1 // SPDX-License-Identifier: GPL-2.0
3 * This file is part of STM32 ADC driver
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/iio/iio.h>
14 #include <linux/iio/buffer.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
22 #include <linux/iopoll.h>
23 #include <linux/module.h>
24 #include <linux/nvmem-consumer.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
28 #include <linux/of_device.h>
30 #include "stm32-adc-core.h"
32 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
33 #define STM32H7_LINCALFACT_NUM 6
35 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
36 #define STM32H7_BOOST_CLKRATE 20000000UL
38 #define STM32_ADC_CH_MAX 20 /* max number of channels */
39 #define STM32_ADC_CH_SZ 16 /* max channel name size */
40 #define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */
41 #define STM32_ADC_MAX_SMP 7 /* SMPx range is [0..7] */
42 #define STM32_ADC_TIMEOUT_US 100000
43 #define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
44 #define STM32_ADC_HW_STOP_DELAY_MS 100
45 #define STM32_ADC_VREFINT_VOLTAGE 3300
47 #define STM32_DMA_BUFFER_SIZE PAGE_SIZE
49 /* External trigger enable */
50 enum stm32_adc_exten {
52 STM32_EXTEN_HWTRIG_RISING_EDGE,
53 STM32_EXTEN_HWTRIG_FALLING_EDGE,
54 STM32_EXTEN_HWTRIG_BOTH_EDGES,
57 /* extsel - trigger mux selection value */
58 enum stm32_adc_extsel {
82 enum stm32_adc_int_ch {
83 STM32_ADC_INT_CH_NONE = -1,
84 STM32_ADC_INT_CH_VDDCORE,
85 STM32_ADC_INT_CH_VREFINT,
86 STM32_ADC_INT_CH_VBAT,
91 * struct stm32_adc_ic - ADC internal channels
92 * @name: name of the internal channel
93 * @idx: internal channel enum index
100 static const struct stm32_adc_ic stm32_adc_ic[STM32_ADC_INT_CH_NB] = {
101 { "vddcore", STM32_ADC_INT_CH_VDDCORE },
102 { "vrefint", STM32_ADC_INT_CH_VREFINT },
103 { "vbat", STM32_ADC_INT_CH_VBAT },
107 * struct stm32_adc_trig_info - ADC trigger info
108 * @name: name of the trigger, corresponding to its source
109 * @extsel: trigger selection
111 struct stm32_adc_trig_info {
113 enum stm32_adc_extsel extsel;
117 * struct stm32_adc_calib - optional adc calibration data
118 * @calfact_s: Calibration offset for single ended channels
119 * @calfact_d: Calibration offset in differential
120 * @lincalfact: Linearity calibration factor
121 * @calibrated: Indicates calibration status
123 struct stm32_adc_calib {
126 u32 lincalfact[STM32H7_LINCALFACT_NUM];
131 * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc
132 * @reg: register offset
133 * @mask: bitfield mask
136 struct stm32_adc_regs {
143 * struct stm32_adc_vrefint - stm32 ADC internal reference voltage data
144 * @vrefint_cal: vrefint calibration value from nvmem
145 * @vrefint_data: vrefint actual value
147 struct stm32_adc_vrefint {
153 * struct stm32_adc_regspec - stm32 registers definition
154 * @dr: data register offset
155 * @ier_eoc: interrupt enable register & eocie bitfield
156 * @ier_ovr: interrupt enable register & overrun bitfield
157 * @isr_eoc: interrupt status register & eoc bitfield
158 * @isr_ovr: interrupt status register & overrun bitfield
159 * @sqr: reference to sequence registers array
160 * @exten: trigger control register & bitfield
161 * @extsel: trigger selection register & bitfield
162 * @res: resolution selection register & bitfield
163 * @smpr: smpr1 & smpr2 registers offset array
164 * @smp_bits: smpr1 & smpr2 index and bitfields
165 * @or_vdd: option register & vddcore bitfield
166 * @ccr_vbat: common register & vbat bitfield
167 * @ccr_vref: common register & vrefint bitfield
169 struct stm32_adc_regspec {
171 const struct stm32_adc_regs ier_eoc;
172 const struct stm32_adc_regs ier_ovr;
173 const struct stm32_adc_regs isr_eoc;
174 const struct stm32_adc_regs isr_ovr;
175 const struct stm32_adc_regs *sqr;
176 const struct stm32_adc_regs exten;
177 const struct stm32_adc_regs extsel;
178 const struct stm32_adc_regs res;
180 const struct stm32_adc_regs *smp_bits;
181 const struct stm32_adc_regs or_vdd;
182 const struct stm32_adc_regs ccr_vbat;
183 const struct stm32_adc_regs ccr_vref;
189 * struct stm32_adc_cfg - stm32 compatible configuration data
190 * @regs: registers descriptions
191 * @adc_info: per instance input channels definitions
192 * @trigs: external trigger sources
193 * @clk_required: clock is required
194 * @has_vregready: vregready status flag presence
195 * @prepare: optional prepare routine (power-up, enable)
196 * @start_conv: routine to start conversions
197 * @stop_conv: routine to stop conversions
198 * @unprepare: optional unprepare routine (disable, power-down)
199 * @irq_clear: routine to clear irqs
200 * @smp_cycles: programmable sampling time (ADC clock cycles)
201 * @ts_vrefint_ns: vrefint minimum sampling time in ns
203 struct stm32_adc_cfg {
204 const struct stm32_adc_regspec *regs;
205 const struct stm32_adc_info *adc_info;
206 struct stm32_adc_trig_info *trigs;
209 int (*prepare)(struct iio_dev *);
210 void (*start_conv)(struct iio_dev *, bool dma);
211 void (*stop_conv)(struct iio_dev *);
212 void (*unprepare)(struct iio_dev *);
213 void (*irq_clear)(struct iio_dev *indio_dev, u32 msk);
214 const unsigned int *smp_cycles;
215 const unsigned int ts_vrefint_ns;
219 * struct stm32_adc - private data of each ADC IIO instance
220 * @common: reference to ADC block common data
221 * @offset: ADC instance register offset in ADC block
222 * @cfg: compatible configuration data
223 * @completion: end of single conversion completion
224 * @buffer: data buffer + 8 bytes for timestamp if enabled
225 * @clk: clock for this adc instance
226 * @irq: interrupt for this adc instance
228 * @bufi: data buffer index
229 * @num_conv: expected number of scan conversions
230 * @res: data resolution (e.g. RES bitfield value)
231 * @trigger_polarity: external trigger polarity (e.g. exten)
232 * @dma_chan: dma channel
233 * @rx_buf: dma rx buffer cpu address
234 * @rx_dma_buf: dma rx buffer bus address
235 * @rx_buf_sz: dma rx buffer size
236 * @difsel: bitmask to set single-ended/differential channel
237 * @pcsel: bitmask to preselect channels on some devices
238 * @smpr_val: sampling time settings (e.g. smpr1 / smpr2)
239 * @cal: optional calibration data on some devices
240 * @vrefint: internal reference voltage data
241 * @chan_name: channel name array
242 * @num_diff: number of differential channels
243 * @int_ch: internal channel indexes array
246 struct stm32_adc_common *common;
248 const struct stm32_adc_cfg *cfg;
249 struct completion completion;
250 u16 buffer[STM32_ADC_MAX_SQ + 4] __aligned(8);
253 spinlock_t lock; /* interrupt lock */
255 unsigned int num_conv;
257 u32 trigger_polarity;
258 struct dma_chan *dma_chan;
260 dma_addr_t rx_dma_buf;
261 unsigned int rx_buf_sz;
265 struct stm32_adc_calib cal;
266 struct stm32_adc_vrefint vrefint;
267 char chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
269 int int_ch[STM32_ADC_INT_CH_NB];
272 struct stm32_adc_diff_channel {
278 * struct stm32_adc_info - stm32 ADC, per instance config data
279 * @max_channels: Number of channels
280 * @resolutions: available resolutions
281 * @num_res: number of available resolutions
283 struct stm32_adc_info {
285 const unsigned int *resolutions;
286 const unsigned int num_res;
289 static const unsigned int stm32f4_adc_resolutions[] = {
290 /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
294 /* stm32f4 can have up to 16 channels */
295 static const struct stm32_adc_info stm32f4_adc_info = {
297 .resolutions = stm32f4_adc_resolutions,
298 .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
301 static const unsigned int stm32h7_adc_resolutions[] = {
302 /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
306 /* stm32h7 can have up to 20 channels */
307 static const struct stm32_adc_info stm32h7_adc_info = {
308 .max_channels = STM32_ADC_CH_MAX,
309 .resolutions = stm32h7_adc_resolutions,
310 .num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
314 * stm32f4_sq - describe regular sequence registers
315 * - L: sequence len (register & bit field)
316 * - SQ1..SQ16: sequence entries (register & bit field)
318 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
319 /* L: len bit field description to be kept as first element */
320 { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
321 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
322 { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
323 { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
324 { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
325 { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
326 { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
327 { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
328 { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
329 { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
330 { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
331 { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
332 { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
333 { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
334 { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
335 { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
336 { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
337 { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
340 /* STM32F4 external trigger sources for all instances */
341 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
342 { TIM1_CH1, STM32_EXT0 },
343 { TIM1_CH2, STM32_EXT1 },
344 { TIM1_CH3, STM32_EXT2 },
345 { TIM2_CH2, STM32_EXT3 },
346 { TIM2_CH3, STM32_EXT4 },
347 { TIM2_CH4, STM32_EXT5 },
348 { TIM2_TRGO, STM32_EXT6 },
349 { TIM3_CH1, STM32_EXT7 },
350 { TIM3_TRGO, STM32_EXT8 },
351 { TIM4_CH4, STM32_EXT9 },
352 { TIM5_CH1, STM32_EXT10 },
353 { TIM5_CH2, STM32_EXT11 },
354 { TIM5_CH3, STM32_EXT12 },
355 { TIM8_CH1, STM32_EXT13 },
356 { TIM8_TRGO, STM32_EXT14 },
361 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
362 * Sorted so it can be indexed by channel number.
