1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Memory-to-memory device framework for Video for Linux 2 and videobuf.
5 * Helper functions for devices that use videobuf buffers for both their
6 * source and destination.
8 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
16 #include <media/media-device.h>
17 #include <media/videobuf2-v4l2.h>
18 #include <media/v4l2-mem2mem.h>
19 #include <media/v4l2-dev.h>
20 #include <media/v4l2-device.h>
21 #include <media/v4l2-fh.h>
22 #include <media/v4l2-event.h>
24 MODULE_DESCRIPTION("Mem to mem device framework for videobuf");
26 MODULE_LICENSE("GPL");
29 module_param(debug, bool, 0644);
31 #define dprintk(fmt, arg...) \
34 printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\
38 /* Instance is already queued on the job_queue */
39 #define TRANS_QUEUED (1 << 0)
40 /* Instance is currently running in hardware */
41 #define TRANS_RUNNING (1 << 1)
42 /* Instance is currently aborting */
43 #define TRANS_ABORT (1 << 2)
46 /* The job queue is not running new jobs */
47 #define QUEUE_PAUSED (1 << 0)
50 /* Offset base for buffers on the destination queue - used to distinguish
51 * between source and destination buffers when mmapping - they receive the same
52 * offsets but for different queues */
53 #define DST_QUEUE_OFF_BASE (1 << 30)
55 enum v4l2_m2m_entity_type {
56 MEM2MEM_ENT_TYPE_SOURCE,
57 MEM2MEM_ENT_TYPE_SINK,
61 static const char * const m2m_entity_name[] = {
68 * struct v4l2_m2m_dev - per-device context
69 * @source: &struct media_entity pointer with the source entity
70 * Used only when the M2M device is registered via
71 * v4l2_m2m_unregister_media_controller().
72 * @source_pad: &struct media_pad with the source pad.
73 * Used only when the M2M device is registered via
74 * v4l2_m2m_unregister_media_controller().
75 * @sink: &struct media_entity pointer with the sink entity
76 * Used only when the M2M device is registered via
77 * v4l2_m2m_unregister_media_controller().
78 * @sink_pad: &struct media_pad with the sink pad.
79 * Used only when the M2M device is registered via
80 * v4l2_m2m_unregister_media_controller().
81 * @proc: &struct media_entity pointer with the M2M device itself.
82 * @proc_pads: &struct media_pad with the @proc pads.
83 * Used only when the M2M device is registered via
84 * v4l2_m2m_unregister_media_controller().
85 * @intf_devnode: &struct media_intf devnode pointer with the interface
86 * with controls the M2M device.
87 * @curr_ctx: currently running instance
88 * @job_queue: instances queued to run
89 * @job_spinlock: protects job_queue
90 * @job_work: worker to run queued jobs.
91 * @job_queue_flags: flags of the queue status, %QUEUE_PAUSED.
92 * @m2m_ops: driver callbacks
95 struct v4l2_m2m_ctx *curr_ctx;
96 #ifdef CONFIG_MEDIA_CONTROLLER
97 struct media_entity *source;
98 struct media_pad source_pad;
99 struct media_entity sink;
100 struct media_pad sink_pad;
101 struct media_entity proc;
102 struct media_pad proc_pads[2];
103 struct media_intf_devnode *intf_devnode;
106 struct list_head job_queue;
107 spinlock_t job_spinlock;
108 struct work_struct job_work;
109 unsigned long job_queue_flags;
111 const struct v4l2_m2m_ops *m2m_ops;
114 static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx,
115 enum v4l2_buf_type type)
117 if (V4L2_TYPE_IS_OUTPUT(type))
118 return &m2m_ctx->out_q_ctx;
120 return &m2m_ctx->cap_q_ctx;
123 struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx,
124 enum v4l2_buf_type type)
126 struct v4l2_m2m_queue_ctx *q_ctx;
128 q_ctx = get_queue_ctx(m2m_ctx, type);
134 EXPORT_SYMBOL(v4l2_m2m_get_vq);
136 struct vb2_v4l2_buffer *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx)
138 struct v4l2_m2m_buffer *b;
141 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
143 if (list_empty(&q_ctx->rdy_queue)) {
144 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
148 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
149 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
152 EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf);
154 struct vb2_v4l2_buffer *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx)
156 struct v4l2_m2m_buffer *b;
159 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
161 if (list_empty(&q_ctx->rdy_queue)) {
162 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
166 b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
167 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
170 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf);
172 struct vb2_v4l2_buffer *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx)
174 struct v4l2_m2m_buffer *b;
177 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
178 if (list_empty(&q_ctx->rdy_queue)) {
179 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
182 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
185 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
189 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove);
191 void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx,
192 struct vb2_v4l2_buffer *vbuf)
194 struct v4l2_m2m_buffer *b;
197 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
198 b = container_of(vbuf, struct v4l2_m2m_buffer, vb);
201 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
203 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf);
205 struct vb2_v4l2_buffer *
206 v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx)
209 struct v4l2_m2m_buffer *b, *tmp;
210 struct vb2_v4l2_buffer *ret = NULL;
213 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
214 list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) {
215 if (b->vb.vb2_buf.index == idx) {
222 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
226 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx);
229 * Scheduling handlers
232 void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev)
237 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
238 if (m2m_dev->curr_ctx)
239 ret = m2m_dev->curr_ctx->priv;
240 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
244 EXPORT_SYMBOL(v4l2_m2m_get_curr_priv);
247 * v4l2_m2m_try_run() - select next job to perform and run it if possible
248 * @m2m_dev: per-device context
250 * Get next transaction (if present) from the waiting jobs list and run it.
