1133 * If the inode is not in cache, allocate a new inode and return it locked,
1134 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1135 * before unlocking it via unlock_new_inode().
1137 * Note both @test and @set are called with the inode_hash_lock held, so can't
1140 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1141 int (*test)(struct inode *, void *),
1142 int (*set)(struct inode *, void *), void *data)
1144 struct inode *inode = ilookup5(sb, hashval, test, data);
1147 struct inode *new = alloc_inode(sb);
1151 inode = inode_insert5(new, hashval, test, set, data);
1152 if (unlikely(inode != new))
1158 EXPORT_SYMBOL(iget5_locked);
1161 * iget_locked - obtain an inode from a mounted file system
1162 * @sb: super block of file system
1163 * @ino: inode number to get
1165 * Search for the inode specified by @ino in the inode cache and if present
1166 * return it with an increased reference count. This is for file systems
1167 * where the inode number is sufficient for unique identification of an inode.
1169 * If the inode is not in cache, allocate a new inode and return it locked,
1170 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1171 * before unlocking it via unlock_new_inode().
1173 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1175 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1176 struct inode *inode;
1178 spin_lock(&inode_hash_lock);
1179 inode = find_inode_fast(sb, head, ino);
1180 spin_unlock(&inode_hash_lock);
1184 wait_on_inode(inode);
1185 if (unlikely(inode_unhashed(inode))) {
1192 inode = alloc_inode(sb);
1196 spin_lock(&inode_hash_lock);
1197 /* We released the lock, so.. */
1198 old = find_inode_fast(sb, head, ino);
1201 spin_lock(&inode->i_lock);
1202 inode->i_state = I_NEW;
1203 hlist_add_head(&inode->i_hash, head);
1204 spin_unlock(&inode->i_lock);
1205 inode_sb_list_add(inode);
1206 spin_unlock(&inode_hash_lock);
1208 /* Return the locked inode with I_NEW set, the
1209 * caller is responsible for filling in the contents
1215 * Uhhuh, somebody else created the same inode under
1216 * us. Use the old inode instead of the one we just
1219 spin_unlock(&inode_hash_lock);
1220 destroy_inode(inode);
1224 wait_on_inode(inode);
1225 if (unlikely(inode_unhashed(inode))) {
1232 EXPORT_SYMBOL(iget_locked);
1235 * search the inode cache for a matching inode number.
1236 * If we find one, then the inode number we are trying to
1237 * allocate is not unique and so we should not use it.
1239 * Returns 1 if the inode number is unique, 0 if it is not.
1241 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1243 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1244 struct inode *inode;
1246 spin_lock(&inode_hash_lock);
1247 hlist_for_each_entry(inode, b, i_hash) {
1248 if (inode->i_ino == ino && inode->i_sb == sb) {
1249 spin_unlock(&inode_hash_lock);
1253 spin_unlock(&inode_hash_lock);
1259 * iunique - get a unique inode number
1261 * @max_reserved: highest reserved inode number
1263 * Obtain an inode number that is unique on the system for a given
1264 * superblock. This is used by file systems that have no natural
1265 * permanent inode numbering system. An inode number is returned that
1266 * is higher than the reserved limit but unique.
1269 * With a large number of inodes live on the file system this function
1270 * currently becomes quite slow.
1272 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1275 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1276 * error if st_ino won't fit in target struct field. Use 32bit counter
1277 * here to attempt to avoid that.
1279 static DEFINE_SPINLOCK(iunique_lock);
1280 static unsigned int counter;
1283 spin_lock(&iunique_lock);
1285 if (counter <= max_reserved)
1286 counter = max_reserved + 1;
1288 } while (!test_inode_iunique(sb, res));
1289 spin_unlock(&iunique_lock);
1293 EXPORT_SYMBOL(iunique);
1295 struct inode *igrab(struct inode *inode)
1297 spin_lock(&inode->i_lock);
1298 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1300 spin_unlock(&inode->i_lock);
1302 spin_unlock(&inode->i_lock);
1304 * Handle the case where s_op->clear_inode is not been
1305 * called yet, and somebody is calling igrab
1306 * while the inode is getting freed.
