1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright 2013-2014 Analog Devices Inc.
8 * Documentation for the parts can be found at:
9 * - XADC hardmacro: Xilinx UG480
10 * - ZYNQ XADC interface: Xilinx UG585
11 * - AXI XADC interface: Xilinx PG019
14 #include <linux/clk.h>
15 #include <linux/device.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
22 #include <linux/overflow.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/sysfs.h>
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/events.h>
29 #include <linux/iio/iio.h>
30 #include <linux/iio/sysfs.h>
31 #include <linux/iio/trigger.h>
32 #include <linux/iio/trigger_consumer.h>
33 #include <linux/iio/triggered_buffer.h>
35 #include "xilinx-xadc.h"
37 static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
39 /* ZYNQ register definitions */
40 #define XADC_ZYNQ_REG_CFG 0x00
41 #define XADC_ZYNQ_REG_INTSTS 0x04
42 #define XADC_ZYNQ_REG_INTMSK 0x08
43 #define XADC_ZYNQ_REG_STATUS 0x0c
44 #define XADC_ZYNQ_REG_CFIFO 0x10
45 #define XADC_ZYNQ_REG_DFIFO 0x14
46 #define XADC_ZYNQ_REG_CTL 0x18
48 #define XADC_ZYNQ_CFG_ENABLE BIT(31)
49 #define XADC_ZYNQ_CFG_CFIFOTH_MASK (0xf << 20)
50 #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET 20
51 #define XADC_ZYNQ_CFG_DFIFOTH_MASK (0xf << 16)
52 #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET 16
53 #define XADC_ZYNQ_CFG_WEDGE BIT(13)
54 #define XADC_ZYNQ_CFG_REDGE BIT(12)
55 #define XADC_ZYNQ_CFG_TCKRATE_MASK (0x3 << 8)
56 #define XADC_ZYNQ_CFG_TCKRATE_DIV2 (0x0 << 8)
57 #define XADC_ZYNQ_CFG_TCKRATE_DIV4 (0x1 << 8)
58 #define XADC_ZYNQ_CFG_TCKRATE_DIV8 (0x2 << 8)
59 #define XADC_ZYNQ_CFG_TCKRATE_DIV16 (0x3 << 8)
60 #define XADC_ZYNQ_CFG_IGAP_MASK 0x1f
61 #define XADC_ZYNQ_CFG_IGAP(x) (x)
63 #define XADC_ZYNQ_INT_CFIFO_LTH BIT(9)
64 #define XADC_ZYNQ_INT_DFIFO_GTH BIT(8)
65 #define XADC_ZYNQ_INT_ALARM_MASK 0xff
66 #define XADC_ZYNQ_INT_ALARM_OFFSET 0
68 #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16)
69 #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET 16
70 #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12)
71 #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET 12
72 #define XADC_ZYNQ_STATUS_CFIFOF BIT(11)
73 #define XADC_ZYNQ_STATUS_CFIFOE BIT(10)
74 #define XADC_ZYNQ_STATUS_DFIFOF BIT(9)
75 #define XADC_ZYNQ_STATUS_DFIFOE BIT(8)
76 #define XADC_ZYNQ_STATUS_OT BIT(7)
77 #define XADC_ZYNQ_STATUS_ALM(x) BIT(x)
79 #define XADC_ZYNQ_CTL_RESET BIT(4)
81 #define XADC_ZYNQ_CMD_NOP 0x00
82 #define XADC_ZYNQ_CMD_READ 0x01
83 #define XADC_ZYNQ_CMD_WRITE 0x02
85 #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
87 /* AXI register definitions */
88 #define XADC_AXI_REG_RESET 0x00
89 #define XADC_AXI_REG_STATUS 0x04
90 #define XADC_AXI_REG_ALARM_STATUS 0x08
91 #define XADC_AXI_REG_CONVST 0x0c
92 #define XADC_AXI_REG_XADC_RESET 0x10
93 #define XADC_AXI_REG_GIER 0x5c
94 #define XADC_AXI_REG_IPISR 0x60
95 #define XADC_AXI_REG_IPIER 0x68
98 #define XADC_7S_AXI_ADC_REG_OFFSET 0x200
101 #define XADC_US_AXI_ADC_REG_OFFSET 0x400
103 #define XADC_AXI_RESET_MAGIC 0xa
104 #define XADC_AXI_GIER_ENABLE BIT(31)
106 #define XADC_AXI_INT_EOS BIT(4)
107 #define XADC_AXI_INT_ALARM_MASK 0x3c0f
109 #define XADC_FLAGS_BUFFERED BIT(0)
110 #define XADC_FLAGS_IRQ_OPTIONAL BIT(1)
113 * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does
114 * not have a hardware FIFO. Which means an interrupt is generated for each
115 * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely
116 * overloaded by the interrupts that it soft-lockups. For this reason the driver
117 * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy,
118 * but still responsive.