364 static const struct stm32_adc_regs stm32f4_smp_bits[] = {
365 /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
366 { 1, GENMASK(2, 0), 0 },
367 { 1, GENMASK(5, 3), 3 },
368 { 1, GENMASK(8, 6), 6 },
369 { 1, GENMASK(11, 9), 9 },
370 { 1, GENMASK(14, 12), 12 },
371 { 1, GENMASK(17, 15), 15 },
372 { 1, GENMASK(20, 18), 18 },
373 { 1, GENMASK(23, 21), 21 },
374 { 1, GENMASK(26, 24), 24 },
375 { 1, GENMASK(29, 27), 27 },
376 /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
377 { 0, GENMASK(2, 0), 0 },
378 { 0, GENMASK(5, 3), 3 },
379 { 0, GENMASK(8, 6), 6 },
380 { 0, GENMASK(11, 9), 9 },
381 { 0, GENMASK(14, 12), 12 },
382 { 0, GENMASK(17, 15), 15 },
383 { 0, GENMASK(20, 18), 18 },
384 { 0, GENMASK(23, 21), 21 },
385 { 0, GENMASK(26, 24), 24 },
388 /* STM32F4 programmable sampling time (ADC clock cycles) */
389 static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
390 3, 15, 28, 56, 84, 112, 144, 480,
393 static const struct stm32_adc_regspec stm32f4_adc_regspec = {
394 .dr = STM32F4_ADC_DR,
395 .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
396 .ier_ovr = { STM32F4_ADC_CR1, STM32F4_OVRIE },
397 .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
398 .isr_ovr = { STM32F4_ADC_SR, STM32F4_OVR },
400 .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
401 .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
402 STM32F4_EXTSEL_SHIFT },
403 .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
404 .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
405 .smp_bits = stm32f4_smp_bits,
408 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
409 /* L: len bit field description to be kept as first element */
410 { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
411 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
412 { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
413 { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
414 { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
415 { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
416 { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
417 { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
418 { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
419 { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
420 { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
421 { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
422 { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
423 { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
424 { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
425 { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
426 { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
427 { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
430 /* STM32H7 external trigger sources for all instances */
431 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
432 { TIM1_CH1, STM32_EXT0 },
433 { TIM1_CH2, STM32_EXT1 },
434 { TIM1_CH3, STM32_EXT2 },
435 { TIM2_CH2, STM32_EXT3 },
436 { TIM3_TRGO, STM32_EXT4 },
437 { TIM4_CH4, STM32_EXT5 },
438 { TIM8_TRGO, STM32_EXT7 },
439 { TIM8_TRGO2, STM32_EXT8 },
440 { TIM1_TRGO, STM32_EXT9 },
441 { TIM1_TRGO2, STM32_EXT10 },
442 { TIM2_TRGO, STM32_EXT11 },
443 { TIM4_TRGO, STM32_EXT12 },
444 { TIM6_TRGO, STM32_EXT13 },
445 { TIM15_TRGO, STM32_EXT14 },
446 { TIM3_CH4, STM32_EXT15 },
447 { LPTIM1_OUT, STM32_EXT18 },
448 { LPTIM2_OUT, STM32_EXT19 },
449 { LPTIM3_OUT, STM32_EXT20 },
454 * stm32h7_smp_bits - describe sampling time register index & bit fields
455 * Sorted so it can be indexed by channel number.
457 static const struct stm32_adc_regs stm32h7_smp_bits[] = {
458 /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
459 { 0, GENMASK(2, 0), 0 },
460 { 0, GENMASK(5, 3), 3 },
461 { 0, GENMASK(8, 6), 6 },
462 { 0, GENMASK(11, 9), 9 },
463 { 0, GENMASK(14, 12), 12 },
464 { 0, GENMASK(17, 15), 15 },
465 { 0, GENMASK(20, 18), 18 },
466 { 0, GENMASK(23, 21), 21 },
467 { 0, GENMASK(26, 24), 24 },
468 { 0, GENMASK(29, 27), 27 },
469 /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
470 { 1, GENMASK(2, 0), 0 },
471 { 1, GENMASK(5, 3), 3 },
472 { 1, GENMASK(8, 6), 6 },
473 { 1, GENMASK(11, 9), 9 },
474 { 1, GENMASK(14, 12), 12 },
475 { 1, GENMASK(17, 15), 15 },
476 { 1, GENMASK(20, 18), 18 },
477 { 1, GENMASK(23, 21), 21 },
478 { 1, GENMASK(26, 24), 24 },
479 { 1, GENMASK(29, 27), 27 },
482 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
483 static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
484 1, 2, 8, 16, 32, 64, 387, 810,
487 static const struct stm32_adc_regspec stm32h7_adc_regspec = {
488 .dr = STM32H7_ADC_DR,
489 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
490 .ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
491 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
492 .isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
494 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
495 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
496 STM32H7_EXTSEL_SHIFT },
497 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
498 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
499 .smp_bits = stm32h7_smp_bits,
502 static const struct stm32_adc_regspec stm32mp1_adc_regspec = {
503 .dr = STM32H7_ADC_DR,
504 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
505 .ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
506 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
507 .isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
509 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
510 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
511 STM32H7_EXTSEL_SHIFT },
512 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
513 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
514 .smp_bits = stm32h7_smp_bits,
515 .or_vdd = { STM32MP1_ADC2_OR, STM32MP1_VDDCOREEN },
516 .ccr_vbat = { STM32H7_ADC_CCR, STM32H7_VBATEN },
517 .ccr_vref = { STM32H7_ADC_CCR, STM32H7_VREFEN },
521 * STM32 ADC registers access routines
522 * @adc: stm32 adc instance
523 * @reg: reg offset in adc instance
525 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
526 * for adc1, adc2 and adc3.
