2 * mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
7 * Copyright (C) 2017 Facebook Inc.
10 * This file is released under the GPLv2 license.
12 * The percpu allocator handles both static and dynamic areas. Percpu
13 * areas are allocated in chunks which are divided into units. There is
14 * a 1-to-1 mapping for units to possible cpus. These units are grouped
15 * based on NUMA properties of the machine.
18 * ------------------- ------------------- ------------
19 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
20 * ------------------- ...... ------------------- .... ------------
22 * Allocation is done by offsets into a unit's address space. Ie., an
23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
24 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
25 * and even sparse. Access is handled by configuring percpu base
26 * registers according to the cpu to unit mappings and offsetting the
27 * base address using pcpu_unit_size.
29 * There is special consideration for the first chunk which must handle
30 * the static percpu variables in the kernel image as allocation services
31 * are not online yet. In short, the first chunk is structured like so:
33 * <Static | [Reserved] | Dynamic>
35 * The static data is copied from the original section managed by the
36 * linker. The reserved section, if non-zero, primarily manages static
37 * percpu variables from kernel modules. Finally, the dynamic section
38 * takes care of normal allocations.
40 * The allocator organizes chunks into lists according to free size and
41 * tries to allocate from the fullest chunk first. Each chunk is managed
42 * by a bitmap with metadata blocks. The allocation map is updated on
43 * every allocation and free to reflect the current state while the boundary
44 * map is only updated on allocation. Each metadata block contains
45 * information to help mitigate the need to iterate over large portions
46 * of the bitmap. The reverse mapping from page to chunk is stored in
47 * the page's index. Lastly, units are lazily backed and grow in unison.
49 * There is a unique conversion that goes on here between bytes and bits.
50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
51 * tracks the number of pages it is responsible for in nr_pages. Helper
52 * functions are used to convert from between the bytes, bits, and blocks.
53 * All hints are managed in bits unless explicitly stated.
55 * To use this allocator, arch code should do the following:
57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
58 * regular address to percpu pointer and back if they need to be
59 * different from the default
61 * - use pcpu_setup_first_chunk() during percpu area initialization to
62 * setup the first chunk containing the kernel static percpu area
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
67 #include <linux/bitmap.h>
68 #include <linux/memblock.h>
69 #include <linux/err.h>
70 #include <linux/lcm.h>
71 #include <linux/list.h>
72 #include <linux/log2.h>
74 #include <linux/module.h>
75 #include <linux/mutex.h>
76 #include <linux/percpu.h>
77 #include <linux/pfn.h>
78 #include <linux/slab.h>
79 #include <linux/spinlock.h>
80 #include <linux/vmalloc.h>
81 #include <linux/workqueue.h>
82 #include <linux/kmemleak.h>
83 #include <linux/sched.h>
85 #include <asm/cacheflush.h>
86 #include <asm/sections.h>
87 #include <asm/tlbflush.h>
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/percpu.h>
93 #include "percpu-internal.h"
95 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
96 #define PCPU_SLOT_BASE_SHIFT 5
97 /* chunks in slots below this are subject to being sidelined on failed alloc */
98 #define PCPU_SLOT_FAIL_THRESHOLD 3
100 #define PCPU_EMPTY_POP_PAGES_LOW 2
101 #define PCPU_EMPTY_POP_PAGES_HIGH 4
104 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
105 #ifndef __addr_to_pcpu_ptr
106 #define __addr_to_pcpu_ptr(addr) \
107 (void __percpu *)((unsigned long)(addr) - \
108 (unsigned long)pcpu_base_addr + \
109 (unsigned long)__per_cpu_start)
111 #ifndef __pcpu_ptr_to_addr
112 #define __pcpu_ptr_to_addr(ptr) \
113 (void __force *)((unsigned long)(ptr) + \
114 (unsigned long)pcpu_base_addr - \
115 (unsigned long)__per_cpu_start)
117 #else /* CONFIG_SMP */
118 /* on UP, it's always identity mapped */
119 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
120 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
121 #endif /* CONFIG_SMP */
123 static int pcpu_unit_pages __ro_after_init;
124 static int pcpu_unit_size __ro_after_init;
125 static int pcpu_nr_units __ro_after_init;
126 static int pcpu_atom_size __ro_after_init;
127 int pcpu_nr_slots __ro_after_init;
128 static size_t pcpu_chunk_struct_size __ro_after_init;
130 /* cpus with the lowest and highest unit addresses */
131 static unsigned int pcpu_low_unit_cpu __ro_after_init;
132 static unsigned int pcpu_high_unit_cpu __ro_after_init;
134 /* the address of the first chunk which starts with the kernel static area */
135 void *pcpu_base_addr __ro_after_init;
136 EXPORT_SYMBOL_GPL(pcpu_base_addr);
138 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
139 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
141 /* group information, used for vm allocation */
142 static int pcpu_nr_groups __ro_after_init;
143 static const unsigned long *pcpu_group_offsets __ro_after_init;
144 static const size_t *pcpu_group_sizes __ro_after_init;
147 * The first chunk which always exists. Note that unlike other
148 * chunks, this one can be allocated and mapped in several different
149 * ways and thus often doesn't live in the vmalloc area.
151 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
154 * Optional reserved chunk. This chunk reserves part of the first
155 * chunk and serves it for reserved allocations. When the reserved
156 * region doesn't exist, the following variable is NULL.
158 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
160 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
161 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
163 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
165 /* chunks which need their map areas extended, protected by pcpu_lock */
166 static LIST_HEAD(pcpu_map_extend_chunks);
169 * The number of empty populated pages, protected by pcpu_lock. The
170 * reserved chunk doesn't contribute to the count.
172 int pcpu_nr_empty_pop_pages;
175 * The number of populated pages in use by the allocator, protected by
176 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
177 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
178 * and increments/decrements this count by 1).
180 static unsigned long pcpu_nr_populated;
183 * Balance work is used to populate or destroy chunks asynchronously. We
184 * try to keep the number of populated free pages between
185 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
188 static void pcpu_balance_workfn(struct work_struct *work);
189 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
190 static bool pcpu_async_enabled __read_mostly;
191 static bool pcpu_atomic_alloc_failed;
193 static void pcpu_schedule_balance_work(void)
195 if (pcpu_async_enabled)
196 schedule_work(&pcpu_balance_work);
200 * pcpu_addr_in_chunk - check if the address is served from this chunk
201 * @chunk: chunk of interest
202 * @addr: percpu address
205 * True if the address is served from this chunk.
207 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
209 void *start_addr, *end_addr;
214 start_addr = chunk->base_addr + chunk->start_offset;
215 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
218 return addr >= start_addr && addr < end_addr;
221 static int __pcpu_size_to_slot(int size)
223 int highbit = fls(size); /* size is in bytes */
224 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
227 static int pcpu_size_to_slot(int size)
229 if (size == pcpu_unit_size)
230 return pcpu_nr_slots - 1;
231 return __pcpu_size_to_slot(size);
234 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
236 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
239 return pcpu_size_to_slot(chunk->contig_bits * PCPU_MIN_ALLOC_SIZE);
242 /* set the pointer to a chunk in a page struct */
243 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
245 page->index = (unsigned long)pcpu;
248 /* obtain pointer to a chunk from a page struct */
249 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
251 return (struct pcpu_chunk *)page->index;
254 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
256 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
259 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
261 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
264 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
265 unsigned int cpu, int page_idx)
267 return (unsigned long)chunk->base_addr +
268 pcpu_unit_page_offset(cpu, page_idx);
271 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
273 *rs = find_next_zero_bit(bitmap, end, *rs);
274 *re = find_next_bit(bitmap, end, *rs + 1);
277 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
279 *rs = find_next_bit(bitmap, end, *rs);
280 *re = find_next_zero_bit(bitmap, end, *rs + 1);
284 * Bitmap region iterators. Iterates over the bitmap between
285 * [@start, @end) in @chunk. @rs and @re should be integer variables
286 * and will be set to start and end index of the current free region.
288 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
289 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
291 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
293 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
294 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
296 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
299 * The following are helper functions to help access bitmaps and convert
300 * between bitmap offsets to address offsets.
302 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
304 return chunk->alloc_map +
305 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
308 static unsigned long pcpu_off_to_block_index(int off)
310 return off / PCPU_BITMAP_BLOCK_BITS;
313 static unsigned long pcpu_off_to_block_off(int off)
315 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
318 static unsigned long pcpu_block_off_to_off(int index, int off)
320 return index * PCPU_BITMAP_BLOCK_BITS + off;
324 * pcpu_next_md_free_region - finds the next hint free area
325 * @chunk: chunk of interest
326 * @bit_off: chunk offset
327 * @bits: size of free area
329 * Helper function for pcpu_for_each_md_free_region. It checks
330 * block->contig_hint and performs aggregation across blocks to find the
331 * next hint. It modifies bit_off and bits in-place to be consumed in the
334 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
337 int i = pcpu_off_to_block_index(*bit_off);
338 int block_off = pcpu_off_to_block_off(*bit_off);
339 struct pcpu_block_md *block;
342 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
344 /* handles contig area across blocks */
346 *bits += block->left_free;
347 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
353 * This checks three things. First is there a contig_hint to
354 * check. Second, have we checked this hint before by
355 * comparing the block_off. Third, is this the same as the
356 * right contig hint. In the last case, it spills over into
357 * the next block and should be handled by the contig area
358 * across blocks code.