120 #define XADC_MAX_SAMPLERATE 150000
122 static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
125 writel(val, xadc->base + reg);
128 static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
131 *val = readl(xadc->base + reg);
135 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
136 * XADC. Reads and writes to the XADC register are performed by submitting a
137 * request to the command FIFO (CFIFO), once the request has been completed the
138 * result can be read from the data FIFO (DFIFO). The method currently used in
139 * this driver is to submit the request for a read/write operation, then go to
140 * sleep and wait for an interrupt that signals that a response is available in
144 static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
149 for (i = 0; i < n; i++)
150 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
153 static void xadc_zynq_drain_fifo(struct xadc *xadc)
155 uint32_t status, tmp;
157 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
159 while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
160 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
161 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
165 static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
168 xadc->zynq_intmask &= ~mask;
169 xadc->zynq_intmask |= val;
171 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
172 xadc->zynq_intmask | xadc->zynq_masked_alarm);
175 static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
182 spin_lock_irq(&xadc->lock);
183 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
184 XADC_ZYNQ_INT_DFIFO_GTH);
186 reinit_completion(&xadc->completion);
188 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
189 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
190 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
191 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
192 tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
193 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
195 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
196 spin_unlock_irq(&xadc->lock);
198 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
204 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
209 static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
216 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
217 cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
219 spin_lock_irq(&xadc->lock);
220 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
221 XADC_ZYNQ_INT_DFIFO_GTH);
222 xadc_zynq_drain_fifo(xadc);
223 reinit_completion(&xadc->completion);
225 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
226 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
227 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
228 tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
229 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
231 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
232 spin_unlock_irq(&xadc->lock);
233 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
239 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
240 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
242 *val = resp & 0xffff;
247 static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
249 return ((alarm & 0x80) >> 4) |
250 ((alarm & 0x78) << 1) |
255 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
256 * threshold condition go way from within the interrupt handler, this means as
257 * soon as a threshold condition is present we would enter the interrupt handler
258 * again and again. To work around this we mask all active thresholds interrupts
259 * in the interrupt handler and start a timer. In this timer we poll the
260 * interrupt status and only if the interrupt is inactive we unmask it again.
262 static void xadc_zynq_unmask_worker(struct work_struct *work)
264 struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
265 unsigned int misc_sts, unmask;
267 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
269 misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
271 spin_lock_irq(&xadc->lock);
273 /* Clear those bits which are not active anymore */
274 unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
275 xadc->zynq_masked_alarm &= misc_sts;
277 /* Also clear those which are masked out anyway */
278 xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
280 /* Clear the interrupts before we unmask them */
281 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
283 xadc_zynq_update_intmsk(xadc, 0, 0);
285 spin_unlock_irq(&xadc->lock);
287 /* if still pending some alarm re-trigger the timer */
288 if (xadc->zynq_masked_alarm) {
289 schedule_delayed_work(&xadc->zynq_unmask_work,
290 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
295 static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
297 struct iio_dev *indio_dev = devid;
298 struct xadc *xadc = iio_priv(indio_dev);
301 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
303 status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
308 spin_lock(&xadc->lock);
310 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
312 if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
313 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
314 XADC_ZYNQ_INT_DFIFO_GTH);
315 complete(&xadc->completion);
318 status &= XADC_ZYNQ_INT_ALARM_MASK;
320 xadc->zynq_masked_alarm |= status;
322 * mask the current event interrupt,
323 * unmask it when the interrupt is no more active.