528 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
530 return readl_relaxed(adc->common->base + adc->offset + reg);
533 #define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr)
535 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
536 readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
537 cond, sleep_us, timeout_us)
539 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
541 return readw_relaxed(adc->common->base + adc->offset + reg);
544 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
546 writel_relaxed(val, adc->common->base + adc->offset + reg);
549 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
553 spin_lock_irqsave(&adc->lock, flags);
554 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
555 spin_unlock_irqrestore(&adc->lock, flags);
558 static void stm32_adc_set_bits_common(struct stm32_adc *adc, u32 reg, u32 bits)
560 spin_lock(&adc->common->lock);
561 writel_relaxed(readl_relaxed(adc->common->base + reg) | bits,
562 adc->common->base + reg);
563 spin_unlock(&adc->common->lock);
566 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
570 spin_lock_irqsave(&adc->lock, flags);
571 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
572 spin_unlock_irqrestore(&adc->lock, flags);
575 static void stm32_adc_clr_bits_common(struct stm32_adc *adc, u32 reg, u32 bits)
577 spin_lock(&adc->common->lock);
578 writel_relaxed(readl_relaxed(adc->common->base + reg) & ~bits,
579 adc->common->base + reg);
580 spin_unlock(&adc->common->lock);
584 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
585 * @adc: stm32 adc instance
587 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
589 stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
590 adc->cfg->regs->ier_eoc.mask);
594 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
595 * @adc: stm32 adc instance
597 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
599 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
600 adc->cfg->regs->ier_eoc.mask);
603 static void stm32_adc_ovr_irq_enable(struct stm32_adc *adc)
605 stm32_adc_set_bits(adc, adc->cfg->regs->ier_ovr.reg,
606 adc->cfg->regs->ier_ovr.mask);
609 static void stm32_adc_ovr_irq_disable(struct stm32_adc *adc)
611 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_ovr.reg,
612 adc->cfg->regs->ier_ovr.mask);
615 static void stm32_adc_set_res(struct stm32_adc *adc)
617 const struct stm32_adc_regs *res = &adc->cfg->regs->res;
620 val = stm32_adc_readl(adc, res->reg);
621 val = (val & ~res->mask) | (adc->res << res->shift);
622 stm32_adc_writel(adc, res->reg, val);
625 static int stm32_adc_hw_stop(struct device *dev)
627 struct iio_dev *indio_dev = dev_get_drvdata(dev);
628 struct stm32_adc *adc = iio_priv(indio_dev);
630 if (adc->cfg->unprepare)
631 adc->cfg->unprepare(indio_dev);
633 clk_disable_unprepare(adc->clk);
638 static int stm32_adc_hw_start(struct device *dev)
640 struct iio_dev *indio_dev = dev_get_drvdata(dev);
641 struct stm32_adc *adc = iio_priv(indio_dev);
644 ret = clk_prepare_enable(adc->clk);
648 stm32_adc_set_res(adc);
650 if (adc->cfg->prepare) {
651 ret = adc->cfg->prepare(indio_dev);
659 clk_disable_unprepare(adc->clk);
664 static void stm32_adc_int_ch_enable(struct iio_dev *indio_dev)
666 struct stm32_adc *adc = iio_priv(indio_dev);
669 for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
670 if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE)
674 case STM32_ADC_INT_CH_VDDCORE:
675 dev_dbg(&indio_dev->dev, "Enable VDDCore\n");
676 stm32_adc_set_bits(adc, adc->cfg->regs->or_vdd.reg,
677 adc->cfg->regs->or_vdd.mask);
679 case STM32_ADC_INT_CH_VREFINT:
680 dev_dbg(&indio_dev->dev, "Enable VREFInt\n");
681 stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vref.reg,
682 adc->cfg->regs->ccr_vref.mask);
684 case STM32_ADC_INT_CH_VBAT:
685 dev_dbg(&indio_dev->dev, "Enable VBAT\n");
686 stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vbat.reg,
687 adc->cfg->regs->ccr_vbat.mask);
693 static void stm32_adc_int_ch_disable(struct stm32_adc *adc)
697 for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
698 if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE)
702 case STM32_ADC_INT_CH_VDDCORE:
703 stm32_adc_clr_bits(adc, adc->cfg->regs->or_vdd.reg,
704 adc->cfg->regs->or_vdd.mask);
706 case STM32_ADC_INT_CH_VREFINT:
707 stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vref.reg,
708 adc->cfg->regs->ccr_vref.mask);
710 case STM32_ADC_INT_CH_VBAT:
711 stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vbat.reg,
712 adc->cfg->regs->ccr_vbat.mask);
719 * stm32f4_adc_start_conv() - Start conversions for regular channels.
720 * @indio_dev: IIO device instance
721 * @dma: use dma to transfer conversion result
723 * Start conversions for regular channels.
724 * Also take care of normal or DMA mode. Circular DMA may be used for regular
725 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
726 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
728 static void stm32f4_adc_start_conv(struct iio_dev *indio_dev, bool dma)
730 struct stm32_adc *adc = iio_priv(indio_dev);
732 stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
735 stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
736 STM32F4_DMA | STM32F4_DDS);
738 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
740 /* Wait for Power-up time (tSTAB from datasheet) */
743 /* Software start ? (e.g. trigger detection disabled ?) */
744 if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
745 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
748 static void stm32f4_adc_stop_conv(struct iio_dev *indio_dev)
750 struct stm32_adc *adc = iio_priv(indio_dev);
752 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
753 stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
755 stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
756 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
757 STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
760 static void stm32f4_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
762 struct stm32_adc *adc = iio_priv(indio_dev);
764 stm32_adc_clr_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
767 static void stm32h7_adc_start_conv(struct iio_dev *indio_dev, bool dma)
769 struct stm32_adc *adc = iio_priv(indio_dev);
770 enum stm32h7_adc_dmngt dmngt;
775 dmngt = STM32H7_DMNGT_DMA_CIRC;
777 dmngt = STM32H7_DMNGT_DR_ONLY;
779 spin_lock_irqsave(&adc->lock, flags);
780 val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
781 val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
782 stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
783 spin_unlock_irqrestore(&adc->lock, flags);
785 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
788 static void stm32h7_adc_stop_conv(struct iio_dev *indio_dev)
790 struct stm32_adc *adc = iio_priv(indio_dev);
794 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
796 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
797 !(val & (STM32H7_ADSTART)),
798 100, STM32_ADC_TIMEOUT_US);
800 dev_warn(&indio_dev->dev, "stop failed\n");
802 stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
805 static void stm32h7_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
807 struct stm32_adc *adc = iio_priv(indio_dev);
808 /* On STM32H7 IRQs are cleared by writing 1 into ISR register */
809 stm32_adc_set_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
812 static int stm32h7_adc_exit_pwr_down(struct iio_dev *indio_dev)
814 struct stm32_adc *adc = iio_priv(indio_dev);
818 /* Exit deep power down, then enable ADC voltage regulator */
819 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
820 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
822 if (adc->common->rate > STM32H7_BOOST_CLKRATE)
823 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
825 /* Wait for startup time */
826 if (!adc->cfg->has_vregready) {
827 usleep_range(10, 20);
831 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
832 val & STM32MP1_VREGREADY, 100,
833 STM32_ADC_TIMEOUT_US);
835 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
836 dev_err(&indio_dev->dev, "Failed to exit power down\n");
842 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
844 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
846 /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
847 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
850 static int stm32h7_adc_enable(struct iio_dev *indio_dev)
852 struct stm32_adc *adc = iio_priv(indio_dev);
856 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
858 /* Poll for ADRDY to be set (after adc startup time) */
859 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
861 100, STM32_ADC_TIMEOUT_US);
863 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
864 dev_err(&indio_dev->dev, "Failed to enable ADC\n");
866 /* Clear ADRDY by writing one */
867 stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
873 static void stm32h7_adc_disable(struct iio_dev *indio_dev)
875 struct stm32_adc *adc = iio_priv(indio_dev);
879 /* Disable ADC and wait until it's effectively disabled */
880 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
881 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
882 !(val & STM32H7_ADEN), 100,
883 STM32_ADC_TIMEOUT_US);
885 dev_warn(&indio_dev->dev, "Failed to disable\n");
889 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
890 * @indio_dev: IIO device instance
891 * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
893 static int stm32h7_adc_read_selfcalib(struct iio_dev *indio_dev)
895 struct stm32_adc *adc = iio_priv(indio_dev);
897 u32 lincalrdyw_mask, val;
899 /* Read linearity calibration */
900 lincalrdyw_mask = STM32H7_LINCALRDYW6;
901 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
902 /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
903 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
905 /* Poll: wait calib data to be ready in CALFACT2 register */
906 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
907 !(val & lincalrdyw_mask),
908 100, STM32_ADC_TIMEOUT_US);
910 dev_err(&indio_dev->dev, "Failed to read calfact\n");
914 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
915 adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
916 adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
918 lincalrdyw_mask >>= 1;
921 /* Read offset calibration */
922 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
923 adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
924 adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
925 adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
926 adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
927 adc->cal.calibrated = true;
933 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
934 * @indio_dev: IIO device instance
935 * Note: ADC must be enabled, with no on-going conversions.