360 *bits = block->contig_hint;
361 if (*bits && block->contig_hint_start >= block_off &&
362 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
363 *bit_off = pcpu_block_off_to_off(i,
364 block->contig_hint_start);
367 /* reset to satisfy the second predicate above */
370 *bits = block->right_free;
371 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
376 * pcpu_next_fit_region - finds fit areas for a given allocation request
377 * @chunk: chunk of interest
378 * @alloc_bits: size of allocation
379 * @align: alignment of area (max PAGE_SIZE)
380 * @bit_off: chunk offset
381 * @bits: size of free area
383 * Finds the next free region that is viable for use with a given size and
384 * alignment. This only returns if there is a valid area to be used for this
385 * allocation. block->first_free is returned if the allocation request fits
386 * within the block to see if the request can be fulfilled prior to the contig
389 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
390 int align, int *bit_off, int *bits)
392 int i = pcpu_off_to_block_index(*bit_off);
393 int block_off = pcpu_off_to_block_off(*bit_off);
394 struct pcpu_block_md *block;
397 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
399 /* handles contig area across blocks */
401 *bits += block->left_free;
402 if (*bits >= alloc_bits)
404 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
408 /* check block->contig_hint */
409 *bits = ALIGN(block->contig_hint_start, align) -
410 block->contig_hint_start;
412 * This uses the block offset to determine if this has been
413 * checked in the prior iteration.
415 if (block->contig_hint &&
416 block->contig_hint_start >= block_off &&
417 block->contig_hint >= *bits + alloc_bits) {
418 *bits += alloc_bits + block->contig_hint_start -
420 *bit_off = pcpu_block_off_to_off(i, block->first_free);
423 /* reset to satisfy the second predicate above */
426 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
428 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
429 *bit_off = pcpu_block_off_to_off(i, *bit_off);
430 if (*bits >= alloc_bits)
434 /* no valid offsets were found - fail condition */
435 *bit_off = pcpu_chunk_map_bits(chunk);
439 * Metadata free area iterators. These perform aggregation of free areas
440 * based on the metadata blocks and return the offset @bit_off and size in
441 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
442 * a fit is found for the allocation request.
444 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
445 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
446 (bit_off) < pcpu_chunk_map_bits((chunk)); \
447 (bit_off) += (bits) + 1, \
448 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
450 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
451 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
453 (bit_off) < pcpu_chunk_map_bits((chunk)); \
454 (bit_off) += (bits), \
455 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
459 * pcpu_mem_zalloc - allocate memory
460 * @size: bytes to allocate
461 * @gfp: allocation flags
463 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
464 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
465 * This is to facilitate passing through whitelisted flags. The
466 * returned memory is always zeroed.
469 * Pointer to the allocated area on success, NULL on failure.
471 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
473 if (WARN_ON_ONCE(!slab_is_available()))
476 if (size <= PAGE_SIZE)
477 return kzalloc(size, gfp);
479 return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
483 * pcpu_mem_free - free memory
484 * @ptr: memory to free
486 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
488 static void pcpu_mem_free(void *ptr)
493 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
496 if (chunk != pcpu_reserved_chunk) {
498 list_move(&chunk->list, &pcpu_slot[slot]);
500 list_move_tail(&chunk->list, &pcpu_slot[slot]);
504 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
506 __pcpu_chunk_move(chunk, slot, true);
510 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
511 * @chunk: chunk of interest
512 * @oslot: the previous slot it was on
514 * This function is called after an allocation or free changed @chunk.
515 * New slot according to the changed state is determined and @chunk is
516 * moved to the slot. Note that the reserved chunk is never put on
522 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
524 int nslot = pcpu_chunk_slot(chunk);
527 __pcpu_chunk_move(chunk, nslot, oslot < nslot);
531 * pcpu_update_empty_pages - update empty page counters
532 * @chunk: chunk of interest
533 * @nr: nr of empty pages
535 * This is used to keep track of the empty pages now based on the premise
536 * a md_block covers a page. The hint update functions recognize if a block
537 * is made full or broken to calculate deltas for keeping track of free pages.
539 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
541 chunk->nr_empty_pop_pages += nr;
542 if (chunk != pcpu_reserved_chunk)
543 pcpu_nr_empty_pop_pages += nr;
547 * pcpu_region_overlap - determines if two regions overlap
548 * @a: start of first region, inclusive
549 * @b: end of first region, exclusive
550 * @x: start of second region, inclusive
551 * @y: end of second region, exclusive
553 * This is used to determine if the hint region [a, b) overlaps with the
554 * allocated region [x, y).
556 static inline bool pcpu_region_overlap(int a, int b, int x, int y)
558 return (a < y) && (x < b);
562 * pcpu_chunk_update - updates the chunk metadata given a free area
563 * @chunk: chunk of interest
564 * @bit_off: chunk offset
565 * @bits: size of free area
567 * This updates the chunk's contig hint and starting offset given a free area.
568 * Choose the best starting offset if the contig hint is equal.
570 static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
572 if (bits > chunk->contig_bits) {
573 chunk->contig_bits_start = bit_off;
574 chunk->contig_bits = bits;
575 } else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
577 __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
578 /* use the start with the best alignment */
579 chunk->contig_bits_start = bit_off;
584 * pcpu_chunk_refresh_hint - updates metadata about a chunk
585 * @chunk: chunk of interest
587 * Iterates over the metadata blocks to find the largest contig area.
588 * It also counts the populated pages and uses the delta to update the
593 * chunk->contig_bits_start
595 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
600 chunk->contig_bits = 0;
602 bit_off = chunk->first_bit;
604 pcpu_for_each_md_free_region(chunk, bit_off, bits) {
605 pcpu_chunk_update(chunk, bit_off, bits);
610 * pcpu_block_update - updates a block given a free area
611 * @block: block of interest
612 * @start: start offset in block
613 * @end: end offset in block
615 * Updates a block given a known free area. The region [start, end) is
616 * expected to be the entirety of the free area within a block. Chooses
617 * the best starting offset if the contig hints are equal.
619 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
621 int contig = end - start;
623 block->first_free = min(block->first_free, start);
625 block->left_free = contig;
627 if (end == PCPU_BITMAP_BLOCK_BITS)
628 block->right_free = contig;
630 if (contig > block->contig_hint) {
631 block->contig_hint_start = start;
632 block->contig_hint = contig;
633 } else if (block->contig_hint_start && contig == block->contig_hint &&
634 (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
635 /* use the start with the best alignment */
636 block->contig_hint_start = start;
641 * pcpu_block_refresh_hint
642 * @chunk: chunk of interest
643 * @index: index of the metadata block
645 * Scans over the block beginning at first_free and updates the block
646 * metadata accordingly.
648 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
650 struct pcpu_block_md *block = chunk->md_blocks + index;
651 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
652 int rs, re; /* region start, region end */
655 block->contig_hint = 0;
656 block->left_free = block->right_free = 0;
658 /* iterate over free areas and update the contig hints */
659 pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
660 PCPU_BITMAP_BLOCK_BITS) {
661 pcpu_block_update(block, rs, re);
666 * pcpu_block_update_hint_alloc - update hint on allocation path
667 * @chunk: chunk of interest
668 * @bit_off: chunk offset
669 * @bits: size of request
671 * Updates metadata for the allocation path. The metadata only has to be
672 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
673 * scans are required if the block's contig hint is broken.
675 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
678 int nr_empty_pages = 0;
679 struct pcpu_block_md *s_block, *e_block, *block;
680 int s_index, e_index; /* block indexes of the freed allocation */
681 int s_off, e_off; /* block offsets of the freed allocation */
684 * Calculate per block offsets.
685 * The calculation uses an inclusive range, but the resulting offsets
686 * are [start, end). e_index always points to the last block in the
689 s_index = pcpu_off_to_block_index(bit_off);
690 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
691 s_off = pcpu_off_to_block_off(bit_off);
692 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
694 s_block = chunk->md_blocks + s_index;
695 e_block = chunk->md_blocks + e_index;
699 * block->first_free must be updated if the allocation takes its place.
700 * If the allocation breaks the contig_hint, a scan is required to
703 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
706 if (s_off == s_block->first_free)
707 s_block->first_free = find_next_zero_bit(
708 pcpu_index_alloc_map(chunk, s_index),
709 PCPU_BITMAP_BLOCK_BITS,
712 if (pcpu_region_overlap(s_block->contig_hint_start,
713 s_block->contig_hint_start +
714 s_block->contig_hint,
717 /* block contig hint is broken - scan to fix it */
718 pcpu_block_refresh_hint(chunk, s_index);
720 /* update left and right contig manually */
721 s_block->left_free = min(s_block->left_free, s_off);
722 if (s_index == e_index)
723 s_block->right_free = min_t(int, s_block->right_free,
724 PCPU_BITMAP_BLOCK_BITS - e_off);
726 s_block->right_free = 0;
732 if (s_index != e_index) {
733 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
737 * When the allocation is across blocks, the end is along
738 * the left part of the e_block.