325 xadc_zynq_update_intmsk(xadc, 0, 0);
327 xadc_handle_events(indio_dev,
328 xadc_zynq_transform_alarm(status));
330 /* unmask the required interrupts in timer. */
331 schedule_delayed_work(&xadc->zynq_unmask_work,
332 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
334 spin_unlock(&xadc->lock);
339 #define XADC_ZYNQ_TCK_RATE_MAX 50000000
340 #define XADC_ZYNQ_IGAP_DEFAULT 20
341 #define XADC_ZYNQ_PCAP_RATE_MAX 200000000
343 static int xadc_zynq_setup(struct platform_device *pdev,
344 struct iio_dev *indio_dev, int irq)
346 struct xadc *xadc = iio_priv(indio_dev);
347 unsigned long pcap_rate;
348 unsigned int tck_div;
351 unsigned int tck_rate;
354 /* TODO: Figure out how to make igap and tck_rate configurable */
355 igap = XADC_ZYNQ_IGAP_DEFAULT;
356 tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
358 xadc->zynq_intmask = ~0;
360 pcap_rate = clk_get_rate(xadc->clk);
364 if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
365 ret = clk_set_rate(xadc->clk,
366 (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
371 if (tck_rate > pcap_rate / 2) {
374 div = pcap_rate / tck_rate;
375 if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
380 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
382 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
384 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
386 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
388 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
389 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
390 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
391 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
392 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
393 XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
394 tck_div | XADC_ZYNQ_CFG_IGAP(igap));
396 if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
397 ret = clk_set_rate(xadc->clk, pcap_rate);
405 static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
410 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
412 switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
413 case XADC_ZYNQ_CFG_TCKRATE_DIV4:
416 case XADC_ZYNQ_CFG_TCKRATE_DIV8:
419 case XADC_ZYNQ_CFG_TCKRATE_DIV16:
427 return clk_get_rate(xadc->clk) / div;
430 static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
435 /* Move OT to bit 7 */
436 alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
438 spin_lock_irqsave(&xadc->lock, flags);
440 /* Clear previous interrupts if any. */
441 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
442 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
444 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
445 ~alarm & XADC_ZYNQ_INT_ALARM_MASK);
447 spin_unlock_irqrestore(&xadc->lock, flags);
450 static const struct xadc_ops xadc_zynq_ops = {
451 .read = xadc_zynq_read_adc_reg,
452 .write = xadc_zynq_write_adc_reg,
453 .setup = xadc_zynq_setup,
454 .get_dclk_rate = xadc_zynq_get_dclk_rate,
455 .interrupt_handler = xadc_zynq_interrupt_handler,
456 .update_alarm = xadc_zynq_update_alarm,
457 .type = XADC_TYPE_S7,
460 static const unsigned int xadc_axi_reg_offsets[] = {
461 [XADC_TYPE_S7] = XADC_7S_AXI_ADC_REG_OFFSET,
462 [XADC_TYPE_US] = XADC_US_AXI_ADC_REG_OFFSET,
465 static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
470 xadc_read_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4,
472 *val = val32 & 0xffff;
477 static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
480 xadc_write_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4,
486 static int xadc_axi_setup(struct platform_device *pdev,
487 struct iio_dev *indio_dev, int irq)
489 struct xadc *xadc = iio_priv(indio_dev);
491 xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
492 xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
497 static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
499 struct iio_dev *indio_dev = devid;
500 struct xadc *xadc = iio_priv(indio_dev);
501 uint32_t status, mask;
504 xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
505 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
511 if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
512 iio_trigger_poll(xadc->trigger);
514 if (status & XADC_AXI_INT_ALARM_MASK) {
516 * The order of the bits in the AXI-XADC status register does
517 * not match the order of the bits in the XADC alarm enable
518 * register. xadc_handle_events() expects the events to be in
519 * the same order as the XADC alarm enable register.