1312 EXPORT_SYMBOL(igrab);
1315 * ilookup5_nowait - search for an inode in the inode cache
1316 * @sb: super block of file system to search
1317 * @hashval: hash value (usually inode number) to search for
1318 * @test: callback used for comparisons between inodes
1319 * @data: opaque data pointer to pass to @test
1321 * Search for the inode specified by @hashval and @data in the inode cache.
1322 * If the inode is in the cache, the inode is returned with an incremented
1325 * Note: I_NEW is not waited upon so you have to be very careful what you do
1326 * with the returned inode. You probably should be using ilookup5() instead.
1328 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1330 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1331 int (*test)(struct inode *, void *), void *data)
1333 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1334 struct inode *inode;
1336 spin_lock(&inode_hash_lock);
1337 inode = find_inode(sb, head, test, data);
1338 spin_unlock(&inode_hash_lock);
1340 return IS_ERR(inode) ? NULL : inode;
1342 EXPORT_SYMBOL(ilookup5_nowait);
1345 * ilookup5 - search for an inode in the inode cache
1346 * @sb: super block of file system to search
1347 * @hashval: hash value (usually inode number) to search for
1348 * @test: callback used for comparisons between inodes
1349 * @data: opaque data pointer to pass to @test
1351 * Search for the inode specified by @hashval and @data in the inode cache,
1352 * and if the inode is in the cache, return the inode with an incremented
1353 * reference count. Waits on I_NEW before returning the inode.
1354 * returned with an incremented reference count.
1356 * This is a generalized version of ilookup() for file systems where the
1357 * inode number is not sufficient for unique identification of an inode.
1359 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1361 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1362 int (*test)(struct inode *, void *), void *data)
1364 struct inode *inode;
1366 inode = ilookup5_nowait(sb, hashval, test, data);
1368 wait_on_inode(inode);
1369 if (unlikely(inode_unhashed(inode))) {
1376 EXPORT_SYMBOL(ilookup5);
1379 * ilookup - search for an inode in the inode cache
1380 * @sb: super block of file system to search
1381 * @ino: inode number to search for
1383 * Search for the inode @ino in the inode cache, and if the inode is in the
1384 * cache, the inode is returned with an incremented reference count.
1386 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1388 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1389 struct inode *inode;
1391 spin_lock(&inode_hash_lock);
1392 inode = find_inode_fast(sb, head, ino);
1393 spin_unlock(&inode_hash_lock);
1398 wait_on_inode(inode);
1399 if (unlikely(inode_unhashed(inode))) {
1406 EXPORT_SYMBOL(ilookup);
1409 * find_inode_nowait - find an inode in the inode cache
1410 * @sb: super block of file system to search
1411 * @hashval: hash value (usually inode number) to search for
1412 * @match: callback used for comparisons between inodes
1413 * @data: opaque data pointer to pass to @match
1415 * Search for the inode specified by @hashval and @data in the inode
1416 * cache, where the helper function @match will return 0 if the inode
1417 * does not match, 1 if the inode does match, and -1 if the search
1418 * should be stopped. The @match function must be responsible for
1419 * taking the i_lock spin_lock and checking i_state for an inode being
1420 * freed or being initialized, and incrementing the reference count
1421 * before returning 1. It also must not sleep, since it is called with
1422 * the inode_hash_lock spinlock held.
1424 * This is a even more generalized version of ilookup5() when the
1425 * function must never block --- find_inode() can block in
1426 * __wait_on_freeing_inode() --- or when the caller can not increment
1427 * the reference count because the resulting iput() might cause an
1428 * inode eviction. The tradeoff is that the @match funtion must be
1429 * very carefully implemented.