740 e_block->first_free = find_next_zero_bit(
741 pcpu_index_alloc_map(chunk, e_index),
742 PCPU_BITMAP_BLOCK_BITS, e_off);
744 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
745 /* reset the block */
748 if (e_off > e_block->contig_hint_start) {
749 /* contig hint is broken - scan to fix it */
750 pcpu_block_refresh_hint(chunk, e_index);
752 e_block->left_free = 0;
753 e_block->right_free =
754 min_t(int, e_block->right_free,
755 PCPU_BITMAP_BLOCK_BITS - e_off);
759 /* update in-between md_blocks */
760 nr_empty_pages += (e_index - s_index - 1);
761 for (block = s_block + 1; block < e_block; block++) {
762 block->contig_hint = 0;
763 block->left_free = 0;
764 block->right_free = 0;
769 pcpu_update_empty_pages(chunk, -nr_empty_pages);
772 * The only time a full chunk scan is required is if the chunk
773 * contig hint is broken. Otherwise, it means a smaller space
774 * was used and therefore the chunk contig hint is still correct.
776 if (pcpu_region_overlap(chunk->contig_bits_start,
777 chunk->contig_bits_start + chunk->contig_bits,
780 pcpu_chunk_refresh_hint(chunk);
784 * pcpu_block_update_hint_free - updates the block hints on the free path
785 * @chunk: chunk of interest
786 * @bit_off: chunk offset
787 * @bits: size of request
789 * Updates metadata for the allocation path. This avoids a blind block
790 * refresh by making use of the block contig hints. If this fails, it scans
791 * forward and backward to determine the extent of the free area. This is
792 * capped at the boundary of blocks.
794 * A chunk update is triggered if a page becomes free, a block becomes free,
795 * or the free spans across blocks. This tradeoff is to minimize iterating
796 * over the block metadata to update chunk->contig_bits. chunk->contig_bits
797 * may be off by up to a page, but it will never be more than the available
798 * space. If the contig hint is contained in one block, it will be accurate.
800 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
803 int nr_empty_pages = 0;
804 struct pcpu_block_md *s_block, *e_block, *block;
805 int s_index, e_index; /* block indexes of the freed allocation */
806 int s_off, e_off; /* block offsets of the freed allocation */
807 int start, end; /* start and end of the whole free area */
810 * Calculate per block offsets.
811 * The calculation uses an inclusive range, but the resulting offsets
812 * are [start, end). e_index always points to the last block in the
815 s_index = pcpu_off_to_block_index(bit_off);
816 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
817 s_off = pcpu_off_to_block_off(bit_off);
818 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
820 s_block = chunk->md_blocks + s_index;
821 e_block = chunk->md_blocks + e_index;
824 * Check if the freed area aligns with the block->contig_hint.
825 * If it does, then the scan to find the beginning/end of the
826 * larger free area can be avoided.
828 * start and end refer to beginning and end of the free area
829 * within each their respective blocks. This is not necessarily
830 * the entire free area as it may span blocks past the beginning
831 * or end of the block.
834 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
835 start = s_block->contig_hint_start;
838 * Scan backwards to find the extent of the free area.
839 * find_last_bit returns the starting bit, so if the start bit
840 * is returned, that means there was no last bit and the
841 * remainder of the chunk is free.
843 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
845 start = (start == l_bit) ? 0 : l_bit + 1;
849 if (e_off == e_block->contig_hint_start)
850 end = e_block->contig_hint_start + e_block->contig_hint;
852 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
853 PCPU_BITMAP_BLOCK_BITS, end);
856 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
857 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
859 pcpu_block_update(s_block, start, e_off);
861 /* freeing in the same block */
862 if (s_index != e_index) {
864 if (end == PCPU_BITMAP_BLOCK_BITS)
866 pcpu_block_update(e_block, 0, end);
868 /* reset md_blocks in the middle */
869 nr_empty_pages += (e_index - s_index - 1);
870 for (block = s_block + 1; block < e_block; block++) {
871 block->first_free = 0;
872 block->contig_hint_start = 0;
873 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
874 block->left_free = PCPU_BITMAP_BLOCK_BITS;
875 block->right_free = PCPU_BITMAP_BLOCK_BITS;
880 pcpu_update_empty_pages(chunk, nr_empty_pages);
883 * Refresh chunk metadata when the free makes a block free or spans
884 * across blocks. The contig_hint may be off by up to a page, but if
885 * the contig_hint is contained in a block, it will be accurate with
886 * the else condition below.
888 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
889 pcpu_chunk_refresh_hint(chunk);
891 pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
896 * pcpu_is_populated - determines if the region is populated
897 * @chunk: chunk of interest
898 * @bit_off: chunk offset
899 * @bits: size of area
900 * @next_off: return value for the next offset to start searching
902 * For atomic allocations, check if the backing pages are populated.
905 * Bool if the backing pages are populated.
906 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
908 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
911 int page_start, page_end, rs, re;
913 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
914 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
917 pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
921 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
926 * pcpu_find_block_fit - finds the block index to start searching
927 * @chunk: chunk of interest
928 * @alloc_bits: size of request in allocation units
929 * @align: alignment of area (max PAGE_SIZE bytes)
930 * @pop_only: use populated regions only
932 * Given a chunk and an allocation spec, find the offset to begin searching
933 * for a free region. This iterates over the bitmap metadata blocks to
934 * find an offset that will be guaranteed to fit the requirements. It is
935 * not quite first fit as if the allocation does not fit in the contig hint
936 * of a block or chunk, it is skipped. This errs on the side of caution
937 * to prevent excess iteration. Poor alignment can cause the allocator to
938 * skip over blocks and chunks that have valid free areas.
941 * The offset in the bitmap to begin searching.
942 * -1 if no offset is found.
944 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
945 size_t align, bool pop_only)
947 int bit_off, bits, next_off;
950 * Check to see if the allocation can fit in the chunk's contig hint.
951 * This is an optimization to prevent scanning by assuming if it
952 * cannot fit in the global hint, there is memory pressure and creating
953 * a new chunk would happen soon.
955 bit_off = ALIGN(chunk->contig_bits_start, align) -
956 chunk->contig_bits_start;
957 if (bit_off + alloc_bits > chunk->contig_bits)
960 bit_off = chunk->first_bit;
962 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
963 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
971 if (bit_off == pcpu_chunk_map_bits(chunk))
978 * pcpu_alloc_area - allocates an area from a pcpu_chunk
979 * @chunk: chunk of interest
980 * @alloc_bits: size of request in allocation units
981 * @align: alignment of area (max PAGE_SIZE)
982 * @start: bit_off to start searching
984 * This function takes in a @start offset to begin searching to fit an
985 * allocation of @alloc_bits with alignment @align. It needs to scan
986 * the allocation map because if it fits within the block's contig hint,
987 * @start will be block->first_free. This is an attempt to fill the
988 * allocation prior to breaking the contig hint. The allocation and
989 * boundary maps are updated accordingly if it confirms a valid
993 * Allocated addr offset in @chunk on success.
994 * -1 if no matching area is found.
996 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
997 size_t align, int start)
999 size_t align_mask = (align) ? (align - 1) : 0;
1000 int bit_off, end, oslot;
1002 lockdep_assert_held(&pcpu_lock);
1004 oslot = pcpu_chunk_slot(chunk);
1007 * Search to find a fit.
1009 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1010 pcpu_chunk_map_bits(chunk));
1011 bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
1012 alloc_bits, align_mask);
1016 /* update alloc map */
1017 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1019 /* update boundary map */
1020 set_bit(bit_off, chunk->bound_map);
1021 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1022 set_bit(bit_off + alloc_bits, chunk->bound_map);
1024 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1026 /* update first free bit */
1027 if (bit_off == chunk->first_bit)
1028 chunk->first_bit = find_next_zero_bit(
1030 pcpu_chunk_map_bits(chunk),
1031 bit_off + alloc_bits);
1033 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1035 pcpu_chunk_relocate(chunk, oslot);
1037 return bit_off * PCPU_MIN_ALLOC_SIZE;
1041 * pcpu_free_area - frees the corresponding offset
1042 * @chunk: chunk of interest
1043 * @off: addr offset into chunk
1045 * This function determines the size of an allocation to free using
1046 * the boundary bitmap and clears the allocation map.
