]> Git Repo - linux.git/blob - drivers/gpu/drm/vc4/vc4_hvs.c
platform/x86: amd-pmc: Move to later in the suspend process
[linux.git] / drivers / gpu / drm / vc4 / vc4_hvs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 HVS module.
8  *
9  * The Hardware Video Scaler (HVS) is the piece of hardware that does
10  * translation, scaling, colorspace conversion, and compositing of
11  * pixels stored in framebuffers into a FIFO of pixels going out to
12  * the Pixel Valve (CRTC).  It operates at the system clock rate (the
13  * system audio clock gate, specifically), which is much higher than
14  * the pixel clock rate.
15  *
16  * There is a single global HVS, with multiple output FIFOs that can
17  * be consumed by the PVs.  This file just manages the resources for
18  * the HVS, while the vc4_crtc.c code actually drives HVS setup for
19  * each CRTC.
20  */
21
22 #include <linux/bitfield.h>
23 #include <linux/clk.h>
24 #include <linux/component.h>
25 #include <linux/platform_device.h>
26
27 #include <drm/drm_atomic_helper.h>
28 #include <drm/drm_vblank.h>
29
30 #include "vc4_drv.h"
31 #include "vc4_regs.h"
32
33 static const struct debugfs_reg32 hvs_regs[] = {
34         VC4_REG32(SCALER_DISPCTRL),
35         VC4_REG32(SCALER_DISPSTAT),
36         VC4_REG32(SCALER_DISPID),
37         VC4_REG32(SCALER_DISPECTRL),
38         VC4_REG32(SCALER_DISPPROF),
39         VC4_REG32(SCALER_DISPDITHER),
40         VC4_REG32(SCALER_DISPEOLN),
41         VC4_REG32(SCALER_DISPLIST0),
42         VC4_REG32(SCALER_DISPLIST1),
43         VC4_REG32(SCALER_DISPLIST2),
44         VC4_REG32(SCALER_DISPLSTAT),
45         VC4_REG32(SCALER_DISPLACT0),
46         VC4_REG32(SCALER_DISPLACT1),
47         VC4_REG32(SCALER_DISPLACT2),
48         VC4_REG32(SCALER_DISPCTRL0),
49         VC4_REG32(SCALER_DISPBKGND0),
50         VC4_REG32(SCALER_DISPSTAT0),
51         VC4_REG32(SCALER_DISPBASE0),
52         VC4_REG32(SCALER_DISPCTRL1),
53         VC4_REG32(SCALER_DISPBKGND1),
54         VC4_REG32(SCALER_DISPSTAT1),
55         VC4_REG32(SCALER_DISPBASE1),
56         VC4_REG32(SCALER_DISPCTRL2),
57         VC4_REG32(SCALER_DISPBKGND2),
58         VC4_REG32(SCALER_DISPSTAT2),
59         VC4_REG32(SCALER_DISPBASE2),
60         VC4_REG32(SCALER_DISPALPHA2),
61         VC4_REG32(SCALER_OLEDOFFS),
62         VC4_REG32(SCALER_OLEDCOEF0),
63         VC4_REG32(SCALER_OLEDCOEF1),
64         VC4_REG32(SCALER_OLEDCOEF2),
65 };
66
67 void vc4_hvs_dump_state(struct drm_device *dev)
68 {
69         struct vc4_dev *vc4 = to_vc4_dev(dev);
70         struct drm_printer p = drm_info_printer(&vc4->hvs->pdev->dev);
71         int i;
72
73         drm_print_regset32(&p, &vc4->hvs->regset);
74
75         DRM_INFO("HVS ctx:\n");
76         for (i = 0; i < 64; i += 4) {
77                 DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
78                          i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
79                          readl((u32 __iomem *)vc4->hvs->dlist + i + 0),
80                          readl((u32 __iomem *)vc4->hvs->dlist + i + 1),
81                          readl((u32 __iomem *)vc4->hvs->dlist + i + 2),
82                          readl((u32 __iomem *)vc4->hvs->dlist + i + 3));
83         }
84 }
85
86 static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
87 {
88         struct drm_info_node *node = m->private;
89         struct drm_device *dev = node->minor->dev;
90         struct vc4_dev *vc4 = to_vc4_dev(dev);
91         struct drm_printer p = drm_seq_file_printer(m);
92
93         drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
94
95         return 0;
96 }
97
98 /* The filter kernel is composed of dwords each containing 3 9-bit
99  * signed integers packed next to each other.
