1 // SPDX-License-Identifier: GPL-2.0
3 * Serial Attached SCSI (SAS) Expander discovery and configuration
5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
8 * This file is licensed under GPLv2.
11 #include <linux/scatterlist.h>
12 #include <linux/blkdev.h>
13 #include <linux/slab.h>
14 #include <asm/unaligned.h>
16 #include "sas_internal.h"
18 #include <scsi/sas_ata.h>
19 #include <scsi/scsi_transport.h>
20 #include <scsi/scsi_transport_sas.h>
21 #include "scsi_sas_internal.h"
23 static int sas_discover_expander(struct domain_device *dev);
24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25 static int sas_configure_phy(struct domain_device *dev, int phy_id,
26 u8 *sas_addr, int include);
27 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
29 /* ---------- SMP task management ---------- */
31 static void smp_task_timedout(struct timer_list *t)
33 struct sas_task_slow *slow = from_timer(slow, t, timer);
34 struct sas_task *task = slow->task;
37 spin_lock_irqsave(&task->task_state_lock, flags);
38 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
39 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
40 complete(&task->slow_task->completion);
42 spin_unlock_irqrestore(&task->task_state_lock, flags);
45 static void smp_task_done(struct sas_task *task)
47 del_timer(&task->slow_task->timer);
48 complete(&task->slow_task->completion);
51 /* Give it some long enough timeout. In seconds. */
52 #define SMP_TIMEOUT 10
54 static int smp_execute_task_sg(struct domain_device *dev,
55 struct scatterlist *req, struct scatterlist *resp)
58 struct sas_task *task = NULL;
59 struct sas_internal *i =
60 to_sas_internal(dev->port->ha->core.shost->transportt);
61 struct sas_ha_struct *ha = dev->port->ha;
63 pm_runtime_get_sync(ha->dev);
64 mutex_lock(&dev->ex_dev.cmd_mutex);
65 for (retry = 0; retry < 3; retry++) {
66 if (test_bit(SAS_DEV_GONE, &dev->state)) {
71 task = sas_alloc_slow_task(GFP_KERNEL);
77 task->task_proto = dev->tproto;
78 task->smp_task.smp_req = *req;
79 task->smp_task.smp_resp = *resp;
81 task->task_done = smp_task_done;
83 task->slow_task->timer.function = smp_task_timedout;
84 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
85 add_timer(&task->slow_task->timer);
87 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
90 del_timer(&task->slow_task->timer);
91 pr_notice("executing SMP task failed:%d\n", res);
95 wait_for_completion(&task->slow_task->completion);
97 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
98 pr_notice("smp task timed out or aborted\n");
99 i->dft->lldd_abort_task(task);
100 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
101 pr_notice("SMP task aborted and not done\n");
105 if (task->task_status.resp == SAS_TASK_COMPLETE &&
106 task->task_status.stat == SAS_SAM_STAT_GOOD) {
110 if (task->task_status.resp == SAS_TASK_COMPLETE &&
111 task->task_status.stat == SAS_DATA_UNDERRUN) {
112 /* no error, but return the number of bytes of
114 res = task->task_status.residual;
117 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118 task->task_status.stat == SAS_DATA_OVERRUN) {
122 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
123 task->task_status.stat == SAS_DEVICE_UNKNOWN)
126 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
128 SAS_ADDR(dev->sas_addr),
129 task->task_status.resp,
130 task->task_status.stat);
135 mutex_unlock(&dev->ex_dev.cmd_mutex);
136 pm_runtime_put_sync(ha->dev);
138 BUG_ON(retry == 3 && task != NULL);
143 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
144 void *resp, int resp_size)
146 struct scatterlist req_sg;
147 struct scatterlist resp_sg;
149 sg_init_one(&req_sg, req, req_size);
150 sg_init_one(&resp_sg, resp, resp_size);
151 return smp_execute_task_sg(dev, &req_sg, &resp_sg);
154 /* ---------- Allocations ---------- */
156 static inline void *alloc_smp_req(int size)
158 u8 *p = kzalloc(size, GFP_KERNEL);
164 static inline void *alloc_smp_resp(int size)
166 return kzalloc(size, GFP_KERNEL);
169 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
171 switch (phy->routing_attr) {
173 if (dev->ex_dev.t2t_supp)
179 case SUBTRACTIVE_ROUTING:
186 static enum sas_device_type to_dev_type(struct discover_resp *dr)
188 /* This is detecting a failure to transmit initial dev to host
189 * FIS as described in section J.5 of sas-2 r16
191 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
192 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
193 return SAS_SATA_PENDING;
195 return dr->attached_dev_type;
198 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
200 enum sas_device_type dev_type;
201 enum sas_linkrate linkrate;
202 u8 sas_addr[SAS_ADDR_SIZE];
203 struct smp_resp *resp = rsp;
204 struct discover_resp *dr = &resp->disc;
205 struct sas_ha_struct *ha = dev->port->ha;
206 struct expander_device *ex = &dev->ex_dev;
207 struct ex_phy *phy = &ex->ex_phy[phy_id];
208 struct sas_rphy *rphy = dev->rphy;
209 bool new_phy = !phy->phy;
213 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
215 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
217 /* FIXME: error_handling */
221 switch (resp->result) {
222 case SMP_RESP_PHY_VACANT:
223 phy->phy_state = PHY_VACANT;
226 phy->phy_state = PHY_NOT_PRESENT;
228 case SMP_RESP_FUNC_ACC:
229 phy->phy_state = PHY_EMPTY; /* do not know yet */
233 /* check if anything important changed to squelch debug */
234 dev_type = phy->attached_dev_type;
235 linkrate = phy->linkrate;
236 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
238 /* Handle vacant phy - rest of dr data is not valid so skip it */
239 if (phy->phy_state == PHY_VACANT) {
240 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
241 phy->attached_dev_type = SAS_PHY_UNUSED;
242 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
243 phy->phy_id = phy_id;
249 phy->attached_dev_type = to_dev_type(dr);
250 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
252 phy->phy_id = phy_id;
253 phy->linkrate = dr->linkrate;