1048 static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1050 int bit_off, bits, end, oslot;
1052 lockdep_assert_held(&pcpu_lock);
1053 pcpu_stats_area_dealloc(chunk);
1055 oslot = pcpu_chunk_slot(chunk);
1057 bit_off = off / PCPU_MIN_ALLOC_SIZE;
1059 /* find end index */
1060 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1062 bits = end - bit_off;
1063 bitmap_clear(chunk->alloc_map, bit_off, bits);
1065 /* update metadata */
1066 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1068 /* update first free bit */
1069 chunk->first_bit = min(chunk->first_bit, bit_off);
1071 pcpu_block_update_hint_free(chunk, bit_off, bits);
1073 pcpu_chunk_relocate(chunk, oslot);
1076 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1078 struct pcpu_block_md *md_block;
1080 for (md_block = chunk->md_blocks;
1081 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1083 md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1084 md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
1085 md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
1090 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1091 * @tmp_addr: the start of the region served
1092 * @map_size: size of the region served
1094 * This is responsible for creating the chunks that serve the first chunk. The
1095 * base_addr is page aligned down of @tmp_addr while the region end is page
1096 * aligned up. Offsets are kept track of to determine the region served. All
1097 * this is done to appease the bitmap allocator in avoiding partial blocks.
1100 * Chunk serving the region at @tmp_addr of @map_size.
1102 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1105 struct pcpu_chunk *chunk;
1106 unsigned long aligned_addr, lcm_align;
1107 int start_offset, offset_bits, region_size, region_bits;
1110 /* region calculations */
1111 aligned_addr = tmp_addr & PAGE_MASK;
1113 start_offset = tmp_addr - aligned_addr;
1116 * Align the end of the region with the LCM of PAGE_SIZE and
1117 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1120 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1121 region_size = ALIGN(start_offset + map_size, lcm_align);
1123 /* allocate chunk */
1124 alloc_size = sizeof(struct pcpu_chunk) +
1125 BITS_TO_LONGS(region_size >> PAGE_SHIFT);
1126 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1128 panic("%s: Failed to allocate %zu bytes\n", __func__,
1131 INIT_LIST_HEAD(&chunk->list);
1133 chunk->base_addr = (void *)aligned_addr;
1134 chunk->start_offset = start_offset;
1135 chunk->end_offset = region_size - chunk->start_offset - map_size;
1137 chunk->nr_pages = region_size >> PAGE_SHIFT;
1138 region_bits = pcpu_chunk_map_bits(chunk);
1140 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1141 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1142 if (!chunk->alloc_map)
1143 panic("%s: Failed to allocate %zu bytes\n", __func__,
1147 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1148 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1149 if (!chunk->bound_map)
1150 panic("%s: Failed to allocate %zu bytes\n", __func__,
1153 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1154 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1155 if (!chunk->md_blocks)
1156 panic("%s: Failed to allocate %zu bytes\n", __func__,
1159 pcpu_init_md_blocks(chunk);
1161 /* manage populated page bitmap */
1162 chunk->immutable = true;
1163 bitmap_fill(chunk->populated, chunk->nr_pages);
1164 chunk->nr_populated = chunk->nr_pages;
1165 chunk->nr_empty_pop_pages = chunk->nr_pages;
1167 chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1168 chunk->free_bytes = map_size;
1170 if (chunk->start_offset) {
1171 /* hide the beginning of the bitmap */
1172 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1173 bitmap_set(chunk->alloc_map, 0, offset_bits);
1174 set_bit(0, chunk->bound_map);
1175 set_bit(offset_bits, chunk->bound_map);
1177 chunk->first_bit = offset_bits;
1179 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1182 if (chunk->end_offset) {
1183 /* hide the end of the bitmap */
1184 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1185 bitmap_set(chunk->alloc_map,
1186 pcpu_chunk_map_bits(chunk) - offset_bits,
1188 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1190 set_bit(region_bits, chunk->bound_map);
1192 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1193 - offset_bits, offset_bits);
1199 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1201 struct pcpu_chunk *chunk;
1204 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1208 INIT_LIST_HEAD(&chunk->list);
1209 chunk->nr_pages = pcpu_unit_pages;
1210 region_bits = pcpu_chunk_map_bits(chunk);
1212 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1213 sizeof(chunk->alloc_map[0]), gfp);
1214 if (!chunk->alloc_map)
1215 goto alloc_map_fail;
1217 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1218 sizeof(chunk->bound_map[0]), gfp);
1219 if (!chunk->bound_map)
1220 goto bound_map_fail;
1222 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1223 sizeof(chunk->md_blocks[0]), gfp);
1224 if (!chunk->md_blocks)
1225 goto md_blocks_fail;
1227 pcpu_init_md_blocks(chunk);
1230 chunk->contig_bits = region_bits;
1231 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1236 pcpu_mem_free(chunk->bound_map);
1238 pcpu_mem_free(chunk->alloc_map);
1240 pcpu_mem_free(chunk);
1245 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1249 pcpu_mem_free(chunk->md_blocks);
1250 pcpu_mem_free(chunk->bound_map);
1251 pcpu_mem_free(chunk->alloc_map);
1252 pcpu_mem_free(chunk);
1256 * pcpu_chunk_populated - post-population bookkeeping
1257 * @chunk: pcpu_chunk which got populated
1258 * @page_start: the start page
1259 * @page_end: the end page
1261 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1262 * the bookkeeping information accordingly. Must be called after each
1263 * successful population.
1265 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1266 * is to serve an allocation in that area.
1268 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1271 int nr = page_end - page_start;
1273 lockdep_assert_held(&pcpu_lock);
1275 bitmap_set(chunk->populated, page_start, nr);
1276 chunk->nr_populated += nr;
1277 pcpu_nr_populated += nr;
1279 pcpu_update_empty_pages(chunk, nr);
1283 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1284 * @chunk: pcpu_chunk which got depopulated
1285 * @page_start: the start page
1286 * @page_end: the end page
1288 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1289 * Update the bookkeeping information accordingly. Must be called after
1290 * each successful depopulation.
1292 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1293 int page_start, int page_end)
1295 int nr = page_end - page_start;
1297 lockdep_assert_held(&pcpu_lock);
1299 bitmap_clear(chunk->populated, page_start, nr);
1300 chunk->nr_populated -= nr;
1301 pcpu_nr_populated -= nr;
1303 pcpu_update_empty_pages(chunk, -nr);
1307 * Chunk management implementation.
1309 * To allow different implementations, chunk alloc/free and
1310 * [de]population are implemented in a separate file which is pulled
1311 * into this file and compiled together. The following functions
1312 * should be implemented.
1314 * pcpu_populate_chunk - populate the specified range of a chunk
1315 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1316 * pcpu_create_chunk - create a new chunk
1317 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1318 * pcpu_addr_to_page - translate address to physical address
1319 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1321 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1322 int page_start, int page_end, gfp_t gfp);
1323 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1324 int page_start, int page_end);
1325 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1326 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1327 static struct page *pcpu_addr_to_page(void *addr);
1328 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1330 #ifdef CONFIG_NEED_PER_CPU_KM
1331 #include "percpu-km.c"
1333 #include "percpu-vm.c"
1337 * pcpu_chunk_addr_search - determine chunk containing specified address
1338 * @addr: address for which the chunk needs to be determined.
1340 * This is an internal function that handles all but static allocations.
1341 * Static percpu address values should never be passed into the allocator.
1344 * The address of the found chunk.
1346 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1348 /* is it in the dynamic region (first chunk)? */
1349 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1350 return pcpu_first_chunk;
1352 /* is it in the reserved region? */
1353 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1354 return pcpu_reserved_chunk;
1357 * The address is relative to unit0 which might be unused and
1358 * thus unmapped. Offset the address to the unit space of the
1359 * current processor before looking it up in the vmalloc
1360 * space. Note that any possible cpu id can be used here, so
1361 * there's no need to worry about preemption or cpu hotplug.
1363 addr += pcpu_unit_offsets[raw_smp_processor_id()];
1364 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1368 * pcpu_alloc - the percpu allocator
1369 * @size: size of area to allocate in bytes
1370 * @align: alignment of area (max PAGE_SIZE)
1371 * @reserved: allocate from the reserved chunk if available
1372 * @gfp: allocation flags
1374 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1375 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1376 * then no warning will be triggered on invalid or failed allocation
1380 * Percpu pointer to the allocated area on success, NULL on failure.
1382 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1385 /* whitelisted flags that can be passed to the backing allocators */
1386 gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1387 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1388 bool do_warn = !(gfp & __GFP_NOWARN);
1389 static int warn_limit = 10;
1390 struct pcpu_chunk *chunk, *next;
1392 int slot, off, cpu, ret;
1393 unsigned long flags;
1395 size_t bits, bit_align;
1398 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1399 * therefore alignment must be a minimum of that many bytes.
1400 * An allocation may have internal fragmentation from rounding up
1401 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1403 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1404 align = PCPU_MIN_ALLOC_SIZE;
1406 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1407 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1408 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1410 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1411 !is_power_of_2(align))) {
1412 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1419 * pcpu_balance_workfn() allocates memory under this mutex,
1420 * and it may wait for memory reclaim. Allow current task
1421 * to become OOM victim, in case of memory pressure.