252 * Note that this function can run on a given v4l2_m2m_ctx context,
253 * but call .device_run for another context.
255 static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev)
259 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
260 if (NULL != m2m_dev->curr_ctx) {
261 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
262 dprintk("Another instance is running, won't run now\n");
266 if (list_empty(&m2m_dev->job_queue)) {
267 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
268 dprintk("No job pending\n");
272 if (m2m_dev->job_queue_flags & QUEUE_PAUSED) {
273 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
274 dprintk("Running new jobs is paused\n");
278 m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue,
279 struct v4l2_m2m_ctx, queue);
280 m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING;
281 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
283 dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx);
284 m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv);
288 * __v4l2_m2m_try_queue() - queue a job
289 * @m2m_dev: m2m device
290 * @m2m_ctx: m2m context
292 * Check if this context is ready to queue a job.
294 * This function can run in interrupt context.
296 static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev,
297 struct v4l2_m2m_ctx *m2m_ctx)
299 unsigned long flags_job;
300 struct vb2_v4l2_buffer *dst, *src;
302 dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx);
304 if (!m2m_ctx->out_q_ctx.q.streaming
305 || !m2m_ctx->cap_q_ctx.q.streaming) {
306 dprintk("Streaming needs to be on for both queues\n");
310 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
312 /* If the context is aborted then don't schedule it */
313 if (m2m_ctx->job_flags & TRANS_ABORT) {
314 dprintk("Aborted context\n");
318 if (m2m_ctx->job_flags & TRANS_QUEUED) {
319 dprintk("On job queue already\n");
323 src = v4l2_m2m_next_src_buf(m2m_ctx);
324 dst = v4l2_m2m_next_dst_buf(m2m_ctx);
325 if (!src && !m2m_ctx->out_q_ctx.buffered) {
326 dprintk("No input buffers available\n");
329 if (!dst && !m2m_ctx->cap_q_ctx.buffered) {
330 dprintk("No output buffers available\n");
334 m2m_ctx->new_frame = true;
336 if (src && dst && dst->is_held &&
337 dst->vb2_buf.copied_timestamp &&
338 dst->vb2_buf.timestamp != src->vb2_buf.timestamp) {
339 dst->is_held = false;
340 v4l2_m2m_dst_buf_remove(m2m_ctx);
341 v4l2_m2m_buf_done(dst, VB2_BUF_STATE_DONE);
342 dst = v4l2_m2m_next_dst_buf(m2m_ctx);
344 if (!dst && !m2m_ctx->cap_q_ctx.buffered) {
345 dprintk("No output buffers available after returning held buffer\n");
350 if (src && dst && (m2m_ctx->out_q_ctx.q.subsystem_flags &
351 VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF))
352 m2m_ctx->new_frame = !dst->vb2_buf.copied_timestamp ||
353 dst->vb2_buf.timestamp != src->vb2_buf.timestamp;
355 if (m2m_ctx->has_stopped) {
356 dprintk("Device has stopped\n");
360 if (m2m_dev->m2m_ops->job_ready
361 && (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) {
362 dprintk("Driver not ready\n");
366 list_add_tail(&m2m_ctx->queue, &m2m_dev->job_queue);
367 m2m_ctx->job_flags |= TRANS_QUEUED;
370 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
374 * v4l2_m2m_try_schedule() - schedule and possibly run a job for any context
375 * @m2m_ctx: m2m context
377 * Check if this context is ready to queue a job. If suitable,
378 * run the next queued job on the mem2mem device.
380 * This function shouldn't run in interrupt context.
382 * Note that v4l2_m2m_try_schedule() can schedule one job for this context,
383 * and then run another job for another context.
385 void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx)
387 struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev;
389 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
390 v4l2_m2m_try_run(m2m_dev);
392 EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule);
395 * v4l2_m2m_device_run_work() - run pending jobs for the context
396 * @work: Work structure used for scheduling the execution of this function.
398 static void v4l2_m2m_device_run_work(struct work_struct *work)
400 struct v4l2_m2m_dev *m2m_dev =
401 container_of(work, struct v4l2_m2m_dev, job_work);
403 v4l2_m2m_try_run(m2m_dev);
407 * v4l2_m2m_cancel_job() - cancel pending jobs for the context
408 * @m2m_ctx: m2m context with jobs to be canceled
410 * In case of streamoff or release called on any context,
411 * 1] If the context is currently running, then abort job will be called
412 * 2] If the context is queued, then the context will be removed from
415 static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx)
417 struct v4l2_m2m_dev *m2m_dev;
420 m2m_dev = m2m_ctx->m2m_dev;
421 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
423 m2m_ctx->job_flags |= TRANS_ABORT;
424 if (m2m_ctx->job_flags & TRANS_RUNNING) {
425 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
426 if (m2m_dev->m2m_ops->job_abort)
427 m2m_dev->m2m_ops->job_abort(m2m_ctx->priv);
428 dprintk("m2m_ctx %p running, will wait to complete\n", m2m_ctx);
429 wait_event(m2m_ctx->finished,
430 !(m2m_ctx->job_flags & TRANS_RUNNING));
431 } else if (m2m_ctx->job_flags & TRANS_QUEUED) {
432 list_del(&m2m_ctx->queue);
433 m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
434 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
435 dprintk("m2m_ctx: %p had been on queue and was removed\n",
438 /* Do nothing, was not on queue/running */
439 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
444 * Schedule the next job, called from v4l2_m2m_job_finish() or
445 * v4l2_m2m_buf_done_and_job_finish().