254 phy->attached_sata_host = dr->attached_sata_host;
255 phy->attached_sata_dev = dr->attached_sata_dev;
256 phy->attached_sata_ps = dr->attached_sata_ps;
257 phy->attached_iproto = dr->iproto << 1;
258 phy->attached_tproto = dr->tproto << 1;
259 /* help some expanders that fail to zero sas_address in the 'no
262 if (phy->attached_dev_type == SAS_PHY_UNUSED ||
263 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
264 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
266 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
267 phy->attached_phy_id = dr->attached_phy_id;
268 phy->phy_change_count = dr->change_count;
269 phy->routing_attr = dr->routing_attr;
270 phy->virtual = dr->virtual;
271 phy->last_da_index = -1;
273 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
274 phy->phy->identify.device_type = dr->attached_dev_type;
275 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
276 phy->phy->identify.target_port_protocols = phy->attached_tproto;
277 if (!phy->attached_tproto && dr->attached_sata_dev)
278 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
279 phy->phy->identify.phy_identifier = phy_id;
280 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
281 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
282 phy->phy->minimum_linkrate = dr->pmin_linkrate;
283 phy->phy->maximum_linkrate = dr->pmax_linkrate;
284 phy->phy->negotiated_linkrate = phy->linkrate;
285 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
289 if (sas_phy_add(phy->phy)) {
290 sas_phy_free(phy->phy);
295 switch (phy->attached_dev_type) {
296 case SAS_SATA_PENDING:
297 type = "stp pending";
303 if (phy->attached_iproto) {
304 if (phy->attached_tproto)
305 type = "host+target";
309 if (dr->attached_sata_dev)
315 case SAS_EDGE_EXPANDER_DEVICE:
316 case SAS_FANOUT_EXPANDER_DEVICE:
323 /* this routine is polled by libata error recovery so filter
324 * unimportant messages
326 if (new_phy || phy->attached_dev_type != dev_type ||
327 phy->linkrate != linkrate ||
328 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
333 /* if the attached device type changed and ata_eh is active,
334 * make sure we run revalidation when eh completes (see:
335 * sas_enable_revalidation)
337 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
338 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
340 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
341 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
342 SAS_ADDR(dev->sas_addr), phy->phy_id,
343 sas_route_char(dev, phy), phy->linkrate,
344 SAS_ADDR(phy->attached_sas_addr), type);
347 /* check if we have an existing attached ata device on this expander phy */
348 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
350 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
351 struct domain_device *dev;
352 struct sas_rphy *rphy;
357 rphy = ex_phy->port->rphy;
361 dev = sas_find_dev_by_rphy(rphy);
363 if (dev && dev_is_sata(dev))
369 #define DISCOVER_REQ_SIZE 16
370 #define DISCOVER_RESP_SIZE 56
372 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
373 u8 *disc_resp, int single)
375 struct discover_resp *dr;
378 disc_req[9] = single;
380 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
381 disc_resp, DISCOVER_RESP_SIZE);
384 dr = &((struct smp_resp *)disc_resp)->disc;
385 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
386 pr_notice("Found loopback topology, just ignore it!\n");
389 sas_set_ex_phy(dev, single, disc_resp);
393 int sas_ex_phy_discover(struct domain_device *dev, int single)
395 struct expander_device *ex = &dev->ex_dev;
400 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
404 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
410 disc_req[1] = SMP_DISCOVER;
412 if (0 <= single && single < ex->num_phys) {
413 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
417 for (i = 0; i < ex->num_phys; i++) {
418 res = sas_ex_phy_discover_helper(dev, disc_req,
430 static int sas_expander_discover(struct domain_device *dev)
432 struct expander_device *ex = &dev->ex_dev;
435 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
439 res = sas_ex_phy_discover(dev, -1);
450 #define MAX_EXPANDER_PHYS 128
452 static void ex_assign_report_general(struct domain_device *dev,
453 struct smp_resp *resp)
455 struct report_general_resp *rg = &resp->rg;
457 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
458 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
459 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
460 dev->ex_dev.t2t_supp = rg->t2t_supp;
461 dev->ex_dev.conf_route_table = rg->conf_route_table;
462 dev->ex_dev.configuring = rg->configuring;
463 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
466 #define RG_REQ_SIZE 8
467 #define RG_RESP_SIZE 32
469 static int sas_ex_general(struct domain_device *dev)
472 struct smp_resp *rg_resp;
476 rg_req = alloc_smp_req(RG_REQ_SIZE);
480 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
486 rg_req[1] = SMP_REPORT_GENERAL;
488 for (i = 0; i < 5; i++) {
489 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
493 pr_notice("RG to ex %016llx failed:0x%x\n",
494 SAS_ADDR(dev->sas_addr), res);
496 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
497 pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
498 SAS_ADDR(dev->sas_addr), rg_resp->result);
499 res = rg_resp->result;
503 ex_assign_report_general(dev, rg_resp);
505 if (dev->ex_dev.configuring) {
506 pr_debug("RG: ex %016llx self-configuring...\n",
507 SAS_ADDR(dev->sas_addr));
508 schedule_timeout_interruptible(5*HZ);
518 static void ex_assign_manuf_info(struct domain_device *dev, void
521 u8 *mi_resp = _mi_resp;
522 struct sas_rphy *rphy = dev->rphy;
523 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
525 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
526 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
527 memcpy(edev->product_rev, mi_resp + 36,
528 SAS_EXPANDER_PRODUCT_REV_LEN);