100  */
101 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
102 #define VC4_PPF_FILTER_WORD(c0, c1, c2)                         \
103         ((((c0) & 0x1ff) << 0) |                                \
104          (((c1) & 0x1ff) << 9) |                                \
105          (((c2) & 0x1ff) << 18))
106
107 /* The whole filter kernel is arranged as the coefficients 0-16 going
108  * up, then a pad, then 17-31 going down and reversed within the
109  * dwords.  This means that a linear phase kernel (where it's
110  * symmetrical at the boundary between 15 and 16) has the last 5
111  * dwords matching the first 5, but reversed.
112  */
113 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8,     \
114                                 c9, c10, c11, c12, c13, c14, c15)       \
115         {VC4_PPF_FILTER_WORD(c0, c1, c2),                               \
116          VC4_PPF_FILTER_WORD(c3, c4, c5),                               \
117          VC4_PPF_FILTER_WORD(c6, c7, c8),                               \
118          VC4_PPF_FILTER_WORD(c9, c10, c11),                             \
119          VC4_PPF_FILTER_WORD(c12, c13, c14),                            \
120          VC4_PPF_FILTER_WORD(c15, c15, 0)}
121
122 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
123 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
124
125 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
126  * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
127  */
128 static const u32 mitchell_netravali_1_3_1_3_kernel[] =
129         VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
130                                 50, 82, 119, 155, 187, 213, 227);
131
132 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
133                                         struct drm_mm_node *space,
134                                         const u32 *kernel)
135 {
136         int ret, i;
137         u32 __iomem *dst_kernel;
138
139         ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
140         if (ret) {
141                 DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
142                           ret);
143                 return ret;
144         }
145
146         dst_kernel = hvs->dlist + space->start;
147
148         for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
149                 if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
150                         writel(kernel[i], &dst_kernel[i]);
151                 else {
152                         writel(kernel[VC4_KERNEL_DWORDS - i - 1],
153                                &dst_kernel[i]);
154                 }
155         }
156
157         return 0;
158 }
159
160 static void vc4_hvs_lut_load(struct drm_crtc *crtc)
161 {
162         struct drm_device *dev = crtc->dev;
163         struct vc4_dev *vc4 = to_vc4_dev(dev);
164         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
165         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
166         u32 i;
167
168         /* The LUT memory is laid out with each HVS channel in order,
169          * each of which takes 256 writes for R, 256 for G, then 256
170          * for B.
171          */
172         HVS_WRITE(SCALER_GAMADDR,
173                   SCALER_GAMADDR_AUTOINC |
174                   (vc4_state->assigned_channel * 3 * crtc->gamma_size));
175
176         for (i = 0; i < crtc->gamma_size; i++)
177                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
178         for (i = 0; i < crtc->gamma_size; i++)
179                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
180         for (i = 0; i < crtc->gamma_size; i++)
181                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
182 }
183
184 static void vc4_hvs_update_gamma_lut(struct drm_crtc *crtc)
185 {
186         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
187         struct drm_color_lut *lut = crtc->state->gamma_lut->data;
188         u32 length = drm_color_lut_size(crtc->state->gamma_lut);
189         u32 i;
190
191         for (i = 0; i < length; i++) {
192                 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
193                 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
194                 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
195         }
196
197         vc4_hvs_lut_load(crtc);
198 }
199
200 int vc4_hvs_get_fifo_from_output(struct drm_device *dev, unsigned int output)
201 {
202         struct vc4_dev *vc4 = to_vc4_dev(dev);
203         u32 reg;
204         int ret;
205
206         if (!vc4->hvs->hvs5)
207                 return output;
208
209         switch (output) {
210         case 0:
211                 return 0;
212
213         case 1:
214                 return 1;
215
216         case 2:
217                 reg = HVS_READ(SCALER_DISPECTRL);
218                 ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
219                 if (ret == 0)
220                         return 2;
221
222                 return 0;
223
224         case 3:
225                 reg = HVS_READ(SCALER_DISPCTRL);
226                 ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
227                 if (ret == 3)
228                         return -EPIPE;
229
230                 return ret;
231
232         case 4:
233                 reg = HVS_READ(SCALER_DISPEOLN);
234                 ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
235                 if (ret == 3)
236                         return -EPIPE;
237
238                 return ret;
239
240         case 5:
241                 reg = HVS_READ(SCALER_DISPDITHER);
242                 ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
243                 if (ret == 3)
244                         return -EPIPE;
245
246                 return ret;
247
248         default:
249                 return -EPIPE;
250         }
251 }
252
253 static int vc4_hvs_init_channel(struct vc4_dev *vc4, struct drm_crtc *crtc,
254                                 struct drm_display_mode *mode, bool oneshot)
255 {
256         struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
257         unsigned int chan = vc4_crtc_state->assigned_channel;
258         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
259         u32 dispbkgndx;
260         u32 dispctrl;
261
262         HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
263         HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
264         HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
265
266         /* Turn on the scaler, which will wait for vstart to start
267          * compositing.
