]> Git Repo - linux.git/blob - drivers/scsi/libsas/sas_expander.c
platform/x86: amd-pmc: Move to later in the suspend process
[linux.git] / drivers / scsi / libsas / sas_expander.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Serial Attached SCSI (SAS) Expander discovery and configuration
4  *
5  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
6  * Copyright (C) 2005 Luben Tuikov <[email protected]>
7  *
8  * This file is licensed under GPLv2.
9  */
10
11 #include <linux/scatterlist.h>
12 #include <linux/blkdev.h>
13 #include <linux/slab.h>
14 #include <asm/unaligned.h>
15
16 #include "sas_internal.h"
17
18 #include <scsi/sas_ata.h>
19 #include <scsi/scsi_transport.h>
20 #include <scsi/scsi_transport_sas.h>
21 #include "scsi_sas_internal.h"
22
23 static int sas_discover_expander(struct domain_device *dev);
24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25 static int sas_configure_phy(struct domain_device *dev, int phy_id,
26                              u8 *sas_addr, int include);
27 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
28
29 /* ---------- SMP task management ---------- */
30
31 static void smp_task_timedout(struct timer_list *t)
32 {
33         struct sas_task_slow *slow = from_timer(slow, t, timer);
34         struct sas_task *task = slow->task;
35         unsigned long flags;
36
37         spin_lock_irqsave(&task->task_state_lock, flags);
38         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
39                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
40                 complete(&task->slow_task->completion);
41         }
42         spin_unlock_irqrestore(&task->task_state_lock, flags);
43 }
44
45 static void smp_task_done(struct sas_task *task)
46 {
47         del_timer(&task->slow_task->timer);
48         complete(&task->slow_task->completion);
49 }
50
51 /* Give it some long enough timeout. In seconds. */
52 #define SMP_TIMEOUT 10
53
54 static int smp_execute_task_sg(struct domain_device *dev,
55                 struct scatterlist *req, struct scatterlist *resp)
56 {
57         int res, retry;
58         struct sas_task *task = NULL;
59         struct sas_internal *i =
60                 to_sas_internal(dev->port->ha->core.shost->transportt);
61         struct sas_ha_struct *ha = dev->port->ha;
62
63         pm_runtime_get_sync(ha->dev);
64         mutex_lock(&dev->ex_dev.cmd_mutex);
65         for (retry = 0; retry < 3; retry++) {
66                 if (test_bit(SAS_DEV_GONE, &dev->state)) {
67                         res = -ECOMM;
68                         break;
69                 }
70
71                 task = sas_alloc_slow_task(GFP_KERNEL);
72                 if (!task) {
73                         res = -ENOMEM;
74                         break;
75                 }
76                 task->dev = dev;
77                 task->task_proto = dev->tproto;
78                 task->smp_task.smp_req = *req;
79                 task->smp_task.smp_resp = *resp;
80
81                 task->task_done = smp_task_done;
82
83                 task->slow_task->timer.function = smp_task_timedout;
84                 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
85                 add_timer(&task->slow_task->timer);
86
87                 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
88
89                 if (res) {
90                         del_timer(&task->slow_task->timer);
91                         pr_notice("executing SMP task failed:%d\n", res);
92                         break;
93                 }
94
95                 wait_for_completion(&task->slow_task->completion);
96                 res = -ECOMM;
97                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
98                         pr_notice("smp task timed out or aborted\n");
99                         i->dft->lldd_abort_task(task);
100                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
101                                 pr_notice("SMP task aborted and not done\n");
102                                 break;
103                         }
104                 }
105                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
106                     task->task_status.stat == SAS_SAM_STAT_GOOD) {
107                         res = 0;
108                         break;
109                 }
110                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
111                     task->task_status.stat == SAS_DATA_UNDERRUN) {
112                         /* no error, but return the number of bytes of
113                          * underrun */
114                         res = task->task_status.residual;
115                         break;
116                 }
117                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118                     task->task_status.stat == SAS_DATA_OVERRUN) {
119                         res = -EMSGSIZE;
120                         break;
121                 }
122                 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
123                     task->task_status.stat == SAS_DEVICE_UNKNOWN)
124                         break;
125                 else {
126                         pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
127                                   __func__,
128                                   SAS_ADDR(dev->sas_addr),
129                                   task->task_status.resp,
130                                   task->task_status.stat);
131                         sas_free_task(task);
132                         task = NULL;
133                 }
134         }
135         mutex_unlock(&dev->ex_dev.cmd_mutex);
136         pm_runtime_put_sync(ha->dev);
137
138         BUG_ON(retry == 3 && task != NULL);
139         sas_free_task(task);
140         return res;
141 }
142
143 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
144                             void *resp, int resp_size)
145 {
146         struct scatterlist req_sg;
147         struct scatterlist resp_sg;
148
149         sg_init_one(&req_sg, req, req_size);
150         sg_init_one(&resp_sg, resp, resp_size);
151         return smp_execute_task_sg(dev, &req_sg, &resp_sg);
152 }
153
154 /* ---------- Allocations ---------- */
155
156 static inline void *alloc_smp_req(int size)
157 {
158         u8 *p = kzalloc(size, GFP_KERNEL);
159         if (p)
160                 p[0] = SMP_REQUEST;
161         return p;
162 }
163
164 static inline void *alloc_smp_resp(int size)
165 {
166         return kzalloc(size, GFP_KERNEL);
167 }
168
169 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
170 {
171         switch (phy->routing_attr) {
172         case TABLE_ROUTING:
173                 if (dev->ex_dev.t2t_supp)
174                         return 'U';
175                 else
176                         return 'T';
177         case DIRECT_ROUTING:
178                 return 'D';
179         case SUBTRACTIVE_ROUTING:
180                 return 'S';
181         default:
182                 return '?';
183         }
184 }
185
186 static enum sas_device_type to_dev_type(struct discover_resp *dr)
187 {
188         /* This is detecting a failure to transmit initial dev to host
189          * FIS as described in section J.5 of sas-2 r16
190          */
191         if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
192             dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
193                 return SAS_SATA_PENDING;
194         else
195                 return dr->attached_dev_type;
196 }
197
198 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
199 {
200         enum sas_device_type dev_type;
201         enum sas_linkrate linkrate;
202         u8 sas_addr[SAS_ADDR_SIZE];
203         struct smp_resp *resp = rsp;
204         struct discover_resp *dr = &resp->disc;
205         struct sas_ha_struct *ha = dev->port->ha;
206         struct expander_device *ex = &dev->ex_dev;
207         struct ex_phy *phy = &ex->ex_phy[phy_id];
208         struct sas_rphy *rphy = dev->rphy;
209         bool new_phy = !phy->phy;
210         char *type;
211
212         if (new_phy) {
213                 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
214                         return;
215                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
216
217                 /* FIXME: error_handling */
218                 BUG_ON(!phy->phy);
219         }
220
221         switch (resp->result) {
222         case SMP_RESP_PHY_VACANT:
223                 phy->phy_state = PHY_VACANT;
224                 break;
225         default:
226                 phy->phy_state = PHY_NOT_PRESENT;
227                 break;
228         case SMP_RESP_FUNC_ACC:
229                 phy->phy_state = PHY_EMPTY; /* do not know yet */
230                 break;
231         }
232
233         /* check if anything important changed to squelch debug */
234         dev_type = phy->attached_dev_type;
235         linkrate  = phy->linkrate;
236         memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
237
238         /* Handle vacant phy - rest of dr data is not valid so skip it */
239         if (phy->phy_state == PHY_VACANT) {
240                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
241                 phy->attached_dev_type = SAS_PHY_UNUSED;
242                 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
243                         phy->phy_id = phy_id;
244                         goto skip;
245                 } else
246                         goto out;
247         }
248
249         phy->attached_dev_type = to_dev_type(dr);
250         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
251                 goto out;
252         phy->phy_id = phy_id;
253         phy->linkrate = dr->linkrate;
254         phy->attached_sata_host = dr->attached_sata_host;
255         phy->attached_sata_dev  = dr->attached_sata_dev;
256         phy->attached_sata_ps   = dr->attached_sata_ps;
257         phy->attached_iproto = dr->iproto << 1;
258         phy->attached_tproto = dr->tproto << 1;
259         /* help some expanders that fail to zero sas_address in the 'no