530 if (mi_resp[8] & 1) {
531 memcpy(edev->component_vendor_id, mi_resp + 40,
532 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
533 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
534 edev->component_revision_id = mi_resp[50];
538 #define MI_REQ_SIZE 8
539 #define MI_RESP_SIZE 64
541 static int sas_ex_manuf_info(struct domain_device *dev)
547 mi_req = alloc_smp_req(MI_REQ_SIZE);
551 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
557 mi_req[1] = SMP_REPORT_MANUF_INFO;
559 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
561 pr_notice("MI: ex %016llx failed:0x%x\n",
562 SAS_ADDR(dev->sas_addr), res);
564 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
565 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
566 SAS_ADDR(dev->sas_addr), mi_resp[2]);
570 ex_assign_manuf_info(dev, mi_resp);
577 #define PC_REQ_SIZE 44
578 #define PC_RESP_SIZE 8
580 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
581 enum phy_func phy_func,
582 struct sas_phy_linkrates *rates)
588 pc_req = alloc_smp_req(PC_REQ_SIZE);
592 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
598 pc_req[1] = SMP_PHY_CONTROL;
600 pc_req[10] = phy_func;
602 pc_req[32] = rates->minimum_linkrate << 4;
603 pc_req[33] = rates->maximum_linkrate << 4;
606 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
608 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
609 SAS_ADDR(dev->sas_addr), phy_id, res);
610 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
611 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
612 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
620 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
622 struct expander_device *ex = &dev->ex_dev;
623 struct ex_phy *phy = &ex->ex_phy[phy_id];
625 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
626 phy->linkrate = SAS_PHY_DISABLED;
629 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
631 struct expander_device *ex = &dev->ex_dev;
634 for (i = 0; i < ex->num_phys; i++) {
635 struct ex_phy *phy = &ex->ex_phy[i];
637 if (phy->phy_state == PHY_VACANT ||
638 phy->phy_state == PHY_NOT_PRESENT)
641 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
642 sas_ex_disable_phy(dev, i);
646 static int sas_dev_present_in_domain(struct asd_sas_port *port,
649 struct domain_device *dev;
651 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
653 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
654 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
660 #define RPEL_REQ_SIZE 16
661 #define RPEL_RESP_SIZE 32
662 int sas_smp_get_phy_events(struct sas_phy *phy)
667 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
668 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
670 req = alloc_smp_req(RPEL_REQ_SIZE);
674 resp = alloc_smp_resp(RPEL_RESP_SIZE);
680 req[1] = SMP_REPORT_PHY_ERR_LOG;
681 req[9] = phy->number;
683 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
684 resp, RPEL_RESP_SIZE);
689 phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
690 phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
691 phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
692 phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
701 #ifdef CONFIG_SCSI_SAS_ATA
703 #define RPS_REQ_SIZE 16
704 #define RPS_RESP_SIZE 60
706 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
707 struct smp_resp *rps_resp)
710 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
711 u8 *resp = (u8 *)rps_resp;
716 rps_req[1] = SMP_REPORT_PHY_SATA;
719 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
720 rps_resp, RPS_RESP_SIZE);
722 /* 0x34 is the FIS type for the D2H fis. There's a potential
723 * standards cockup here. sas-2 explicitly specifies the FIS
724 * should be encoded so that FIS type is in resp[24].
725 * However, some expanders endian reverse this. Undo the
727 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
730 for (i = 0; i < 5; i++) {
735 resp[j + 0] = resp[j + 3];
736 resp[j + 1] = resp[j + 2];
747 static void sas_ex_get_linkrate(struct domain_device *parent,
748 struct domain_device *child,
749 struct ex_phy *parent_phy)
751 struct expander_device *parent_ex = &parent->ex_dev;
752 struct sas_port *port;
757 port = parent_phy->port;
759 for (i = 0; i < parent_ex->num_phys; i++) {
760 struct ex_phy *phy = &parent_ex->ex_phy[i];
762 if (phy->phy_state == PHY_VACANT ||
763 phy->phy_state == PHY_NOT_PRESENT)
766 if (SAS_ADDR(phy->attached_sas_addr) ==
767 SAS_ADDR(child->sas_addr)) {
769 child->min_linkrate = min(parent->min_linkrate,
771 child->max_linkrate = max(parent->max_linkrate,
774 sas_port_add_phy(port, phy->phy);
777 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
778 child->pathways = min(child->pathways, parent->pathways);
781 static struct domain_device *sas_ex_discover_end_dev(
782 struct domain_device *parent, int phy_id)
784 struct expander_device *parent_ex = &parent->ex_dev;
785 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
786 struct domain_device *child = NULL;
787 struct sas_rphy *rphy;
790 if (phy->attached_sata_host || phy->attached_sata_ps)
793 child = sas_alloc_device();
797 kref_get(&parent->kref);
798 child->parent = parent;
799 child->port = parent->port;
800 child->iproto = phy->attached_iproto;
801 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
802 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
804 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
805 if (unlikely(!phy->port))
807 if (unlikely(sas_port_add(phy->port) != 0)) {
808 sas_port_free(phy->port);
812 sas_ex_get_linkrate(parent, child, phy);
813 sas_device_set_phy(child, phy->port);
815 #ifdef CONFIG_SCSI_SAS_ATA
816 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
817 if (child->linkrate > parent->min_linkrate) {
818 struct sas_phy *cphy = child->phy;
819 enum sas_linkrate min_prate = cphy->minimum_linkrate,
820 parent_min_lrate = parent->min_linkrate,
821 min_linkrate = (min_prate > parent_min_lrate) ?