521 events = (status & 0x000e) >> 1;
522 events |= (status & 0x0001) << 3;
523 events |= (status & 0x3c00) >> 6;
524 xadc_handle_events(indio_dev, events);
527 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
532 static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
538 * The order of the bits in the AXI-XADC status register does not match
539 * the order of the bits in the XADC alarm enable register. We get
540 * passed the alarm mask in the same order as in the XADC alarm enable
543 alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
544 ((alarm & 0xf0) << 6);
546 spin_lock_irqsave(&xadc->lock, flags);
547 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
548 val &= ~XADC_AXI_INT_ALARM_MASK;
550 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
551 spin_unlock_irqrestore(&xadc->lock, flags);
554 static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
556 return clk_get_rate(xadc->clk);
559 static const struct xadc_ops xadc_7s_axi_ops = {
560 .read = xadc_axi_read_adc_reg,
561 .write = xadc_axi_write_adc_reg,
562 .setup = xadc_axi_setup,
563 .get_dclk_rate = xadc_axi_get_dclk,
564 .update_alarm = xadc_axi_update_alarm,
565 .interrupt_handler = xadc_axi_interrupt_handler,
566 .flags = XADC_FLAGS_BUFFERED | XADC_FLAGS_IRQ_OPTIONAL,
567 .type = XADC_TYPE_S7,
570 static const struct xadc_ops xadc_us_axi_ops = {
571 .read = xadc_axi_read_adc_reg,
572 .write = xadc_axi_write_adc_reg,
573 .setup = xadc_axi_setup,
574 .get_dclk_rate = xadc_axi_get_dclk,
575 .update_alarm = xadc_axi_update_alarm,
576 .interrupt_handler = xadc_axi_interrupt_handler,
577 .flags = XADC_FLAGS_BUFFERED | XADC_FLAGS_IRQ_OPTIONAL,
578 .type = XADC_TYPE_US,
581 static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
582 uint16_t mask, uint16_t val)
587 ret = _xadc_read_adc_reg(xadc, reg, &tmp);
591 return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
594 static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
595 uint16_t mask, uint16_t val)
599 mutex_lock(&xadc->mutex);
600 ret = _xadc_update_adc_reg(xadc, reg, mask, val);
601 mutex_unlock(&xadc->mutex);
606 static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
608 return xadc->ops->get_dclk_rate(xadc);
611 static int xadc_update_scan_mode(struct iio_dev *indio_dev,
612 const unsigned long *mask)
614 struct xadc *xadc = iio_priv(indio_dev);
618 n = bitmap_weight(mask, indio_dev->masklength);
620 if (check_mul_overflow(n, sizeof(*xadc->data), &new_size))
623 data = devm_krealloc(indio_dev->dev.parent, xadc->data,
624 new_size, GFP_KERNEL);
628 memset(data, 0, new_size);
634 static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
636 switch (scan_index) {
638 return XADC_REG_VCCPINT;
640 return XADC_REG_VCCPAUX;
642 return XADC_REG_VCCO_DDR;
644 return XADC_REG_TEMP;
646 return XADC_REG_VCCINT;
648 return XADC_REG_VCCAUX;
650 return XADC_REG_VPVN;
652 return XADC_REG_VREFP;
654 return XADC_REG_VREFN;
656 return XADC_REG_VCCBRAM;
658 return XADC_REG_VAUX(scan_index - 16);
662 static irqreturn_t xadc_trigger_handler(int irq, void *p)
664 struct iio_poll_func *pf = p;
665 struct iio_dev *indio_dev = pf->indio_dev;
666 struct xadc *xadc = iio_priv(indio_dev);
674 for_each_set_bit(i, indio_dev->active_scan_mask,
675 indio_dev->masklength) {
676 chan = xadc_scan_index_to_channel(i);
677 xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
681 iio_push_to_buffers(indio_dev, xadc->data);
684 iio_trigger_notify_done(indio_dev->trig);
689 static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
691 struct xadc *xadc = iio_trigger_get_drvdata(trigger);
697 mutex_lock(&xadc->mutex);
700 /* Only one of the two triggers can be active at a time. */
701 if (xadc->trigger != NULL) {
705 xadc->trigger = trigger;
706 if (trigger == xadc->convst_trigger)
707 convst = XADC_CONF0_EC;
711 ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
716 xadc->trigger = NULL;
719 spin_lock_irqsave(&xadc->lock, flags);
720 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
721 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS);
723 val |= XADC_AXI_INT_EOS;
725 val &= ~XADC_AXI_INT_EOS;
726 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
727 spin_unlock_irqrestore(&xadc->lock, flags);
730 mutex_unlock(&xadc->mutex);
735 static const struct iio_trigger_ops xadc_trigger_ops = {
736 .set_trigger_state = &xadc_trigger_set_state,
739 static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
742 struct device *dev = indio_dev->dev.parent;
743 struct iio_trigger *trig;
746 trig = devm_iio_trigger_alloc(dev, "%s%d-%s", indio_dev->name,
747 iio_device_id(indio_dev), name);