447 static void v4l2_m2m_schedule_next_job(struct v4l2_m2m_dev *m2m_dev,
448 struct v4l2_m2m_ctx *m2m_ctx)
451 * This instance might have more buffers ready, but since we do not
452 * allow more than one job on the job_queue per instance, each has
453 * to be scheduled separately after the previous one finishes.
455 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
458 * We might be running in atomic context,
459 * but the job must be run in non-atomic context.
461 schedule_work(&m2m_dev->job_work);
465 * Assumes job_spinlock is held, called from v4l2_m2m_job_finish() or
466 * v4l2_m2m_buf_done_and_job_finish().
468 static bool _v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
469 struct v4l2_m2m_ctx *m2m_ctx)
471 if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) {
472 dprintk("Called by an instance not currently running\n");
476 list_del(&m2m_dev->curr_ctx->queue);
477 m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
478 wake_up(&m2m_dev->curr_ctx->finished);
479 m2m_dev->curr_ctx = NULL;
483 void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
484 struct v4l2_m2m_ctx *m2m_ctx)
490 * This function should not be used for drivers that support
491 * holding capture buffers. Those should use
492 * v4l2_m2m_buf_done_and_job_finish() instead.
494 WARN_ON(m2m_ctx->out_q_ctx.q.subsystem_flags &
495 VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF);
496 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
497 schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx);
498 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
501 v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx);
503 EXPORT_SYMBOL(v4l2_m2m_job_finish);
505 void v4l2_m2m_buf_done_and_job_finish(struct v4l2_m2m_dev *m2m_dev,
506 struct v4l2_m2m_ctx *m2m_ctx,
507 enum vb2_buffer_state state)
509 struct vb2_v4l2_buffer *src_buf, *dst_buf;
510 bool schedule_next = false;
513 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
514 src_buf = v4l2_m2m_src_buf_remove(m2m_ctx);
515 dst_buf = v4l2_m2m_next_dst_buf(m2m_ctx);
517 if (WARN_ON(!src_buf || !dst_buf))
519 dst_buf->is_held = src_buf->flags & V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF;
520 if (!dst_buf->is_held) {
521 v4l2_m2m_dst_buf_remove(m2m_ctx);
522 v4l2_m2m_buf_done(dst_buf, state);
525 * If the request API is being used, returning the OUTPUT
526 * (src) buffer will wake-up any process waiting on the
527 * request file descriptor.
529 * Therefore, return the CAPTURE (dst) buffer first,
530 * to avoid signalling the request file descriptor
531 * before the CAPTURE buffer is done.
533 v4l2_m2m_buf_done(src_buf, state);
534 schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx);
536 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
539 v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx);
541 EXPORT_SYMBOL(v4l2_m2m_buf_done_and_job_finish);
543 void v4l2_m2m_suspend(struct v4l2_m2m_dev *m2m_dev)
546 struct v4l2_m2m_ctx *curr_ctx;
548 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
549 m2m_dev->job_queue_flags |= QUEUE_PAUSED;
550 curr_ctx = m2m_dev->curr_ctx;
551 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
554 wait_event(curr_ctx->finished,
555 !(curr_ctx->job_flags & TRANS_RUNNING));
557 EXPORT_SYMBOL(v4l2_m2m_suspend);
559 void v4l2_m2m_resume(struct v4l2_m2m_dev *m2m_dev)
563 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
564 m2m_dev->job_queue_flags &= ~QUEUE_PAUSED;
565 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
567 v4l2_m2m_try_run(m2m_dev);
569 EXPORT_SYMBOL(v4l2_m2m_resume);
571 int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
572 struct v4l2_requestbuffers *reqbufs)
574 struct vb2_queue *vq;
577 vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type);
578 ret = vb2_reqbufs(vq, reqbufs);
579 /* If count == 0, then the owner has released all buffers and he
580 is no longer owner of the queue. Otherwise we have an owner. */
582 vq->owner = reqbufs->count ? file->private_data : NULL;
586 EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs);
588 int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
589 struct v4l2_buffer *buf)
591 struct vb2_queue *vq;
595 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
596 ret = vb2_querybuf(vq, buf);
598 /* Adjust MMAP memory offsets for the CAPTURE queue */
599 if (buf->memory == V4L2_MEMORY_MMAP && V4L2_TYPE_IS_CAPTURE(vq->type)) {
600 if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) {
601 for (i = 0; i < buf->length; ++i)
602 buf->m.planes[i].m.mem_offset
603 += DST_QUEUE_OFF_BASE;
605 buf->m.offset += DST_QUEUE_OFF_BASE;
611 EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf);
614 * This will add the LAST flag and mark the buffer management
616 * This is called when the last capture buffer must be flagged as LAST
617 * in draining mode from the encoder/decoder driver buf_queue() callback
618 * or from v4l2_update_last_buf_state() when a capture buffer is available.
620 void v4l2_m2m_last_buffer_done(struct v4l2_m2m_ctx *m2m_ctx,
621 struct vb2_v4l2_buffer *vbuf)
623 vbuf->flags |= V4L2_BUF_FLAG_LAST;
624 vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_DONE);
626 v4l2_m2m_mark_stopped(m2m_ctx);
628 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buffer_done);
630 /* When stop command is issued, update buffer management state */
631 static int v4l2_update_last_buf_state(struct v4l2_m2m_ctx *m2m_ctx)
633 struct vb2_v4l2_buffer *next_dst_buf;
635 if (m2m_ctx->is_draining)
638 if (m2m_ctx->has_stopped)
641 m2m_ctx->last_src_buf = v4l2_m2m_last_src_buf(m2m_ctx);
642 m2m_ctx->is_draining = true;
645 * The processing of the last output buffer queued before
646 * the STOP command is expected to mark the buffer management
647 * state as stopped with v4l2_m2m_mark_stopped().