822 parent_min_lrate : 0;
823 struct sas_phy_linkrates rates = {
824 .maximum_linkrate = parent->min_linkrate,
825 .minimum_linkrate = min_linkrate,
829 pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
830 SAS_ADDR(child->sas_addr), phy_id);
831 ret = sas_smp_phy_control(parent, phy_id,
832 PHY_FUNC_LINK_RESET, &rates);
834 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
835 SAS_ADDR(child->sas_addr), phy_id, ret);
838 pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
839 SAS_ADDR(child->sas_addr), phy_id);
840 child->linkrate = child->min_linkrate;
842 res = sas_get_ata_info(child, phy);
847 res = sas_ata_init(child);
850 rphy = sas_end_device_alloc(phy->port);
853 rphy->identify.phy_identifier = phy_id;
856 get_device(&rphy->dev);
858 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
860 res = sas_discover_sata(child);
862 pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
863 SAS_ADDR(child->sas_addr),
864 SAS_ADDR(parent->sas_addr), phy_id, res);
869 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
870 child->dev_type = SAS_END_DEVICE;
871 rphy = sas_end_device_alloc(phy->port);
872 /* FIXME: error handling */
875 child->tproto = phy->attached_tproto;
879 get_device(&rphy->dev);
880 rphy->identify.phy_identifier = phy_id;
881 sas_fill_in_rphy(child, rphy);
883 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
885 res = sas_discover_end_dev(child);
887 pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n",
888 SAS_ADDR(child->sas_addr),
889 SAS_ADDR(parent->sas_addr), phy_id, res);
893 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
894 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
899 list_add_tail(&child->siblings, &parent_ex->children);
903 sas_rphy_free(child->rphy);
904 list_del(&child->disco_list_node);
905 spin_lock_irq(&parent->port->dev_list_lock);
906 list_del(&child->dev_list_node);
907 spin_unlock_irq(&parent->port->dev_list_lock);
909 sas_port_delete(phy->port);
912 sas_put_device(child);
916 /* See if this phy is part of a wide port */
917 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
919 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
922 for (i = 0; i < parent->ex_dev.num_phys; i++) {
923 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
928 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
929 SAS_ADDR_SIZE) && ephy->port) {
930 sas_port_add_phy(ephy->port, phy->phy);
931 phy->port = ephy->port;
932 phy->phy_state = PHY_DEVICE_DISCOVERED;
940 static struct domain_device *sas_ex_discover_expander(
941 struct domain_device *parent, int phy_id)
943 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
944 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
945 struct domain_device *child = NULL;
946 struct sas_rphy *rphy;
947 struct sas_expander_device *edev;
948 struct asd_sas_port *port;
951 if (phy->routing_attr == DIRECT_ROUTING) {
952 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
953 SAS_ADDR(parent->sas_addr), phy_id,
954 SAS_ADDR(phy->attached_sas_addr),
955 phy->attached_phy_id);
958 child = sas_alloc_device();
962 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
963 /* FIXME: better error handling */
964 BUG_ON(sas_port_add(phy->port) != 0);
967 switch (phy->attached_dev_type) {
968 case SAS_EDGE_EXPANDER_DEVICE:
969 rphy = sas_expander_alloc(phy->port,
970 SAS_EDGE_EXPANDER_DEVICE);
972 case SAS_FANOUT_EXPANDER_DEVICE:
973 rphy = sas_expander_alloc(phy->port,
974 SAS_FANOUT_EXPANDER_DEVICE);
977 rphy = NULL; /* shut gcc up */
982 get_device(&rphy->dev);
983 edev = rphy_to_expander_device(rphy);
984 child->dev_type = phy->attached_dev_type;
985 kref_get(&parent->kref);
986 child->parent = parent;
988 child->iproto = phy->attached_iproto;
989 child->tproto = phy->attached_tproto;
990 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
991 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
992 sas_ex_get_linkrate(parent, child, phy);
993 edev->level = parent_ex->level + 1;
994 parent->port->disc.max_level = max(parent->port->disc.max_level,
997 sas_fill_in_rphy(child, rphy);
1000 spin_lock_irq(&parent->port->dev_list_lock);
1001 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
1002 spin_unlock_irq(&parent->port->dev_list_lock);
1004 res = sas_discover_expander(child);
1006 sas_rphy_delete(rphy);
1007 spin_lock_irq(&parent->port->dev_list_lock);
1008 list_del(&child->dev_list_node);
1009 spin_unlock_irq(&parent->port->dev_list_lock);
1010 sas_put_device(child);
1011 sas_port_delete(phy->port);
1015 list_add_tail(&child->siblings, &parent->ex_dev.children);
1019 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1021 struct expander_device *ex = &dev->ex_dev;
1022 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1023 struct domain_device *child = NULL;
1027 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1028 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1029 res = sas_ex_phy_discover(dev, phy_id);
1034 /* Parent and domain coherency */
1035 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1036 SAS_ADDR(dev->port->sas_addr))) {
1037 sas_add_parent_port(dev, phy_id);
1040 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1041 SAS_ADDR(dev->parent->sas_addr))) {
1042 sas_add_parent_port(dev, phy_id);
1043 if (ex_phy->routing_attr == TABLE_ROUTING)
1044 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1048 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1049 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1051 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1052 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1053 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1054 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1057 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1060 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1061 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1062 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1063 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1064 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1065 ex_phy->attached_dev_type,