749 return ERR_PTR(-ENOMEM);
751 trig->ops = &xadc_trigger_ops;
752 iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
754 ret = devm_iio_trigger_register(dev, trig);
761 static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
766 * As per datasheet the power-down bits are don't care in the
767 * UltraScale, but as per reality setting the power-down bit for the
768 * non-existing ADC-B powers down the main ADC, so just return and don't
771 if (xadc->ops->type == XADC_TYPE_US)
774 /* Powerdown the ADC-B when it is not needed. */
776 case XADC_CONF1_SEQ_SIMULTANEOUS:
777 case XADC_CONF1_SEQ_INDEPENDENT:
781 val = XADC_CONF2_PD_ADC_B;
785 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
789 static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
791 unsigned int aux_scan_mode = scan_mode >> 16;
793 /* UltraScale has only one ADC and supports only continuous mode */
794 if (xadc->ops->type == XADC_TYPE_US)
795 return XADC_CONF1_SEQ_CONTINUOUS;
797 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
798 return XADC_CONF1_SEQ_SIMULTANEOUS;
800 if ((aux_scan_mode & 0xff00) == 0 ||
801 (aux_scan_mode & 0x00ff) == 0)
802 return XADC_CONF1_SEQ_CONTINUOUS;
804 return XADC_CONF1_SEQ_SIMULTANEOUS;
807 static int xadc_postdisable(struct iio_dev *indio_dev)
809 struct xadc *xadc = iio_priv(indio_dev);
810 unsigned long scan_mask;
814 scan_mask = 1; /* Run calibration as part of the sequence */
815 for (i = 0; i < indio_dev->num_channels; i++)
816 scan_mask |= BIT(indio_dev->channels[i].scan_index);
818 /* Enable all channels and calibration */
819 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
823 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
827 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
828 XADC_CONF1_SEQ_CONTINUOUS);
832 return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
835 static int xadc_preenable(struct iio_dev *indio_dev)
837 struct xadc *xadc = iio_priv(indio_dev);
838 unsigned long scan_mask;
842 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
843 XADC_CONF1_SEQ_DEFAULT);
847 scan_mask = *indio_dev->active_scan_mask;
848 seq_mode = xadc_get_seq_mode(xadc, scan_mask);
850 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
855 * In simultaneous mode the upper and lower aux channels are samples at
856 * the same time. In this mode the upper 8 bits in the sequencer
857 * register are don't care and the lower 8 bits control two channels
858 * each. As such we must set the bit if either the channel in the lower
859 * group or the upper group is enabled.
861 if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS)
862 scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000;
864 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
868 ret = xadc_power_adc_b(xadc, seq_mode);
872 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
879 xadc_postdisable(indio_dev);
883 static const struct iio_buffer_setup_ops xadc_buffer_ops = {
884 .preenable = &xadc_preenable,
885 .postdisable = &xadc_postdisable,
888 static int xadc_read_samplerate(struct xadc *xadc)
894 ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
898 div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
902 return xadc_get_dclk_rate(xadc) / div / 26;
905 static int xadc_read_raw(struct iio_dev *indio_dev,
906 struct iio_chan_spec const *chan, int *val, int *val2, long info)
908 struct xadc *xadc = iio_priv(indio_dev);
909 unsigned int bits = chan->scan_type.realbits;
914 case IIO_CHAN_INFO_RAW:
915 if (iio_buffer_enabled(indio_dev))
917 ret = xadc_read_adc_reg(xadc, chan->address, &val16);
921 val16 >>= chan->scan_type.shift;
922 if (chan->scan_type.sign == 'u')
925 *val = sign_extend32(val16, bits - 1);
928 case IIO_CHAN_INFO_SCALE:
929 switch (chan->type) {
931 /* V = (val * 3.0) / 2**bits */
932 switch (chan->address) {
933 case XADC_REG_VCCINT:
934 case XADC_REG_VCCAUX:
937 case XADC_REG_VCCBRAM:
938 case XADC_REG_VCCPINT:
939 case XADC_REG_VCCPAUX:
940 case XADC_REG_VCCO_DDR:
948 return IIO_VAL_FRACTIONAL_LOG2;
950 /* Temp in C = (val * 503.975) / 2**bits - 273.15 */
953 return IIO_VAL_FRACTIONAL_LOG2;
957 case IIO_CHAN_INFO_OFFSET:
958 /* Only the temperature channel has an offset */
959 *val = -((273150 << bits) / 503975);
961 case IIO_CHAN_INFO_SAMP_FREQ:
962 ret = xadc_read_samplerate(xadc);
973 static int xadc_write_samplerate(struct xadc *xadc, int val)
975 unsigned long clk_rate = xadc_get_dclk_rate(xadc);
985 if (val > XADC_MAX_SAMPLERATE)
986 val = XADC_MAX_SAMPLERATE;
995 * We want to round down, but only if we do not exceed the 150 kSPS
998 div = clk_rate / val;
999 if (clk_rate / div / 26 > XADC_MAX_SAMPLERATE)