649 if (m2m_ctx->last_src_buf)
653 * In case the output queue is empty, try to mark the last capture
656 next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx);
659 * Wait for the next queued one in encoder/decoder driver
660 * buf_queue() callback using the v4l2_m2m_dst_buf_is_last()
661 * helper or in v4l2_m2m_qbuf() if encoder/decoder is not yet
664 m2m_ctx->next_buf_last = true;
668 v4l2_m2m_last_buffer_done(m2m_ctx, next_dst_buf);
674 * Updates the encoding/decoding buffer management state, should
675 * be called from encoder/decoder drivers start_streaming()
677 void v4l2_m2m_update_start_streaming_state(struct v4l2_m2m_ctx *m2m_ctx,
680 /* If start streaming again, untag the last output buffer */
681 if (V4L2_TYPE_IS_OUTPUT(q->type))
682 m2m_ctx->last_src_buf = NULL;
684 EXPORT_SYMBOL_GPL(v4l2_m2m_update_start_streaming_state);
687 * Updates the encoding/decoding buffer management state, should
688 * be called from encoder/decoder driver stop_streaming()
690 void v4l2_m2m_update_stop_streaming_state(struct v4l2_m2m_ctx *m2m_ctx,
693 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
695 * If in draining state, either mark next dst buffer as
696 * done or flag next one to be marked as done either
697 * in encoder/decoder driver buf_queue() callback using
698 * the v4l2_m2m_dst_buf_is_last() helper or in v4l2_m2m_qbuf()
699 * if encoder/decoder is not yet streaming
701 if (m2m_ctx->is_draining) {
702 struct vb2_v4l2_buffer *next_dst_buf;
704 m2m_ctx->last_src_buf = NULL;
705 next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx);
707 m2m_ctx->next_buf_last = true;
709 v4l2_m2m_last_buffer_done(m2m_ctx,
713 v4l2_m2m_clear_state(m2m_ctx);
716 EXPORT_SYMBOL_GPL(v4l2_m2m_update_stop_streaming_state);
718 static void v4l2_m2m_force_last_buf_done(struct v4l2_m2m_ctx *m2m_ctx,
721 struct vb2_buffer *vb;
722 struct vb2_v4l2_buffer *vbuf;
725 if (WARN_ON(q->is_output))
727 if (list_empty(&q->queued_list))
730 vb = list_first_entry(&q->queued_list, struct vb2_buffer, queued_entry);
731 for (i = 0; i < vb->num_planes; i++)
732 vb2_set_plane_payload(vb, i, 0);
735 * Since the buffer hasn't been queued to the ready queue,
736 * mark is active and owned before marking it LAST and DONE
738 vb->state = VB2_BUF_STATE_ACTIVE;
739 atomic_inc(&q->owned_by_drv_count);
741 vbuf = to_vb2_v4l2_buffer(vb);
742 vbuf->field = V4L2_FIELD_NONE;
744 v4l2_m2m_last_buffer_done(m2m_ctx, vbuf);
747 int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
748 struct v4l2_buffer *buf)
750 struct video_device *vdev = video_devdata(file);
751 struct vb2_queue *vq;
754 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
755 if (V4L2_TYPE_IS_CAPTURE(vq->type) &&
756 (buf->flags & V4L2_BUF_FLAG_REQUEST_FD)) {
757 dprintk("%s: requests cannot be used with capture buffers\n",
762 ret = vb2_qbuf(vq, vdev->v4l2_dev->mdev, buf);
767 * If the capture queue is streaming, but streaming hasn't started
768 * on the device, but was asked to stop, mark the previously queued
769 * buffer as DONE with LAST flag since it won't be queued on the
772 if (V4L2_TYPE_IS_CAPTURE(vq->type) &&
773 vb2_is_streaming(vq) && !vb2_start_streaming_called(vq) &&
774 (v4l2_m2m_has_stopped(m2m_ctx) || v4l2_m2m_dst_buf_is_last(m2m_ctx)))
775 v4l2_m2m_force_last_buf_done(m2m_ctx, vq);
776 else if (!(buf->flags & V4L2_BUF_FLAG_IN_REQUEST))
777 v4l2_m2m_try_schedule(m2m_ctx);
781 EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf);
783 int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
784 struct v4l2_buffer *buf)
786 struct vb2_queue *vq;
788 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
789 return vb2_dqbuf(vq, buf, file->f_flags & O_NONBLOCK);
791 EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf);
793 int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
794 struct v4l2_buffer *buf)
796 struct video_device *vdev = video_devdata(file);
797 struct vb2_queue *vq;
799 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
800 return vb2_prepare_buf(vq, vdev->v4l2_dev->mdev, buf);
802 EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf);
804 int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
805 struct v4l2_create_buffers *create)
807 struct vb2_queue *vq;
809 vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type);
810 return vb2_create_bufs(vq, create);
812 EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs);
814 int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
815 struct v4l2_exportbuffer *eb)
817 struct vb2_queue *vq;
819 vq = v4l2_m2m_get_vq(m2m_ctx, eb->type);
820 return vb2_expbuf(vq, eb);
822 EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf);
824 int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
825 enum v4l2_buf_type type)
827 struct vb2_queue *vq;
830 vq = v4l2_m2m_get_vq(m2m_ctx, type);
831 ret = vb2_streamon(vq, type);
833 v4l2_m2m_try_schedule(m2m_ctx);
837 EXPORT_SYMBOL_GPL(v4l2_m2m_streamon);
839 int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