1066 SAS_ADDR(dev->sas_addr),
1071 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1073 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1074 SAS_ADDR(ex_phy->attached_sas_addr), res);
1075 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1079 if (sas_ex_join_wide_port(dev, phy_id)) {
1080 pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1081 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1085 switch (ex_phy->attached_dev_type) {
1086 case SAS_END_DEVICE:
1087 case SAS_SATA_PENDING:
1088 child = sas_ex_discover_end_dev(dev, phy_id);
1090 case SAS_FANOUT_EXPANDER_DEVICE:
1091 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1092 pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1093 SAS_ADDR(ex_phy->attached_sas_addr),
1094 ex_phy->attached_phy_id,
1095 SAS_ADDR(dev->sas_addr),
1097 sas_ex_disable_phy(dev, phy_id);
1100 memcpy(dev->port->disc.fanout_sas_addr,
1101 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1103 case SAS_EDGE_EXPANDER_DEVICE:
1104 child = sas_ex_discover_expander(dev, phy_id);
1111 pr_notice("ex %016llx phy%02d failed to discover\n",
1112 SAS_ADDR(dev->sas_addr), phy_id);
1116 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1118 struct expander_device *ex = &dev->ex_dev;
1121 for (i = 0; i < ex->num_phys; i++) {
1122 struct ex_phy *phy = &ex->ex_phy[i];
1124 if (phy->phy_state == PHY_VACANT ||
1125 phy->phy_state == PHY_NOT_PRESENT)
1128 if (dev_is_expander(phy->attached_dev_type) &&
1129 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1131 memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1139 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1141 struct expander_device *ex = &dev->ex_dev;
1142 struct domain_device *child;
1143 u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1145 list_for_each_entry(child, &ex->children, siblings) {
1146 if (!dev_is_expander(child->dev_type))
1148 if (sub_addr[0] == 0) {
1149 sas_find_sub_addr(child, sub_addr);
1152 u8 s2[SAS_ADDR_SIZE];
1154 if (sas_find_sub_addr(child, s2) &&
1155 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1157 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1158 SAS_ADDR(dev->sas_addr),
1159 SAS_ADDR(child->sas_addr),
1161 SAS_ADDR(sub_addr));
1163 sas_ex_disable_port(child, s2);
1170 * sas_ex_discover_devices - discover devices attached to this expander
1171 * @dev: pointer to the expander domain device
1172 * @single: if you want to do a single phy, else set to -1;
1174 * Configure this expander for use with its devices and register the
1175 * devices of this expander.
1177 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1179 struct expander_device *ex = &dev->ex_dev;
1180 int i = 0, end = ex->num_phys;
1183 if (0 <= single && single < end) {
1188 for ( ; i < end; i++) {
1189 struct ex_phy *ex_phy = &ex->ex_phy[i];
1191 if (ex_phy->phy_state == PHY_VACANT ||
1192 ex_phy->phy_state == PHY_NOT_PRESENT ||
1193 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1196 switch (ex_phy->linkrate) {
1197 case SAS_PHY_DISABLED:
1198 case SAS_PHY_RESET_PROBLEM:
1199 case SAS_SATA_PORT_SELECTOR:
1202 res = sas_ex_discover_dev(dev, i);
1210 sas_check_level_subtractive_boundary(dev);
1215 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1217 struct expander_device *ex = &dev->ex_dev;
1219 u8 *sub_sas_addr = NULL;
1221 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1224 for (i = 0; i < ex->num_phys; i++) {
1225 struct ex_phy *phy = &ex->ex_phy[i];
1227 if (phy->phy_state == PHY_VACANT ||
1228 phy->phy_state == PHY_NOT_PRESENT)
1231 if (dev_is_expander(phy->attached_dev_type) &&
1232 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1235 sub_sas_addr = &phy->attached_sas_addr[0];
1236 else if (SAS_ADDR(sub_sas_addr) !=
1237 SAS_ADDR(phy->attached_sas_addr)) {
1239 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1240 SAS_ADDR(dev->sas_addr), i,
1241 SAS_ADDR(phy->attached_sas_addr),
1242 SAS_ADDR(sub_sas_addr));
1243 sas_ex_disable_phy(dev, i);
1250 static void sas_print_parent_topology_bug(struct domain_device *child,
1251 struct ex_phy *parent_phy,
1252 struct ex_phy *child_phy)
1254 static const char *ex_type[] = {
1255 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1256 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1258 struct domain_device *parent = child->parent;
1260 pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1261 ex_type[parent->dev_type],
1262 SAS_ADDR(parent->sas_addr),
1265 ex_type[child->dev_type],
1266 SAS_ADDR(child->sas_addr),
1269 sas_route_char(parent, parent_phy),
1270 sas_route_char(child, child_phy));
1273 static int sas_check_eeds(struct domain_device *child,
1274 struct ex_phy *parent_phy,
1275 struct ex_phy *child_phy)
1278 struct domain_device *parent = child->parent;
1280 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1282 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1283 SAS_ADDR(parent->sas_addr),
1285 SAS_ADDR(child->sas_addr),
1287 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1288 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1289 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1291 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1293 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1294 SAS_ADDR(parent->sas_addr)) ||
1295 (SAS_ADDR(parent->port->disc.eeds_a) ==
1296 SAS_ADDR(child->sas_addr)))
1298 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1299 SAS_ADDR(parent->sas_addr)) ||
1300 (SAS_ADDR(parent->port->disc.eeds_b) ==
1301 SAS_ADDR(child->sas_addr))))
1305 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1306 SAS_ADDR(parent->sas_addr),
1308 SAS_ADDR(child->sas_addr),
1315 /* Here we spill over 80 columns. It is intentional.