937 static int stm32h7_adc_restore_selfcalib(struct iio_dev *indio_dev)
939 struct stm32_adc *adc = iio_priv(indio_dev);
941 u32 lincalrdyw_mask, val;
943 val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
944 (adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
945 stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
947 lincalrdyw_mask = STM32H7_LINCALRDYW6;
948 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
950 * Write saved calibration data to shadow registers:
951 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
952 * data write. Then poll to wait for complete transfer.
954 val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
955 stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
956 stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
957 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
958 val & lincalrdyw_mask,
959 100, STM32_ADC_TIMEOUT_US);
961 dev_err(&indio_dev->dev, "Failed to write calfact\n");
966 * Read back calibration data, has two effects:
967 * - It ensures bits LINCALRDYW[6..1] are kept cleared
968 * for next time calibration needs to be restored.
969 * - BTW, bit clear triggers a read, then check data has been
972 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
973 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
974 !(val & lincalrdyw_mask),
975 100, STM32_ADC_TIMEOUT_US);
977 dev_err(&indio_dev->dev, "Failed to read calfact\n");
980 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
981 if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
982 dev_err(&indio_dev->dev, "calfact not consistent\n");
986 lincalrdyw_mask >>= 1;
993 * Fixed timeout value for ADC calibration.
995 * - low clock frequency
996 * - maximum prescalers
997 * Calibration requires:
998 * - 131,072 ADC clock cycle for the linear calibration
999 * - 20 ADC clock cycle for the offset calibration
1001 * Set to 100ms for now
1003 #define STM32H7_ADC_CALIB_TIMEOUT_US 100000
1006 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
1007 * @indio_dev: IIO device instance
1008 * Note: Must be called once ADC is out of power down.
1010 static int stm32h7_adc_selfcalib(struct iio_dev *indio_dev)
1012 struct stm32_adc *adc = iio_priv(indio_dev);
1016 if (adc->cal.calibrated)
1020 * Select calibration mode:
1021 * - Offset calibration for single ended inputs
1022 * - No linearity calibration (do it later, before reading it)
1024 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
1025 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
1027 /* Start calibration, then wait for completion */
1028 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
1029 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1030 !(val & STM32H7_ADCAL), 100,
1031 STM32H7_ADC_CALIB_TIMEOUT_US);
1033 dev_err(&indio_dev->dev, "calibration failed\n");
1038 * Select calibration mode, then start calibration:
1039 * - Offset calibration for differential input
1040 * - Linearity calibration (needs to be done only once for single/diff)
1041 * will run simultaneously with offset calibration.
1043 stm32_adc_set_bits(adc, STM32H7_ADC_CR,
1044 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
1045 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
1046 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1047 !(val & STM32H7_ADCAL), 100,
1048 STM32H7_ADC_CALIB_TIMEOUT_US);
1050 dev_err(&indio_dev->dev, "calibration failed\n");
1055 stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
1056 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
1062 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
1063 * @indio_dev: IIO device instance
1064 * Leave power down mode.
1065 * Configure channels as single ended or differential before enabling ADC.
1067 * Restore calibration data.
1068 * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
1069 * - Only one input is selected for single ended (e.g. 'vinp')
1070 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
1072 static int stm32h7_adc_prepare(struct iio_dev *indio_dev)
1074 struct stm32_adc *adc = iio_priv(indio_dev);
1077 ret = stm32h7_adc_exit_pwr_down(indio_dev);
1081 ret = stm32h7_adc_selfcalib(indio_dev);
1086 stm32_adc_int_ch_enable(indio_dev);
1088 stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
1090 ret = stm32h7_adc_enable(indio_dev);
1094 /* Either restore or read calibration result for future reference */
1096 ret = stm32h7_adc_restore_selfcalib(indio_dev);
1098 ret = stm32h7_adc_read_selfcalib(indio_dev);
1102 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
1107 stm32h7_adc_disable(indio_dev);
1109 stm32_adc_int_ch_disable(adc);
1111 stm32h7_adc_enter_pwr_down(adc);
1116 static void stm32h7_adc_unprepare(struct iio_dev *indio_dev)
1118 struct stm32_adc *adc = iio_priv(indio_dev);
1120 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, 0);
1121 stm32h7_adc_disable(indio_dev);
1122 stm32_adc_int_ch_disable(adc);
1123 stm32h7_adc_enter_pwr_down(adc);
1127 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
1128 * @indio_dev: IIO device
1129 * @scan_mask: channels to be converted
1131 * Conversion sequence :
1132 * Apply sampling time settings for all channels.
1133 * Configure ADC scan sequence based on selected channels in scan_mask.
1134 * Add channels to SQR registers, from scan_mask LSB to MSB, then
1135 * program sequence len.
1137 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
1138 const unsigned long *scan_mask)
1140 struct stm32_adc *adc = iio_priv(indio_dev);
1141 const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
1142 const struct iio_chan_spec *chan;
1146 /* Apply sampling time settings */
1147 stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
1148 stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
1150 for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
1151 chan = indio_dev->channels + bit;
1153 * Assign one channel per SQ entry in regular
1154 * sequence, starting with SQ1.
1157 if (i > STM32_ADC_MAX_SQ)
1160 dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1161 __func__, chan->channel, i);
1163 val = stm32_adc_readl(adc, sqr[i].reg);
1164 val &= ~sqr[i].mask;
1165 val |= chan->channel << sqr[i].shift;
1166 stm32_adc_writel(adc, sqr[i].reg, val);
1173 val = stm32_adc_readl(adc, sqr[0].reg);
1174 val &= ~sqr[0].mask;
1175 val |= ((i - 1) << sqr[0].shift);
1176 stm32_adc_writel(adc, sqr[0].reg, val);
1182 * stm32_adc_get_trig_extsel() - Get external trigger selection
1183 * @indio_dev: IIO device structure
1186 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1188 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1189 struct iio_trigger *trig)
1191 struct stm32_adc *adc = iio_priv(indio_dev);
1194 /* lookup triggers registered by stm32 timer trigger driver */
1195 for (i = 0; adc->cfg->trigs[i].name; i++) {
1197 * Checking both stm32 timer trigger type and trig name
1198 * should be safe against arbitrary trigger names.