260          * device' case
261          */
262         if (phy->attached_dev_type == SAS_PHY_UNUSED ||
263             phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
264                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
265         else
266                 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
267         phy->attached_phy_id = dr->attached_phy_id;
268         phy->phy_change_count = dr->change_count;
269         phy->routing_attr = dr->routing_attr;
270         phy->virtual = dr->virtual;
271         phy->last_da_index = -1;
272
273         phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
274         phy->phy->identify.device_type = dr->attached_dev_type;
275         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
276         phy->phy->identify.target_port_protocols = phy->attached_tproto;
277         if (!phy->attached_tproto && dr->attached_sata_dev)
278                 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
279         phy->phy->identify.phy_identifier = phy_id;
280         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
281         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
282         phy->phy->minimum_linkrate = dr->pmin_linkrate;
283         phy->phy->maximum_linkrate = dr->pmax_linkrate;
284         phy->phy->negotiated_linkrate = phy->linkrate;
285         phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
286
287  skip:
288         if (new_phy)
289                 if (sas_phy_add(phy->phy)) {
290                         sas_phy_free(phy->phy);
291                         return;
292                 }
293
294  out:
295         switch (phy->attached_dev_type) {
296         case SAS_SATA_PENDING:
297                 type = "stp pending";
298                 break;
299         case SAS_PHY_UNUSED:
300                 type = "no device";
301                 break;
302         case SAS_END_DEVICE:
303                 if (phy->attached_iproto) {
304                         if (phy->attached_tproto)
305                                 type = "host+target";
306                         else
307                                 type = "host";
308                 } else {
309                         if (dr->attached_sata_dev)
310                                 type = "stp";
311                         else
312                                 type = "ssp";
313                 }
314                 break;
315         case SAS_EDGE_EXPANDER_DEVICE:
316         case SAS_FANOUT_EXPANDER_DEVICE:
317                 type = "smp";
318                 break;
319         default:
320                 type = "unknown";
321         }
322
323         /* this routine is polled by libata error recovery so filter
324          * unimportant messages
325          */
326         if (new_phy || phy->attached_dev_type != dev_type ||
327             phy->linkrate != linkrate ||
328             SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
329                 /* pass */;
330         else
331                 return;
332
333         /* if the attached device type changed and ata_eh is active,
334          * make sure we run revalidation when eh completes (see:
335          * sas_enable_revalidation)
336          */
337         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
338                 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
339
340         pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
341                  test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
342                  SAS_ADDR(dev->sas_addr), phy->phy_id,
343                  sas_route_char(dev, phy), phy->linkrate,
344                  SAS_ADDR(phy->attached_sas_addr), type);
345 }
346
347 /* check if we have an existing attached ata device on this expander phy */
348 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
349 {
350         struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
351         struct domain_device *dev;
352         struct sas_rphy *rphy;
353
354         if (!ex_phy->port)
355                 return NULL;
356
357         rphy = ex_phy->port->rphy;
358         if (!rphy)
359                 return NULL;
360
361         dev = sas_find_dev_by_rphy(rphy);
362
363         if (dev && dev_is_sata(dev))
364                 return dev;
365
366         return NULL;
367 }
368
369 #define DISCOVER_REQ_SIZE  16
370 #define DISCOVER_RESP_SIZE 56
371
372 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
373                                       u8 *disc_resp, int single)
374 {
375         struct discover_resp *dr;
376         int res;
377
378         disc_req[9] = single;
379
380         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
381                                disc_resp, DISCOVER_RESP_SIZE);
382         if (res)
383                 return res;
384         dr = &((struct smp_resp *)disc_resp)->disc;
385         if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
386                 pr_notice("Found loopback topology, just ignore it!\n");
387                 return 0;
388         }
389         sas_set_ex_phy(dev, single, disc_resp);
390         return 0;
391 }
392
393 int sas_ex_phy_discover(struct domain_device *dev, int single)
394 {
395         struct expander_device *ex = &dev->ex_dev;
396         int  res = 0;
397         u8   *disc_req;
398         u8   *disc_resp;
399
400         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
401         if (!disc_req)
402                 return -ENOMEM;
403
404         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
405         if (!disc_resp) {
406                 kfree(disc_req);
407                 return -ENOMEM;
408         }
409
410         disc_req[1] = SMP_DISCOVER;
411
412         if (0 <= single && single < ex->num_phys) {
413                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
414         } else {
415                 int i;
416
417                 for (i = 0; i < ex->num_phys; i++) {
418                         res = sas_ex_phy_discover_helper(dev, disc_req,
419                                                          disc_resp, i);
420                         if (res)
421                                 goto out_err;
422                 }
423         }
424 out_err:
425         kfree(disc_resp);
426         kfree(disc_req);
427         return res;
428 }
429
430 static int sas_expander_discover(struct domain_device *dev)
431 {
432         struct expander_device *ex = &dev->ex_dev;
433         int res;
434
435         ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
436         if (!ex->ex_phy)
437                 return -ENOMEM;
438
439         res = sas_ex_phy_discover(dev, -1);
440         if (res)
441                 goto out_err;
442
443         return 0;
444  out_err:
445         kfree(ex->ex_phy);
446         ex->ex_phy = NULL;
447         return res;
448 }
449
450 #define MAX_EXPANDER_PHYS 128
451
452 static void ex_assign_report_general(struct domain_device *dev,
453                                             struct smp_resp *resp)
454 {
455         struct report_general_resp *rg = &resp->rg;
456
457         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
458         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
459         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
460         dev->ex_dev.t2t_supp = rg->t2t_supp;
461         dev->ex_dev.conf_route_table = rg->conf_route_table;
462         dev->ex_dev.configuring = rg->configuring;
463         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
464 }
465
466 #define RG_REQ_SIZE   8
467 #define RG_RESP_SIZE 32
468
469 static int sas_ex_general(struct domain_device *dev)
470 {
471         u8 *rg_req;
472         struct smp_resp *rg_resp;
473         int res;
474         int i;
475
476         rg_req = alloc_smp_req(RG_REQ_SIZE);
477         if (!rg_req)
478                 return -ENOMEM;
479
480         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
481         if (!rg_resp) {
482                 kfree(rg_req);
483                 return -ENOMEM;
484         }
485
486         rg_req[1] = SMP_REPORT_GENERAL;
487
488         for (i = 0; i < 5; i++) {
489                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
490                                        RG_RESP_SIZE);
491
492                 if (res) {
493                         pr_notice("RG to ex %016llx failed:0x%x\n",
494                                   SAS_ADDR(dev->sas_addr), res);
495                         goto out;
496                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
497                         pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
498                                  SAS_ADDR(dev->sas_addr), rg_resp->result);
499                         res = rg_resp->result;
500                         goto out;
501                 }
502
503                 ex_assign_report_general(dev, rg_resp);
504
505                 if (dev->ex_dev.configuring) {
506                         pr_debug("RG: ex %016llx self-configuring...\n",
507                                  SAS_ADDR(dev->sas_addr));
508                         schedule_timeout_interruptible(5*HZ);
509                 } else
510                         break;
511         }
512 out:
513         kfree(rg_req);
514         kfree(rg_resp);
515         return res;
516 }
517
518 static void ex_assign_manuf_info(struct domain_device *dev, void
519                                         *_mi_resp)
520 {
521         u8 *mi_resp = _mi_resp;
522         struct sas_rphy *rphy = dev->rphy;
523         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
524
525         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
526         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
527         memcpy(edev->product_rev, mi_resp + 36,
528                SAS_EXPANDER_PRODUCT_REV_LEN);
529
530         if (mi_resp[8] & 1) {
531                 memcpy(edev->component_vendor_id, mi_resp + 40,
532                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
533                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