1317 static int sas_check_parent_topology(struct domain_device *child)
1319 struct expander_device *child_ex = &child->ex_dev;
1320 struct expander_device *parent_ex;
1327 if (!dev_is_expander(child->parent->dev_type))
1330 parent_ex = &child->parent->ex_dev;
1332 for (i = 0; i < parent_ex->num_phys; i++) {
1333 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1334 struct ex_phy *child_phy;
1336 if (parent_phy->phy_state == PHY_VACANT ||
1337 parent_phy->phy_state == PHY_NOT_PRESENT)
1340 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1343 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1345 switch (child->parent->dev_type) {
1346 case SAS_EDGE_EXPANDER_DEVICE:
1347 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1348 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1349 child_phy->routing_attr != TABLE_ROUTING) {
1350 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1353 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1354 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1355 res = sas_check_eeds(child, parent_phy, child_phy);
1356 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1357 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1360 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1361 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1362 (child_phy->routing_attr == TABLE_ROUTING &&
1363 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1366 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1371 case SAS_FANOUT_EXPANDER_DEVICE:
1372 if (parent_phy->routing_attr != TABLE_ROUTING ||
1373 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1374 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1386 #define RRI_REQ_SIZE 16
1387 #define RRI_RESP_SIZE 44
1389 static int sas_configure_present(struct domain_device *dev, int phy_id,
1390 u8 *sas_addr, int *index, int *present)
1393 struct expander_device *ex = &dev->ex_dev;
1394 struct ex_phy *phy = &ex->ex_phy[phy_id];
1401 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1405 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1411 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1412 rri_req[9] = phy_id;
1414 for (i = 0; i < ex->max_route_indexes ; i++) {
1415 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1416 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1421 if (res == SMP_RESP_NO_INDEX) {
1422 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1423 SAS_ADDR(dev->sas_addr), phy_id, i);
1425 } else if (res != SMP_RESP_FUNC_ACC) {
1426 pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1427 __func__, SAS_ADDR(dev->sas_addr), phy_id,
1431 if (SAS_ADDR(sas_addr) != 0) {
1432 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1434 if ((rri_resp[12] & 0x80) == 0x80)
1439 } else if (SAS_ADDR(rri_resp+16) == 0) {
1444 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1445 phy->last_da_index < i) {
1446 phy->last_da_index = i;
1459 #define CRI_REQ_SIZE 44
1460 #define CRI_RESP_SIZE 8
1462 static int sas_configure_set(struct domain_device *dev, int phy_id,
1463 u8 *sas_addr, int index, int include)
1469 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1473 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1479 cri_req[1] = SMP_CONF_ROUTE_INFO;
1480 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1481 cri_req[9] = phy_id;
1482 if (SAS_ADDR(sas_addr) == 0 || !include)
1483 cri_req[12] |= 0x80;
1484 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1486 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1491 if (res == SMP_RESP_NO_INDEX) {
1492 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1493 SAS_ADDR(dev->sas_addr), phy_id, index);
1501 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1502 u8 *sas_addr, int include)
1508 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1511 if (include ^ present)
1512 return sas_configure_set(dev, phy_id, sas_addr, index,
1519 * sas_configure_parent - configure routing table of parent
1520 * @parent: parent expander
1521 * @child: child expander
1522 * @sas_addr: SAS port identifier of device directly attached to child
1523 * @include: whether or not to include @child in the expander routing table
1525 static int sas_configure_parent(struct domain_device *parent,
1526 struct domain_device *child,
1527 u8 *sas_addr, int include)
1529 struct expander_device *ex_parent = &parent->ex_dev;
1533 if (parent->parent) {
1534 res = sas_configure_parent(parent->parent, parent, sas_addr,
1540 if (ex_parent->conf_route_table == 0) {
1541 pr_debug("ex %016llx has self-configuring routing table\n",
1542 SAS_ADDR(parent->sas_addr));
1546 for (i = 0; i < ex_parent->num_phys; i++) {
1547 struct ex_phy *phy = &ex_parent->ex_phy[i];
1549 if ((phy->routing_attr == TABLE_ROUTING) &&
1550 (SAS_ADDR(phy->attached_sas_addr) ==
1551 SAS_ADDR(child->sas_addr))) {
1552 res = sas_configure_phy(parent, i, sas_addr, include);
1562 * sas_configure_routing - configure routing
1563 * @dev: expander device
1564 * @sas_addr: port identifier of device directly attached to the expander device
1566 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1569 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1573 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1576 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1581 * sas_discover_expander - expander discovery
1582 * @dev: pointer to expander domain device
1584 * See comment in sas_discover_sata().