1423 if (gfp & __GFP_NOFAIL)
1424 mutex_lock(&pcpu_alloc_mutex);
1425 else if (mutex_lock_killable(&pcpu_alloc_mutex))
1429 spin_lock_irqsave(&pcpu_lock, flags);
1431 /* serve reserved allocations from the reserved chunk if available */
1432 if (reserved && pcpu_reserved_chunk) {
1433 chunk = pcpu_reserved_chunk;
1435 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1437 err = "alloc from reserved chunk failed";
1441 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1445 err = "alloc from reserved chunk failed";
1450 /* search through normal chunks */
1451 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1452 list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) {
1453 off = pcpu_find_block_fit(chunk, bits, bit_align,
1456 if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1457 pcpu_chunk_move(chunk, 0);
1461 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1468 spin_unlock_irqrestore(&pcpu_lock, flags);
1471 * No space left. Create a new chunk. We don't want multiple
1472 * tasks to create chunks simultaneously. Serialize and create iff
1473 * there's still no empty chunk after grabbing the mutex.
1476 err = "atomic alloc failed, no space left";
1480 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1481 chunk = pcpu_create_chunk(pcpu_gfp);
1483 err = "failed to allocate new chunk";
1487 spin_lock_irqsave(&pcpu_lock, flags);
1488 pcpu_chunk_relocate(chunk, -1);
1490 spin_lock_irqsave(&pcpu_lock, flags);
1496 pcpu_stats_area_alloc(chunk, size);
1497 spin_unlock_irqrestore(&pcpu_lock, flags);
1499 /* populate if not all pages are already there */
1501 int page_start, page_end, rs, re;
1503 page_start = PFN_DOWN(off);
1504 page_end = PFN_UP(off + size);
1506 pcpu_for_each_unpop_region(chunk->populated, rs, re,
1507 page_start, page_end) {
1508 WARN_ON(chunk->immutable);
1510 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1512 spin_lock_irqsave(&pcpu_lock, flags);
1514 pcpu_free_area(chunk, off);
1515 err = "failed to populate";
1518 pcpu_chunk_populated(chunk, rs, re);
1519 spin_unlock_irqrestore(&pcpu_lock, flags);
1522 mutex_unlock(&pcpu_alloc_mutex);
1525 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1526 pcpu_schedule_balance_work();
1528 /* clear the areas and return address relative to base address */
1529 for_each_possible_cpu(cpu)
1530 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1532 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1533 kmemleak_alloc_percpu(ptr, size, gfp);
1535 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1536 chunk->base_addr, off, ptr);
1541 spin_unlock_irqrestore(&pcpu_lock, flags);
1543 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1545 if (!is_atomic && do_warn && warn_limit) {
1546 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1547 size, align, is_atomic, err);
1550 pr_info("limit reached, disable warning\n");
1553 /* see the flag handling in pcpu_blance_workfn() */
1554 pcpu_atomic_alloc_failed = true;
1555 pcpu_schedule_balance_work();
1557 mutex_unlock(&pcpu_alloc_mutex);
1563 * __alloc_percpu_gfp - allocate dynamic percpu area
1564 * @size: size of area to allocate in bytes
1565 * @align: alignment of area (max PAGE_SIZE)
1566 * @gfp: allocation flags
1568 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1569 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1570 * be called from any context but is a lot more likely to fail. If @gfp
1571 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1572 * allocation requests.
1575 * Percpu pointer to the allocated area on success, NULL on failure.
1577 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1579 return pcpu_alloc(size, align, false, gfp);
1581 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1584 * __alloc_percpu - allocate dynamic percpu area
1585 * @size: size of area to allocate in bytes
1586 * @align: alignment of area (max PAGE_SIZE)
1588 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1590 void __percpu *__alloc_percpu(size_t size, size_t align)
1592 return pcpu_alloc(size, align, false, GFP_KERNEL);
1594 EXPORT_SYMBOL_GPL(__alloc_percpu);
1597 * __alloc_reserved_percpu - allocate reserved percpu area
1598 * @size: size of area to allocate in bytes
1599 * @align: alignment of area (max PAGE_SIZE)
1601 * Allocate zero-filled percpu area of @size bytes aligned at @align
1602 * from reserved percpu area if arch has set it up; otherwise,
1603 * allocation is served from the same dynamic area. Might sleep.
1604 * Might trigger writeouts.
1607 * Does GFP_KERNEL allocation.
1610 * Percpu pointer to the allocated area on success, NULL on failure.
1612 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1614 return pcpu_alloc(size, align, true, GFP_KERNEL);
1618 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1621 * Reclaim all fully free chunks except for the first one. This is also
1622 * responsible for maintaining the pool of empty populated pages. However,
1623 * it is possible that this is called when physical memory is scarce causing
1624 * OOM killer to be triggered. We should avoid doing so until an actual
1625 * allocation causes the failure as it is possible that requests can be
1626 * serviced from already backed regions.
1628 static void pcpu_balance_workfn(struct work_struct *work)
1630 /* gfp flags passed to underlying allocators */
1631 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1633 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1634 struct pcpu_chunk *chunk, *next;
1635 int slot, nr_to_pop, ret;
1638 * There's no reason to keep around multiple unused chunks and VM
1639 * areas can be scarce. Destroy all free chunks except for one.
1641 mutex_lock(&pcpu_alloc_mutex);
1642 spin_lock_irq(&pcpu_lock);
1644 list_for_each_entry_safe(chunk, next, free_head, list) {
1645 WARN_ON(chunk->immutable);
1647 /* spare the first one */
1648 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1651 list_move(&chunk->list, &to_free);
1654 spin_unlock_irq(&pcpu_lock);
1656 list_for_each_entry_safe(chunk, next, &to_free, list) {
1659 pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1661 pcpu_depopulate_chunk(chunk, rs, re);
1662 spin_lock_irq(&pcpu_lock);
1663 pcpu_chunk_depopulated(chunk, rs, re);
1664 spin_unlock_irq(&pcpu_lock);
1666 pcpu_destroy_chunk(chunk);
1671 * Ensure there are certain number of free populated pages for
1672 * atomic allocs. Fill up from the most packed so that atomic
1673 * allocs don't increase fragmentation. If atomic allocation
1674 * failed previously, always populate the maximum amount. This
1675 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1676 * failing indefinitely; however, large atomic allocs are not
1677 * something we support properly and can be highly unreliable and
1681 if (pcpu_atomic_alloc_failed) {
1682 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1683 /* best effort anyway, don't worry about synchronization */
1684 pcpu_atomic_alloc_failed = false;
1686 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1687 pcpu_nr_empty_pop_pages,
1688 0, PCPU_EMPTY_POP_PAGES_HIGH);
1691 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1692 int nr_unpop = 0, rs, re;
1697 spin_lock_irq(&pcpu_lock);
1698 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1699 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1703 spin_unlock_irq(&pcpu_lock);
1708 /* @chunk can't go away while pcpu_alloc_mutex is held */
1709 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1711 int nr = min(re - rs, nr_to_pop);
1713 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1716 spin_lock_irq(&pcpu_lock);
1717 pcpu_chunk_populated(chunk, rs, rs + nr);
1718 spin_unlock_irq(&pcpu_lock);
1729 /* ran out of chunks to populate, create a new one and retry */
1730 chunk = pcpu_create_chunk(gfp);
1732 spin_lock_irq(&pcpu_lock);
1733 pcpu_chunk_relocate(chunk, -1);
1734 spin_unlock_irq(&pcpu_lock);
1739 mutex_unlock(&pcpu_alloc_mutex);
1743 * free_percpu - free percpu area
1744 * @ptr: pointer to area to free
1746 * Free percpu area @ptr.
1749 * Can be called from atomic context.
1751 void free_percpu(void __percpu *ptr)
1754 struct pcpu_chunk *chunk;
1755 unsigned long flags;
1761 kmemleak_free_percpu(ptr);
1763 addr = __pcpu_ptr_to_addr(ptr);
1765 spin_lock_irqsave(&pcpu_lock, flags);
1767 chunk = pcpu_chunk_addr_search(addr);
1768 off = addr - chunk->base_addr;
1770 pcpu_free_area(chunk, off);
1772 /* if there are more than one fully free chunks, wake up grim reaper */
1773 if (chunk->free_bytes == pcpu_unit_size) {
1774 struct pcpu_chunk *pos;
1776 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1778 pcpu_schedule_balance_work();
1783 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1785 spin_unlock_irqrestore(&pcpu_lock, flags);
1787 EXPORT_SYMBOL_GPL(free_percpu);
1789 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1792 const size_t static_size = __per_cpu_end - __per_cpu_start;
1793 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1796 for_each_possible_cpu(cpu) {
1797 void *start = per_cpu_ptr(base, cpu);
1798 void *va = (void *)addr;
1800 if (va >= start && va < start + static_size) {
1802 *can_addr = (unsigned long) (va - start);
1803 *can_addr += (unsigned long)
1804 per_cpu_ptr(base, get_boot_cpu_id());
1810 /* on UP, can't distinguish from other static vars, always false */
1815 * is_kernel_percpu_address - test whether address is from static percpu area
1816 * @addr: address to test
1818 * Test whether @addr belongs to in-kernel static percpu area. Module
1819 * static percpu areas are not considered. For those, use
1820 * is_module_percpu_address().