534                 edev->component_revision_id = mi_resp[50];
535         }
536 }
537
538 #define MI_REQ_SIZE   8
539 #define MI_RESP_SIZE 64
540
541 static int sas_ex_manuf_info(struct domain_device *dev)
542 {
543         u8 *mi_req;
544         u8 *mi_resp;
545         int res;
546
547         mi_req = alloc_smp_req(MI_REQ_SIZE);
548         if (!mi_req)
549                 return -ENOMEM;
550
551         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
552         if (!mi_resp) {
553                 kfree(mi_req);
554                 return -ENOMEM;
555         }
556
557         mi_req[1] = SMP_REPORT_MANUF_INFO;
558
559         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
560         if (res) {
561                 pr_notice("MI: ex %016llx failed:0x%x\n",
562                           SAS_ADDR(dev->sas_addr), res);
563                 goto out;
564         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
565                 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
566                          SAS_ADDR(dev->sas_addr), mi_resp[2]);
567                 goto out;
568         }
569
570         ex_assign_manuf_info(dev, mi_resp);
571 out:
572         kfree(mi_req);
573         kfree(mi_resp);
574         return res;
575 }
576
577 #define PC_REQ_SIZE  44
578 #define PC_RESP_SIZE 8
579
580 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
581                         enum phy_func phy_func,
582                         struct sas_phy_linkrates *rates)
583 {
584         u8 *pc_req;
585         u8 *pc_resp;
586         int res;
587
588         pc_req = alloc_smp_req(PC_REQ_SIZE);
589         if (!pc_req)
590                 return -ENOMEM;
591
592         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
593         if (!pc_resp) {
594                 kfree(pc_req);
595                 return -ENOMEM;
596         }
597
598         pc_req[1] = SMP_PHY_CONTROL;
599         pc_req[9] = phy_id;
600         pc_req[10] = phy_func;
601         if (rates) {
602                 pc_req[32] = rates->minimum_linkrate << 4;
603                 pc_req[33] = rates->maximum_linkrate << 4;
604         }
605
606         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
607         if (res) {
608                 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
609                        SAS_ADDR(dev->sas_addr), phy_id, res);
610         } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
611                 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
612                        SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
613                 res = pc_resp[2];
614         }
615         kfree(pc_resp);
616         kfree(pc_req);
617         return res;
618 }
619
620 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
621 {
622         struct expander_device *ex = &dev->ex_dev;
623         struct ex_phy *phy = &ex->ex_phy[phy_id];
624
625         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
626         phy->linkrate = SAS_PHY_DISABLED;
627 }
628
629 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
630 {
631         struct expander_device *ex = &dev->ex_dev;
632         int i;
633
634         for (i = 0; i < ex->num_phys; i++) {
635                 struct ex_phy *phy = &ex->ex_phy[i];
636
637                 if (phy->phy_state == PHY_VACANT ||
638                     phy->phy_state == PHY_NOT_PRESENT)
639                         continue;
640
641                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
642                         sas_ex_disable_phy(dev, i);
643         }
644 }
645
646 static int sas_dev_present_in_domain(struct asd_sas_port *port,
647                                             u8 *sas_addr)
648 {
649         struct domain_device *dev;
650
651         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
652                 return 1;
653         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
654                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
655                         return 1;
656         }
657         return 0;
658 }
659
660 #define RPEL_REQ_SIZE   16
661 #define RPEL_RESP_SIZE  32
662 int sas_smp_get_phy_events(struct sas_phy *phy)
663 {
664         int res;
665         u8 *req;
666         u8 *resp;
667         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
668         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
669
670         req = alloc_smp_req(RPEL_REQ_SIZE);
671         if (!req)
672                 return -ENOMEM;
673
674         resp = alloc_smp_resp(RPEL_RESP_SIZE);
675         if (!resp) {
676                 kfree(req);
677                 return -ENOMEM;
678         }
679
680         req[1] = SMP_REPORT_PHY_ERR_LOG;
681         req[9] = phy->number;
682
683         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
684                                resp, RPEL_RESP_SIZE);
685
686         if (res)
687                 goto out;
688
689         phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
690         phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
691         phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
692         phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
693
694  out:
695         kfree(req);
696         kfree(resp);
697         return res;
698
699 }
700
701 #ifdef CONFIG_SCSI_SAS_ATA
702
703 #define RPS_REQ_SIZE  16
704 #define RPS_RESP_SIZE 60
705
706 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
707                             struct smp_resp *rps_resp)
708 {
709         int res;
710         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
711         u8 *resp = (u8 *)rps_resp;
712
713         if (!rps_req)
714                 return -ENOMEM;
715
716         rps_req[1] = SMP_REPORT_PHY_SATA;
717         rps_req[9] = phy_id;
718
719         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
720                                rps_resp, RPS_RESP_SIZE);
721
722         /* 0x34 is the FIS type for the D2H fis.  There's a potential
723          * standards cockup here.  sas-2 explicitly specifies the FIS
724          * should be encoded so that FIS type is in resp[24].
725          * However, some expanders endian reverse this.  Undo the
726          * reversal here */
727         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
728                 int i;
729
730                 for (i = 0; i < 5; i++) {
731                         int j = 24 + (i*4);
732                         u8 a, b;
733                         a = resp[j + 0];
734                         b = resp[j + 1];
735                         resp[j + 0] = resp[j + 3];
736                         resp[j + 1] = resp[j + 2];
737                         resp[j + 2] = b;
738                         resp[j + 3] = a;
739                 }
740         }
741
742         kfree(rps_req);
743         return res;
744 }
745 #endif
746
747 static void sas_ex_get_linkrate(struct domain_device *parent,
748                                        struct domain_device *child,
749                                        struct ex_phy *parent_phy)
750 {
751         struct expander_device *parent_ex = &parent->ex_dev;
752         struct sas_port *port;
753         int i;
754
755         child->pathways = 0;
756
757         port = parent_phy->port;
758
759         for (i = 0; i < parent_ex->num_phys; i++) {
760                 struct ex_phy *phy = &parent_ex->ex_phy[i];
761
762                 if (phy->phy_state == PHY_VACANT ||
763                     phy->phy_state == PHY_NOT_PRESENT)
764                         continue;
765
766                 if (SAS_ADDR(phy->attached_sas_addr) ==
767                     SAS_ADDR(child->sas_addr)) {
768
769                         child->min_linkrate = min(parent->min_linkrate,
770                                                   phy->linkrate);
771                         child->max_linkrate = max(parent->max_linkrate,
772                                                   phy->linkrate);
773                         child->pathways++;
774                         sas_port_add_phy(port, phy->phy);
775                 }
776         }
777         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
778         child->pathways = min(child->pathways, parent->pathways);
779 }
780
781 static struct domain_device *sas_ex_discover_end_dev(
782         struct domain_device *parent, int phy_id)
783 {
784         struct expander_device *parent_ex = &parent->ex_dev;
785         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
786         struct domain_device *child = NULL;
787         struct sas_rphy *rphy;
788         int res;
789
790         if (phy->attached_sata_host || phy->attached_sata_ps)
791                 return NULL;
792
793         child = sas_alloc_device();
794         if (!child)
795                 return NULL;
796
797         kref_get(&parent->kref);
798         child->parent = parent;
799         child->port   = parent->port;
800         child->iproto = phy->attached_iproto;
801         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
802         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
803         if (!phy->port) {
804                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
805                 if (unlikely(!phy->port))
806                         goto out_err;
807                 if (unlikely(sas_port_add(phy->port) != 0)) {
808                         sas_port_free(phy->port);
809                         goto out_err;
810                 }
811         }
812         sas_ex_get_linkrate(parent, child, phy);
813         sas_device_set_phy(child, phy->port);
814
815 #ifdef CONFIG_SCSI_SAS_ATA
816         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
817                 if (child->linkrate > parent->min_linkrate) {
818                         struct sas_phy *cphy = child->phy;
819                         enum sas_linkrate min_prate = cphy->minimum_linkrate,
820                                 parent_min_lrate = parent->min_linkrate,
821                                 min_linkrate = (min_prate > parent_min_lrate) ?