1200 if ((is_stm32_timer_trigger(trig) ||
1201 is_stm32_lptim_trigger(trig)) &&
1202 !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1203 return adc->cfg->trigs[i].extsel;
1211 * stm32_adc_set_trig() - Set a regular trigger
1212 * @indio_dev: IIO device
1213 * @trig: IIO trigger
1215 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1216 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1217 * - if HW trigger enabled, set source & polarity
1219 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1220 struct iio_trigger *trig)
1222 struct stm32_adc *adc = iio_priv(indio_dev);
1223 u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1224 unsigned long flags;
1228 ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1232 /* set trigger source and polarity (default to rising edge) */
1234 exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1237 spin_lock_irqsave(&adc->lock, flags);
1238 val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1239 val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1240 val |= exten << adc->cfg->regs->exten.shift;
1241 val |= extsel << adc->cfg->regs->extsel.shift;
1242 stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val);
1243 spin_unlock_irqrestore(&adc->lock, flags);
1248 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1249 const struct iio_chan_spec *chan,
1252 struct stm32_adc *adc = iio_priv(indio_dev);
1254 adc->trigger_polarity = type;
1259 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1260 const struct iio_chan_spec *chan)
1262 struct stm32_adc *adc = iio_priv(indio_dev);
1264 return adc->trigger_polarity;
1267 static const char * const stm32_trig_pol_items[] = {
1268 "rising-edge", "falling-edge", "both-edges",
1271 static const struct iio_enum stm32_adc_trig_pol = {
1272 .items = stm32_trig_pol_items,
1273 .num_items = ARRAY_SIZE(stm32_trig_pol_items),
1274 .get = stm32_adc_get_trig_pol,
1275 .set = stm32_adc_set_trig_pol,
1279 * stm32_adc_single_conv() - Performs a single conversion
1280 * @indio_dev: IIO device
1281 * @chan: IIO channel
1282 * @res: conversion result
1284 * The function performs a single conversion on a given channel:
1285 * - Apply sampling time settings
1286 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1288 * - Start conversion, then wait for interrupt completion.
1290 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1291 const struct iio_chan_spec *chan,
1294 struct stm32_adc *adc = iio_priv(indio_dev);
1295 struct device *dev = indio_dev->dev.parent;
1296 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1301 reinit_completion(&adc->completion);
1305 ret = pm_runtime_resume_and_get(dev);
1309 /* Apply sampling time settings */
1310 stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1311 stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1313 /* Program chan number in regular sequence (SQ1) */
1314 val = stm32_adc_readl(adc, regs->sqr[1].reg);
1315 val &= ~regs->sqr[1].mask;
1316 val |= chan->channel << regs->sqr[1].shift;
1317 stm32_adc_writel(adc, regs->sqr[1].reg, val);
1319 /* Set regular sequence len (0 for 1 conversion) */
1320 stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1322 /* Trigger detection disabled (conversion can be launched in SW) */
1323 stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1325 stm32_adc_conv_irq_enable(adc);
1327 adc->cfg->start_conv(indio_dev, false);
1329 timeout = wait_for_completion_interruptible_timeout(
1330 &adc->completion, STM32_ADC_TIMEOUT);
1333 } else if (timeout < 0) {
1336 *res = adc->buffer[0];
1340 adc->cfg->stop_conv(indio_dev);
1342 stm32_adc_conv_irq_disable(adc);
1344 pm_runtime_mark_last_busy(dev);
1345 pm_runtime_put_autosuspend(dev);
1350 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1351 struct iio_chan_spec const *chan,
1352 int *val, int *val2, long mask)
1354 struct stm32_adc *adc = iio_priv(indio_dev);
1358 case IIO_CHAN_INFO_RAW:
1359 case IIO_CHAN_INFO_PROCESSED:
1360 ret = iio_device_claim_direct_mode(indio_dev);
1363 if (chan->type == IIO_VOLTAGE)
1364 ret = stm32_adc_single_conv(indio_dev, chan, val);
1368 if (mask == IIO_CHAN_INFO_PROCESSED && adc->vrefint.vrefint_cal)
1369 *val = STM32_ADC_VREFINT_VOLTAGE * adc->vrefint.vrefint_cal / *val;
1371 iio_device_release_direct_mode(indio_dev);
1374 case IIO_CHAN_INFO_SCALE:
1375 if (chan->differential) {
1376 *val = adc->common->vref_mv * 2;
1377 *val2 = chan->scan_type.realbits;
1379 *val = adc->common->vref_mv;
1380 *val2 = chan->scan_type.realbits;
1382 return IIO_VAL_FRACTIONAL_LOG2;
1384 case IIO_CHAN_INFO_OFFSET:
1385 if (chan->differential)
1386 /* ADC_full_scale / 2 */
1387 *val = -((1 << chan->scan_type.realbits) / 2);
1397 static void stm32_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
1399 struct stm32_adc *adc = iio_priv(indio_dev);
1401 adc->cfg->irq_clear(indio_dev, msk);
1404 static irqreturn_t stm32_adc_threaded_isr(int irq, void *data)
1406 struct iio_dev *indio_dev = data;
1407 struct stm32_adc *adc = iio_priv(indio_dev);
1408 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1409 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1410 u32 mask = stm32_adc_readl(adc, regs->ier_eoc.reg);
1412 /* Check ovr status right now, as ovr mask should be already disabled */
1413 if (status & regs->isr_ovr.mask) {
1415 * Clear ovr bit to avoid subsequent calls to IRQ handler.
1416 * This requires to stop ADC first. OVR bit state in ISR,
1417 * is propaged to CSR register by hardware.
1419 adc->cfg->stop_conv(indio_dev);
1420 stm32_adc_irq_clear(indio_dev, regs->isr_ovr.mask);
1421 dev_err(&indio_dev->dev, "Overrun, stopping: restart needed\n");
1425 if (!(status & mask))
1426 dev_err_ratelimited(&indio_dev->dev,
1427 "Unexpected IRQ: IER=0x%08x, ISR=0x%08x\n",
1433 static irqreturn_t stm32_adc_isr(int irq, void *data)
1435 struct iio_dev *indio_dev = data;
1436 struct stm32_adc *adc = iio_priv(indio_dev);
1437 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1438 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1439 u32 mask = stm32_adc_readl(adc, regs->ier_eoc.reg);
1441 if (!(status & mask))
1442 return IRQ_WAKE_THREAD;
1444 if (status & regs->isr_ovr.mask) {
1446 * Overrun occurred on regular conversions: data for wrong
1447 * channel may be read. Unconditionally disable interrupts
1448 * to stop processing data and print error message.
1449 * Restarting the capture can be done by disabling, then
1450 * re-enabling it (e.g. write 0, then 1 to buffer/enable).
1452 stm32_adc_ovr_irq_disable(adc);
1453 stm32_adc_conv_irq_disable(adc);
1454 return IRQ_WAKE_THREAD;
1457 if (status & regs->isr_eoc.mask) {
1458 /* Reading DR also clears EOC status flag */
1459 adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1460 if (iio_buffer_enabled(indio_dev)) {
1462 if (adc->bufi >= adc->num_conv) {
1463 stm32_adc_conv_irq_disable(adc);
1464 iio_trigger_poll(indio_dev->trig);
1467 complete(&adc->completion);
1476 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1477 * @indio_dev: IIO device
1478 * @trig: new trigger
1480 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1481 * driver, -EINVAL otherwise.
1483 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1484 struct iio_trigger *trig)
1486 return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1489 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1491 struct stm32_adc *adc = iio_priv(indio_dev);
1492 unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1493 unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1496 * dma cyclic transfers are used, buffer is split into two periods.
1498 * - always one buffer (period) dma is working on
1499 * - one buffer (period) driver can push data.