1003 else if (div > 0xff)
1006 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
1007 div << XADC_CONF2_DIV_OFFSET);
1010 static int xadc_write_raw(struct iio_dev *indio_dev,
1011 struct iio_chan_spec const *chan, int val, int val2, long info)
1013 struct xadc *xadc = iio_priv(indio_dev);
1015 if (info != IIO_CHAN_INFO_SAMP_FREQ)
1018 return xadc_write_samplerate(xadc, val);
1021 static const struct iio_event_spec xadc_temp_events[] = {
1023 .type = IIO_EV_TYPE_THRESH,
1024 .dir = IIO_EV_DIR_RISING,
1025 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
1026 BIT(IIO_EV_INFO_VALUE) |
1027 BIT(IIO_EV_INFO_HYSTERESIS),
1031 /* Separate values for upper and lower thresholds, but only a shared enabled */
1032 static const struct iio_event_spec xadc_voltage_events[] = {
1034 .type = IIO_EV_TYPE_THRESH,
1035 .dir = IIO_EV_DIR_RISING,
1036 .mask_separate = BIT(IIO_EV_INFO_VALUE),
1038 .type = IIO_EV_TYPE_THRESH,
1039 .dir = IIO_EV_DIR_FALLING,
1040 .mask_separate = BIT(IIO_EV_INFO_VALUE),
1042 .type = IIO_EV_TYPE_THRESH,
1043 .dir = IIO_EV_DIR_EITHER,
1044 .mask_separate = BIT(IIO_EV_INFO_ENABLE),
1048 #define XADC_CHAN_TEMP(_chan, _scan_index, _addr, _bits) { \
1051 .channel = (_chan), \
1052 .address = (_addr), \
1053 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1054 BIT(IIO_CHAN_INFO_SCALE) | \
1055 BIT(IIO_CHAN_INFO_OFFSET), \
1056 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1057 .event_spec = xadc_temp_events, \
1058 .num_event_specs = ARRAY_SIZE(xadc_temp_events), \
1059 .scan_index = (_scan_index), \
1062 .realbits = (_bits), \
1063 .storagebits = 16, \
1064 .shift = 16 - (_bits), \
1065 .endianness = IIO_CPU, \
1069 #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _bits, _ext, _alarm) { \
1070 .type = IIO_VOLTAGE, \
1072 .channel = (_chan), \
1073 .address = (_addr), \
1074 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1075 BIT(IIO_CHAN_INFO_SCALE), \
1076 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1077 .event_spec = (_alarm) ? xadc_voltage_events : NULL, \
1078 .num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
1079 .scan_index = (_scan_index), \
1081 .sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
1082 .realbits = (_bits), \
1083 .storagebits = 16, \
1084 .shift = 16 - (_bits), \
1085 .endianness = IIO_CPU, \
1087 .extend_name = _ext, \
1091 #define XADC_7S_CHAN_TEMP(_chan, _scan_index, _addr) \
1092 XADC_CHAN_TEMP(_chan, _scan_index, _addr, 12)
1093 #define XADC_7S_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \
1094 XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 12, _ext, _alarm)
1096 static const struct iio_chan_spec xadc_7s_channels[] = {
1097 XADC_7S_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1098 XADC_7S_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1099 XADC_7S_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1100 XADC_7S_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1101 XADC_7S_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1102 XADC_7S_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1103 XADC_7S_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1104 XADC_7S_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1105 XADC_7S_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1106 XADC_7S_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1107 XADC_7S_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1108 XADC_7S_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1109 XADC_7S_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1110 XADC_7S_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1111 XADC_7S_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1112 XADC_7S_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1113 XADC_7S_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1114 XADC_7S_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1115 XADC_7S_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1116 XADC_7S_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1117 XADC_7S_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1118 XADC_7S_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1119 XADC_7S_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1120 XADC_7S_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1121 XADC_7S_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1122 XADC_7S_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1126 #define XADC_US_CHAN_TEMP(_chan, _scan_index, _addr) \
1127 XADC_CHAN_TEMP(_chan, _scan_index, _addr, 10)
1128 #define XADC_US_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \
1129 XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 10, _ext, _alarm)
1131 static const struct iio_chan_spec xadc_us_channels[] = {
1132 XADC_US_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1133 XADC_US_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1134 XADC_US_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1135 XADC_US_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1136 XADC_US_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpsintlp", true),
1137 XADC_US_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpsintfp", true),
1138 XADC_US_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccpsaux", true),
1139 XADC_US_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1140 XADC_US_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1141 XADC_US_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1142 XADC_US_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1143 XADC_US_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1144 XADC_US_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1145 XADC_US_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1146 XADC_US_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1147 XADC_US_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1148 XADC_US_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1149 XADC_US_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1150 XADC_US_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1151 XADC_US_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1152 XADC_US_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1153 XADC_US_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1154 XADC_US_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1155 XADC_US_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1156 XADC_US_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1157 XADC_US_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1160 static const struct iio_info xadc_info = {
1161 .read_raw = &xadc_read_raw,
1162 .write_raw = &xadc_write_raw,
1163 .read_event_config = &xadc_read_event_config,
1164 .write_event_config = &xadc_write_event_config,
1165 .read_event_value = &xadc_read_event_value,
1166 .write_event_value = &xadc_write_event_value,
1167 .update_scan_mode = &xadc_update_scan_mode,
1170 static const struct of_device_id xadc_of_match_table[] = {
1172 .compatible = "xlnx,zynq-xadc-1.00.a",
1173 .data = &xadc_zynq_ops
1175 .compatible = "xlnx,axi-xadc-1.00.a",
1176 .data = &xadc_7s_axi_ops
1178 .compatible = "xlnx,system-management-wiz-1.3",
1179 .data = &xadc_us_axi_ops
1183 MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1185 static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
1186 unsigned int *conf, int irq)
1188 struct device *dev = indio_dev->dev.parent;
1189 struct xadc *xadc = iio_priv(indio_dev);
1190 const struct iio_chan_spec *channel_templates;
1191 struct iio_chan_spec *channels, *chan;
1192 struct device_node *chan_node, *child;
1193 unsigned int max_channels;
1194 unsigned int num_channels;
1195 const char *external_mux;
1203 ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
1204 if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1205 xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1206 else if (strcasecmp(external_mux, "single") == 0)
1207 xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1208 else if (strcasecmp(external_mux, "dual") == 0)
1209 xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1213 if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1214 ret = of_property_read_u32(np, "xlnx,external-mux-channel",
1219 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1220 if (ext_mux_chan == 0)
1221 ext_mux_chan = XADC_REG_VPVN;
1222 else if (ext_mux_chan <= 16)
1223 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1227 if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1228 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1233 *conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1235 if (xadc->ops->type == XADC_TYPE_S7) {
1236 channel_templates = xadc_7s_channels;
1237 max_channels = ARRAY_SIZE(xadc_7s_channels);
1239 channel_templates = xadc_us_channels;
1240 max_channels = ARRAY_SIZE(xadc_us_channels);
1242 channels = devm_kmemdup(dev, channel_templates,
1243 sizeof(channels[0]) * max_channels, GFP_KERNEL);
1248 chan = &channels[9];
1250 chan_node = of_get_child_by_name(np, "xlnx,channels");
1252 for_each_child_of_node(chan_node, child) {
1253 if (num_channels >= max_channels) {
1258 ret = of_property_read_u32(child, "reg", ®);
1259 if (ret || reg > 16)
1262 if (of_property_read_bool(child, "xlnx,bipolar"))