1823 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1825 bool is_kernel_percpu_address(unsigned long addr)
1827 return __is_kernel_percpu_address(addr, NULL);
1831 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1832 * @addr: the address to be converted to physical address
1834 * Given @addr which is dereferenceable address obtained via one of
1835 * percpu access macros, this function translates it into its physical
1836 * address. The caller is responsible for ensuring @addr stays valid
1837 * until this function finishes.
1839 * percpu allocator has special setup for the first chunk, which currently
1840 * supports either embedding in linear address space or vmalloc mapping,
1841 * and, from the second one, the backing allocator (currently either vm or
1842 * km) provides translation.
1844 * The addr can be translated simply without checking if it falls into the
1845 * first chunk. But the current code reflects better how percpu allocator
1846 * actually works, and the verification can discover both bugs in percpu
1847 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1851 * The physical address for @addr.
1853 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1855 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1856 bool in_first_chunk = false;
1857 unsigned long first_low, first_high;
1861 * The following test on unit_low/high isn't strictly
1862 * necessary but will speed up lookups of addresses which
1863 * aren't in the first chunk.
1865 * The address check is against full chunk sizes. pcpu_base_addr
1866 * points to the beginning of the first chunk including the
1867 * static region. Assumes good intent as the first chunk may
1868 * not be full (ie. < pcpu_unit_pages in size).
1870 first_low = (unsigned long)pcpu_base_addr +
1871 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1872 first_high = (unsigned long)pcpu_base_addr +
1873 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
1874 if ((unsigned long)addr >= first_low &&
1875 (unsigned long)addr < first_high) {
1876 for_each_possible_cpu(cpu) {
1877 void *start = per_cpu_ptr(base, cpu);
1879 if (addr >= start && addr < start + pcpu_unit_size) {
1880 in_first_chunk = true;
1886 if (in_first_chunk) {
1887 if (!is_vmalloc_addr(addr))
1890 return page_to_phys(vmalloc_to_page(addr)) +
1891 offset_in_page(addr);
1893 return page_to_phys(pcpu_addr_to_page(addr)) +
1894 offset_in_page(addr);
1898 * pcpu_alloc_alloc_info - allocate percpu allocation info
1899 * @nr_groups: the number of groups
1900 * @nr_units: the number of units
1902 * Allocate ai which is large enough for @nr_groups groups containing
1903 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1904 * cpu_map array which is long enough for @nr_units and filled with
1905 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1906 * pointer of other groups.
1909 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1912 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1915 struct pcpu_alloc_info *ai;
1916 size_t base_size, ai_size;
1920 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1921 __alignof__(ai->groups[0].cpu_map[0]));
1922 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1924 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
1930 ai->groups[0].cpu_map = ptr;
1932 for (unit = 0; unit < nr_units; unit++)
1933 ai->groups[0].cpu_map[unit] = NR_CPUS;
1935 ai->nr_groups = nr_groups;
1936 ai->__ai_size = PFN_ALIGN(ai_size);
1942 * pcpu_free_alloc_info - free percpu allocation info
1943 * @ai: pcpu_alloc_info to free
1945 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1947 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1949 memblock_free_early(__pa(ai), ai->__ai_size);
1953 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1955 * @ai: allocation info to dump
1957 * Print out information about @ai using loglevel @lvl.
1959 static void pcpu_dump_alloc_info(const char *lvl,
1960 const struct pcpu_alloc_info *ai)
1962 int group_width = 1, cpu_width = 1, width;
1963 char empty_str[] = "--------";
1964 int alloc = 0, alloc_end = 0;
1966 int upa, apl; /* units per alloc, allocs per line */
1972 v = num_possible_cpus();
1975 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1977 upa = ai->alloc_size / ai->unit_size;
1978 width = upa * (cpu_width + 1) + group_width + 3;
1979 apl = rounddown_pow_of_two(max(60 / width, 1));
1981 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1982 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1983 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1985 for (group = 0; group < ai->nr_groups; group++) {
1986 const struct pcpu_group_info *gi = &ai->groups[group];
1987 int unit = 0, unit_end = 0;
1989 BUG_ON(gi->nr_units % upa);
1990 for (alloc_end += gi->nr_units / upa;
1991 alloc < alloc_end; alloc++) {
1992 if (!(alloc % apl)) {
1994 printk("%spcpu-alloc: ", lvl);
1996 pr_cont("[%0*d] ", group_width, group);
1998 for (unit_end += upa; unit < unit_end; unit++)
1999 if (gi->cpu_map[unit] != NR_CPUS)
2001 cpu_width, gi->cpu_map[unit]);
2003 pr_cont("%s ", empty_str);
2010 * pcpu_setup_first_chunk - initialize the first percpu chunk
2011 * @ai: pcpu_alloc_info describing how to percpu area is shaped
2012 * @base_addr: mapped address
2014 * Initialize the first percpu chunk which contains the kernel static
2015 * perpcu area. This function is to be called from arch percpu area
2018 * @ai contains all information necessary to initialize the first
2019 * chunk and prime the dynamic percpu allocator.
2021 * @ai->static_size is the size of static percpu area.
2023 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2024 * reserve after the static area in the first chunk. This reserves
2025 * the first chunk such that it's available only through reserved
2026 * percpu allocation. This is primarily used to serve module percpu
2027 * static areas on architectures where the addressing model has
2028 * limited offset range for symbol relocations to guarantee module
2029 * percpu symbols fall inside the relocatable range.
2031 * @ai->dyn_size determines the number of bytes available for dynamic
2032 * allocation in the first chunk. The area between @ai->static_size +
2033 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2035 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2036 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2039 * @ai->atom_size is the allocation atom size and used as alignment
2042 * @ai->alloc_size is the allocation size and always multiple of
2043 * @ai->atom_size. This is larger than @ai->atom_size if
2044 * @ai->unit_size is larger than @ai->atom_size.
2046 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2047 * percpu areas. Units which should be colocated are put into the
2048 * same group. Dynamic VM areas will be allocated according to these
2049 * groupings. If @ai->nr_groups is zero, a single group containing
2050 * all units is assumed.
2052 * The caller should have mapped the first chunk at @base_addr and
2053 * copied static data to each unit.
2055 * The first chunk will always contain a static and a dynamic region.
2056 * However, the static region is not managed by any chunk. If the first
2057 * chunk also contains a reserved region, it is served by two chunks -
2058 * one for the reserved region and one for the dynamic region. They
2059 * share the same vm, but use offset regions in the area allocation map.
2060 * The chunk serving the dynamic region is circulated in the chunk slots
2061 * and available for dynamic allocation like any other chunk.
2064 * 0 on success, -errno on failure.
2066 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2069 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2070 size_t static_size, dyn_size;
2071 struct pcpu_chunk *chunk;
2072 unsigned long *group_offsets;
2073 size_t *group_sizes;
2074 unsigned long *unit_off;
2079 unsigned long tmp_addr;
2082 #define PCPU_SETUP_BUG_ON(cond) do { \
2083 if (unlikely(cond)) { \
2084 pr_emerg("failed to initialize, %s\n", #cond); \
2085 pr_emerg("cpu_possible_mask=%*pb\n", \
2086 cpumask_pr_args(cpu_possible_mask)); \
2087 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2093 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2095 PCPU_SETUP_BUG_ON(!ai->static_size);
2096 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2098 PCPU_SETUP_BUG_ON(!base_addr);
2099 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2100 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2101 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2102 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2103 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2104 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2105 PCPU_SETUP_BUG_ON(!ai->dyn_size);
2106 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2107 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2108 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2109 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2111 /* process group information and build config tables accordingly */
2112 alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2113 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2115 panic("%s: Failed to allocate %zu bytes\n", __func__,
2118 alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2119 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2121 panic("%s: Failed to allocate %zu bytes\n", __func__,
2124 alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2125 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2127 panic("%s: Failed to allocate %zu bytes\n", __func__,
2130 alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2131 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2133 panic("%s: Failed to allocate %zu bytes\n", __func__,
2136 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2137 unit_map[cpu] = UINT_MAX;
2139 pcpu_low_unit_cpu = NR_CPUS;
2140 pcpu_high_unit_cpu = NR_CPUS;
2142 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2143 const struct pcpu_group_info *gi = &ai->groups[group];
2145 group_offsets[group] = gi->base_offset;
2146 group_sizes[group] = gi->nr_units * ai->unit_size;
2148 for (i = 0; i < gi->nr_units; i++) {
2149 cpu = gi->cpu_map[i];
2153 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2154 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2155 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2157 unit_map[cpu] = unit + i;
2158 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2160 /* determine low/high unit_cpu */
2161 if (pcpu_low_unit_cpu == NR_CPUS ||
2162 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2163 pcpu_low_unit_cpu = cpu;
2164 if (pcpu_high_unit_cpu == NR_CPUS ||
2165 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2166 pcpu_high_unit_cpu = cpu;
2169 pcpu_nr_units = unit;
2171 for_each_possible_cpu(cpu)
2172 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2174 /* we're done parsing the input, undefine BUG macro and dump config */
2175 #undef PCPU_SETUP_BUG_ON
2176 pcpu_dump_alloc_info(KERN_DEBUG, ai);
2178 pcpu_nr_groups = ai->nr_groups;
2179 pcpu_group_offsets = group_offsets;
2180 pcpu_group_sizes = group_sizes;
2181 pcpu_unit_map = unit_map;
2182 pcpu_unit_offsets = unit_off;
2184 /* determine basic parameters */
2185 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2186 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2187 pcpu_atom_size = ai->atom_size;
2188 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2189 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2191 pcpu_stats_save_ai(ai);
2194 * Allocate chunk slots. The additional last slot is for
2197 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2198 pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]),
2201 panic("%s: Failed to allocate %zu bytes\n", __func__,
2202 pcpu_nr_slots * sizeof(pcpu_slot[0]));
2203 for (i = 0; i < pcpu_nr_slots; i++)
2204 INIT_LIST_HEAD(&pcpu_slot[i]);
2207 * The end of the static region needs to be aligned with the
2208 * minimum allocation size as this offsets the reserved and
2209 * dynamic region. The first chunk ends page aligned by
2210 * expanding the dynamic region, therefore the dynamic region
2211 * can be shrunk to compensate while still staying above the
2214 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2215 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2218 * Initialize first chunk.