1501 watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1502 adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1507 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1508 const unsigned long *scan_mask)
1510 struct stm32_adc *adc = iio_priv(indio_dev);
1511 struct device *dev = indio_dev->dev.parent;
1514 ret = pm_runtime_resume_and_get(dev);
1518 adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1520 ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1521 pm_runtime_mark_last_busy(dev);
1522 pm_runtime_put_autosuspend(dev);
1527 static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1528 const struct of_phandle_args *iiospec)
1532 for (i = 0; i < indio_dev->num_channels; i++)
1533 if (indio_dev->channels[i].channel == iiospec->args[0])
1540 * stm32_adc_debugfs_reg_access - read or write register value
1541 * @indio_dev: IIO device structure
1542 * @reg: register offset
1543 * @writeval: value to write
1544 * @readval: value to read
1546 * To read a value from an ADC register:
1547 * echo [ADC reg offset] > direct_reg_access
1548 * cat direct_reg_access
1550 * To write a value in a ADC register:
1551 * echo [ADC_reg_offset] [value] > direct_reg_access
1553 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1554 unsigned reg, unsigned writeval,
1557 struct stm32_adc *adc = iio_priv(indio_dev);
1558 struct device *dev = indio_dev->dev.parent;
1561 ret = pm_runtime_resume_and_get(dev);
1566 stm32_adc_writel(adc, reg, writeval);
1568 *readval = stm32_adc_readl(adc, reg);
1570 pm_runtime_mark_last_busy(dev);
1571 pm_runtime_put_autosuspend(dev);
1576 static const struct iio_info stm32_adc_iio_info = {
1577 .read_raw = stm32_adc_read_raw,
1578 .validate_trigger = stm32_adc_validate_trigger,
1579 .hwfifo_set_watermark = stm32_adc_set_watermark,
1580 .update_scan_mode = stm32_adc_update_scan_mode,
1581 .debugfs_reg_access = stm32_adc_debugfs_reg_access,
1582 .of_xlate = stm32_adc_of_xlate,
1585 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1587 struct dma_tx_state state;
1588 enum dma_status status;
1590 status = dmaengine_tx_status(adc->dma_chan,
1591 adc->dma_chan->cookie,
1593 if (status == DMA_IN_PROGRESS) {
1594 /* Residue is size in bytes from end of buffer */
1595 unsigned int i = adc->rx_buf_sz - state.residue;
1598 /* Return available bytes */
1600 size = i - adc->bufi;
1602 size = adc->rx_buf_sz + i - adc->bufi;
1610 static void stm32_adc_dma_buffer_done(void *data)
1612 struct iio_dev *indio_dev = data;
1613 struct stm32_adc *adc = iio_priv(indio_dev);
1614 int residue = stm32_adc_dma_residue(adc);
1617 * In DMA mode the trigger services of IIO are not used
1618 * (e.g. no call to iio_trigger_poll).
1619 * Calling irq handler associated to the hardware trigger is not
1620 * relevant as the conversions have already been done. Data
1621 * transfers are performed directly in DMA callback instead.
1622 * This implementation avoids to call trigger irq handler that
1623 * may sleep, in an atomic context (DMA irq handler context).
1625 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1627 while (residue >= indio_dev->scan_bytes) {
1628 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1630 iio_push_to_buffers(indio_dev, buffer);
1632 residue -= indio_dev->scan_bytes;
1633 adc->bufi += indio_dev->scan_bytes;
1634 if (adc->bufi >= adc->rx_buf_sz)
1639 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1641 struct stm32_adc *adc = iio_priv(indio_dev);
1642 struct dma_async_tx_descriptor *desc;
1643 dma_cookie_t cookie;
1649 dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1650 adc->rx_buf_sz, adc->rx_buf_sz / 2);
1652 /* Prepare a DMA cyclic transaction */
1653 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1655 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1657 DMA_PREP_INTERRUPT);
1661 desc->callback = stm32_adc_dma_buffer_done;
1662 desc->callback_param = indio_dev;
1664 cookie = dmaengine_submit(desc);
1665 ret = dma_submit_error(cookie);
1667 dmaengine_terminate_sync(adc->dma_chan);
1671 /* Issue pending DMA requests */
1672 dma_async_issue_pending(adc->dma_chan);
1677 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1679 struct stm32_adc *adc = iio_priv(indio_dev);
1680 struct device *dev = indio_dev->dev.parent;
1683 ret = pm_runtime_resume_and_get(dev);
1687 ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1689 dev_err(&indio_dev->dev, "Can't set trigger\n");
1693 ret = stm32_adc_dma_start(indio_dev);
1695 dev_err(&indio_dev->dev, "Can't start dma\n");
1699 /* Reset adc buffer index */
1702 stm32_adc_ovr_irq_enable(adc);
1705 stm32_adc_conv_irq_enable(adc);
1707 adc->cfg->start_conv(indio_dev, !!adc->dma_chan);
1712 stm32_adc_set_trig(indio_dev, NULL);
1714 pm_runtime_mark_last_busy(dev);
1715 pm_runtime_put_autosuspend(dev);
1720 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1722 struct stm32_adc *adc = iio_priv(indio_dev);
1723 struct device *dev = indio_dev->dev.parent;
1725 adc->cfg->stop_conv(indio_dev);
1727 stm32_adc_conv_irq_disable(adc);
1729 stm32_adc_ovr_irq_disable(adc);
1732 dmaengine_terminate_sync(adc->dma_chan);
1734 if (stm32_adc_set_trig(indio_dev, NULL))
1735 dev_err(&indio_dev->dev, "Can't clear trigger\n");
1737 pm_runtime_mark_last_busy(dev);
1738 pm_runtime_put_autosuspend(dev);
1743 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1744 .postenable = &stm32_adc_buffer_postenable,
1745 .predisable = &stm32_adc_buffer_predisable,
1748 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1750 struct iio_poll_func *pf = p;
1751 struct iio_dev *indio_dev = pf->indio_dev;
1752 struct stm32_adc *adc = iio_priv(indio_dev);
1754 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1756 /* reset buffer index */
1758 iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1760 iio_trigger_notify_done(indio_dev->trig);
1762 /* re-enable eoc irq */
1763 stm32_adc_conv_irq_enable(adc);
1768 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1769 IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1771 .name = "trigger_polarity_available",
1772 .shared = IIO_SHARED_BY_ALL,
1773 .read = iio_enum_available_read,
1774 .private = (uintptr_t)&stm32_adc_trig_pol,
1779 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1781 struct device_node *node = indio_dev->dev.of_node;
1782 struct stm32_adc *adc = iio_priv(indio_dev);
1786 if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1787 res = adc->cfg->adc_info->resolutions[0];
1789 for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1790 if (res == adc->cfg->adc_info->resolutions[i])
1792 if (i >= adc->cfg->adc_info->num_res) {
1793 dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1797 dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1803 static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1805 const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1806 u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1807 unsigned int smp, r = smpr->reg;
1810 * For vrefint channel, ensure that the sampling time cannot
1811 * be lower than the one specified in the datasheet
1813 if (channel == adc->int_ch[STM32_ADC_INT_CH_VREFINT])
1814 smp_ns = max(smp_ns, adc->cfg->ts_vrefint_ns);
1816 /* Determine sampling time (ADC clock cycles) */
1817 period_ns = NSEC_PER_SEC / adc->common->rate;
1818 for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1819 if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1821 if (smp > STM32_ADC_MAX_SMP)
1822 smp = STM32_ADC_MAX_SMP;
1824 /* pre-build sampling time registers (e.g. smpr1, smpr2) */
1825 adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1828 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1829 struct iio_chan_spec *chan, u32 vinp,
1830 u32 vinn, int scan_index, bool differential)
1832 struct stm32_adc *adc = iio_priv(indio_dev);
1833 char *name = adc->chan_name[vinp];
1835 chan->type = IIO_VOLTAGE;
1836 chan->channel = vinp;
1838 chan->differential = 1;
1839 chan->channel2 = vinn;
1840 snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1842 snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1844 chan->datasheet_name = name;
1845 chan->scan_index = scan_index;
1847 if (chan->channel == adc->int_ch[STM32_ADC_INT_CH_VREFINT])
1848 chan->info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED);
1850 chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1851 chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1852 BIT(IIO_CHAN_INFO_OFFSET);
1853 chan->scan_type.sign = 'u';
1854 chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1855 chan->scan_type.storagebits = 16;
1856 chan->ext_info = stm32_adc_ext_info;
1858 /* pre-build selected channels mask */
1859 adc->pcsel |= BIT(chan->channel);
1861 /* pre-build diff channels mask */
1862 adc->difsel |= BIT(chan->channel);
1863 /* Also add negative input to pre-selected channels */
1864 adc->pcsel |= BIT(chan->channel2);
1868 static int stm32_adc_get_legacy_chan_count(struct iio_dev *indio_dev, struct stm32_adc *adc)
1870 struct device_node *node = indio_dev->dev.of_node;
1871 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1872 int num_channels = 0, ret;
1874 ret = of_property_count_u32_elems(node, "st,adc-channels");
1875 if (ret > adc_info->max_channels) {
1876 dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1878 } else if (ret > 0) {
1879 num_channels += ret;
1882 ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1883 sizeof(struct stm32_adc_diff_channel));
1884 if (ret > adc_info->max_channels) {
1885 dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1887 } else if (ret > 0) {
1888 adc->num_diff = ret;
1889 num_channels += ret;
1892 /* Optional sample time is provided either for each, or all channels */
1893 ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1894 if (ret > 1 && ret != num_channels) {
1895 dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1899 return num_channels;
1902 static int stm32_adc_legacy_chan_init(struct iio_dev *indio_dev,
1903 struct stm32_adc *adc,
1904 struct iio_chan_spec *channels)
1906 struct device_node *node = indio_dev->dev.of_node;
1907 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1908 struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1909 u32 num_diff = adc->num_diff;
1910 int size = num_diff * sizeof(*diff) / sizeof(u32);
1911 int scan_index = 0, val, ret, i;
1912 struct property *prop;
1917 ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1920 dev_err(&indio_dev->dev, "Failed to get diff channels %d\n", ret);
1924 for (i = 0; i < num_diff; i++) {
1925 if (diff[i].vinp >= adc_info->max_channels ||
1926 diff[i].vinn >= adc_info->max_channels) {
1927 dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1928 diff[i].vinp, diff[i].vinn);
1932 stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1933 diff[i].vinp, diff[i].vinn,
1939 of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1940 if (val >= adc_info->max_channels) {
1941 dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1945 /* Channel can't be configured both as single-ended & diff */
1946 for (i = 0; i < num_diff; i++) {
1947 if (val == diff[i].vinp) {
1948 dev_err(&indio_dev->dev, "channel %d misconfigured\n", val);
1952 stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1953 0, scan_index, false);
1957 for (i = 0; i < scan_index; i++) {
1959 * Using of_property_read_u32_index(), smp value will only be
1960 * modified if valid u32 value can be decoded. This allows to
1961 * get either no value, 1 shared value for all indexes, or one
1962 * value per channel.