822                                                parent_min_lrate : 0;
823                         struct sas_phy_linkrates rates = {
824                                 .maximum_linkrate = parent->min_linkrate,
825                                 .minimum_linkrate = min_linkrate,
826                         };
827                         int ret;
828
829                         pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
830                                    SAS_ADDR(child->sas_addr), phy_id);
831                         ret = sas_smp_phy_control(parent, phy_id,
832                                                   PHY_FUNC_LINK_RESET, &rates);
833                         if (ret) {
834                                 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
835                                        SAS_ADDR(child->sas_addr), phy_id, ret);
836                                 goto out_free;
837                         }
838                         pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
839                                   SAS_ADDR(child->sas_addr), phy_id);
840                         child->linkrate = child->min_linkrate;
841                 }
842                 res = sas_get_ata_info(child, phy);
843                 if (res)
844                         goto out_free;
845
846                 sas_init_dev(child);
847                 res = sas_ata_init(child);
848                 if (res)
849                         goto out_free;
850                 rphy = sas_end_device_alloc(phy->port);
851                 if (!rphy)
852                         goto out_free;
853                 rphy->identify.phy_identifier = phy_id;
854
855                 child->rphy = rphy;
856                 get_device(&rphy->dev);
857
858                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
859
860                 res = sas_discover_sata(child);
861                 if (res) {
862                         pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
863                                   SAS_ADDR(child->sas_addr),
864                                   SAS_ADDR(parent->sas_addr), phy_id, res);
865                         goto out_list_del;
866                 }
867         } else
868 #endif
869           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
870                 child->dev_type = SAS_END_DEVICE;
871                 rphy = sas_end_device_alloc(phy->port);
872                 /* FIXME: error handling */
873                 if (unlikely(!rphy))
874                         goto out_free;
875                 child->tproto = phy->attached_tproto;
876                 sas_init_dev(child);
877
878                 child->rphy = rphy;
879                 get_device(&rphy->dev);
880                 rphy->identify.phy_identifier = phy_id;
881                 sas_fill_in_rphy(child, rphy);
882
883                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
884
885                 res = sas_discover_end_dev(child);
886                 if (res) {
887                         pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n",
888                                   SAS_ADDR(child->sas_addr),
889                                   SAS_ADDR(parent->sas_addr), phy_id, res);
890                         goto out_list_del;
891                 }
892         } else {
893                 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
894                           phy->attached_tproto, SAS_ADDR(parent->sas_addr),
895                           phy_id);
896                 goto out_free;
897         }
898
899         list_add_tail(&child->siblings, &parent_ex->children);
900         return child;
901
902  out_list_del:
903         sas_rphy_free(child->rphy);
904         list_del(&child->disco_list_node);
905         spin_lock_irq(&parent->port->dev_list_lock);
906         list_del(&child->dev_list_node);
907         spin_unlock_irq(&parent->port->dev_list_lock);
908  out_free:
909         sas_port_delete(phy->port);
910  out_err:
911         phy->port = NULL;
912         sas_put_device(child);
913         return NULL;
914 }
915
916 /* See if this phy is part of a wide port */
917 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
918 {
919         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
920         int i;
921
922         for (i = 0; i < parent->ex_dev.num_phys; i++) {
923                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
924
925                 if (ephy == phy)
926                         continue;
927
928                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
929                             SAS_ADDR_SIZE) && ephy->port) {
930                         sas_port_add_phy(ephy->port, phy->phy);
931                         phy->port = ephy->port;
932                         phy->phy_state = PHY_DEVICE_DISCOVERED;
933                         return true;
934                 }
935         }
936
937         return false;
938 }
939
940 static struct domain_device *sas_ex_discover_expander(
941         struct domain_device *parent, int phy_id)
942 {
943         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
944         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
945         struct domain_device *child = NULL;
946         struct sas_rphy *rphy;
947         struct sas_expander_device *edev;
948         struct asd_sas_port *port;
949         int res;
950
951         if (phy->routing_attr == DIRECT_ROUTING) {
952                 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
953                         SAS_ADDR(parent->sas_addr), phy_id,
954                         SAS_ADDR(phy->attached_sas_addr),
955                         phy->attached_phy_id);
956                 return NULL;
957         }
958         child = sas_alloc_device();
959         if (!child)
960                 return NULL;
961
962         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
963         /* FIXME: better error handling */
964         BUG_ON(sas_port_add(phy->port) != 0);
965
966
967         switch (phy->attached_dev_type) {
968         case SAS_EDGE_EXPANDER_DEVICE:
969                 rphy = sas_expander_alloc(phy->port,
970                                           SAS_EDGE_EXPANDER_DEVICE);
971                 break;
972         case SAS_FANOUT_EXPANDER_DEVICE:
973                 rphy = sas_expander_alloc(phy->port,
974                                           SAS_FANOUT_EXPANDER_DEVICE);
975                 break;
976         default:
977                 rphy = NULL;    /* shut gcc up */
978                 BUG();
979         }
980         port = parent->port;
981         child->rphy = rphy;
982         get_device(&rphy->dev);
983         edev = rphy_to_expander_device(rphy);
984         child->dev_type = phy->attached_dev_type;
985         kref_get(&parent->kref);
986         child->parent = parent;
987         child->port = port;
988         child->iproto = phy->attached_iproto;
989         child->tproto = phy->attached_tproto;
990         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
991         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
992         sas_ex_get_linkrate(parent, child, phy);
993         edev->level = parent_ex->level + 1;
994         parent->port->disc.max_level = max(parent->port->disc.max_level,
995                                            edev->level);
996         sas_init_dev(child);
997         sas_fill_in_rphy(child, rphy);
998         sas_rphy_add(rphy);
999
1000         spin_lock_irq(&parent->port->dev_list_lock);
1001         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
1002         spin_unlock_irq(&parent->port->dev_list_lock);
1003
1004         res = sas_discover_expander(child);
1005         if (res) {
1006                 sas_rphy_delete(rphy);
1007                 spin_lock_irq(&parent->port->dev_list_lock);
1008                 list_del(&child->dev_list_node);
1009                 spin_unlock_irq(&parent->port->dev_list_lock);
1010                 sas_put_device(child);
1011                 sas_port_delete(phy->port);
1012                 phy->port = NULL;
1013                 return NULL;
1014         }
1015         list_add_tail(&child->siblings, &parent->ex_dev.children);
1016         return child;
1017 }
1018
1019 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1020 {
1021         struct expander_device *ex = &dev->ex_dev;
1022         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1023         struct domain_device *child = NULL;
1024         int res = 0;
1025
1026         /* Phy state */
1027         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1028                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1029                         res = sas_ex_phy_discover(dev, phy_id);
1030                 if (res)
1031                         return res;
1032         }
1033
1034         /* Parent and domain coherency */
1035         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1036                              SAS_ADDR(dev->port->sas_addr))) {
1037                 sas_add_parent_port(dev, phy_id);
1038                 return 0;
1039         }
1040         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1041                             SAS_ADDR(dev->parent->sas_addr))) {
1042                 sas_add_parent_port(dev, phy_id);
1043                 if (ex_phy->routing_attr == TABLE_ROUTING)
1044                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1045                 return 0;
1046         }
1047
1048         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1049                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1050
1051         if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1052                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1053                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1054                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
1055                 }
1056                 return 0;
1057         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1058                 return 0;
1059
1060         if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1061             ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1062             ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1063             ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1064                 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1065                         ex_phy->attached_dev_type,
1066                         SAS_ADDR(dev->sas_addr),
1067                         phy_id);
1068                 return 0;
1069         }
1070
1071         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1072         if (res) {
1073                 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1074                           SAS_ADDR(ex_phy->attached_sas_addr), res);
1075                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1076                 return res;
1077         }
1078
1079         if (sas_ex_join_wide_port(dev, phy_id)) {
1080                 pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1081                          phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1082                 return res;
1083         }
1084
1085         switch (ex_phy->attached_dev_type) {
1086         case SAS_END_DEVICE:
1087         case SAS_SATA_PENDING:
1088                 child = sas_ex_discover_end_dev(dev, phy_id);
1089                 break;
1090         case SAS_FANOUT_EXPANDER_DEVICE:
1091                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1092                         pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1093                                  SAS_ADDR(ex_phy->attached_sas_addr),
1094                                  ex_phy->attached_phy_id,
1095                                  SAS_ADDR(dev->sas_addr),
1096                                  phy_id);
1097                         sas_ex_disable_phy(dev, phy_id);
1098                         return res;
1099                 } else
1100                         memcpy(dev->port->disc.fanout_sas_addr,
1101                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1102                 fallthrough;
1103         case SAS_EDGE_EXPANDER_DEVICE:
1104                 child = sas_ex_discover_expander(dev, phy_id);
1105                 break;
1106         default:
1107                 break;
1108         }
1109
1110         if (!child)
1111                 pr_notice("ex %016llx phy%02d failed to discover\n",
1112                           SAS_ADDR(dev->sas_addr), phy_id);
1113         return res;
1114 }
1115
1116 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1117 {
1118         struct expander_device *ex = &dev->ex_dev;
1119         int i;
1120
1121         for (i = 0; i < ex->num_phys; i++) {
1122                 struct ex_phy *phy = &ex->ex_phy[i];
1123
1124                 if (phy->phy_state == PHY_VACANT ||
1125                     phy->phy_state == PHY_NOT_PRESENT)
1126                         continue;
1127
1128                 if (dev_is_expander(phy->attached_dev_type) &&
1129                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1130
1131                         memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1132
1133                         return 1;
1134                 }
1135         }
1136         return 0;
1137 }
1138
1139 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1140 {
1141         struct expander_device *ex = &dev->ex_dev;
1142         struct domain_device *child;
1143         u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1144
1145         list_for_each_entry(child, &ex->children, siblings) {
1146                 if (!dev_is_expander(child->dev_type))
1147                         continue;
1148                 if (sub_addr[0] == 0) {
1149                         sas_find_sub_addr(child, sub_addr);
1150                         continue;
1151                 } else {
1152                         u8 s2[SAS_ADDR_SIZE];
1153
1154                         if (sas_find_sub_addr(child, s2) &&
1155                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1156
1157                                 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1158                                           SAS_ADDR(dev->sas_addr),
1159                                           SAS_ADDR(child->sas_addr),
1160                                           SAS_ADDR(s2),
1161                                           SAS_ADDR(sub_addr));
1162
1163                                 sas_ex_disable_port(child, s2);
1164                         }
1165                 }
1166         }
1167         return 0;
1168 }
1169 /**
1170  * sas_ex_discover_devices - discover devices attached to this expander
1171  * @dev: pointer to the expander domain device
1172  * @single: if you want to do a single phy, else set to -1;
1173  *
1174  * Configure this expander for use with its devices and register the
1175  * devices of this expander.
1176  */
1177 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1178 {
1179         struct expander_device *ex = &dev->ex_dev;
1180         int i = 0, end = ex->num_phys;
1181         int res = 0;
1182
1183         if (0 <= single && single < end) {
1184                 i = single;
1185                 end = i+1;
1186         }
1187
1188         for ( ; i < end; i++) {
1189                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1190
1191                 if (ex_phy->phy_state == PHY_VACANT ||
1192                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1193                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1194                         continue;
1195
1196                 switch (ex_phy->linkrate) {
1197                 case SAS_PHY_DISABLED:
1198                 case SAS_PHY_RESET_PROBLEM:
1199                 case SAS_SATA_PORT_SELECTOR:
1200                         continue;
1201                 default:
1202                         res = sas_ex_discover_dev(dev, i);
1203                         if (res)
1204                                 break;
1205                         continue;
1206                 }
1207         }
1208
1209         if (!res)
1210                 sas_check_level_subtractive_boundary(dev);
1211
1212         return res;
1213 }
1214
1215 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1216 {
1217         struct expander_device *ex = &dev->ex_dev;
1218         int i;
1219         u8  *sub_sas_addr = NULL;
1220
1221         if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1222                 return 0;
1223
1224         for (i = 0; i < ex->num_phys; i++) {
1225                 struct ex_phy *phy = &ex->ex_phy[i];
1226
1227                 if (phy->phy_state == PHY_VACANT ||
1228                     phy->phy_state == PHY_NOT_PRESENT)
1229                         continue;
1230
1231                 if (dev_is_expander(phy->attached_dev_type) &&
1232                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1233
1234                         if (!sub_sas_addr)
1235                                 sub_sas_addr = &phy->attached_sas_addr[0];
1236                         else if (SAS_ADDR(sub_sas_addr) !=
1237                                  SAS_ADDR(phy->attached_sas_addr)) {
1238
1239                                 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1240                                           SAS_ADDR(dev->sas_addr), i,
1241                                           SAS_ADDR(phy->attached_sas_addr),
1242                                           SAS_ADDR(sub_sas_addr));
1243                                 sas_ex_disable_phy(dev, i);
1244                         }
1245                 }
1246         }
1247         return 0;
1248 }
1249
1250 static void sas_print_parent_topology_bug(struct domain_device *child,
1251                                                  struct ex_phy *parent_phy,
1252                                                  struct ex_phy *child_phy)
1253 {
1254         static const char *ex_type[] = {
1255                 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1256                 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1257         };
1258         struct domain_device *parent = child->parent;
1259
1260         pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1261                   ex_type[parent->dev_type],
1262                   SAS_ADDR(parent->sas_addr),
1263                   parent_phy->phy_id,
1264
1265                   ex_type[child->dev_type],
1266                   SAS_ADDR(child->sas_addr),
1267                   child_phy->phy_id,
1268
1269                   sas_route_char(parent, parent_phy),
1270                   sas_route_char(child, child_phy));
1271 }
1272
1273 static int sas_check_eeds(struct domain_device *child,
1274                                  struct ex_phy *parent_phy,
1275                                  struct ex_phy *child_phy)
1276 {
1277         int res = 0;
1278         struct domain_device *parent = child->parent;
1279
1280         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1281                 res = -ENODEV;
1282                 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1283                         SAS_ADDR(parent->sas_addr),
1284                         parent_phy->phy_id,
1285                         SAS_ADDR(child->sas_addr),
1286                         child_phy->phy_id,
1287                         SAS_ADDR(parent->port->disc.fanout_sas_addr));
1288         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1289                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1290                        SAS_ADDR_SIZE);
1291                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1292                        SAS_ADDR_SIZE);
1293         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1294                     SAS_ADDR(parent->sas_addr)) ||
1295                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1296                     SAS_ADDR(child->sas_addr)))
1297                    &&
1298                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1299                      SAS_ADDR(parent->sas_addr)) ||
1300                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1301                      SAS_ADDR(child->sas_addr))))
1302                 ;
1303         else {
1304                 res = -ENODEV;
1305                 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1306                         SAS_ADDR(parent->sas_addr),
1307                         parent_phy->phy_id,
1308                         SAS_ADDR(child->sas_addr),
1309                         child_phy->phy_id);
1310         }
1311
1312         return res;
1313 }
1314
1315 /* Here we spill over 80 columns.  It is intentional.
1316  */
1317 static int sas_check_parent_topology(struct domain_device *child)
1318 {
1319         struct expander_device *child_ex = &child->ex_dev;
1320         struct expander_device *parent_ex;
1321         int i;
1322         int res = 0;
1323
1324         if (!child->parent)
1325                 return 0;
1326
1327         if (!dev_is_expander(child->parent->dev_type))
1328                 return 0;
1329
1330         parent_ex = &child->parent->ex_dev;
1331
1332         for (i = 0; i < parent_ex->num_phys; i++) {
1333                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1334                 struct ex_phy *child_phy;
1335
1336                 if (parent_phy->phy_state == PHY_VACANT ||
1337                     parent_phy->phy_state == PHY_NOT_PRESENT)
1338                         continue;
1339
1340                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1341                         continue;
1342
1343                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1344
1345                 switch (child->parent->dev_type) {
1346                 case SAS_EDGE_EXPANDER_DEVICE:
1347                         if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1348                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1349                                     child_phy->routing_attr != TABLE_ROUTING) {
1350                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1351                                         res = -ENODEV;
1352                                 }
1353                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1354                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1355                                         res = sas_check_eeds(child, parent_phy, child_phy);
1356                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1357                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1358                                         res = -ENODEV;
1359                                 }
1360                         } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1361                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1362                                     (child_phy->routing_attr == TABLE_ROUTING &&
1363                                      child_ex->t2t_supp && parent_ex->t2t_supp)) {
1364                                         /* All good */;
1365                                 } else {
1366                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1367                                         res = -ENODEV;
1368                                 }
1369                         }
1370                         break;
1371                 case SAS_FANOUT_EXPANDER_DEVICE:
1372                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1373                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1374                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1375                                 res = -ENODEV;
1376                         }
1377                         break;
1378                 default:
1379                         break;
1380                 }
1381         }
1382
1383         return res;
1384 }
1385
1386 #define RRI_REQ_SIZE  16
1387 #define RRI_RESP_SIZE 44
1388
1389 static int sas_configure_present(struct domain_device *dev, int phy_id,
1390                                  u8 *sas_addr, int *index, int *present)
1391 {
1392         int i, res = 0;
1393         struct expander_device *ex = &dev->ex_dev;
1394         struct ex_phy *phy = &ex->ex_phy[phy_id];
1395         u8 *rri_req;
1396         u8 *rri_resp;
1397
1398         *present = 0;
1399         *index = 0;
1400
1401         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1402         if (!rri_req)
1403                 return -ENOMEM;
1404
1405         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1406         if (!rri_resp) {
1407                 kfree(rri_req);
1408                 return -ENOMEM;
1409         }
1410
1411         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1412         rri_req[9] = phy_id;
1413
1414         for (i = 0; i < ex->max_route_indexes ; i++) {
1415                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1416                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1417                                        RRI_RESP_SIZE);
1418                 if (res)
1419                         goto out;
1420                 res = rri_resp[2];
1421                 if (res == SMP_RESP_NO_INDEX) {
1422                         pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1423                                 SAS_ADDR(dev->sas_addr), phy_id, i);
1424                         goto out;
1425                 } else if (res != SMP_RESP_FUNC_ACC) {
1426                         pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1427                                   __func__, SAS_ADDR(dev->sas_addr), phy_id,
1428                                   i, res);
1429                         goto out;
1430                 }
1431                 if (SAS_ADDR(sas_addr) != 0) {
1432                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1433                                 *index = i;
1434                                 if ((rri_resp[12] & 0x80) == 0x80)
1435                                         *present = 0;
1436                                 else
1437                                         *present = 1;
1438                                 goto out;
1439                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1440                                 *index = i;
1441                                 *present = 0;
1442                                 goto out;
1443                         }
1444                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1445                            phy->last_da_index < i) {
1446                         phy->last_da_index = i;
1447                         *index = i;
1448                         *present = 0;
1449                         goto out;
1450                 }
1451         }
1452         res = -1;
1453 out:
1454         kfree(rri_req);
1455         kfree(rri_resp);
1456         return res;
1457 }
1458
1459 #define CRI_REQ_SIZE  44
1460 #define CRI_RESP_SIZE  8
1461
1462 static int sas_configure_set(struct domain_device *dev, int phy_id,
1463                              u8 *sas_addr, int index, int include)
1464 {
1465         int res;
1466         u8 *cri_req;
1467         u8 *cri_resp;
1468
1469         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1470         if (!cri_req)
1471                 return -ENOMEM;
1472
1473         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1474         if (!cri_resp) {
1475                 kfree(cri_req);
1476                 return -ENOMEM;
1477         }
1478
1479         cri_req[1] = SMP_CONF_ROUTE_INFO;
1480         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1481         cri_req[9] = phy_id;
1482         if (SAS_ADDR(sas_addr) == 0 || !include)
1483                 cri_req[12] |= 0x80;
1484         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1485
1486         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1487                                CRI_RESP_SIZE);
1488         if (res)
1489                 goto out;
1490         res = cri_resp[2];
1491         if (res == SMP_RESP_NO_INDEX) {
1492                 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1493                         SAS_ADDR(dev->sas_addr), phy_id, index);
1494         }
1495 out:
1496         kfree(cri_req);
1497         kfree(cri_resp);
1498         return res;
1499 }
1500
1501 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1502                                     u8 *sas_addr, int include)
1503 {
1504         int index;
1505         int present;
1506         int res;
1507
1508         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1509         if (res)
1510                 return res;
1511         if (include ^ present)
1512                 return sas_configure_set(dev, phy_id, sas_addr, index,
1513                                          include);
1514
1515         return res;
1516 }
1517
1518 /**
1519  * sas_configure_parent - configure routing table of parent
1520  * @parent: parent expander
1521  * @child: child expander
1522  * @sas_addr: SAS port identifier of device directly attached to child
1523  * @include: whether or not to include @child in the expander routing table
1524  */
1525 static int sas_configure_parent(struct domain_device *parent,
1526                                 struct domain_device *child,
1527                                 u8 *sas_addr, int include)
1528 {
1529         struct expander_device *ex_parent = &parent->ex_dev;
1530         int res = 0;
1531         int i;
1532
1533         if (parent->parent) {
1534                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1535                                            include);
1536                 if (res)
1537                         return res;
1538         }
1539
1540         if (ex_parent->conf_route_table == 0) {
1541                 pr_debug("ex %016llx has self-configuring routing table\n",
1542                          SAS_ADDR(parent->sas_addr));
1543                 return 0;
1544         }
1545
1546         for (i = 0; i < ex_parent->num_phys; i++) {
1547                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1548
1549                 if ((phy->routing_attr == TABLE_ROUTING) &&
1550                     (SAS_ADDR(phy->attached_sas_addr) ==
1551                      SAS_ADDR(child->sas_addr))) {
1552                         res = sas_configure_phy(parent, i, sas_addr, include);
1553                         if (res)
1554                                 return res;
1555                 }
1556         }
1557
1558         return res;
1559 }
1560
1561 /**
1562  * sas_configure_routing - configure routing
1563  * @dev: expander device
1564  * @sas_addr: port identifier of device directly attached to the expander device
1565  */
1566 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1567 {
1568         if (dev->parent)
1569                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1570         return 0;
1571 }
1572
1573 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1574 {
1575         if (dev->parent)
1576                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1577         return 0;
1578 }
1579
1580 /**
1581  * sas_discover_expander - expander discovery
1582  * @dev: pointer to expander domain device
1583  *
1584  * See comment in sas_discover_sata().