268          * When feeding the transposer, we should operate in oneshot
269          * mode.
270          */
271         dispctrl = SCALER_DISPCTRLX_ENABLE;
272
273         if (!vc4->hvs->hvs5)
274                 dispctrl |= VC4_SET_FIELD(mode->hdisplay,
275                                           SCALER_DISPCTRLX_WIDTH) |
276                             VC4_SET_FIELD(mode->vdisplay,
277                                           SCALER_DISPCTRLX_HEIGHT) |
278                             (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
279         else
280                 dispctrl |= VC4_SET_FIELD(mode->hdisplay,
281                                           SCALER5_DISPCTRLX_WIDTH) |
282                             VC4_SET_FIELD(mode->vdisplay,
283                                           SCALER5_DISPCTRLX_HEIGHT) |
284                             (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
285
286         HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
287
288         dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
289         dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
290         dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
291
292         HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
293                   SCALER_DISPBKGND_AUTOHS |
294                   ((!vc4->hvs->hvs5) ? SCALER_DISPBKGND_GAMMA : 0) |
295                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
296
297         /* Reload the LUT, since the SRAMs would have been disabled if
298          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
299          */
300         vc4_hvs_lut_load(crtc);
301
302         return 0;
303 }
304
305 void vc4_hvs_stop_channel(struct drm_device *dev, unsigned int chan)
306 {
307         struct vc4_dev *vc4 = to_vc4_dev(dev);
308
309         if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE)
310                 return;
311
312         HVS_WRITE(SCALER_DISPCTRLX(chan),
313                   HVS_READ(SCALER_DISPCTRLX(chan)) | SCALER_DISPCTRLX_RESET);
314         HVS_WRITE(SCALER_DISPCTRLX(chan),
315                   HVS_READ(SCALER_DISPCTRLX(chan)) & ~SCALER_DISPCTRLX_ENABLE);
316
317         /* Once we leave, the scaler should be disabled and its fifo empty. */
318         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
319
320         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
321                                    SCALER_DISPSTATX_MODE) !=
322                      SCALER_DISPSTATX_MODE_DISABLED);
323
324         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
325                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
326                      SCALER_DISPSTATX_EMPTY);
327 }
328
329 int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
330 {
331         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
332         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
333         struct drm_device *dev = crtc->dev;
334         struct vc4_dev *vc4 = to_vc4_dev(dev);
335         struct drm_plane *plane;
336         unsigned long flags;
337         const struct drm_plane_state *plane_state;
338         u32 dlist_count = 0;
339         int ret;
340
341         /* The pixelvalve can only feed one encoder (and encoders are
342          * 1:1 with connectors.)