1964 of_property_read_u32_index(node, "st,min-sample-time-nsecs", i, &smp);
1966 /* Prepare sampling time settings */
1967 stm32_adc_smpr_init(adc, channels[i].channel, smp);
1973 static int stm32_adc_populate_int_ch(struct iio_dev *indio_dev, const char *ch_name,
1976 struct stm32_adc *adc = iio_priv(indio_dev);
1980 for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
1981 if (!strncmp(stm32_adc_ic[i].name, ch_name, STM32_ADC_CH_SZ)) {
1982 adc->int_ch[i] = chan;
1984 if (stm32_adc_ic[i].idx != STM32_ADC_INT_CH_VREFINT)
1987 /* Get calibration data for vrefint channel */
1988 ret = nvmem_cell_read_u16(&indio_dev->dev, "vrefint", &vrefint);
1989 if (ret && ret != -ENOENT) {
1990 return dev_err_probe(indio_dev->dev.parent, ret,
1991 "nvmem access error\n");
1994 dev_dbg(&indio_dev->dev, "vrefint calibration not found\n");
1996 adc->vrefint.vrefint_cal = vrefint;
2003 static int stm32_adc_generic_chan_init(struct iio_dev *indio_dev,
2004 struct stm32_adc *adc,
2005 struct iio_chan_spec *channels)
2007 struct device_node *node = indio_dev->dev.of_node;
2008 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2009 struct device_node *child;
2011 int val, scan_index = 0, ret;
2015 for_each_available_child_of_node(node, child) {
2016 ret = of_property_read_u32(child, "reg", &val);
2018 dev_err(&indio_dev->dev, "Missing channel index %d\n", ret);
2022 ret = of_property_read_string(child, "label", &name);
2023 /* label is optional */
2025 if (strlen(name) >= STM32_ADC_CH_SZ) {
2026 dev_err(&indio_dev->dev, "Label %s exceeds %d characters\n",
2027 name, STM32_ADC_CH_SZ);
2031 strncpy(adc->chan_name[val], name, STM32_ADC_CH_SZ);
2032 ret = stm32_adc_populate_int_ch(indio_dev, name, val);
2035 } else if (ret != -EINVAL) {
2036 dev_err(&indio_dev->dev, "Invalid label %d\n", ret);
2040 if (val >= adc_info->max_channels) {
2041 dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
2046 differential = false;
2047 ret = of_property_read_u32_array(child, "diff-channels", vin, 2);
2048 /* diff-channels is optional */
2050 differential = true;
2051 if (vin[0] != val || vin[1] >= adc_info->max_channels) {
2052 dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
2056 } else if (ret != -EINVAL) {
2057 dev_err(&indio_dev->dev, "Invalid diff-channels property %d\n", ret);
2061 stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
2062 vin[1], scan_index, differential);
2064 ret = of_property_read_u32(child, "st,min-sample-time-ns", &val);
2065 /* st,min-sample-time-ns is optional */
2067 stm32_adc_smpr_init(adc, channels[scan_index].channel, val);
2069 stm32_adc_smpr_init(adc, vin[1], val);
2070 } else if (ret != -EINVAL) {
2071 dev_err(&indio_dev->dev, "Invalid st,min-sample-time-ns property %d\n",
2087 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev, bool timestamping)
2089 struct device_node *node = indio_dev->dev.of_node;
2090 struct stm32_adc *adc = iio_priv(indio_dev);
2091 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2092 struct iio_chan_spec *channels;
2093 int scan_index = 0, num_channels = 0, ret, i;
2094 bool legacy = false;
2096 for (i = 0; i < STM32_ADC_INT_CH_NB; i++)
2097 adc->int_ch[i] = STM32_ADC_INT_CH_NONE;
2099 num_channels = of_get_available_child_count(node);
2100 /* If no channels have been found, fallback to channels legacy properties. */
2101 if (!num_channels) {
2104 ret = stm32_adc_get_legacy_chan_count(indio_dev, adc);
2106 dev_err(indio_dev->dev.parent, "No channel found\n");
2108 } else if (ret < 0) {
2115 if (num_channels > adc_info->max_channels) {
2116 dev_err(&indio_dev->dev, "Channel number [%d] exceeds %d\n",
2117 num_channels, adc_info->max_channels);
2124 channels = devm_kcalloc(&indio_dev->dev, num_channels,
2125 sizeof(struct iio_chan_spec), GFP_KERNEL);
2130 ret = stm32_adc_legacy_chan_init(indio_dev, adc, channels);
2132 ret = stm32_adc_generic_chan_init(indio_dev, adc, channels);
2138 struct iio_chan_spec *timestamp = &channels[scan_index];
2140 timestamp->type = IIO_TIMESTAMP;
2141 timestamp->channel = -1;
2142 timestamp->scan_index = scan_index;
2143 timestamp->scan_type.sign = 's';
2144 timestamp->scan_type.realbits = 64;
2145 timestamp->scan_type.storagebits = 64;
2150 indio_dev->num_channels = scan_index;
2151 indio_dev->channels = channels;
2156 static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
2158 struct stm32_adc *adc = iio_priv(indio_dev);
2159 struct dma_slave_config config;
2162 adc->dma_chan = dma_request_chan(dev, "rx");
2163 if (IS_ERR(adc->dma_chan)) {
2164 ret = PTR_ERR(adc->dma_chan);
2166 return dev_err_probe(dev, ret,
2167 "DMA channel request failed with\n");
2169 /* DMA is optional: fall back to IRQ mode */
2170 adc->dma_chan = NULL;
2174 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
2175 STM32_DMA_BUFFER_SIZE,
2176 &adc->rx_dma_buf, GFP_KERNEL);
2182 /* Configure DMA channel to read data register */
2183 memset(&config, 0, sizeof(config));
2184 config.src_addr = (dma_addr_t)adc->common->phys_base;
2185 config.src_addr += adc->offset + adc->cfg->regs->dr;
2186 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
2188 ret = dmaengine_slave_config(adc->dma_chan, &config);
2195 dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
2196 adc->rx_buf, adc->rx_dma_buf);
2198 dma_release_channel(adc->dma_chan);
2203 static int stm32_adc_probe(struct platform_device *pdev)
2205 struct iio_dev *indio_dev;
2206 struct device *dev = &pdev->dev;
2207 irqreturn_t (*handler)(int irq, void *p) = NULL;
2208 struct stm32_adc *adc;
2209 bool timestamping = false;
2212 if (!pdev->dev.of_node)
2215 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
2219 adc = iio_priv(indio_dev);
2220 adc->common = dev_get_drvdata(pdev->dev.parent);
2221 spin_lock_init(&adc->lock);
2222 init_completion(&adc->completion);
2223 adc->cfg = (const struct stm32_adc_cfg *)
2224 of_match_device(dev->driver->of_match_table, dev)->data;
2226 indio_dev->name = dev_name(&pdev->dev);
2227 indio_dev->dev.of_node = pdev->dev.of_node;
2228 indio_dev->info = &stm32_adc_iio_info;
2229 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
2231 platform_set_drvdata(pdev, indio_dev);
2233 ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
2235 dev_err(&pdev->dev, "missing reg property\n");
2239 adc->irq = platform_get_irq(pdev, 0);
2243 ret = devm_request_threaded_irq(&pdev->dev, adc->irq, stm32_adc_isr,
2244 stm32_adc_threaded_isr,
2245 0, pdev->name, indio_dev);
2247 dev_err(&pdev->dev, "failed to request IRQ\n");
2251 adc->clk = devm_clk_get(&pdev->dev, NULL);
2252 if (IS_ERR(adc->clk)) {
2253 ret = PTR_ERR(adc->clk);
2254 if (ret == -ENOENT && !adc->cfg->clk_required) {
2257 dev_err(&pdev->dev, "Can't get clock\n");
2262 ret = stm32_adc_of_get_resolution(indio_dev);
2266 ret = stm32_adc_dma_request(dev, indio_dev);
2270 if (!adc->dma_chan) {
2271 /* For PIO mode only, iio_pollfunc_store_time stores a timestamp
2272 * in the primary trigger IRQ handler and stm32_adc_trigger_handler
2273 * runs in the IRQ thread to push out buffer along with timestamp.