1431 struct inode *find_inode_nowait(struct super_block *sb,
1432 unsigned long hashval,
1433 int (*match)(struct inode *, unsigned long,
1437 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1438 struct inode *inode, *ret_inode = NULL;
1441 spin_lock(&inode_hash_lock);
1442 hlist_for_each_entry(inode, head, i_hash) {
1443 if (inode->i_sb != sb)
1445 mval = match(inode, hashval, data);
1453 spin_unlock(&inode_hash_lock);
1456 EXPORT_SYMBOL(find_inode_nowait);
1458 int insert_inode_locked(struct inode *inode)
1460 struct super_block *sb = inode->i_sb;
1461 ino_t ino = inode->i_ino;
1462 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1465 struct inode *old = NULL;
1466 spin_lock(&inode_hash_lock);
1467 hlist_for_each_entry(old, head, i_hash) {
1468 if (old->i_ino != ino)
1470 if (old->i_sb != sb)
1472 spin_lock(&old->i_lock);
1473 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1474 spin_unlock(&old->i_lock);
1480 spin_lock(&inode->i_lock);
1481 inode->i_state |= I_NEW | I_CREATING;
1482 hlist_add_head(&inode->i_hash, head);
1483 spin_unlock(&inode->i_lock);
1484 spin_unlock(&inode_hash_lock);
1487 if (unlikely(old->i_state & I_CREATING)) {
1488 spin_unlock(&old->i_lock);
1489 spin_unlock(&inode_hash_lock);
1493 spin_unlock(&old->i_lock);
1494 spin_unlock(&inode_hash_lock);
1496 if (unlikely(!inode_unhashed(old))) {
1503 EXPORT_SYMBOL(insert_inode_locked);
1505 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1506 int (*test)(struct inode *, void *), void *data)
1510 inode->i_state |= I_CREATING;
1511 old = inode_insert5(inode, hashval, test, NULL, data);
1519 EXPORT_SYMBOL(insert_inode_locked4);
1522 int generic_delete_inode(struct inode *inode)
1526 EXPORT_SYMBOL(generic_delete_inode);
1529 * Called when we're dropping the last reference
1532 * Call the FS "drop_inode()" function, defaulting to
1533 * the legacy UNIX filesystem behaviour. If it tells
1534 * us to evict inode, do so. Otherwise, retain inode
1535 * in cache if fs is alive, sync and evict if fs is
1538 static void iput_final(struct inode *inode)
1540 struct super_block *sb = inode->i_sb;
1541 const struct super_operations *op = inode->i_sb->s_op;
1544 WARN_ON(inode->i_state & I_NEW);
1547 drop = op->drop_inode(inode);
1549 drop = generic_drop_inode(inode);
1551 if (!drop && (sb->s_flags & SB_ACTIVE)) {
1552 inode_add_lru(inode);
1553 spin_unlock(&inode->i_lock);
1558 inode->i_state |= I_WILL_FREE;
1559 spin_unlock(&inode->i_lock);
1560 write_inode_now(inode, 1);
1561 spin_lock(&inode->i_lock);
1562 WARN_ON(inode->i_state & I_NEW);
1563 inode->i_state &= ~I_WILL_FREE;
1566 inode->i_state |= I_FREEING;
1567 if (!list_empty(&inode->i_lru))
1568 inode_lru_list_del(inode);
1569 spin_unlock(&inode->i_lock);
1575 * iput - put an inode
1576 * @inode: inode to put
1578 * Puts an inode, dropping its usage count. If the inode use count hits
1579 * zero, the inode is then freed and may also be destroyed.
1581 * Consequently, iput() can sleep.
1583 void iput(struct inode *inode)
1587 BUG_ON(inode->i_state & I_CLEAR);
1589 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1590 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1591 atomic_inc(&inode->i_count);
1592 spin_unlock(&inode->i_lock);
1593 trace_writeback_lazytime_iput(inode);
1594 mark_inode_dirty_sync(inode);
1600 EXPORT_SYMBOL(iput);
1603 * bmap - find a block number in a file
1604 * @inode: inode of file
1605 * @block: block to find
1607 * Returns the block number on the device holding the inode that
1608 * is the disk block number for the block of the file requested.