343          */
344         if (hweight32(crtc_state->connector_mask) > 1)
345                 return -EINVAL;
346
347         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state)
348                 dlist_count += vc4_plane_dlist_size(plane_state);
349
350         dlist_count++; /* Account for SCALER_CTL0_END. */
351
352         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
353         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
354                                  dlist_count);
355         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
356         if (ret)
357                 return ret;
358
359         return 0;
360 }
361
362 static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
363 {
364         struct drm_device *dev = crtc->dev;
365         struct vc4_dev *vc4 = to_vc4_dev(dev);
366         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
367         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
368         unsigned long flags;
369
370         if (crtc->state->event) {
371                 crtc->state->event->pipe = drm_crtc_index(crtc);
372
373                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
374
375                 spin_lock_irqsave(&dev->event_lock, flags);
376
377                 if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) {
378                         vc4_crtc->event = crtc->state->event;
379                         crtc->state->event = NULL;
380                 }
381
382                 HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
383                           vc4_state->mm.start);
384
385                 spin_unlock_irqrestore(&dev->event_lock, flags);
386         } else {
387                 HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
388                           vc4_state->mm.start);
389         }
390
391         spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
392         vc4_crtc->current_dlist = vc4_state->mm.start;
393         spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
394 }
395
396 void vc4_hvs_atomic_begin(struct drm_crtc *crtc,
397                           struct drm_atomic_state *state)
398 {
399         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
400         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
401         unsigned long flags;
402
403         spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
404         vc4_crtc->current_hvs_channel = vc4_state->assigned_channel;
405         spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
406 }
407
408 void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
409                            struct drm_atomic_state *state)
410 {
411         struct drm_device *dev = crtc->dev;
412         struct vc4_dev *vc4 = to_vc4_dev(dev);
413         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
414         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
415         bool oneshot = vc4_crtc->feeds_txp;
416
417         vc4_hvs_update_dlist(crtc);
418         vc4_hvs_init_channel(vc4, crtc, mode, oneshot);
419 }
420
421 void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
422                             struct drm_atomic_state *state)
423 {
424         struct drm_device *dev = crtc->dev;
425         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc);
426         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
427         unsigned int chan = vc4_state->assigned_channel;
428
429         vc4_hvs_stop_channel(dev, chan);
430 }
431
432 void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
433                           struct drm_atomic_state *state)
434 {
435         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
436                                                                          crtc);
437         struct drm_device *dev = crtc->dev;
438         struct vc4_dev *vc4 = to_vc4_dev(dev);
439         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
440         struct drm_plane *plane;
441         struct vc4_plane_state *vc4_plane_state;
442         bool debug_dump_regs = false;
443         bool enable_bg_fill = false;
444         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
445         u32 __iomem *dlist_next = dlist_start;
446
447         if (debug_dump_regs) {
448                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
449                 vc4_hvs_dump_state(dev);
450         }
451
452         /* Copy all the active planes' dlist contents to the hardware dlist. */
453         drm_atomic_crtc_for_each_plane(plane, crtc) {
454                 /* Is this the first active plane? */
455                 if (dlist_next == dlist_start) {
456                         /* We need to enable background fill when a plane
457                          * could be alpha blending from the background, i.e.
458                          * where no other plane is underneath. It suffices to
459                          * consider the first active plane here since we set
460                          * needs_bg_fill such that either the first plane
461                          * already needs it or all planes on top blend from
462                          * the first or a lower plane.
463                          */
464                         vc4_plane_state = to_vc4_plane_state(plane->state);
465                         enable_bg_fill = vc4_plane_state->needs_bg_fill;
466                 }
467
468                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
469         }
470
471         writel(SCALER_CTL0_END, dlist_next);
472         dlist_next++;
473
474         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
475
476         if (enable_bg_fill)
477                 /* This sets a black background color fill, as is the case
478                  * with other DRM drivers.
479                  */
480                 HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel),
481                           HVS_READ(SCALER_DISPBKGNDX(vc4_state->assigned_channel)) |
482                           SCALER_DISPBKGND_FILL);
483
484         /* Only update DISPLIST if the CRTC was already running and is not
485          * being disabled.
486          * vc4_crtc_enable() takes care of updating the dlist just after
487          * re-enabling VBLANK interrupts and before enabling the engine.
488          * If the CRTC is being disabled, there's no point in updating this
489          * information.
490          */
491         if (crtc->state->active && old_state->active)
492                 vc4_hvs_update_dlist(crtc);
493
494         if (crtc->state->color_mgmt_changed) {
495                 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_state->assigned_channel));
496
497                 if (crtc->state->gamma_lut) {
498                         vc4_hvs_update_gamma_lut(crtc);
499                         dispbkgndx |= SCALER_DISPBKGND_GAMMA;
500                 } else {
501                         /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
502                          * in hardware, which is the same as a linear lut that
503                          * DRM expects us to use in absence of a user lut.