2275 handler = &stm32_adc_trigger_handler;
2276 timestamping = true;
2279 ret = stm32_adc_chan_of_init(indio_dev, timestamping);
2281 goto err_dma_disable;
2283 ret = iio_triggered_buffer_setup(indio_dev,
2284 &iio_pollfunc_store_time, handler,
2285 &stm32_adc_buffer_setup_ops);
2287 dev_err(&pdev->dev, "buffer setup failed\n");
2288 goto err_dma_disable;
2291 /* Get stm32-adc-core PM online */
2292 pm_runtime_get_noresume(dev);
2293 pm_runtime_set_active(dev);
2294 pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
2295 pm_runtime_use_autosuspend(dev);
2296 pm_runtime_enable(dev);
2298 ret = stm32_adc_hw_start(dev);
2300 goto err_buffer_cleanup;
2302 ret = iio_device_register(indio_dev);
2304 dev_err(&pdev->dev, "iio dev register failed\n");
2308 pm_runtime_mark_last_busy(dev);
2309 pm_runtime_put_autosuspend(dev);
2314 stm32_adc_hw_stop(dev);
2317 pm_runtime_disable(dev);
2318 pm_runtime_set_suspended(dev);
2319 pm_runtime_put_noidle(dev);
2320 iio_triggered_buffer_cleanup(indio_dev);
2323 if (adc->dma_chan) {
2324 dma_free_coherent(adc->dma_chan->device->dev,
2325 STM32_DMA_BUFFER_SIZE,
2326 adc->rx_buf, adc->rx_dma_buf);
2327 dma_release_channel(adc->dma_chan);
2333 static int stm32_adc_remove(struct platform_device *pdev)
2335 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
2336 struct stm32_adc *adc = iio_priv(indio_dev);
2338 pm_runtime_get_sync(&pdev->dev);
2339 iio_device_unregister(indio_dev);
2340 stm32_adc_hw_stop(&pdev->dev);
2341 pm_runtime_disable(&pdev->dev);
2342 pm_runtime_set_suspended(&pdev->dev);
2343 pm_runtime_put_noidle(&pdev->dev);
2344 iio_triggered_buffer_cleanup(indio_dev);
2345 if (adc->dma_chan) {
2346 dma_free_coherent(adc->dma_chan->device->dev,
2347 STM32_DMA_BUFFER_SIZE,
2348 adc->rx_buf, adc->rx_dma_buf);
2349 dma_release_channel(adc->dma_chan);
2355 #if defined(CONFIG_PM_SLEEP)
2356 static int stm32_adc_suspend(struct device *dev)
2358 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2360 if (iio_buffer_enabled(indio_dev))
2361 stm32_adc_buffer_predisable(indio_dev);
2363 return pm_runtime_force_suspend(dev);
2366 static int stm32_adc_resume(struct device *dev)
2368 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2371 ret = pm_runtime_force_resume(dev);
2375 if (!iio_buffer_enabled(indio_dev))
2378 ret = stm32_adc_update_scan_mode(indio_dev,
2379 indio_dev->active_scan_mask);
2383 return stm32_adc_buffer_postenable(indio_dev);
2387 #if defined(CONFIG_PM)
2388 static int stm32_adc_runtime_suspend(struct device *dev)
2390 return stm32_adc_hw_stop(dev);
2393 static int stm32_adc_runtime_resume(struct device *dev)
2395 return stm32_adc_hw_start(dev);
2399 static const struct dev_pm_ops stm32_adc_pm_ops = {
2400 SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2401 SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2405 static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2406 .regs = &stm32f4_adc_regspec,
2407 .adc_info = &stm32f4_adc_info,
2408 .trigs = stm32f4_adc_trigs,
2409 .clk_required = true,
2410 .start_conv = stm32f4_adc_start_conv,
2411 .stop_conv = stm32f4_adc_stop_conv,
2412 .smp_cycles = stm32f4_adc_smp_cycles,
2413 .irq_clear = stm32f4_adc_irq_clear,
2416 static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2417 .regs = &stm32h7_adc_regspec,
2418 .adc_info = &stm32h7_adc_info,
2419 .trigs = stm32h7_adc_trigs,
2420 .start_conv = stm32h7_adc_start_conv,
2421 .stop_conv = stm32h7_adc_stop_conv,
2422 .prepare = stm32h7_adc_prepare,
2423 .unprepare = stm32h7_adc_unprepare,
2424 .smp_cycles = stm32h7_adc_smp_cycles,
2425 .irq_clear = stm32h7_adc_irq_clear,
2428 static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2429 .regs = &stm32mp1_adc_regspec,
2430 .adc_info = &stm32h7_adc_info,
2431 .trigs = stm32h7_adc_trigs,
2432 .has_vregready = true,
2433 .start_conv = stm32h7_adc_start_conv,
2434 .stop_conv = stm32h7_adc_stop_conv,
2435 .prepare = stm32h7_adc_prepare,
2436 .unprepare = stm32h7_adc_unprepare,
2437 .smp_cycles = stm32h7_adc_smp_cycles,
2438 .irq_clear = stm32h7_adc_irq_clear,
2439 .ts_vrefint_ns = 4300,
2442 static const struct of_device_id stm32_adc_of_match[] = {
2443 { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2444 { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2445 { .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2448 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2450 static struct platform_driver stm32_adc_driver = {
2451 .probe = stm32_adc_probe,
2452 .remove = stm32_adc_remove,
2454 .name = "stm32-adc",
2455 .of_match_table = stm32_adc_of_match,
2456 .pm = &stm32_adc_pm_ops,
2459 module_platform_driver(stm32_adc_driver);
2462 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2463 MODULE_LICENSE("GPL v2");
2464 MODULE_ALIAS("platform:stm32-adc");