1609 * That is, asked for block 4 of inode 1 the function will return the
1610 * disk block relative to the disk start that holds that block of the
1613 sector_t bmap(struct inode *inode, sector_t block)
1616 if (inode->i_mapping->a_ops->bmap)
1617 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1620 EXPORT_SYMBOL(bmap);
1623 * With relative atime, only update atime if the previous atime is
1624 * earlier than either the ctime or mtime or if at least a day has
1625 * passed since the last atime update.
1627 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1628 struct timespec64 now)
1631 if (!(mnt->mnt_flags & MNT_RELATIME))
1634 * Is mtime younger than atime? If yes, update atime:
1636 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1639 * Is ctime younger than atime? If yes, update atime:
1641 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1645 * Is the previous atime value older than a day? If yes,
1648 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1651 * Good, we can skip the atime update:
1656 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1658 int iflags = I_DIRTY_TIME;
1661 if (flags & S_ATIME)
1662 inode->i_atime = *time;
1663 if (flags & S_VERSION)
1664 dirty = inode_maybe_inc_iversion(inode, false);
1665 if (flags & S_CTIME)
1666 inode->i_ctime = *time;
1667 if (flags & S_MTIME)
1668 inode->i_mtime = *time;
1669 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1670 !(inode->i_sb->s_flags & SB_LAZYTIME))
1674 iflags |= I_DIRTY_SYNC;
1675 __mark_inode_dirty(inode, iflags);
1678 EXPORT_SYMBOL(generic_update_time);
1681 * This does the actual work of updating an inodes time or version. Must have
1682 * had called mnt_want_write() before calling this.
1684 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1686 int (*update_time)(struct inode *, struct timespec64 *, int);
1688 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1689 generic_update_time;
1691 return update_time(inode, time, flags);
1695 * touch_atime - update the access time
1696 * @path: the &struct path to update
1697 * @inode: inode to update
1699 * Update the accessed time on an inode and mark it for writeback.
1700 * This function automatically handles read only file systems and media,
1701 * as well as the "noatime" flag and inode specific "noatime" markers.
1703 bool atime_needs_update(const struct path *path, struct inode *inode)
1705 struct vfsmount *mnt = path->mnt;
1706 struct timespec64 now;
1708 if (inode->i_flags & S_NOATIME)
1711 /* Atime updates will likely cause i_uid and i_gid to be written
1712 * back improprely if their true value is unknown to the vfs.
1714 if (HAS_UNMAPPED_ID(inode))
1717 if (IS_NOATIME(inode))
1719 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1722 if (mnt->mnt_flags & MNT_NOATIME)
1724 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1727 now = current_time(inode);
1729 if (!relatime_need_update(mnt, inode, now))
1732 if (timespec64_equal(&inode->i_atime, &now))
1738 void touch_atime(const struct path *path)
1740 struct vfsmount *mnt = path->mnt;
1741 struct inode *inode = d_inode(path->dentry);
1742 struct timespec64 now;
1744 if (!atime_needs_update(path, inode))
1747 if (!sb_start_write_trylock(inode->i_sb))
1750 if (__mnt_want_write(mnt) != 0)
1753 * File systems can error out when updating inodes if they need to
1754 * allocate new space to modify an inode (such is the case for
1755 * Btrfs), but since we touch atime while walking down the path we
1756 * really don't care if we failed to update the atime of the file,
1757 * so just ignore the return value.
1758 * We may also fail on filesystems that have the ability to make parts
1759 * of the fs read only, e.g. subvolumes in Btrfs.
1761 now = current_time(inode);
1762 update_time(inode, &now, S_ATIME);
1763 __mnt_drop_write(mnt);
1765 sb_end_write(inode->i_sb);
1767 EXPORT_SYMBOL(touch_atime);
1770 * The logic we want is
1772 * if suid or (sgid and xgrp)
1775 int should_remove_suid(struct dentry *dentry)
1777 umode_t mode = d_inode(dentry)->i_mode;
1780 /* suid always must be killed */
1781 if (unlikely(mode & S_ISUID))
1782 kill = ATTR_KILL_SUID;
1785 * sgid without any exec bits is just a mandatory locking mark; leave
1786 * it alone. If some exec bits are set, it's a real sgid; kill it.