1586 static int sas_discover_expander(struct domain_device *dev)
1590 res = sas_notify_lldd_dev_found(dev);
1594 res = sas_ex_general(dev);
1597 res = sas_ex_manuf_info(dev);
1601 res = sas_expander_discover(dev);
1603 pr_warn("expander %016llx discovery failed(0x%x)\n",
1604 SAS_ADDR(dev->sas_addr), res);
1608 sas_check_ex_subtractive_boundary(dev);
1609 res = sas_check_parent_topology(dev);
1614 sas_notify_lldd_dev_gone(dev);
1618 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1621 struct domain_device *dev;
1623 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1624 if (dev_is_expander(dev->dev_type)) {
1625 struct sas_expander_device *ex =
1626 rphy_to_expander_device(dev->rphy);
1628 if (level == ex->level)
1629 res = sas_ex_discover_devices(dev, -1);
1631 res = sas_ex_discover_devices(port->port_dev, -1);
1639 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1645 level = port->disc.max_level;
1646 res = sas_ex_level_discovery(port, level);
1648 } while (level < port->disc.max_level);
1653 int sas_discover_root_expander(struct domain_device *dev)
1656 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1658 res = sas_rphy_add(dev->rphy);
1662 ex->level = dev->port->disc.max_level; /* 0 */
1663 res = sas_discover_expander(dev);
1667 sas_ex_bfs_disc(dev->port);
1672 sas_rphy_remove(dev->rphy);
1677 /* ---------- Domain revalidation ---------- */
1679 static int sas_get_phy_discover(struct domain_device *dev,
1680 int phy_id, struct smp_resp *disc_resp)
1685 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1689 disc_req[1] = SMP_DISCOVER;
1690 disc_req[9] = phy_id;
1692 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1693 disc_resp, DISCOVER_RESP_SIZE);
1696 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1697 res = disc_resp->result;
1705 static int sas_get_phy_change_count(struct domain_device *dev,
1706 int phy_id, int *pcc)
1709 struct smp_resp *disc_resp;
1711 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1715 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1717 *pcc = disc_resp->disc.change_count;
1723 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1724 u8 *sas_addr, enum sas_device_type *type)
1727 struct smp_resp *disc_resp;
1728 struct discover_resp *dr;
1730 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1733 dr = &disc_resp->disc;
1735 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1737 memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1739 *type = to_dev_type(dr);
1741 memset(sas_addr, 0, SAS_ADDR_SIZE);
1747 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1748 int from_phy, bool update)
1750 struct expander_device *ex = &dev->ex_dev;
1754 for (i = from_phy; i < ex->num_phys; i++) {
1755 int phy_change_count = 0;
1757 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1759 case SMP_RESP_PHY_VACANT:
1760 case SMP_RESP_NO_PHY:
1762 case SMP_RESP_FUNC_ACC:
1768 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1770 ex->ex_phy[i].phy_change_count =
1779 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1783 struct smp_resp *rg_resp;
1785 rg_req = alloc_smp_req(RG_REQ_SIZE);
1789 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1795 rg_req[1] = SMP_REPORT_GENERAL;
1797 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1801 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1802 res = rg_resp->result;
1806 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1813 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1814 * @dev:domain device to be detect.
1815 * @src_dev: the device which originated BROADCAST(CHANGE).
1817 * Add self-configuration expander support. Suppose two expander cascading,
1818 * when the first level expander is self-configuring, hotplug the disks in
1819 * second level expander, BROADCAST(CHANGE) will not only be originated
1820 * in the second level expander, but also be originated in the first level
1821 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1822 * expander changed count in two level expanders will all increment at least
1823 * once, but the phy which chang count has changed is the source device which
1827 static int sas_find_bcast_dev(struct domain_device *dev,
1828 struct domain_device **src_dev)
1830 struct expander_device *ex = &dev->ex_dev;
1831 int ex_change_count = -1;
1834 struct domain_device *ch;
1836 res = sas_get_ex_change_count(dev, &ex_change_count);
1839 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1840 /* Just detect if this expander phys phy change count changed,
1841 * in order to determine if this expander originate BROADCAST,
1842 * and do not update phy change count field in our structure.
1844 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1847 ex->ex_change_count = ex_change_count;
1848 pr_info("ex %016llx phy%02d change count has changed\n",
1849 SAS_ADDR(dev->sas_addr), phy_id);
1852 pr_info("ex %016llx phys DID NOT change\n",
1853 SAS_ADDR(dev->sas_addr));
1855 list_for_each_entry(ch, &ex->children, siblings) {
1856 if (dev_is_expander(ch->dev_type)) {
1857 res = sas_find_bcast_dev(ch, src_dev);
1866 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1868 struct expander_device *ex = &dev->ex_dev;
1869 struct domain_device *child, *n;
1871 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1872 set_bit(SAS_DEV_GONE, &child->state);
1873 if (dev_is_expander(child->dev_type))
1874 sas_unregister_ex_tree(port, child);
1876 sas_unregister_dev(port, child);
1878 sas_unregister_dev(port, dev);
1881 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1882 int phy_id, bool last)
1884 struct expander_device *ex_dev = &parent->ex_dev;
1885 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1886 struct domain_device *child, *n, *found = NULL;
1888 list_for_each_entry_safe(child, n,
1889 &ex_dev->children, siblings) {
1890 if (SAS_ADDR(child->sas_addr) ==
1891 SAS_ADDR(phy->attached_sas_addr)) {
1892 set_bit(SAS_DEV_GONE, &child->state);
1893 if (dev_is_expander(child->dev_type))
1894 sas_unregister_ex_tree(parent->port, child);
1896 sas_unregister_dev(parent->port, child);
1901 sas_disable_routing(parent, phy->attached_sas_addr);
1903 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1905 sas_port_delete_phy(phy->port, phy->phy);
1906 sas_device_set_phy(found, phy->port);
1907 if (phy->port->num_phys == 0)
1908 list_add_tail(&phy->port->del_list,
1909 &parent->port->sas_port_del_list);
1914 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1917 struct expander_device *ex_root = &root->ex_dev;