1263 chan->scan_type.sign = 's';
1266 chan->scan_index = 11;
1267 chan->address = XADC_REG_VPVN;
1269 chan->scan_index = 15 + reg;
1270 chan->address = XADC_REG_VAUX(reg - 1);
1276 of_node_put(chan_node);
1278 /* No IRQ => no events */
1280 for (i = 0; i < num_channels; i++) {
1281 channels[i].event_spec = NULL;
1282 channels[i].num_event_specs = 0;
1286 indio_dev->num_channels = num_channels;
1287 indio_dev->channels = devm_krealloc(dev, channels,
1288 sizeof(*channels) * num_channels,
1290 /* If we can't resize the channels array, just use the original */
1291 if (!indio_dev->channels)
1292 indio_dev->channels = channels;
1297 static const char * const xadc_type_names[] = {
1298 [XADC_TYPE_S7] = "xadc",
1299 [XADC_TYPE_US] = "xilinx-system-monitor",
1302 static void xadc_clk_disable_unprepare(void *data)
1304 struct clk *clk = data;
1306 clk_disable_unprepare(clk);
1309 static void xadc_cancel_delayed_work(void *data)
1311 struct delayed_work *work = data;
1313 cancel_delayed_work_sync(work);
1316 static int xadc_probe(struct platform_device *pdev)
1318 struct device *dev = &pdev->dev;
1319 const struct of_device_id *id;
1320 const struct xadc_ops *ops;
1321 struct iio_dev *indio_dev;
1322 unsigned int bipolar_mask;
1332 id = of_match_node(xadc_of_match_table, dev->of_node);
1338 irq = platform_get_irq_optional(pdev, 0);
1340 (irq != -ENXIO || !(ops->flags & XADC_FLAGS_IRQ_OPTIONAL)))
1343 indio_dev = devm_iio_device_alloc(dev, sizeof(*xadc));
1347 xadc = iio_priv(indio_dev);
1348 xadc->ops = id->data;
1349 init_completion(&xadc->completion);
1350 mutex_init(&xadc->mutex);
1351 spin_lock_init(&xadc->lock);
1352 INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1354 xadc->base = devm_platform_ioremap_resource(pdev, 0);
1355 if (IS_ERR(xadc->base))
1356 return PTR_ERR(xadc->base);
1358 indio_dev->name = xadc_type_names[xadc->ops->type];
1359 indio_dev->modes = INDIO_DIRECT_MODE;
1360 indio_dev->info = &xadc_info;
1362 ret = xadc_parse_dt(indio_dev, dev->of_node, &conf0, irq);
1366 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1367 ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
1368 &iio_pollfunc_store_time,
1369 &xadc_trigger_handler,
1375 xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1376 if (IS_ERR(xadc->convst_trigger))
1377 return PTR_ERR(xadc->convst_trigger);
1379 xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1381 if (IS_ERR(xadc->samplerate_trigger))
1382 return PTR_ERR(xadc->samplerate_trigger);
1386 xadc->clk = devm_clk_get(dev, NULL);
1387 if (IS_ERR(xadc->clk))
1388 return PTR_ERR(xadc->clk);
1390 ret = clk_prepare_enable(xadc->clk);
1394 ret = devm_add_action_or_reset(dev,
1395 xadc_clk_disable_unprepare, xadc->clk);
1400 * Make sure not to exceed the maximum samplerate since otherwise the
1401 * resulting interrupt storm will soft-lock the system.
1403 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1404 ret = xadc_read_samplerate(xadc);
1408 if (ret > XADC_MAX_SAMPLERATE) {
1409 ret = xadc_write_samplerate(xadc, XADC_MAX_SAMPLERATE);
1416 ret = devm_request_irq(dev, irq, xadc->ops->interrupt_handler,
1417 0, dev_name(dev), indio_dev);
1421 ret = devm_add_action_or_reset(dev, xadc_cancel_delayed_work,
1422 &xadc->zynq_unmask_work);
1427 ret = xadc->ops->setup(pdev, indio_dev, irq);
1431 for (i = 0; i < 16; i++)
1432 xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1433 &xadc->threshold[i]);
1435 ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1440 for (i = 0; i < indio_dev->num_channels; i++) {
1441 if (indio_dev->channels[i].scan_type.sign == 's')
1442 bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1445 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1449 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1450 bipolar_mask >> 16);
1454 /* Disable all alarms */
1455 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
1456 XADC_CONF1_ALARM_MASK);
1460 /* Set thresholds to min/max */
1461 for (i = 0; i < 16; i++) {
1463 * Set max voltage threshold and both temperature thresholds to
1464 * 0xffff, min voltage threshold to 0.
1466 if (i % 8 < 4 || i == 7)
1467 xadc->threshold[i] = 0xffff;
1469 xadc->threshold[i] = 0;
1470 ret = xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1471 xadc->threshold[i]);
1476 /* Go to non-buffered mode */
1477 xadc_postdisable(indio_dev);
1479 return devm_iio_device_register(dev, indio_dev);
1482 static struct platform_driver xadc_driver = {
1483 .probe = xadc_probe,
1486 .of_match_table = xadc_of_match_table,
1489 module_platform_driver(xadc_driver);
1491 MODULE_LICENSE("GPL v2");
1493 MODULE_DESCRIPTION("Xilinx XADC IIO driver");