1788 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1789 kill |= ATTR_KILL_SGID;
1791 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1796 EXPORT_SYMBOL(should_remove_suid);
1799 * Return mask of changes for notify_change() that need to be done as a
1800 * response to write or truncate. Return 0 if nothing has to be changed.
1801 * Negative value on error (change should be denied).
1803 int dentry_needs_remove_privs(struct dentry *dentry)
1805 struct inode *inode = d_inode(dentry);
1809 if (IS_NOSEC(inode))
1812 mask = should_remove_suid(dentry);
1813 ret = security_inode_need_killpriv(dentry);
1817 mask |= ATTR_KILL_PRIV;
1821 static int __remove_privs(struct dentry *dentry, int kill)
1823 struct iattr newattrs;
1825 newattrs.ia_valid = ATTR_FORCE | kill;
1827 * Note we call this on write, so notify_change will not
1828 * encounter any conflicting delegations:
1830 return notify_change(dentry, &newattrs, NULL);
1834 * Remove special file priviledges (suid, capabilities) when file is written
1837 int file_remove_privs(struct file *file)
1839 struct dentry *dentry = file_dentry(file);
1840 struct inode *inode = file_inode(file);
1845 * Fast path for nothing security related.
1846 * As well for non-regular files, e.g. blkdev inodes.
1847 * For example, blkdev_write_iter() might get here
1848 * trying to remove privs which it is not allowed to.
1850 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1853 kill = dentry_needs_remove_privs(dentry);
1857 error = __remove_privs(dentry, kill);
1859 inode_has_no_xattr(inode);
1863 EXPORT_SYMBOL(file_remove_privs);
1866 * file_update_time - update mtime and ctime time
1867 * @file: file accessed
1869 * Update the mtime and ctime members of an inode and mark the inode
1870 * for writeback. Note that this function is meant exclusively for
1871 * usage in the file write path of filesystems, and filesystems may
1872 * choose to explicitly ignore update via this function with the
1873 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1874 * timestamps are handled by the server. This can return an error for
1875 * file systems who need to allocate space in order to update an inode.
1878 int file_update_time(struct file *file)
1880 struct inode *inode = file_inode(file);
1881 struct timespec64 now;
1885 /* First try to exhaust all avenues to not sync */
1886 if (IS_NOCMTIME(inode))
1889 now = current_time(inode);
1890 if (!timespec64_equal(&inode->i_mtime, &now))
1893 if (!timespec64_equal(&inode->i_ctime, &now))
1896 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1897 sync_it |= S_VERSION;
1902 /* Finally allowed to write? Takes lock. */
1903 if (__mnt_want_write_file(file))
1906 ret = update_time(inode, &now, sync_it);
1907 __mnt_drop_write_file(file);
1911 EXPORT_SYMBOL(file_update_time);
1913 /* Caller must hold the file's inode lock */
1914 int file_modified(struct file *file)
1919 * Clear the security bits if the process is not being run by root.
1920 * This keeps people from modifying setuid and setgid binaries.
1922 err = file_remove_privs(file);
1926 if (unlikely(file->f_mode & FMODE_NOCMTIME))
1929 return file_update_time(file);
1931 EXPORT_SYMBOL(file_modified);
1933 int inode_needs_sync(struct inode *inode)
1937 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1941 EXPORT_SYMBOL(inode_needs_sync);
1944 * If we try to find an inode in the inode hash while it is being
1945 * deleted, we have to wait until the filesystem completes its
1946 * deletion before reporting that it isn't found. This function waits
1947 * until the deletion _might_ have completed. Callers are responsible
1948 * to recheck inode state.
1950 * It doesn't matter if I_NEW is not set initially, a call to
1951 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1954 static void __wait_on_freeing_inode(struct inode *inode)
1956 wait_queue_head_t *wq;
1957 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1958 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1959 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1960 spin_unlock(&inode->i_lock);
1961 spin_unlock(&inode_hash_lock);
1963 finish_wait(wq, &wait.wq_entry);
1964 spin_lock(&inode_hash_lock);
1967 static __initdata unsigned long ihash_entries;
1968 static int __init set_ihash_entries(char *str)
1972 ihash_entries = simple_strtoul(str, &str, 0);
1975 __setup("ihash_entries=", set_ihash_entries);
1978 * Initialize the waitqueues and inode hash table.