1918 struct domain_device *child;
1921 list_for_each_entry(child, &ex_root->children, siblings) {
1922 if (dev_is_expander(child->dev_type)) {
1923 struct sas_expander_device *ex =
1924 rphy_to_expander_device(child->rphy);
1926 if (level > ex->level)
1927 res = sas_discover_bfs_by_root_level(child,
1929 else if (level == ex->level)
1930 res = sas_ex_discover_devices(child, -1);
1936 static int sas_discover_bfs_by_root(struct domain_device *dev)
1939 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1940 int level = ex->level+1;
1942 res = sas_ex_discover_devices(dev, -1);
1946 res = sas_discover_bfs_by_root_level(dev, level);
1949 } while (level <= dev->port->disc.max_level);
1954 static int sas_discover_new(struct domain_device *dev, int phy_id)
1956 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1957 struct domain_device *child;
1960 pr_debug("ex %016llx phy%02d new device attached\n",
1961 SAS_ADDR(dev->sas_addr), phy_id);
1962 res = sas_ex_phy_discover(dev, phy_id);
1966 if (sas_ex_join_wide_port(dev, phy_id))
1969 res = sas_ex_discover_devices(dev, phy_id);
1972 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1973 if (SAS_ADDR(child->sas_addr) ==
1974 SAS_ADDR(ex_phy->attached_sas_addr)) {
1975 if (dev_is_expander(child->dev_type))
1976 res = sas_discover_bfs_by_root(child);
1983 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1988 /* treat device directed resets as flutter, if we went
1989 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1991 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1992 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1998 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1999 bool last, int sibling)
2001 struct expander_device *ex = &dev->ex_dev;
2002 struct ex_phy *phy = &ex->ex_phy[phy_id];
2003 enum sas_device_type type = SAS_PHY_UNUSED;
2004 u8 sas_addr[SAS_ADDR_SIZE];
2009 sprintf(msg, ", part of a wide port with phy%02d", sibling);
2011 pr_debug("ex %016llx rediscovering phy%02d%s\n",
2012 SAS_ADDR(dev->sas_addr), phy_id, msg);
2014 memset(sas_addr, 0, SAS_ADDR_SIZE);
2015 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2017 case SMP_RESP_NO_PHY:
2018 phy->phy_state = PHY_NOT_PRESENT;
2019 sas_unregister_devs_sas_addr(dev, phy_id, last);
2021 case SMP_RESP_PHY_VACANT:
2022 phy->phy_state = PHY_VACANT;
2023 sas_unregister_devs_sas_addr(dev, phy_id, last);
2025 case SMP_RESP_FUNC_ACC:
2033 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2034 phy->phy_state = PHY_EMPTY;
2035 sas_unregister_devs_sas_addr(dev, phy_id, last);
2037 * Even though the PHY is empty, for convenience we discover
2038 * the PHY to update the PHY info, like negotiated linkrate.
2040 sas_ex_phy_discover(dev, phy_id);
2042 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2043 dev_type_flutter(type, phy->attached_dev_type)) {
2044 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2047 sas_ex_phy_discover(dev, phy_id);
2049 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2050 action = ", needs recovery";
2051 pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2052 SAS_ADDR(dev->sas_addr), phy_id, action);
2056 /* we always have to delete the old device when we went here */
2057 pr_info("ex %016llx phy%02d replace %016llx\n",
2058 SAS_ADDR(dev->sas_addr), phy_id,
2059 SAS_ADDR(phy->attached_sas_addr));
2060 sas_unregister_devs_sas_addr(dev, phy_id, last);
2062 return sas_discover_new(dev, phy_id);
2066 * sas_rediscover - revalidate the domain.
2067 * @dev:domain device to be detect.
2068 * @phy_id: the phy id will be detected.
2070 * NOTE: this process _must_ quit (return) as soon as any connection
2071 * errors are encountered. Connection recovery is done elsewhere.
2072 * Discover process only interrogates devices in order to discover the
2073 * domain.For plugging out, we un-register the device only when it is
2074 * the last phy in the port, for other phys in this port, we just delete it
2075 * from the port.For inserting, we do discovery when it is the
2076 * first phy,for other phys in this port, we add it to the port to
2077 * forming the wide-port.
2079 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2081 struct expander_device *ex = &dev->ex_dev;
2082 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2085 bool last = true; /* is this the last phy of the port */
2087 pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2088 SAS_ADDR(dev->sas_addr), phy_id);
2090 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2091 for (i = 0; i < ex->num_phys; i++) {
2092 struct ex_phy *phy = &ex->ex_phy[i];
2096 if (SAS_ADDR(phy->attached_sas_addr) ==
2097 SAS_ADDR(changed_phy->attached_sas_addr)) {
2102 res = sas_rediscover_dev(dev, phy_id, last, i);
2104 res = sas_discover_new(dev, phy_id);
2109 * sas_ex_revalidate_domain - revalidate the domain
2110 * @port_dev: port domain device.
2112 * NOTE: this process _must_ quit (return) as soon as any connection
2113 * errors are encountered. Connection recovery is done elsewhere.
2114 * Discover process only interrogates devices in order to discover the
2117 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2120 struct domain_device *dev = NULL;
2122 res = sas_find_bcast_dev(port_dev, &dev);
2123 if (res == 0 && dev) {
2124 struct expander_device *ex = &dev->ex_dev;
2129 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2132 res = sas_rediscover(dev, phy_id);
2134 } while (i < ex->num_phys);
2139 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2140 struct sas_rphy *rphy)
2142 struct domain_device *dev;
2143 unsigned int rcvlen = 0;
2146 /* no rphy means no smp target support (ie aic94xx host) */
2148 return sas_smp_host_handler(job, shost);
2150 switch (rphy->identify.device_type) {
2151 case SAS_EDGE_EXPANDER_DEVICE:
2152 case SAS_FANOUT_EXPANDER_DEVICE:
2155 pr_err("%s: can we send a smp request to a device?\n",
2160 dev = sas_find_dev_by_rphy(rphy);
2162 pr_err("%s: fail to find a domain_device?\n", __func__);
2166 /* do we need to support multiple segments? */
2167 if (job->request_payload.sg_cnt > 1 ||
2168 job->reply_payload.sg_cnt > 1) {
2169 pr_info("%s: multiple segments req %u, rsp %u\n",
2170 __func__, job->request_payload.payload_len,
2171 job->reply_payload.payload_len);
2175 ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2176 job->reply_payload.sg_list);
2178 /* bsg_job_done() requires the length received */
2179 rcvlen = job->reply_payload.payload_len - ret;
2184 bsg_job_done(job, ret, rcvlen);