840 enum v4l2_buf_type type)
842 struct v4l2_m2m_dev *m2m_dev;
843 struct v4l2_m2m_queue_ctx *q_ctx;
844 unsigned long flags_job, flags;
847 /* wait until the current context is dequeued from job_queue */
848 v4l2_m2m_cancel_job(m2m_ctx);
850 q_ctx = get_queue_ctx(m2m_ctx, type);
851 ret = vb2_streamoff(&q_ctx->q, type);
855 m2m_dev = m2m_ctx->m2m_dev;
856 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
857 /* We should not be scheduled anymore, since we're dropping a queue. */
858 if (m2m_ctx->job_flags & TRANS_QUEUED)
859 list_del(&m2m_ctx->queue);
860 m2m_ctx->job_flags = 0;
862 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
863 /* Drop queue, since streamoff returns device to the same state as after
864 * calling reqbufs. */
865 INIT_LIST_HEAD(&q_ctx->rdy_queue);
867 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
869 if (m2m_dev->curr_ctx == m2m_ctx) {
870 m2m_dev->curr_ctx = NULL;
871 wake_up(&m2m_ctx->finished);
873 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
877 EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff);
879 static __poll_t v4l2_m2m_poll_for_data(struct file *file,
880 struct v4l2_m2m_ctx *m2m_ctx,
881 struct poll_table_struct *wait)
883 struct vb2_queue *src_q, *dst_q;
887 src_q = v4l2_m2m_get_src_vq(m2m_ctx);
888 dst_q = v4l2_m2m_get_dst_vq(m2m_ctx);
891 * There has to be at least one buffer queued on each queued_list, which
892 * means either in driver already or waiting for driver to claim it
893 * and start processing.
895 if ((!src_q->streaming || src_q->error ||
896 list_empty(&src_q->queued_list)) &&
897 (!dst_q->streaming || dst_q->error ||
898 list_empty(&dst_q->queued_list)))
901 spin_lock_irqsave(&src_q->done_lock, flags);
902 if (!list_empty(&src_q->done_list))
903 rc |= EPOLLOUT | EPOLLWRNORM;
904 spin_unlock_irqrestore(&src_q->done_lock, flags);
906 spin_lock_irqsave(&dst_q->done_lock, flags);
908 * If the last buffer was dequeued from the capture queue, signal
909 * userspace. DQBUF(CAPTURE) will return -EPIPE.
911 if (!list_empty(&dst_q->done_list) || dst_q->last_buffer_dequeued)
912 rc |= EPOLLIN | EPOLLRDNORM;
913 spin_unlock_irqrestore(&dst_q->done_lock, flags);
918 __poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
919 struct poll_table_struct *wait)
921 struct video_device *vfd = video_devdata(file);
922 struct vb2_queue *src_q = v4l2_m2m_get_src_vq(m2m_ctx);
923 struct vb2_queue *dst_q = v4l2_m2m_get_dst_vq(m2m_ctx);
924 __poll_t req_events = poll_requested_events(wait);
928 * poll_wait() MUST be called on the first invocation on all the
929 * potential queues of interest, even if we are not interested in their
930 * events during this first call. Failure to do so will result in
931 * queue's events to be ignored because the poll_table won't be capable
932 * of adding new wait queues thereafter.
934 poll_wait(file, &src_q->done_wq, wait);
935 poll_wait(file, &dst_q->done_wq, wait);
937 if (req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM))
938 rc = v4l2_m2m_poll_for_data(file, m2m_ctx, wait);
940 if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) {
941 struct v4l2_fh *fh = file->private_data;
943 poll_wait(file, &fh->wait, wait);
944 if (v4l2_event_pending(fh))
950 EXPORT_SYMBOL_GPL(v4l2_m2m_poll);
952 int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
953 struct vm_area_struct *vma)
955 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
956 struct vb2_queue *vq;
958 if (offset < DST_QUEUE_OFF_BASE) {
959 vq = v4l2_m2m_get_src_vq(m2m_ctx);
961 vq = v4l2_m2m_get_dst_vq(m2m_ctx);
962 vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
965 return vb2_mmap(vq, vma);
967 EXPORT_SYMBOL(v4l2_m2m_mmap);
970 unsigned long v4l2_m2m_get_unmapped_area(struct file *file, unsigned long addr,
971 unsigned long len, unsigned long pgoff,
974 struct v4l2_fh *fh = file->private_data;
975 unsigned long offset = pgoff << PAGE_SHIFT;
976 struct vb2_queue *vq;
978 if (offset < DST_QUEUE_OFF_BASE) {
979 vq = v4l2_m2m_get_src_vq(fh->m2m_ctx);
981 vq = v4l2_m2m_get_dst_vq(fh->m2m_ctx);
982 pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
985 return vb2_get_unmapped_area(vq, addr, len, pgoff, flags);
987 EXPORT_SYMBOL_GPL(v4l2_m2m_get_unmapped_area);
990 #if defined(CONFIG_MEDIA_CONTROLLER)
991 void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev)
993 media_remove_intf_links(&m2m_dev->intf_devnode->intf);
994 media_devnode_remove(m2m_dev->intf_devnode);
996 media_entity_remove_links(m2m_dev->source);
997 media_entity_remove_links(&m2m_dev->sink);
998 media_entity_remove_links(&m2m_dev->proc);
999 media_device_unregister_entity(m2m_dev->source);
1000 media_device_unregister_entity(&m2m_dev->sink);
1001 media_device_unregister_entity(&m2m_dev->proc);
1002 kfree(m2m_dev->source->name);
1003 kfree(m2m_dev->sink.name);
1004 kfree(m2m_dev->proc.name);
1006 EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller);
1008 static int v4l2_m2m_register_entity(struct media_device *mdev,