504                          */
505                         dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
506                 }
507                 HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel), dispbkgndx);
508         }
509
510         if (debug_dump_regs) {
511                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
512                 vc4_hvs_dump_state(dev);
513         }
514 }
515
516 void vc4_hvs_mask_underrun(struct drm_device *dev, int channel)
517 {
518         struct vc4_dev *vc4 = to_vc4_dev(dev);
519         u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
520
521         dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel);
522
523         HVS_WRITE(SCALER_DISPCTRL, dispctrl);
524 }
525
526 void vc4_hvs_unmask_underrun(struct drm_device *dev, int channel)
527 {
528         struct vc4_dev *vc4 = to_vc4_dev(dev);
529         u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
530
531         dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel);
532
533         HVS_WRITE(SCALER_DISPSTAT,
534                   SCALER_DISPSTAT_EUFLOW(channel));
535         HVS_WRITE(SCALER_DISPCTRL, dispctrl);
536 }
537
538 static void vc4_hvs_report_underrun(struct drm_device *dev)
539 {
540         struct vc4_dev *vc4 = to_vc4_dev(dev);
541
542         atomic_inc(&vc4->underrun);
543         DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
544 }
545
546 static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
547 {
548         struct drm_device *dev = data;
549         struct vc4_dev *vc4 = to_vc4_dev(dev);
550         irqreturn_t irqret = IRQ_NONE;
551         int channel;
552         u32 control;
553         u32 status;
554
555         status = HVS_READ(SCALER_DISPSTAT);
556         control = HVS_READ(SCALER_DISPCTRL);
557
558         for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
559                 /* Interrupt masking is not always honored, so check it here. */
560                 if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
561                     control & SCALER_DISPCTRL_DSPEISLUR(channel)) {
562                         vc4_hvs_mask_underrun(dev, channel);
563                         vc4_hvs_report_underrun(dev);
564
565                         irqret = IRQ_HANDLED;
566                 }
567         }
568
569         /* Clear every per-channel interrupt flag. */
570         HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
571                                    SCALER_DISPSTAT_IRQMASK(1) |
572                                    SCALER_DISPSTAT_IRQMASK(2));
573
574         return irqret;
575 }
576
577 static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
578 {
579         struct platform_device *pdev = to_platform_device(dev);
580         struct drm_device *drm = dev_get_drvdata(master);
581         struct vc4_dev *vc4 = to_vc4_dev(drm);
582         struct vc4_hvs *hvs = NULL;
583         int ret;
584         u32 dispctrl;
585
586         hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL);
587         if (!hvs)
588                 return -ENOMEM;
589
590         hvs->pdev = pdev;
591
592         if (of_device_is_compatible(pdev->dev.of_node, "brcm,bcm2711-hvs"))
593                 hvs->hvs5 = true;
594
595         hvs->regs = vc4_ioremap_regs(pdev, 0);
596         if (IS_ERR(hvs->regs))
597                 return PTR_ERR(hvs->regs);
598
599         hvs->regset.base = hvs->regs;
600         hvs->regset.regs = hvs_regs;
601         hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
602
603         if (hvs->hvs5) {
604                 hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
605                 if (IS_ERR(hvs->core_clk)) {
606                         dev_err(&pdev->dev, "Couldn't get core clock\n");
607                         return PTR_ERR(hvs->core_clk);
608                 }
609
610                 ret = clk_prepare_enable(hvs->core_clk);
611                 if (ret) {
612                         dev_err(&pdev->dev, "Couldn't enable the core clock\n");
613                         return ret;
614                 }
615         }
616
617         if (!hvs->hvs5)
618                 hvs->dlist = hvs->regs + SCALER_DLIST_START;
619         else
620                 hvs->dlist = hvs->regs + SCALER5_DLIST_START;
621
622         spin_lock_init(&hvs->mm_lock);
623
624         /* Set up the HVS display list memory manager.  We never
625          * overwrite the setup from the bootloader (just 128b out of
626          * our 16K), since we don't want to scramble the screen when
627          * transitioning from the firmware's boot setup to runtime.