2219 * If the reserved_size is non-zero, this initializes the reserved
2220 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2221 * and the dynamic region is initialized here. The first chunk,
2222 * pcpu_first_chunk, will always point to the chunk that serves
2223 * the dynamic region.
2225 tmp_addr = (unsigned long)base_addr + static_size;
2226 map_size = ai->reserved_size ?: dyn_size;
2227 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2229 /* init dynamic chunk if necessary */
2230 if (ai->reserved_size) {
2231 pcpu_reserved_chunk = chunk;
2233 tmp_addr = (unsigned long)base_addr + static_size +
2235 map_size = dyn_size;
2236 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2239 /* link the first chunk in */
2240 pcpu_first_chunk = chunk;
2241 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2242 pcpu_chunk_relocate(pcpu_first_chunk, -1);
2244 /* include all regions of the first chunk */
2245 pcpu_nr_populated += PFN_DOWN(size_sum);
2247 pcpu_stats_chunk_alloc();
2248 trace_percpu_create_chunk(base_addr);
2251 pcpu_base_addr = base_addr;
2257 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2258 [PCPU_FC_AUTO] = "auto",
2259 [PCPU_FC_EMBED] = "embed",
2260 [PCPU_FC_PAGE] = "page",
2263 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2265 static int __init percpu_alloc_setup(char *str)
2272 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2273 else if (!strcmp(str, "embed"))
2274 pcpu_chosen_fc = PCPU_FC_EMBED;
2276 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2277 else if (!strcmp(str, "page"))
2278 pcpu_chosen_fc = PCPU_FC_PAGE;
2281 pr_warn("unknown allocator %s specified\n", str);
2285 early_param("percpu_alloc", percpu_alloc_setup);
2288 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2289 * Build it if needed by the arch config or the generic setup is going
2292 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2293 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2294 #define BUILD_EMBED_FIRST_CHUNK
2297 /* build pcpu_page_first_chunk() iff needed by the arch config */
2298 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2299 #define BUILD_PAGE_FIRST_CHUNK
2302 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2303 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2305 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2306 * @reserved_size: the size of reserved percpu area in bytes
2307 * @dyn_size: minimum free size for dynamic allocation in bytes
2308 * @atom_size: allocation atom size
2309 * @cpu_distance_fn: callback to determine distance between cpus, optional
2311 * This function determines grouping of units, their mappings to cpus
2312 * and other parameters considering needed percpu size, allocation
2313 * atom size and distances between CPUs.
2315 * Groups are always multiples of atom size and CPUs which are of
2316 * LOCAL_DISTANCE both ways are grouped together and share space for
2317 * units in the same group. The returned configuration is guaranteed
2318 * to have CPUs on different nodes on different groups and >=75% usage
2319 * of allocated virtual address space.
2322 * On success, pointer to the new allocation_info is returned. On
2323 * failure, ERR_PTR value is returned.
2325 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2326 size_t reserved_size, size_t dyn_size,
2328 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2330 static int group_map[NR_CPUS] __initdata;
2331 static int group_cnt[NR_CPUS] __initdata;
2332 const size_t static_size = __per_cpu_end - __per_cpu_start;
2333 int nr_groups = 1, nr_units = 0;
2334 size_t size_sum, min_unit_size, alloc_size;
2335 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
2336 int last_allocs, group, unit;
2337 unsigned int cpu, tcpu;
2338 struct pcpu_alloc_info *ai;
2339 unsigned int *cpu_map;
2341 /* this function may be called multiple times */
2342 memset(group_map, 0, sizeof(group_map));
2343 memset(group_cnt, 0, sizeof(group_cnt));
2345 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2346 size_sum = PFN_ALIGN(static_size + reserved_size +
2347 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2348 dyn_size = size_sum - static_size - reserved_size;
2351 * Determine min_unit_size, alloc_size and max_upa such that
2352 * alloc_size is multiple of atom_size and is the smallest
2353 * which can accommodate 4k aligned segments which are equal to
2354 * or larger than min_unit_size.
2356 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2358 /* determine the maximum # of units that can fit in an allocation */
2359 alloc_size = roundup(min_unit_size, atom_size);
2360 upa = alloc_size / min_unit_size;
2361 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2365 /* group cpus according to their proximity */
2366 for_each_possible_cpu(cpu) {
2369 for_each_possible_cpu(tcpu) {
2372 if (group_map[tcpu] == group && cpu_distance_fn &&
2373 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2374 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2376 nr_groups = max(nr_groups, group + 1);
2380 group_map[cpu] = group;
2385 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2386 * Expand the unit_size until we use >= 75% of the units allocated.
2387 * Related to atom_size, which could be much larger than the unit_size.
2389 last_allocs = INT_MAX;
2390 for (upa = max_upa; upa; upa--) {
2391 int allocs = 0, wasted = 0;
2393 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2396 for (group = 0; group < nr_groups; group++) {
2397 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2398 allocs += this_allocs;
2399 wasted += this_allocs * upa - group_cnt[group];
2403 * Don't accept if wastage is over 1/3. The
2404 * greater-than comparison ensures upa==1 always
2405 * passes the following check.
2407 if (wasted > num_possible_cpus() / 3)
2410 /* and then don't consume more memory */
2411 if (allocs > last_allocs)
2413 last_allocs = allocs;
2418 /* allocate and fill alloc_info */
2419 for (group = 0; group < nr_groups; group++)
2420 nr_units += roundup(group_cnt[group], upa);
2422 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2424 return ERR_PTR(-ENOMEM);
2425 cpu_map = ai->groups[0].cpu_map;
2427 for (group = 0; group < nr_groups; group++) {
2428 ai->groups[group].cpu_map = cpu_map;
2429 cpu_map += roundup(group_cnt[group], upa);
2432 ai->static_size = static_size;
2433 ai->reserved_size = reserved_size;
2434 ai->dyn_size = dyn_size;
2435 ai->unit_size = alloc_size / upa;
2436 ai->atom_size = atom_size;
2437 ai->alloc_size = alloc_size;
2439 for (group = 0, unit = 0; group < nr_groups; group++) {
2440 struct pcpu_group_info *gi = &ai->groups[group];
2443 * Initialize base_offset as if all groups are located
2444 * back-to-back. The caller should update this to
2445 * reflect actual allocation.
2447 gi->base_offset = unit * ai->unit_size;
2449 for_each_possible_cpu(cpu)
2450 if (group_map[cpu] == group)
2451 gi->cpu_map[gi->nr_units++] = cpu;
2452 gi->nr_units = roundup(gi->nr_units, upa);
2453 unit += gi->nr_units;
2455 BUG_ON(unit != nr_units);
2459 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2461 #if defined(BUILD_EMBED_FIRST_CHUNK)
2463 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2464 * @reserved_size: the size of reserved percpu area in bytes
2465 * @dyn_size: minimum free size for dynamic allocation in bytes
2466 * @atom_size: allocation atom size
2467 * @cpu_distance_fn: callback to determine distance between cpus, optional
2468 * @alloc_fn: function to allocate percpu page
2469 * @free_fn: function to free percpu page
2471 * This is a helper to ease setting up embedded first percpu chunk and
2472 * can be called where pcpu_setup_first_chunk() is expected.
2474 * If this function is used to setup the first chunk, it is allocated
2475 * by calling @alloc_fn and used as-is without being mapped into
2476 * vmalloc area. Allocations are always whole multiples of @atom_size
2477 * aligned to @atom_size.