1980 void __init inode_init_early(void)
1982 /* If hashes are distributed across NUMA nodes, defer
1983 * hash allocation until vmalloc space is available.
1989 alloc_large_system_hash("Inode-cache",
1990 sizeof(struct hlist_head),
1993 HASH_EARLY | HASH_ZERO,
2000 void __init inode_init(void)
2002 /* inode slab cache */
2003 inode_cachep = kmem_cache_create("inode_cache",
2004 sizeof(struct inode),
2006 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2007 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2010 /* Hash may have been set up in inode_init_early */
2015 alloc_large_system_hash("Inode-cache",
2016 sizeof(struct hlist_head),
2026 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2028 inode->i_mode = mode;
2029 if (S_ISCHR(mode)) {
2030 inode->i_fop = &def_chr_fops;
2031 inode->i_rdev = rdev;
2032 } else if (S_ISBLK(mode)) {
2033 inode->i_fop = &def_blk_fops;
2034 inode->i_rdev = rdev;
2035 } else if (S_ISFIFO(mode))
2036 inode->i_fop = &pipefifo_fops;
2037 else if (S_ISSOCK(mode))
2038 ; /* leave it no_open_fops */
2040 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2041 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2044 EXPORT_SYMBOL(init_special_inode);
2047 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2049 * @dir: Directory inode
2050 * @mode: mode of the new inode
2052 void inode_init_owner(struct inode *inode, const struct inode *dir,
2055 inode->i_uid = current_fsuid();
2056 if (dir && dir->i_mode & S_ISGID) {
2057 inode->i_gid = dir->i_gid;
2059 /* Directories are special, and always inherit S_ISGID */
2062 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2063 !in_group_p(inode->i_gid) &&
2064 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2067 inode->i_gid = current_fsgid();
2068 inode->i_mode = mode;
2070 EXPORT_SYMBOL(inode_init_owner);
2073 * inode_owner_or_capable - check current task permissions to inode
2074 * @inode: inode being checked
2076 * Return true if current either has CAP_FOWNER in a namespace with the
2077 * inode owner uid mapped, or owns the file.
2079 bool inode_owner_or_capable(const struct inode *inode)
2081 struct user_namespace *ns;
2083 if (uid_eq(current_fsuid(), inode->i_uid))
2086 ns = current_user_ns();
2087 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2091 EXPORT_SYMBOL(inode_owner_or_capable);
2094 * Direct i/o helper functions
2096 static void __inode_dio_wait(struct inode *inode)
2098 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2099 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2102 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2103 if (atomic_read(&inode->i_dio_count))
2105 } while (atomic_read(&inode->i_dio_count));
2106 finish_wait(wq, &q.wq_entry);
2110 * inode_dio_wait - wait for outstanding DIO requests to finish
2111 * @inode: inode to wait for
2113 * Waits for all pending direct I/O requests to finish so that we can
2114 * proceed with a truncate or equivalent operation.
2116 * Must be called under a lock that serializes taking new references
2117 * to i_dio_count, usually by inode->i_mutex.
2119 void inode_dio_wait(struct inode *inode)
2121 if (atomic_read(&inode->i_dio_count))
2122 __inode_dio_wait(inode);
2124 EXPORT_SYMBOL(inode_dio_wait);
2127 * inode_set_flags - atomically set some inode flags
2129 * Note: the caller should be holding i_mutex, or else be sure that
2130 * they have exclusive access to the inode structure (i.e., while the
2131 * inode is being instantiated). The reason for the cmpxchg() loop
2132 * --- which wouldn't be necessary if all code paths which modify
2133 * i_flags actually followed this rule, is that there is at least one
2134 * code path which doesn't today so we use cmpxchg() out of an abundance
2137 * In the long run, i_mutex is overkill, and we should probably look
2138 * at using the i_lock spinlock to protect i_flags, and then make sure
2139 * it is so documented in include/linux/fs.h and that all code follows
2140 * the locking convention!!
2142 void inode_set_flags(struct inode *inode, unsigned int flags,
2145 WARN_ON_ONCE(flags & ~mask);
2146 set_mask_bits(&inode->i_flags, mask, flags);
2148 EXPORT_SYMBOL(inode_set_flags);
2150 void inode_nohighmem(struct inode *inode)
2152 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2154 EXPORT_SYMBOL(inode_nohighmem);
2157 * timespec64_trunc - Truncate timespec64 to a granularity
2159 * @gran: Granularity in ns.
2161 * Truncate a timespec64 to a granularity. Always rounds down. gran must
2162 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2164 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2166 /* Avoid division in the common cases 1 ns and 1 s. */
2169 } else if (gran == NSEC_PER_SEC) {
2171 } else if (gran > 1 && gran < NSEC_PER_SEC) {
2172 t.tv_nsec -= t.tv_nsec % gran;
2174 WARN(1, "illegal file time granularity: %u", gran);
2178 EXPORT_SYMBOL(timespec64_trunc);
2181 * timestamp_truncate - Truncate timespec to a granularity
2183 * @inode: inode being updated
2185 * Truncate a timespec to the granularity supported by the fs
2186 * containing the inode. Always rounds down. gran must
2187 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2189 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2191 struct super_block *sb = inode->i_sb;
2192 unsigned int gran = sb->s_time_gran;
2194 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2195 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2198 /* Avoid division in the common cases 1 ns and 1 s. */
2201 else if (gran == NSEC_PER_SEC)
2203 else if (gran > 1 && gran < NSEC_PER_SEC)
2204 t.tv_nsec -= t.tv_nsec % gran;
2206 WARN(1, "invalid file time granularity: %u", gran);
2209 EXPORT_SYMBOL(timestamp_truncate);
2212 * current_time - Return FS time
2215 * Return the current time truncated to the time granularity supported by
2218 * Note that inode and inode->sb cannot be NULL.
2219 * Otherwise, the function warns and returns time without truncation.
2221 struct timespec64 current_time(struct inode *inode)
2223 struct timespec64 now;
2225 ktime_get_coarse_real_ts64(&now);
2227 if (unlikely(!inode->i_sb)) {
2228 WARN(1, "current_time() called with uninitialized super_block in the inode");
2232 return timestamp_truncate(now, inode);
2234 EXPORT_SYMBOL(current_time);
2237 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2240 * Note: the caller should be holding i_mutex, or else be sure that they have
2241 * exclusive access to the inode structure.
2243 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2247 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2248 * the relevant capability.
2250 * This test looks nicer. Thanks to Pauline Middelink
2252 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2253 !capable(CAP_LINUX_IMMUTABLE))
2256 return fscrypt_prepare_setflags(inode, oldflags, flags);
2258 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2261 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2264 * Note: the caller should be holding i_mutex, or else be sure that they have
2265 * exclusive access to the inode structure.
2267 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2271 * Can't modify an immutable/append-only file unless we have
2272 * appropriate permission.
2274 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2275 (FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2276 !capable(CAP_LINUX_IMMUTABLE))
2280 * Project Quota ID state is only allowed to change from within the init
2281 * namespace. Enforce that restriction only if we are trying to change
2282 * the quota ID state. Everything else is allowed in user namespaces.
2284 if (current_user_ns() != &init_user_ns) {
2285 if (old_fa->fsx_projid != fa->fsx_projid)
2287 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2288 FS_XFLAG_PROJINHERIT)
2292 /* Check extent size hints. */
2293 if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2296 if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2297 !S_ISDIR(inode->i_mode))
2300 if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2301 !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2305 * It is only valid to set the DAX flag on regular files and
2306 * directories on filesystems.
2308 if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2309 !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2312 /* Extent size hints of zero turn off the flags. */
2313 if (fa->fsx_extsize == 0)
2314 fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2315 if (fa->fsx_cowextsize == 0)
2316 fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2320 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);