628          */
629         drm_mm_init(&hvs->dlist_mm,
630                     HVS_BOOTLOADER_DLIST_END,
631                     (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
632
633         /* Set up the HVS LBM memory manager.  We could have some more
634          * complicated data structure that allowed reuse of LBM areas
635          * between planes when they don't overlap on the screen, but
636          * for now we just allocate globally.
637          */
638         if (!hvs->hvs5)
639                 /* 48k words of 2x12-bit pixels */
640                 drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024);
641         else
642                 /* 60k words of 4x12-bit pixels */
643                 drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024);
644
645         /* Upload filter kernels.  We only have the one for now, so we
646          * keep it around for the lifetime of the driver.
647          */
648         ret = vc4_hvs_upload_linear_kernel(hvs,
649                                            &hvs->mitchell_netravali_filter,
650                                            mitchell_netravali_1_3_1_3_kernel);
651         if (ret)
652                 return ret;
653
654         vc4->hvs = hvs;
655
656         dispctrl = HVS_READ(SCALER_DISPCTRL);
657
658         dispctrl |= SCALER_DISPCTRL_ENABLE;
659         dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
660                     SCALER_DISPCTRL_DISPEIRQ(1) |
661                     SCALER_DISPCTRL_DISPEIRQ(2);
662
663         /* Set DSP3 (PV1) to use HVS channel 2, which would otherwise
664          * be unused.
665          */
666         dispctrl &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
667         dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
668                       SCALER_DISPCTRL_SLVWREIRQ |
669                       SCALER_DISPCTRL_SLVRDEIRQ |
670                       SCALER_DISPCTRL_DSPEIEOF(0) |
671                       SCALER_DISPCTRL_DSPEIEOF(1) |
672                       SCALER_DISPCTRL_DSPEIEOF(2) |
673                       SCALER_DISPCTRL_DSPEIEOLN(0) |
674                       SCALER_DISPCTRL_DSPEIEOLN(1) |
675                       SCALER_DISPCTRL_DSPEIEOLN(2) |
676                       SCALER_DISPCTRL_DSPEISLUR(0) |
677                       SCALER_DISPCTRL_DSPEISLUR(1) |
678                       SCALER_DISPCTRL_DSPEISLUR(2) |
679                       SCALER_DISPCTRL_SCLEIRQ);
680         dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
681
682         HVS_WRITE(SCALER_DISPCTRL, dispctrl);
683
684         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
685                                vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
686         if (ret)
687                 return ret;
688
689         vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
690         vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun,
691                              NULL);
692
693         return 0;
694 }
695
696 static void vc4_hvs_unbind(struct device *dev, struct device *master,
697                            void *data)
698 {
699         struct drm_device *drm = dev_get_drvdata(master);
700         struct vc4_dev *vc4 = to_vc4_dev(drm);
701         struct vc4_hvs *hvs = vc4->hvs;
702
703         if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
704                 drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
705
706         drm_mm_takedown(&vc4->hvs->dlist_mm);
707         drm_mm_takedown(&vc4->hvs->lbm_mm);
708
709         clk_disable_unprepare(hvs->core_clk);
710
711         vc4->hvs = NULL;
712 }
713
714 static const struct component_ops vc4_hvs_ops = {
715         .bind   = vc4_hvs_bind,
716         .unbind = vc4_hvs_unbind,
717 };
718
719 static int vc4_hvs_dev_probe(struct platform_device *pdev)
720 {
721         return component_add(&pdev->dev, &vc4_hvs_ops);
722 }
723
724 static int vc4_hvs_dev_remove(struct platform_device *pdev)
725 {
726         component_del(&pdev->dev, &vc4_hvs_ops);
727         return 0;
728 }
729
730 static const struct of_device_id vc4_hvs_dt_match[] = {
731         { .compatible = "brcm,bcm2711-hvs" },
732         { .compatible = "brcm,bcm2835-hvs" },
733         {}
734 };
735
736 struct platform_driver vc4_hvs_driver = {
737         .probe = vc4_hvs_dev_probe,
738         .remove = vc4_hvs_dev_remove,
739         .driver = {
740                 .name = "vc4_hvs",
741                 .of_match_table = vc4_hvs_dt_match,
742         },
743 };
This page took 0.075108 seconds and 4 git commands to generate.