2479 * This enables the first chunk to piggy back on the linear physical
2480 * mapping which often uses larger page size. Please note that this
2481 * can result in very sparse cpu->unit mapping on NUMA machines thus
2482 * requiring large vmalloc address space. Don't use this allocator if
2483 * vmalloc space is not orders of magnitude larger than distances
2484 * between node memory addresses (ie. 32bit NUMA machines).
2486 * @dyn_size specifies the minimum dynamic area size.
2488 * If the needed size is smaller than the minimum or specified unit
2489 * size, the leftover is returned using @free_fn.
2492 * 0 on success, -errno on failure.
2494 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2496 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2497 pcpu_fc_alloc_fn_t alloc_fn,
2498 pcpu_fc_free_fn_t free_fn)
2500 void *base = (void *)ULONG_MAX;
2501 void **areas = NULL;
2502 struct pcpu_alloc_info *ai;
2503 size_t size_sum, areas_size;
2504 unsigned long max_distance;
2505 int group, i, highest_group, rc;
2507 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2512 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2513 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2515 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
2521 /* allocate, copy and determine base address & max_distance */
2523 for (group = 0; group < ai->nr_groups; group++) {
2524 struct pcpu_group_info *gi = &ai->groups[group];
2525 unsigned int cpu = NR_CPUS;
2528 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2529 cpu = gi->cpu_map[i];
2530 BUG_ON(cpu == NR_CPUS);
2532 /* allocate space for the whole group */
2533 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2536 goto out_free_areas;
2538 /* kmemleak tracks the percpu allocations separately */
2542 base = min(ptr, base);
2543 if (ptr > areas[highest_group])
2544 highest_group = group;
2546 max_distance = areas[highest_group] - base;
2547 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2549 /* warn if maximum distance is further than 75% of vmalloc space */
2550 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2551 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2552 max_distance, VMALLOC_TOTAL);
2553 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2554 /* and fail if we have fallback */
2556 goto out_free_areas;
2561 * Copy data and free unused parts. This should happen after all
2562 * allocations are complete; otherwise, we may end up with
2563 * overlapping groups.
2565 for (group = 0; group < ai->nr_groups; group++) {
2566 struct pcpu_group_info *gi = &ai->groups[group];
2567 void *ptr = areas[group];
2569 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2570 if (gi->cpu_map[i] == NR_CPUS) {
2571 /* unused unit, free whole */
2572 free_fn(ptr, ai->unit_size);
2575 /* copy and return the unused part */
2576 memcpy(ptr, __per_cpu_load, ai->static_size);
2577 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2581 /* base address is now known, determine group base offsets */
2582 for (group = 0; group < ai->nr_groups; group++) {
2583 ai->groups[group].base_offset = areas[group] - base;
2586 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2587 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2588 ai->dyn_size, ai->unit_size);
2590 rc = pcpu_setup_first_chunk(ai, base);
2594 for (group = 0; group < ai->nr_groups; group++)
2596 free_fn(areas[group],
2597 ai->groups[group].nr_units * ai->unit_size);
2599 pcpu_free_alloc_info(ai);
2601 memblock_free_early(__pa(areas), areas_size);
2604 #endif /* BUILD_EMBED_FIRST_CHUNK */
2606 #ifdef BUILD_PAGE_FIRST_CHUNK
2608 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2609 * @reserved_size: the size of reserved percpu area in bytes
2610 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2611 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2612 * @populate_pte_fn: function to populate pte
2614 * This is a helper to ease setting up page-remapped first percpu
2615 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2617 * This is the basic allocator. Static percpu area is allocated
2618 * page-by-page into vmalloc area.
2621 * 0 on success, -errno on failure.
2623 int __init pcpu_page_first_chunk(size_t reserved_size,
2624 pcpu_fc_alloc_fn_t alloc_fn,
2625 pcpu_fc_free_fn_t free_fn,
2626 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2628 static struct vm_struct vm;
2629 struct pcpu_alloc_info *ai;
2633 struct page **pages;
2638 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2640 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2643 BUG_ON(ai->nr_groups != 1);
2644 upa = ai->alloc_size/ai->unit_size;
2645 nr_g0_units = roundup(num_possible_cpus(), upa);
2646 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
2647 pcpu_free_alloc_info(ai);
2651 unit_pages = ai->unit_size >> PAGE_SHIFT;
2653 /* unaligned allocations can't be freed, round up to page size */
2654 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2656 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
2658 panic("%s: Failed to allocate %zu bytes\n", __func__,
2661 /* allocate pages */
2663 for (unit = 0; unit < num_possible_cpus(); unit++) {
2664 unsigned int cpu = ai->groups[0].cpu_map[unit];
2665 for (i = 0; i < unit_pages; i++) {
2668 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2670 pr_warn("failed to allocate %s page for cpu%u\n",
2674 /* kmemleak tracks the percpu allocations separately */
2676 pages[j++] = virt_to_page(ptr);
2680 /* allocate vm area, map the pages and copy static data */
2681 vm.flags = VM_ALLOC;
2682 vm.size = num_possible_cpus() * ai->unit_size;
2683 vm_area_register_early(&vm, PAGE_SIZE);
2685 for (unit = 0; unit < num_possible_cpus(); unit++) {
2686 unsigned long unit_addr =
2687 (unsigned long)vm.addr + unit * ai->unit_size;
2689 for (i = 0; i < unit_pages; i++)
2690 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2692 /* pte already populated, the following shouldn't fail */
2693 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2696 panic("failed to map percpu area, err=%d\n", rc);
2699 * FIXME: Archs with virtual cache should flush local
2700 * cache for the linear mapping here - something
2701 * equivalent to flush_cache_vmap() on the local cpu.
2702 * flush_cache_vmap() can't be used as most supporting
2703 * data structures are not set up yet.
2706 /* copy static data */
2707 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2710 /* we're ready, commit */
2711 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2712 unit_pages, psize_str, vm.addr, ai->static_size,
2713 ai->reserved_size, ai->dyn_size);
2715 rc = pcpu_setup_first_chunk(ai, vm.addr);
2720 free_fn(page_address(pages[j]), PAGE_SIZE);
2723 memblock_free_early(__pa(pages), pages_size);
2724 pcpu_free_alloc_info(ai);
2727 #endif /* BUILD_PAGE_FIRST_CHUNK */
2729 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2731 * Generic SMP percpu area setup.
2733 * The embedding helper is used because its behavior closely resembles
2734 * the original non-dynamic generic percpu area setup. This is
2735 * important because many archs have addressing restrictions and might
2736 * fail if the percpu area is located far away from the previous
2737 * location. As an added bonus, in non-NUMA cases, embedding is
2738 * generally a good idea TLB-wise because percpu area can piggy back
2739 * on the physical linear memory mapping which uses large page
2740 * mappings on applicable archs.
2742 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2743 EXPORT_SYMBOL(__per_cpu_offset);
2745 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2748 return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
2751 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2753 memblock_free_early(__pa(ptr), size);
2756 void __init setup_per_cpu_areas(void)
2758 unsigned long delta;
2763 * Always reserve area for module percpu variables. That's
2764 * what the legacy allocator did.
2766 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2767 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2768 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2770 panic("Failed to initialize percpu areas.");
2772 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2773 for_each_possible_cpu(cpu)
2774 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2776 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2778 #else /* CONFIG_SMP */
2781 * UP percpu area setup.
2783 * UP always uses km-based percpu allocator with identity mapping.
2784 * Static percpu variables are indistinguishable from the usual static
2785 * variables and don't require any special preparation.
2787 void __init setup_per_cpu_areas(void)
2789 const size_t unit_size =
2790 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2791 PERCPU_DYNAMIC_RESERVE));
2792 struct pcpu_alloc_info *ai;
2795 ai = pcpu_alloc_alloc_info(1, 1);
2796 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
2798 panic("Failed to allocate memory for percpu areas.");
2799 /* kmemleak tracks the percpu allocations separately */
2802 ai->dyn_size = unit_size;
2803 ai->unit_size = unit_size;
2804 ai->atom_size = unit_size;
2805 ai->alloc_size = unit_size;
2806 ai->groups[0].nr_units = 1;
2807 ai->groups[0].cpu_map[0] = 0;
2809 if (pcpu_setup_first_chunk(ai, fc) < 0)
2810 panic("Failed to initialize percpu areas.");
2811 pcpu_free_alloc_info(ai);
2814 #endif /* CONFIG_SMP */
2817 * pcpu_nr_pages - calculate total number of populated backing pages
2819 * This reflects the number of pages populated to back chunks. Metadata is
2820 * excluded in the number exposed in meminfo as the number of backing pages
2821 * scales with the number of cpus and can quickly outweigh the memory used for
2822 * metadata. It also keeps this calculation nice and simple.
2825 * Total number of populated backing pages in use by the allocator.
2827 unsigned long pcpu_nr_pages(void)
2829 return pcpu_nr_populated * pcpu_nr_units;
2833 * Percpu allocator is initialized early during boot when neither slab or
2834 * workqueue is available. Plug async management until everything is up
2837 static int __init percpu_enable_async(void)
2839 pcpu_async_enabled = true;
2842 subsys_initcall(percpu_enable_async);