1585  */
1586 static int sas_discover_expander(struct domain_device *dev)
1587 {
1588         int res;
1589
1590         res = sas_notify_lldd_dev_found(dev);
1591         if (res)
1592                 return res;
1593
1594         res = sas_ex_general(dev);
1595         if (res)
1596                 goto out_err;
1597         res = sas_ex_manuf_info(dev);
1598         if (res)
1599                 goto out_err;
1600
1601         res = sas_expander_discover(dev);
1602         if (res) {
1603                 pr_warn("expander %016llx discovery failed(0x%x)\n",
1604                         SAS_ADDR(dev->sas_addr), res);
1605                 goto out_err;
1606         }
1607
1608         sas_check_ex_subtractive_boundary(dev);
1609         res = sas_check_parent_topology(dev);
1610         if (res)
1611                 goto out_err;
1612         return 0;
1613 out_err:
1614         sas_notify_lldd_dev_gone(dev);
1615         return res;
1616 }
1617
1618 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1619 {
1620         int res = 0;
1621         struct domain_device *dev;
1622
1623         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1624                 if (dev_is_expander(dev->dev_type)) {
1625                         struct sas_expander_device *ex =
1626                                 rphy_to_expander_device(dev->rphy);
1627
1628                         if (level == ex->level)
1629                                 res = sas_ex_discover_devices(dev, -1);
1630                         else if (level > 0)
1631                                 res = sas_ex_discover_devices(port->port_dev, -1);
1632
1633                 }
1634         }
1635
1636         return res;
1637 }
1638
1639 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1640 {
1641         int res;
1642         int level;
1643
1644         do {
1645                 level = port->disc.max_level;
1646                 res = sas_ex_level_discovery(port, level);
1647                 mb();
1648         } while (level < port->disc.max_level);
1649
1650         return res;
1651 }
1652
1653 int sas_discover_root_expander(struct domain_device *dev)
1654 {
1655         int res;
1656         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1657
1658         res = sas_rphy_add(dev->rphy);
1659         if (res)
1660                 goto out_err;
1661
1662         ex->level = dev->port->disc.max_level; /* 0 */
1663         res = sas_discover_expander(dev);
1664         if (res)
1665                 goto out_err2;
1666
1667         sas_ex_bfs_disc(dev->port);
1668
1669         return res;
1670
1671 out_err2:
1672         sas_rphy_remove(dev->rphy);
1673 out_err:
1674         return res;
1675 }
1676
1677 /* ---------- Domain revalidation ---------- */
1678
1679 static int sas_get_phy_discover(struct domain_device *dev,
1680                                 int phy_id, struct smp_resp *disc_resp)
1681 {
1682         int res;
1683         u8 *disc_req;
1684
1685         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1686         if (!disc_req)
1687                 return -ENOMEM;
1688
1689         disc_req[1] = SMP_DISCOVER;
1690         disc_req[9] = phy_id;
1691
1692         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1693                                disc_resp, DISCOVER_RESP_SIZE);
1694         if (res)
1695                 goto out;
1696         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1697                 res = disc_resp->result;
1698                 goto out;
1699         }
1700 out:
1701         kfree(disc_req);
1702         return res;
1703 }
1704
1705 static int sas_get_phy_change_count(struct domain_device *dev,
1706                                     int phy_id, int *pcc)
1707 {
1708         int res;
1709         struct smp_resp *disc_resp;
1710
1711         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1712         if (!disc_resp)
1713                 return -ENOMEM;
1714
1715         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1716         if (!res)
1717                 *pcc = disc_resp->disc.change_count;
1718
1719         kfree(disc_resp);
1720         return res;
1721 }
1722
1723 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1724                                     u8 *sas_addr, enum sas_device_type *type)
1725 {
1726         int res;
1727         struct smp_resp *disc_resp;
1728         struct discover_resp *dr;
1729
1730         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1731         if (!disc_resp)
1732                 return -ENOMEM;
1733         dr = &disc_resp->disc;
1734
1735         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1736         if (res == 0) {
1737                 memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1738                        SAS_ADDR_SIZE);
1739                 *type = to_dev_type(dr);
1740                 if (*type == 0)
1741                         memset(sas_addr, 0, SAS_ADDR_SIZE);
1742         }
1743         kfree(disc_resp);
1744         return res;
1745 }
1746
1747 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1748                               int from_phy, bool update)
1749 {
1750         struct expander_device *ex = &dev->ex_dev;
1751         int res = 0;
1752         int i;
1753
1754         for (i = from_phy; i < ex->num_phys; i++) {
1755                 int phy_change_count = 0;
1756
1757                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1758                 switch (res) {
1759                 case SMP_RESP_PHY_VACANT:
1760                 case SMP_RESP_NO_PHY:
1761                         continue;
1762                 case SMP_RESP_FUNC_ACC:
1763                         break;
1764                 default:
1765                         return res;
1766                 }
1767
1768                 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1769                         if (update)
1770                                 ex->ex_phy[i].phy_change_count =
1771                                         phy_change_count;
1772                         *phy_id = i;
1773                         return 0;
1774                 }
1775         }
1776         return 0;
1777 }
1778
1779 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1780 {
1781         int res;
1782         u8  *rg_req;
1783         struct smp_resp  *rg_resp;
1784
1785         rg_req = alloc_smp_req(RG_REQ_SIZE);
1786         if (!rg_req)
1787                 return -ENOMEM;
1788
1789         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1790         if (!rg_resp) {
1791                 kfree(rg_req);
1792                 return -ENOMEM;
1793         }
1794
1795         rg_req[1] = SMP_REPORT_GENERAL;
1796
1797         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1798                                RG_RESP_SIZE);
1799         if (res)
1800                 goto out;
1801         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1802                 res = rg_resp->result;
1803                 goto out;
1804         }
1805
1806         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1807 out:
1808         kfree(rg_resp);
1809         kfree(rg_req);
1810         return res;
1811 }
1812 /**
1813  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1814  * @dev:domain device to be detect.
1815  * @src_dev: the device which originated BROADCAST(CHANGE).
1816  *
1817  * Add self-configuration expander support. Suppose two expander cascading,
1818  * when the first level expander is self-configuring, hotplug the disks in
1819  * second level expander, BROADCAST(CHANGE) will not only be originated
1820  * in the second level expander, but also be originated in the first level
1821  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1822  * expander changed count in two level expanders will all increment at least
1823  * once, but the phy which chang count has changed is the source device which
1824  * we concerned.
1825  */
1826
1827 static int sas_find_bcast_dev(struct domain_device *dev,
1828                               struct domain_device **src_dev)
1829 {
1830         struct expander_device *ex = &dev->ex_dev;
1831         int ex_change_count = -1;
1832         int phy_id = -1;
1833         int res;
1834         struct domain_device *ch;
1835
1836         res = sas_get_ex_change_count(dev, &ex_change_count);
1837         if (res)
1838                 goto out;
1839         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1840                 /* Just detect if this expander phys phy change count changed,
1841                 * in order to determine if this expander originate BROADCAST,
1842                 * and do not update phy change count field in our structure.
1843                 */
1844                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1845                 if (phy_id != -1) {
1846                         *src_dev = dev;
1847                         ex->ex_change_count = ex_change_count;
1848                         pr_info("ex %016llx phy%02d change count has changed\n",
1849                                 SAS_ADDR(dev->sas_addr), phy_id);
1850                         return res;
1851                 } else
1852                         pr_info("ex %016llx phys DID NOT change\n",
1853                                 SAS_ADDR(dev->sas_addr));
1854         }
1855         list_for_each_entry(ch, &ex->children, siblings) {
1856                 if (dev_is_expander(ch->dev_type)) {
1857                         res = sas_find_bcast_dev(ch, src_dev);
1858                         if (*src_dev)
1859                                 return res;
1860                 }
1861         }
1862 out:
1863         return res;
1864 }
1865
1866 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1867 {
1868         struct expander_device *ex = &dev->ex_dev;
1869         struct domain_device *child, *n;
1870
1871         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1872                 set_bit(SAS_DEV_GONE, &child->state);
1873                 if (dev_is_expander(child->dev_type))
1874                         sas_unregister_ex_tree(port, child);
1875                 else
1876                         sas_unregister_dev(port, child);
1877         }
1878         sas_unregister_dev(port, dev);
1879 }
1880
1881 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1882                                          int phy_id, bool last)
1883 {
1884         struct expander_device *ex_dev = &parent->ex_dev;
1885         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1886         struct domain_device *child, *n, *found = NULL;
1887         if (last) {
1888                 list_for_each_entry_safe(child, n,
1889                         &ex_dev->children, siblings) {
1890                         if (SAS_ADDR(child->sas_addr) ==
1891                             SAS_ADDR(phy->attached_sas_addr)) {
1892                                 set_bit(SAS_DEV_GONE, &child->state);
1893                                 if (dev_is_expander(child->dev_type))
1894                                         sas_unregister_ex_tree(parent->port, child);
1895                                 else
1896                                         sas_unregister_dev(parent->port, child);
1897                                 found = child;
1898                                 break;
1899                         }
1900                 }
1901                 sas_disable_routing(parent, phy->attached_sas_addr);
1902         }
1903         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1904         if (phy->port) {
1905                 sas_port_delete_phy(phy->port, phy->phy);
1906                 sas_device_set_phy(found, phy->port);
1907                 if (phy->port->num_phys == 0)
1908                         list_add_tail(&phy->port->del_list,
1909                                 &parent->port->sas_port_del_list);
1910                 phy->port = NULL;
1911         }
1912 }
1913
1914 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1915                                           const int level)
1916 {
1917         struct expander_device *ex_root = &root->ex_dev;
1918         struct domain_device *child;
1919         int res = 0;
1920
1921         list_for_each_entry(child, &ex_root->children, siblings) {
1922                 if (dev_is_expander(child->dev_type)) {
1923                         struct sas_expander_device *ex =
1924                                 rphy_to_expander_device(child->rphy);
1925
1926                         if (level > ex->level)
1927                                 res = sas_discover_bfs_by_root_level(child,
1928                                                                      level);
1929                         else if (level == ex->level)
1930                                 res = sas_ex_discover_devices(child, -1);
1931                 }
1932         }
1933         return res;
1934 }
1935
1936 static int sas_discover_bfs_by_root(struct domain_device *dev)
1937 {
1938         int res;
1939         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1940         int level = ex->level+1;
1941
1942         res = sas_ex_discover_devices(dev, -1);
1943         if (res)
1944                 goto out;
1945         do {
1946                 res = sas_discover_bfs_by_root_level(dev, level);
1947                 mb();
1948                 level += 1;
1949         } while (level <= dev->port->disc.max_level);
1950 out:
1951         return res;
1952 }
1953
1954 static int sas_discover_new(struct domain_device *dev, int phy_id)
1955 {
1956         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1957         struct domain_device *child;
1958         int res;
1959
1960         pr_debug("ex %016llx phy%02d new device attached\n",
1961                  SAS_ADDR(dev->sas_addr), phy_id);
1962         res = sas_ex_phy_discover(dev, phy_id);
1963         if (res)
1964                 return res;
1965
1966         if (sas_ex_join_wide_port(dev, phy_id))
1967                 return 0;
1968
1969         res = sas_ex_discover_devices(dev, phy_id);
1970         if (res)
1971                 return res;
1972         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1973                 if (SAS_ADDR(child->sas_addr) ==
1974                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1975                         if (dev_is_expander(child->dev_type))
1976                                 res = sas_discover_bfs_by_root(child);
1977                         break;
1978                 }
1979         }
1980         return res;
1981 }
1982
1983 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1984 {
1985         if (old == new)
1986                 return true;
1987
1988         /* treat device directed resets as flutter, if we went
1989          * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1990          */
1991         if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1992             (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1993                 return true;
1994
1995         return false;
1996 }
1997
1998 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1999                               bool last, int sibling)
2000 {
2001         struct expander_device *ex = &dev->ex_dev;
2002         struct ex_phy *phy = &ex->ex_phy[phy_id];
2003         enum sas_device_type type = SAS_PHY_UNUSED;
2004         u8 sas_addr[SAS_ADDR_SIZE];
2005         char msg[80] = "";
2006         int res;
2007
2008         if (!last)
2009                 sprintf(msg, ", part of a wide port with phy%02d", sibling);
2010
2011         pr_debug("ex %016llx rediscovering phy%02d%s\n",
2012                  SAS_ADDR(dev->sas_addr), phy_id, msg);
2013
2014         memset(sas_addr, 0, SAS_ADDR_SIZE);
2015         res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2016         switch (res) {
2017         case SMP_RESP_NO_PHY:
2018                 phy->phy_state = PHY_NOT_PRESENT;
2019                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2020                 return res;
2021         case SMP_RESP_PHY_VACANT:
2022                 phy->phy_state = PHY_VACANT;
2023                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2024                 return res;
2025         case SMP_RESP_FUNC_ACC:
2026                 break;
2027         case -ECOMM:
2028                 break;
2029         default:
2030                 return res;
2031         }
2032
2033         if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2034                 phy->phy_state = PHY_EMPTY;
2035                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2036                 /*
2037                  * Even though the PHY is empty, for convenience we discover
2038                  * the PHY to update the PHY info, like negotiated linkrate.
2039                  */
2040                 sas_ex_phy_discover(dev, phy_id);
2041                 return res;
2042         } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2043                    dev_type_flutter(type, phy->attached_dev_type)) {
2044                 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2045                 char *action = "";
2046
2047                 sas_ex_phy_discover(dev, phy_id);
2048
2049                 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2050                         action = ", needs recovery";
2051                 pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2052                          SAS_ADDR(dev->sas_addr), phy_id, action);
2053                 return res;
2054         }
2055
2056         /* we always have to delete the old device when we went here */
2057         pr_info("ex %016llx phy%02d replace %016llx\n",
2058                 SAS_ADDR(dev->sas_addr), phy_id,
2059                 SAS_ADDR(phy->attached_sas_addr));
2060         sas_unregister_devs_sas_addr(dev, phy_id, last);
2061
2062         return sas_discover_new(dev, phy_id);
2063 }
2064
2065 /**
2066  * sas_rediscover - revalidate the domain.
2067  * @dev:domain device to be detect.
2068  * @phy_id: the phy id will be detected.
2069  *
2070  * NOTE: this process _must_ quit (return) as soon as any connection
2071  * errors are encountered.  Connection recovery is done elsewhere.
2072  * Discover process only interrogates devices in order to discover the
2073  * domain.For plugging out, we un-register the device only when it is
2074  * the last phy in the port, for other phys in this port, we just delete it
2075  * from the port.For inserting, we do discovery when it is the
2076  * first phy,for other phys in this port, we add it to the port to
2077  * forming the wide-port.
2078  */
2079 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2080 {
2081         struct expander_device *ex = &dev->ex_dev;
2082         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2083         int res = 0;
2084         int i;
2085         bool last = true;       /* is this the last phy of the port */
2086
2087         pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2088                  SAS_ADDR(dev->sas_addr), phy_id);
2089
2090         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2091                 for (i = 0; i < ex->num_phys; i++) {
2092                         struct ex_phy *phy = &ex->ex_phy[i];
2093
2094                         if (i == phy_id)
2095                                 continue;
2096                         if (SAS_ADDR(phy->attached_sas_addr) ==
2097                             SAS_ADDR(changed_phy->attached_sas_addr)) {
2098                                 last = false;
2099                                 break;
2100                         }
2101                 }
2102                 res = sas_rediscover_dev(dev, phy_id, last, i);
2103         } else
2104                 res = sas_discover_new(dev, phy_id);
2105         return res;
2106 }
2107
2108 /**
2109  * sas_ex_revalidate_domain - revalidate the domain
2110  * @port_dev: port domain device.
2111  *
2112  * NOTE: this process _must_ quit (return) as soon as any connection
2113  * errors are encountered.  Connection recovery is done elsewhere.
2114  * Discover process only interrogates devices in order to discover the
2115  * domain.
2116  */
2117 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2118 {
2119         int res;
2120         struct domain_device *dev = NULL;
2121
2122         res = sas_find_bcast_dev(port_dev, &dev);
2123         if (res == 0 && dev) {
2124                 struct expander_device *ex = &dev->ex_dev;
2125                 int i = 0, phy_id;
2126
2127                 do {
2128                         phy_id = -1;
2129                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
2130                         if (phy_id == -1)
2131                                 break;
2132                         res = sas_rediscover(dev, phy_id);
2133                         i = phy_id + 1;
2134                 } while (i < ex->num_phys);
2135         }
2136         return res;
2137 }
2138
2139 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2140                 struct sas_rphy *rphy)
2141 {
2142         struct domain_device *dev;
2143         unsigned int rcvlen = 0;
2144         int ret = -EINVAL;
2145
2146         /* no rphy means no smp target support (ie aic94xx host) */
2147         if (!rphy)
2148                 return sas_smp_host_handler(job, shost);
2149
2150         switch (rphy->identify.device_type) {
2151         case SAS_EDGE_EXPANDER_DEVICE:
2152         case SAS_FANOUT_EXPANDER_DEVICE:
2153                 break;
2154         default:
2155                 pr_err("%s: can we send a smp request to a device?\n",
2156                        __func__);
2157                 goto out;
2158         }
2159
2160         dev = sas_find_dev_by_rphy(rphy);
2161         if (!dev) {
2162                 pr_err("%s: fail to find a domain_device?\n", __func__);
2163                 goto out;
2164         }
2165
2166         /* do we need to support multiple segments? */
2167         if (job->request_payload.sg_cnt > 1 ||
2168             job->reply_payload.sg_cnt > 1) {
2169                 pr_info("%s: multiple segments req %u, rsp %u\n",
2170                         __func__, job->request_payload.payload_len,
2171                         job->reply_payload.payload_len);
2172                 goto out;
2173         }
2174
2175         ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2176                         job->reply_payload.sg_list);
2177         if (ret >= 0) {
2178                 /* bsg_job_done() requires the length received  */
2179                 rcvlen = job->reply_payload.payload_len - ret;
2180                 ret = 0;
2181         }
2182
2183 out:
2184         bsg_job_done(job, ret, rcvlen);
2185 }
This page took 0.156112 seconds and 4 git commands to generate.