1009 struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type,
1010 struct video_device *vdev, int function)
1012 struct media_entity *entity;
1013 struct media_pad *pads;
1020 case MEM2MEM_ENT_TYPE_SOURCE:
1021 entity = m2m_dev->source;
1022 pads = &m2m_dev->source_pad;
1023 pads[0].flags = MEDIA_PAD_FL_SOURCE;
1026 case MEM2MEM_ENT_TYPE_SINK:
1027 entity = &m2m_dev->sink;
1028 pads = &m2m_dev->sink_pad;
1029 pads[0].flags = MEDIA_PAD_FL_SINK;
1032 case MEM2MEM_ENT_TYPE_PROC:
1033 entity = &m2m_dev->proc;
1034 pads = m2m_dev->proc_pads;
1035 pads[0].flags = MEDIA_PAD_FL_SINK;
1036 pads[1].flags = MEDIA_PAD_FL_SOURCE;
1043 entity->obj_type = MEDIA_ENTITY_TYPE_BASE;
1044 if (type != MEM2MEM_ENT_TYPE_PROC) {
1045 entity->info.dev.major = VIDEO_MAJOR;
1046 entity->info.dev.minor = vdev->minor;
1048 len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]);
1049 name = kmalloc(len, GFP_KERNEL);
1052 snprintf(name, len, "%s-%s", vdev->name, m2m_entity_name[type]);
1053 entity->name = name;
1054 entity->function = function;
1056 ret = media_entity_pads_init(entity, num_pads, pads);
1059 ret = media_device_register_entity(mdev, entity);
1066 int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev,
1067 struct video_device *vdev, int function)
1069 struct media_device *mdev = vdev->v4l2_dev->mdev;
1070 struct media_link *link;
1076 /* A memory-to-memory device consists in two
1077 * DMA engine and one video processing entities.
1078 * The DMA engine entities are linked to a V4L interface
1081 /* Create the three entities with their pads */
1082 m2m_dev->source = &vdev->entity;
1083 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1084 MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L);
1087 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1088 MEM2MEM_ENT_TYPE_PROC, vdev, function);
1090 goto err_rel_entity0;
1091 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1092 MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L);
1094 goto err_rel_entity1;
1096 /* Connect the three entities */
1097 ret = media_create_pad_link(m2m_dev->source, 0, &m2m_dev->proc, 0,
1098 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1100 goto err_rel_entity2;
1102 ret = media_create_pad_link(&m2m_dev->proc, 1, &m2m_dev->sink, 0,
1103 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1107 /* Create video interface */
1108 m2m_dev->intf_devnode = media_devnode_create(mdev,
1109 MEDIA_INTF_T_V4L_VIDEO, 0,
1110 VIDEO_MAJOR, vdev->minor);
1111 if (!m2m_dev->intf_devnode) {
1116 /* Connect the two DMA engines to the interface */
1117 link = media_create_intf_link(m2m_dev->source,
1118 &m2m_dev->intf_devnode->intf,
1119 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1122 goto err_rm_devnode;
1125 link = media_create_intf_link(&m2m_dev->sink,
1126 &m2m_dev->intf_devnode->intf,
1127 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1130 goto err_rm_intf_link;
1135 media_remove_intf_links(&m2m_dev->intf_devnode->intf);
1137 media_devnode_remove(m2m_dev->intf_devnode);
1139 media_entity_remove_links(&m2m_dev->sink);
1141 media_entity_remove_links(&m2m_dev->proc);
1142 media_entity_remove_links(m2m_dev->source);
1144 media_device_unregister_entity(&m2m_dev->proc);
1145 kfree(m2m_dev->proc.name);
1147 media_device_unregister_entity(&m2m_dev->sink);
1148 kfree(m2m_dev->sink.name);
1150 media_device_unregister_entity(m2m_dev->source);
1151 kfree(m2m_dev->source->name);
1155 EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller);
1158 struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops)
1160 struct v4l2_m2m_dev *m2m_dev;
1162 if (!m2m_ops || WARN_ON(!m2m_ops->device_run))
1163 return ERR_PTR(-EINVAL);
1165 m2m_dev = kzalloc(sizeof *m2m_dev, GFP_KERNEL);
1167 return ERR_PTR(-ENOMEM);
1169 m2m_dev->curr_ctx = NULL;
1170 m2m_dev->m2m_ops = m2m_ops;
1171 INIT_LIST_HEAD(&m2m_dev->job_queue);
1172 spin_lock_init(&m2m_dev->job_spinlock);
1173 INIT_WORK(&m2m_dev->job_work, v4l2_m2m_device_run_work);
1177 EXPORT_SYMBOL_GPL(v4l2_m2m_init);
1179 void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev)
1183 EXPORT_SYMBOL_GPL(v4l2_m2m_release);
1185 struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev,
1187 int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq))
1189 struct v4l2_m2m_ctx *m2m_ctx;
1190 struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx;
1193 m2m_ctx = kzalloc(sizeof *m2m_ctx, GFP_KERNEL);
1195 return ERR_PTR(-ENOMEM);
1197 m2m_ctx->priv = drv_priv;
1198 m2m_ctx->m2m_dev = m2m_dev;
1199 init_waitqueue_head(&m2m_ctx->finished);
1201 out_q_ctx = &m2m_ctx->out_q_ctx;
1202 cap_q_ctx = &m2m_ctx->cap_q_ctx;
1204 INIT_LIST_HEAD(&out_q_ctx->rdy_queue);
1205 INIT_LIST_HEAD(&cap_q_ctx->rdy_queue);
1206 spin_lock_init(&out_q_ctx->rdy_spinlock);
1207 spin_lock_init(&cap_q_ctx->rdy_spinlock);
1209 INIT_LIST_HEAD(&m2m_ctx->queue);
1211 ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q);
1216 * Both queues should use same the mutex to lock the m2m context.
1217 * This lock is used in some v4l2_m2m_* helpers.
1219 if (WARN_ON(out_q_ctx->q.lock != cap_q_ctx->q.lock)) {
1223 m2m_ctx->q_lock = out_q_ctx->q.lock;
1228 return ERR_PTR(ret);
1230 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init);
1232 void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx)
1234 /* wait until the current context is dequeued from job_queue */
1235 v4l2_m2m_cancel_job(m2m_ctx);
1237 vb2_queue_release(&m2m_ctx->cap_q_ctx.q);
1238 vb2_queue_release(&m2m_ctx->out_q_ctx.q);
1242 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release);
1244 void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx,
1245 struct vb2_v4l2_buffer *vbuf)
1247 struct v4l2_m2m_buffer *b = container_of(vbuf,
1248 struct v4l2_m2m_buffer, vb);
1249 struct v4l2_m2m_queue_ctx *q_ctx;
1250 unsigned long flags;
1252 q_ctx = get_queue_ctx(m2m_ctx, vbuf->vb2_buf.vb2_queue->type);
1256 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
1257 list_add_tail(&b->list, &q_ctx->rdy_queue);
1259 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
1261 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue);
1263 void v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer *out_vb,
1264 struct vb2_v4l2_buffer *cap_vb,
1265 bool copy_frame_flags)
1267 u32 mask = V4L2_BUF_FLAG_TIMECODE | V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
1269 if (copy_frame_flags)
1270 mask |= V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_PFRAME |
1271 V4L2_BUF_FLAG_BFRAME;
1273 cap_vb->vb2_buf.timestamp = out_vb->vb2_buf.timestamp;
1275 if (out_vb->flags & V4L2_BUF_FLAG_TIMECODE)
1276 cap_vb->timecode = out_vb->timecode;
1277 cap_vb->field = out_vb->field;
1278 cap_vb->flags &= ~mask;
1279 cap_vb->flags |= out_vb->flags & mask;
1280 cap_vb->vb2_buf.copied_timestamp = 1;
1282 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_copy_metadata);
1284 void v4l2_m2m_request_queue(struct media_request *req)
1286 struct media_request_object *obj, *obj_safe;
1287 struct v4l2_m2m_ctx *m2m_ctx = NULL;
1290 * Queue all objects. Note that buffer objects are at the end of the
1291 * objects list, after all other object types. Once buffer objects
1292 * are queued, the driver might delete them immediately (if the driver
1293 * processes the buffer at once), so we have to use
1294 * list_for_each_entry_safe() to handle the case where the object we
1297 list_for_each_entry_safe(obj, obj_safe, &req->objects, list) {
1298 struct v4l2_m2m_ctx *m2m_ctx_obj;
1299 struct vb2_buffer *vb;
1301 if (!obj->ops->queue)
1304 if (vb2_request_object_is_buffer(obj)) {
1306 vb = container_of(obj, struct vb2_buffer, req_obj);
1307 WARN_ON(!V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type));
1308 m2m_ctx_obj = container_of(vb->vb2_queue,
1309 struct v4l2_m2m_ctx,
1311 WARN_ON(m2m_ctx && m2m_ctx_obj != m2m_ctx);
1312 m2m_ctx = m2m_ctx_obj;
1316 * The buffer we queue here can in theory be immediately
1317 * unbound, hence the use of list_for_each_entry_safe()
1318 * above and why we call the queue op last.
1320 obj->ops->queue(obj);
1326 v4l2_m2m_try_schedule(m2m_ctx);
1328 EXPORT_SYMBOL_GPL(v4l2_m2m_request_queue);
1330 /* Videobuf2 ioctl helpers */
1332 int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv,
1333 struct v4l2_requestbuffers *rb)
1335 struct v4l2_fh *fh = file->private_data;
1337 return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb);
1339 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs);
1341 int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv,
1342 struct v4l2_create_buffers *create)
1344 struct v4l2_fh *fh = file->private_data;
1346 return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create);
1348 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs);
1350 int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv,
1351 struct v4l2_buffer *buf)
1353 struct v4l2_fh *fh = file->private_data;
1355 return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf);
1357 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf);
1359 int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv,
1360 struct v4l2_buffer *buf)
1362 struct v4l2_fh *fh = file->private_data;
1364 return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf);
1366 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf);
1368 int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv,
1369 struct v4l2_buffer *buf)
1371 struct v4l2_fh *fh = file->private_data;
1373 return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf);
1375 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf);
1377 int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv,
1378 struct v4l2_buffer *buf)
1380 struct v4l2_fh *fh = file->private_data;
1382 return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf);
1384 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf);
1386 int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv,
1387 struct v4l2_exportbuffer *eb)
1389 struct v4l2_fh *fh = file->private_data;
1391 return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb);
1393 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf);
1395 int v4l2_m2m_ioctl_streamon(struct file *file, void *priv,
1396 enum v4l2_buf_type type)
1398 struct v4l2_fh *fh = file->private_data;
1400 return v4l2_m2m_streamon(file, fh->m2m_ctx, type);
1402 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon);
1404 int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv,
1405 enum v4l2_buf_type type)
1407 struct v4l2_fh *fh = file->private_data;
1409 return v4l2_m2m_streamoff(file, fh->m2m_ctx, type);
1411 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff);
1413 int v4l2_m2m_ioctl_try_encoder_cmd(struct file *file, void *fh,
1414 struct v4l2_encoder_cmd *ec)
1416 if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START)
1422 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_encoder_cmd);
1424 int v4l2_m2m_ioctl_try_decoder_cmd(struct file *file, void *fh,
1425 struct v4l2_decoder_cmd *dc)
1427 if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START)
1432 if (dc->cmd == V4L2_DEC_CMD_STOP) {
1434 } else if (dc->cmd == V4L2_DEC_CMD_START) {
1435 dc->start.speed = 0;
1436 dc->start.format = V4L2_DEC_START_FMT_NONE;
1440 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_decoder_cmd);
1443 * Updates the encoding state on ENC_CMD_STOP/ENC_CMD_START
1444 * Should be called from the encoder driver encoder_cmd() callback
1446 int v4l2_m2m_encoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
1447 struct v4l2_encoder_cmd *ec)
1449 if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START)
1452 if (ec->cmd == V4L2_ENC_CMD_STOP)
1453 return v4l2_update_last_buf_state(m2m_ctx);
1455 if (m2m_ctx->is_draining)
1458 if (m2m_ctx->has_stopped)
1459 m2m_ctx->has_stopped = false;
1463 EXPORT_SYMBOL_GPL(v4l2_m2m_encoder_cmd);
1466 * Updates the decoding state on DEC_CMD_STOP/DEC_CMD_START
1467 * Should be called from the decoder driver decoder_cmd() callback
1469 int v4l2_m2m_decoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
1470 struct v4l2_decoder_cmd *dc)
1472 if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START)
1475 if (dc->cmd == V4L2_DEC_CMD_STOP)
1476 return v4l2_update_last_buf_state(m2m_ctx);
1478 if (m2m_ctx->is_draining)
1481 if (m2m_ctx->has_stopped)
1482 m2m_ctx->has_stopped = false;
1486 EXPORT_SYMBOL_GPL(v4l2_m2m_decoder_cmd);
1488 int v4l2_m2m_ioctl_encoder_cmd(struct file *file, void *priv,
1489 struct v4l2_encoder_cmd *ec)
1491 struct v4l2_fh *fh = file->private_data;
1493 return v4l2_m2m_encoder_cmd(file, fh->m2m_ctx, ec);
1495 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_encoder_cmd);
1497 int v4l2_m2m_ioctl_decoder_cmd(struct file *file, void *priv,
1498 struct v4l2_decoder_cmd *dc)
1500 struct v4l2_fh *fh = file->private_data;
1502 return v4l2_m2m_decoder_cmd(file, fh->m2m_ctx, dc);
1504 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_decoder_cmd);
1506 int v4l2_m2m_ioctl_stateless_try_decoder_cmd(struct file *file, void *fh,
1507 struct v4l2_decoder_cmd *dc)
1509 if (dc->cmd != V4L2_DEC_CMD_FLUSH)
1516 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_try_decoder_cmd);
1518 int v4l2_m2m_ioctl_stateless_decoder_cmd(struct file *file, void *priv,
1519 struct v4l2_decoder_cmd *dc)
1521 struct v4l2_fh *fh = file->private_data;
1522 struct vb2_v4l2_buffer *out_vb, *cap_vb;
1523 struct v4l2_m2m_dev *m2m_dev = fh->m2m_ctx->m2m_dev;
1524 unsigned long flags;
1527 ret = v4l2_m2m_ioctl_stateless_try_decoder_cmd(file, priv, dc);
1531 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
1532 out_vb = v4l2_m2m_last_src_buf(fh->m2m_ctx);
1533 cap_vb = v4l2_m2m_last_dst_buf(fh->m2m_ctx);
1536 * If there is an out buffer pending, then clear any HOLD flag.
1538 * By clearing this flag we ensure that when this output
1539 * buffer is processed any held capture buffer will be released.
1542 out_vb->flags &= ~V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF;
1543 } else if (cap_vb && cap_vb->is_held) {
1545 * If there were no output buffers, but there is a
1546 * capture buffer that is held, then release that
1549 cap_vb->is_held = false;
1550 v4l2_m2m_dst_buf_remove(fh->m2m_ctx);
1551 v4l2_m2m_buf_done(cap_vb, VB2_BUF_STATE_DONE);
1553 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
1557 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_decoder_cmd);
1560 * v4l2_file_operations helpers. It is assumed here same lock is used
1561 * for the output and the capture buffer queue.
1564 int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma)
1566 struct v4l2_fh *fh = file->private_data;
1568 return v4l2_m2m_mmap(file, fh->m2m_ctx, vma);
1570 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap);
1572 __poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait)
1574 struct v4l2_fh *fh = file->private_data;
1575 struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx;
1578 if (m2m_ctx->q_lock)
1579 mutex_lock(m2m_ctx->q_lock);
1581 ret = v4l2_m2m_poll(file, m2m_ctx, wait);
1583 if (m2m_ctx->q_lock)
1584 mutex_unlock(m2m_ctx->q_lock);
1588 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll);