1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2012 Avionic Design GmbH
4 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/interconnect.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14 #include <linux/pm_domain.h>
15 #include <linux/pm_opp.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/reset.h>
19 #include <soc/tegra/common.h>
20 #include <soc/tegra/pmc.h>
22 #include <drm/drm_atomic.h>
23 #include <drm/drm_atomic_helper.h>
24 #include <drm/drm_debugfs.h>
25 #include <drm/drm_fourcc.h>
26 #include <drm/drm_plane_helper.h>
27 #include <drm/drm_vblank.h>
35 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
36 struct drm_crtc_state *state);
38 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
46 /* Reads the active copy of a register. */
47 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
51 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
52 value = tegra_dc_readl(dc, offset);
53 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
58 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
61 if (offset >= 0x500 && offset <= 0x638) {
62 offset = 0x000 + (offset - 0x500);
63 return plane->offset + offset;
66 if (offset >= 0x700 && offset <= 0x719) {
67 offset = 0x180 + (offset - 0x700);
68 return plane->offset + offset;
71 if (offset >= 0x800 && offset <= 0x839) {
72 offset = 0x1c0 + (offset - 0x800);
73 return plane->offset + offset;
76 dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
78 return plane->offset + offset;
81 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
84 return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
87 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
90 tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
93 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
95 struct device_node *np = dc->dev->of_node;
96 struct of_phandle_iterator it;
99 of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
100 if (it.node == dev->of_node)
107 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
108 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
109 * Latching happens mmediately if the display controller is in STOP mode or
110 * on the next frame boundary otherwise.
112 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
113 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
114 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
115 * into the ACTIVE copy, either immediately if the display controller is in
116 * STOP mode, or at the next frame boundary otherwise.
118 void tegra_dc_commit(struct tegra_dc *dc)
120 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
121 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
124 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
127 fixed20_12 outf = dfixed_init(out);
128 fixed20_12 inf = dfixed_init(in);
149 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
150 inf.full -= dfixed_const(1);
152 dda_inc = dfixed_div(inf, outf);
153 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
158 static inline u32 compute_initial_dda(unsigned int in)
160 fixed20_12 inf = dfixed_init(in);
161 return dfixed_frac(inf);
164 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
166 u32 background[3] = {
167 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
168 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
169 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
171 u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
172 BLEND_COLOR_KEY_NONE;
173 u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
174 struct tegra_plane_state *state;
178 /* disable blending for non-overlapping case */
179 tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
180 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
182 state = to_tegra_plane_state(plane->base.state);
186 * Since custom fix-weight blending isn't utilized and weight
187 * of top window is set to max, we can enforce dependent
188 * blending which in this case results in transparent bottom
189 * window if top window is opaque and if top window enables
190 * alpha blending, then bottom window is getting alpha value
191 * of 1 minus the sum of alpha components of the overlapping
194 background[0] |= BLEND_CONTROL_DEPENDENT;
195 background[1] |= BLEND_CONTROL_DEPENDENT;
198 * The region where three windows overlap is the intersection
199 * of the two regions where two windows overlap. It contributes
200 * to the area if all of the windows on top of it have an alpha
203 switch (state->base.normalized_zpos) {
205 if (state->blending[0].alpha &&
206 state->blending[1].alpha)
207 background[2] |= BLEND_CONTROL_DEPENDENT;
211 background[2] |= BLEND_CONTROL_DEPENDENT;
216 * Enable alpha blending if pixel format has an alpha
219 foreground |= BLEND_CONTROL_ALPHA;
222 * If any of the windows on top of this window is opaque, it
223 * will completely conceal this window within that area. If
224 * top window has an alpha component, it is blended over the
227 for (i = 0; i < 2; i++) {
228 if (state->blending[i].alpha &&
229 state->blending[i].top)
230 background[i] |= BLEND_CONTROL_DEPENDENT;
233 switch (state->base.normalized_zpos) {
235 if (state->blending[0].alpha &&
236 state->blending[1].alpha)
237 background[2] |= BLEND_CONTROL_DEPENDENT;
242 * When both middle and topmost windows have an alpha,
243 * these windows a mixed together and then the result
244 * is blended over the bottom window.
246 if (state->blending[0].alpha &&
247 state->blending[0].top)
248 background[2] |= BLEND_CONTROL_ALPHA;
250 if (state->blending[1].alpha &&
251 state->blending[1].top)
252 background[2] |= BLEND_CONTROL_ALPHA;
257 switch (state->base.normalized_zpos) {
259 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
260 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
261 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
266 * If window B / C is topmost, then X / Y registers are
267 * matching the order of blending[...] state indices,
268 * otherwise a swap is required.
270 if (!state->blending[0].top && state->blending[1].top) {
271 blending[0] = foreground;
272 blending[1] = background[1];
274 blending[0] = background[0];
275 blending[1] = foreground;
278 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
279 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
280 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
284 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
285 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
286 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
291 static void tegra_plane_setup_blending(struct tegra_plane *plane,
292 const struct tegra_dc_window *window)
296 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
297 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
298 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
299 tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
301 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
302 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
303 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
304 tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
306 value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
307 tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
311 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
312 const struct tegra_dc_window *window)
314 struct tegra_dc *dc = plane->dc;
316 if (window->src.w == window->dst.w)
319 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
326 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
327 const struct tegra_dc_window *window)
329 struct tegra_dc *dc = plane->dc;
331 if (window->src.h == window->dst.h)
334 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
337 if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
343 static void tegra_dc_setup_window(struct tegra_plane *plane,
344 const struct tegra_dc_window *window)
346 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
347 struct tegra_dc *dc = plane->dc;
352 * For YUV planar modes, the number of bytes per pixel takes into
353 * account only the luma component and therefore is 1.
355 yuv = tegra_plane_format_is_yuv(window->format, &planar, NULL);
357 bpp = window->bits_per_pixel / 8;
359 bpp = planar ? 1 : 2;
361 tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
362 tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
364 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
365 tegra_plane_writel(plane, value, DC_WIN_POSITION);
367 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
368 tegra_plane_writel(plane, value, DC_WIN_SIZE);
370 h_offset = window->src.x * bpp;
371 v_offset = window->src.y;
372 h_size = window->src.w * bpp;
373 v_size = window->src.h;
375 if (window->reflect_x)
376 h_offset += (window->src.w - 1) * bpp;
378 if (window->reflect_y)
379 v_offset += window->src.h - 1;
381 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
382 tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
385 * For DDA computations the number of bytes per pixel for YUV planar
386 * modes needs to take into account all Y, U and V components.
391 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
392 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
394 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
395 tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
397 h_dda = compute_initial_dda(window->src.x);
398 v_dda = compute_initial_dda(window->src.y);
400 tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
401 tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
403 tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
404 tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
406 tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
409 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
410 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
411 value = window->stride[1] << 16 | window->stride[0];
412 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
414 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
417 tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
418 tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
420 if (dc->soc->supports_block_linear) {
421 unsigned long height = window->tiling.value;
423 switch (window->tiling.mode) {
424 case TEGRA_BO_TILING_MODE_PITCH:
425 value = DC_WINBUF_SURFACE_KIND_PITCH;
428 case TEGRA_BO_TILING_MODE_TILED:
429 value = DC_WINBUF_SURFACE_KIND_TILED;
432 case TEGRA_BO_TILING_MODE_BLOCK:
433 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
434 DC_WINBUF_SURFACE_KIND_BLOCK;
438 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
440 switch (window->tiling.mode) {
441 case TEGRA_BO_TILING_MODE_PITCH:
442 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
443 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
446 case TEGRA_BO_TILING_MODE_TILED:
447 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
448 DC_WIN_BUFFER_ADDR_MODE_TILE;
451 case TEGRA_BO_TILING_MODE_BLOCK:
453 * No need to handle this here because ->atomic_check
454 * will already have filtered it out.
459 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
465 /* setup default colorspace conversion coefficients */
466 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
467 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
468 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
469 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
470 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
471 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
472 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
473 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
476 } else if (window->bits_per_pixel < 24) {
477 value |= COLOR_EXPAND;
480 if (window->reflect_x)
481 value |= H_DIRECTION;
483 if (window->reflect_y)
484 value |= V_DIRECTION;
486 if (tegra_plane_use_horizontal_filtering(plane, window)) {
488 * Enable horizontal 6-tap filter and set filtering
489 * coefficients to the default values defined in TRM.
491 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
492 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
493 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
494 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
495 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
496 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
497 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
498 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
499 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
500 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
501 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
502 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
503 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
504 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
505 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
506 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
511 if (tegra_plane_use_vertical_filtering(plane, window)) {
515 * Enable vertical 2-tap filter and set filtering
516 * coefficients to the default values defined in TRM.
518 for (i = 0, k = 128; i < 16; i++, k -= 8)
519 tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
524 tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
526 if (dc->soc->has_legacy_blending)
527 tegra_plane_setup_blending_legacy(plane);
529 tegra_plane_setup_blending(plane, window);
532 static const u32 tegra20_primary_formats[] = {
539 /* non-native formats */
546 static const u64 tegra20_modifiers[] = {
547 DRM_FORMAT_MOD_LINEAR,
548 DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
549 DRM_FORMAT_MOD_INVALID
552 static const u32 tegra114_primary_formats[] = {
559 /* new on Tegra114 */
574 static const u32 tegra124_primary_formats[] = {
581 /* new on Tegra114 */
594 /* new on Tegra124 */
599 static const u64 tegra124_modifiers[] = {
600 DRM_FORMAT_MOD_LINEAR,
601 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
602 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
603 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
604 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
605 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
606 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
607 DRM_FORMAT_MOD_INVALID
610 static int tegra_plane_atomic_check(struct drm_plane *plane,
611 struct drm_atomic_state *state)
613 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
615 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
616 unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
619 unsigned int rotation = new_plane_state->rotation;
620 struct tegra_bo_tiling *tiling = &plane_state->tiling;
621 struct tegra_plane *tegra = to_tegra_plane(plane);
622 struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
625 plane_state->peak_memory_bandwidth = 0;
626 plane_state->avg_memory_bandwidth = 0;
628 /* no need for further checks if the plane is being disabled */
629 if (!new_plane_state->crtc) {
630 plane_state->total_peak_memory_bandwidth = 0;
634 err = tegra_plane_format(new_plane_state->fb->format->format,
635 &plane_state->format,
641 * Tegra20 and Tegra30 are special cases here because they support
642 * only variants of specific formats with an alpha component, but not
643 * the corresponding opaque formats. However, the opaque formats can
644 * be emulated by disabling alpha blending for the plane.
646 if (dc->soc->has_legacy_blending) {
647 err = tegra_plane_setup_legacy_state(tegra, plane_state);
652 err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
656 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
657 !dc->soc->supports_block_linear) {
658 DRM_ERROR("hardware doesn't support block linear mode\n");
663 * Older userspace used custom BO flag in order to specify the Y
664 * reflection, while modern userspace uses the generic DRM rotation
665 * property in order to achieve the same result. The legacy BO flag
666 * duplicates the DRM rotation property when both are set.
668 if (tegra_fb_is_bottom_up(new_plane_state->fb))
669 rotation |= DRM_MODE_REFLECT_Y;
671 rotation = drm_rotation_simplify(rotation, supported_rotation);
673 if (rotation & DRM_MODE_REFLECT_X)
674 plane_state->reflect_x = true;
676 plane_state->reflect_x = false;
678 if (rotation & DRM_MODE_REFLECT_Y)
679 plane_state->reflect_y = true;
681 plane_state->reflect_y = false;
684 * Tegra doesn't support different strides for U and V planes so we
685 * error out if the user tries to display a framebuffer with such a
688 if (new_plane_state->fb->format->num_planes > 2) {
689 if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
690 DRM_ERROR("unsupported UV-plane configuration\n");
695 err = tegra_plane_state_add(tegra, new_plane_state);
702 static void tegra_plane_atomic_disable(struct drm_plane *plane,
703 struct drm_atomic_state *state)
705 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
707 struct tegra_plane *p = to_tegra_plane(plane);
710 /* rien ne va plus */
711 if (!old_state || !old_state->crtc)
714 value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
715 value &= ~WIN_ENABLE;
716 tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
719 static void tegra_plane_atomic_update(struct drm_plane *plane,
720 struct drm_atomic_state *state)
722 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
724 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
725 struct drm_framebuffer *fb = new_state->fb;
726 struct tegra_plane *p = to_tegra_plane(plane);
727 struct tegra_dc_window window;
730 /* rien ne va plus */
731 if (!new_state->crtc || !new_state->fb)
734 if (!new_state->visible)
735 return tegra_plane_atomic_disable(plane, state);
737 memset(&window, 0, sizeof(window));
738 window.src.x = new_state->src.x1 >> 16;
739 window.src.y = new_state->src.y1 >> 16;
740 window.src.w = drm_rect_width(&new_state->src) >> 16;
741 window.src.h = drm_rect_height(&new_state->src) >> 16;
742 window.dst.x = new_state->dst.x1;
743 window.dst.y = new_state->dst.y1;
744 window.dst.w = drm_rect_width(&new_state->dst);
745 window.dst.h = drm_rect_height(&new_state->dst);
746 window.bits_per_pixel = fb->format->cpp[0] * 8;
747 window.reflect_x = tegra_plane_state->reflect_x;
748 window.reflect_y = tegra_plane_state->reflect_y;
750 /* copy from state */
751 window.zpos = new_state->normalized_zpos;
752 window.tiling = tegra_plane_state->tiling;
753 window.format = tegra_plane_state->format;
754 window.swap = tegra_plane_state->swap;
756 for (i = 0; i < fb->format->num_planes; i++) {
757 window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
760 * Tegra uses a shared stride for UV planes. Framebuffers are
761 * already checked for this in the tegra_plane_atomic_check()
762 * function, so it's safe to ignore the V-plane pitch here.
765 window.stride[i] = fb->pitches[i];
768 tegra_dc_setup_window(p, &window);
771 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
772 .prepare_fb = tegra_plane_prepare_fb,
773 .cleanup_fb = tegra_plane_cleanup_fb,
774 .atomic_check = tegra_plane_atomic_check,
775 .atomic_disable = tegra_plane_atomic_disable,
776 .atomic_update = tegra_plane_atomic_update,
779 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
782 * Ideally this would use drm_crtc_mask(), but that would require the
783 * CRTC to already be in the mode_config's list of CRTCs. However, it
784 * will only be added to that list in the drm_crtc_init_with_planes()
785 * (in tegra_dc_init()), which in turn requires registration of these
786 * planes. So we have ourselves a nice little chicken and egg problem
789 * We work around this by manually creating the mask from the number
790 * of CRTCs that have been registered, and should therefore always be
791 * the same as drm_crtc_index() after registration.
793 return 1 << drm->mode_config.num_crtc;
796 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
799 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
800 enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
801 struct tegra_plane *plane;
802 unsigned int num_formats;
803 const u64 *modifiers;
807 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
809 return ERR_PTR(-ENOMEM);
811 /* Always use window A as primary window */
812 plane->offset = 0xa00;
816 num_formats = dc->soc->num_primary_formats;
817 formats = dc->soc->primary_formats;
818 modifiers = dc->soc->modifiers;
820 err = tegra_plane_interconnect_init(plane);
826 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
827 &tegra_plane_funcs, formats,
828 num_formats, modifiers, type, NULL);
834 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
835 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
837 err = drm_plane_create_rotation_property(&plane->base,
840 DRM_MODE_ROTATE_180 |
844 dev_err(dc->dev, "failed to create rotation property: %d\n",
850 static const u32 tegra_legacy_cursor_plane_formats[] = {
854 static const u32 tegra_cursor_plane_formats[] = {
858 static int tegra_cursor_atomic_check(struct drm_plane *plane,
859 struct drm_atomic_state *state)
861 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
863 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
864 struct tegra_plane *tegra = to_tegra_plane(plane);
867 plane_state->peak_memory_bandwidth = 0;
868 plane_state->avg_memory_bandwidth = 0;
870 /* no need for further checks if the plane is being disabled */
871 if (!new_plane_state->crtc) {
872 plane_state->total_peak_memory_bandwidth = 0;
876 /* scaling not supported for cursor */
877 if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
878 (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
881 /* only square cursors supported */
882 if (new_plane_state->src_w != new_plane_state->src_h)
885 if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
886 new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
889 err = tegra_plane_state_add(tegra, new_plane_state);
896 static void __tegra_cursor_atomic_update(struct drm_plane *plane,
897 struct drm_plane_state *new_state)
899 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
900 struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
901 struct tegra_drm *tegra = plane->dev->dev_private;
902 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
903 u64 dma_mask = *dc->dev->dma_mask;
908 /* rien ne va plus */
909 if (!new_state->crtc || !new_state->fb)
913 * Legacy display supports hardware clipping of the cursor, but
914 * nvdisplay relies on software to clip the cursor to the screen.
916 if (!dc->soc->has_nvdisplay)
917 value |= CURSOR_CLIP_DISPLAY;
919 switch (new_state->crtc_w) {
921 value |= CURSOR_SIZE_32x32;
925 value |= CURSOR_SIZE_64x64;
929 value |= CURSOR_SIZE_128x128;
933 value |= CURSOR_SIZE_256x256;
937 WARN(1, "cursor size %ux%u not supported\n",
938 new_state->crtc_w, new_state->crtc_h);
942 value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
943 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
945 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
946 value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
947 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
950 /* enable cursor and set blend mode */
951 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
952 value |= CURSOR_ENABLE;
953 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
955 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
956 value &= ~CURSOR_DST_BLEND_MASK;
957 value &= ~CURSOR_SRC_BLEND_MASK;
959 if (dc->soc->has_nvdisplay)
960 value &= ~CURSOR_COMPOSITION_MODE_XOR;
962 value |= CURSOR_MODE_NORMAL;
964 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
965 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
966 value |= CURSOR_ALPHA;
967 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
969 /* nvdisplay relies on software for clipping */
970 if (dc->soc->has_nvdisplay) {
973 x = new_state->dst.x1;
974 y = new_state->dst.y1;
976 drm_rect_fp_to_int(&src, &new_state->src);
978 value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
979 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
981 value = (drm_rect_height(&src) & tegra->vmask) << 16 |
982 (drm_rect_width(&src) & tegra->hmask);
983 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
985 x = new_state->crtc_x;
986 y = new_state->crtc_y;
989 /* position the cursor */
990 value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
991 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
994 static void tegra_cursor_atomic_update(struct drm_plane *plane,
995 struct drm_atomic_state *state)
997 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
999 __tegra_cursor_atomic_update(plane, new_state);
1002 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
1003 struct drm_atomic_state *state)
1005 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
1007 struct tegra_dc *dc;
1010 /* rien ne va plus */
1011 if (!old_state || !old_state->crtc)
1014 dc = to_tegra_dc(old_state->crtc);
1016 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1017 value &= ~CURSOR_ENABLE;
1018 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1021 static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state)
1023 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1024 struct drm_crtc_state *crtc_state;
1025 int min_scale, max_scale;
1028 crtc_state = drm_atomic_get_existing_crtc_state(state, new_state->crtc);
1029 if (WARN_ON(!crtc_state))
1032 if (!crtc_state->active)
1035 if (plane->state->crtc != new_state->crtc ||
1036 plane->state->src_w != new_state->src_w ||
1037 plane->state->src_h != new_state->src_h ||
1038 plane->state->crtc_w != new_state->crtc_w ||
1039 plane->state->crtc_h != new_state->crtc_h ||
1040 plane->state->fb != new_state->fb ||
1041 plane->state->fb == NULL)
1044 min_scale = (1 << 16) / 8;
1045 max_scale = (8 << 16) / 1;
1047 err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale,
1052 if (new_state->visible != plane->state->visible)
1058 static void tegra_cursor_atomic_async_update(struct drm_plane *plane,
1059 struct drm_atomic_state *state)
1061 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1062 struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
1064 plane->state->src_x = new_state->src_x;
1065 plane->state->src_y = new_state->src_y;
1066 plane->state->crtc_x = new_state->crtc_x;
1067 plane->state->crtc_y = new_state->crtc_y;
1069 if (new_state->visible) {
1070 struct tegra_plane *p = to_tegra_plane(plane);
1073 __tegra_cursor_atomic_update(plane, new_state);
1075 value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE;
1076 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1077 (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1079 value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ;
1080 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1081 (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1085 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
1086 .prepare_fb = tegra_plane_prepare_fb,
1087 .cleanup_fb = tegra_plane_cleanup_fb,
1088 .atomic_check = tegra_cursor_atomic_check,
1089 .atomic_update = tegra_cursor_atomic_update,
1090 .atomic_disable = tegra_cursor_atomic_disable,
1091 .atomic_async_check = tegra_cursor_atomic_async_check,
1092 .atomic_async_update = tegra_cursor_atomic_async_update,
1095 static const uint64_t linear_modifiers[] = {
1096 DRM_FORMAT_MOD_LINEAR,
1097 DRM_FORMAT_MOD_INVALID
1100 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1101 struct tegra_dc *dc)
1103 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1104 struct tegra_plane *plane;
1105 unsigned int num_formats;
1109 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1111 return ERR_PTR(-ENOMEM);
1114 * This index is kind of fake. The cursor isn't a regular plane, but
1115 * its update and activation request bits in DC_CMD_STATE_CONTROL do
1116 * use the same programming. Setting this fake index here allows the
1117 * code in tegra_add_plane_state() to do the right thing without the
1118 * need to special-casing the cursor plane.
1123 if (!dc->soc->has_nvdisplay) {
1124 num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1125 formats = tegra_legacy_cursor_plane_formats;
1127 err = tegra_plane_interconnect_init(plane);
1130 return ERR_PTR(err);
1133 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1134 formats = tegra_cursor_plane_formats;
1137 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1138 &tegra_plane_funcs, formats,
1139 num_formats, linear_modifiers,
1140 DRM_PLANE_TYPE_CURSOR, NULL);
1143 return ERR_PTR(err);
1146 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1147 drm_plane_create_zpos_immutable_property(&plane->base, 255);
1149 return &plane->base;
1152 static const u32 tegra20_overlay_formats[] = {
1153 DRM_FORMAT_ARGB4444,
1154 DRM_FORMAT_ARGB1555,
1156 DRM_FORMAT_RGBA5551,
1157 DRM_FORMAT_ABGR8888,
1158 DRM_FORMAT_ARGB8888,
1159 /* non-native formats */
1160 DRM_FORMAT_XRGB1555,
1161 DRM_FORMAT_RGBX5551,
1162 DRM_FORMAT_XBGR8888,
1163 DRM_FORMAT_XRGB8888,
1164 /* planar formats */
1171 static const u32 tegra114_overlay_formats[] = {
1172 DRM_FORMAT_ARGB4444,
1173 DRM_FORMAT_ARGB1555,
1175 DRM_FORMAT_RGBA5551,
1176 DRM_FORMAT_ABGR8888,
1177 DRM_FORMAT_ARGB8888,
1178 /* new on Tegra114 */
1179 DRM_FORMAT_ABGR4444,
1180 DRM_FORMAT_ABGR1555,
1181 DRM_FORMAT_BGRA5551,
1182 DRM_FORMAT_XRGB1555,
1183 DRM_FORMAT_RGBX5551,
1184 DRM_FORMAT_XBGR1555,
1185 DRM_FORMAT_BGRX5551,
1187 DRM_FORMAT_BGRA8888,
1188 DRM_FORMAT_RGBA8888,
1189 DRM_FORMAT_XRGB8888,
1190 DRM_FORMAT_XBGR8888,
1191 /* planar formats */
1198 static const u32 tegra124_overlay_formats[] = {
1199 DRM_FORMAT_ARGB4444,
1200 DRM_FORMAT_ARGB1555,
1202 DRM_FORMAT_RGBA5551,
1203 DRM_FORMAT_ABGR8888,
1204 DRM_FORMAT_ARGB8888,
1205 /* new on Tegra114 */
1206 DRM_FORMAT_ABGR4444,
1207 DRM_FORMAT_ABGR1555,
1208 DRM_FORMAT_BGRA5551,
1209 DRM_FORMAT_XRGB1555,
1210 DRM_FORMAT_RGBX5551,
1211 DRM_FORMAT_XBGR1555,
1212 DRM_FORMAT_BGRX5551,
1214 DRM_FORMAT_BGRA8888,
1215 DRM_FORMAT_RGBA8888,
1216 DRM_FORMAT_XRGB8888,
1217 DRM_FORMAT_XBGR8888,
1218 /* new on Tegra124 */
1219 DRM_FORMAT_RGBX8888,
1220 DRM_FORMAT_BGRX8888,
1221 /* planar formats */
1228 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1229 struct tegra_dc *dc,
1233 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1234 struct tegra_plane *plane;
1235 unsigned int num_formats;
1236 enum drm_plane_type type;
1240 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1242 return ERR_PTR(-ENOMEM);
1244 plane->offset = 0xa00 + 0x200 * index;
1245 plane->index = index;
1248 num_formats = dc->soc->num_overlay_formats;
1249 formats = dc->soc->overlay_formats;
1251 err = tegra_plane_interconnect_init(plane);
1254 return ERR_PTR(err);
1258 type = DRM_PLANE_TYPE_OVERLAY;
1260 type = DRM_PLANE_TYPE_CURSOR;
1262 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1263 &tegra_plane_funcs, formats,
1264 num_formats, linear_modifiers,
1268 return ERR_PTR(err);
1271 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1272 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1274 err = drm_plane_create_rotation_property(&plane->base,
1277 DRM_MODE_ROTATE_180 |
1278 DRM_MODE_REFLECT_X |
1279 DRM_MODE_REFLECT_Y);
1281 dev_err(dc->dev, "failed to create rotation property: %d\n",
1284 return &plane->base;
1287 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1288 struct tegra_dc *dc)
1290 struct drm_plane *plane, *primary = NULL;
1293 for (i = 0; i < dc->soc->num_wgrps; i++) {
1294 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1296 if (wgrp->dc == dc->pipe) {
1297 for (j = 0; j < wgrp->num_windows; j++) {
1298 unsigned int index = wgrp->windows[j];
1300 plane = tegra_shared_plane_create(drm, dc,
1307 * Choose the first shared plane owned by this
1308 * head as the primary plane.
1311 plane->type = DRM_PLANE_TYPE_PRIMARY;
1321 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1322 struct tegra_dc *dc)
1324 struct drm_plane *planes[2], *primary;
1325 unsigned int planes_num;
1329 primary = tegra_primary_plane_create(drm, dc);
1330 if (IS_ERR(primary))
1333 if (dc->soc->supports_cursor)
1338 for (i = 0; i < planes_num; i++) {
1339 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1341 if (IS_ERR(planes[i])) {
1342 err = PTR_ERR(planes[i]);
1345 planes[i]->funcs->destroy(planes[i]);
1347 primary->funcs->destroy(primary);
1348 return ERR_PTR(err);
1355 static void tegra_dc_destroy(struct drm_crtc *crtc)
1357 drm_crtc_cleanup(crtc);
1360 static void tegra_crtc_reset(struct drm_crtc *crtc)
1362 struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1365 tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1367 __drm_atomic_helper_crtc_reset(crtc, &state->base);
1370 static struct drm_crtc_state *
1371 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1373 struct tegra_dc_state *state = to_dc_state(crtc->state);
1374 struct tegra_dc_state *copy;
1376 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1380 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base);
1381 copy->clk = state->clk;
1382 copy->pclk = state->pclk;
1383 copy->div = state->div;
1384 copy->planes = state->planes;
1389 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1390 struct drm_crtc_state *state)
1392 __drm_atomic_helper_crtc_destroy_state(state);
1396 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1398 static const struct debugfs_reg32 tegra_dc_regs[] = {
1399 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1400 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1401 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1402 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1403 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1404 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1405 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1406 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1407 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1408 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1409 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1410 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1411 DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1412 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1413 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1414 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1415 DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1416 DEBUGFS_REG32(DC_CMD_INT_STATUS),
1417 DEBUGFS_REG32(DC_CMD_INT_MASK),
1418 DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1419 DEBUGFS_REG32(DC_CMD_INT_TYPE),
1420 DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1421 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1422 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1423 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1424 DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1425 DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1426 DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1427 DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1428 DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1429 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1430 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1431 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1432 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1433 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1434 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1435 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1436 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1437 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1438 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1439 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1440 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1441 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1442 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1443 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1444 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1445 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1446 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1447 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1448 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1449 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1450 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1451 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1452 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1453 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1454 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1455 DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1456 DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1457 DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1458 DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1459 DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1460 DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1461 DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1462 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1463 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1464 DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1465 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1466 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1467 DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1468 DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1469 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1470 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1471 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1472 DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1473 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1474 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1475 DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1476 DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1477 DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1478 DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1479 DEBUGFS_REG32(DC_DISP_ACTIVE),
1480 DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1481 DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1482 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1483 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1484 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1485 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1486 DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1487 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1488 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1489 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1490 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1491 DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1492 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1493 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1494 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1495 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1496 DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1497 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1498 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1499 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1500 DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1501 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1502 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1503 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1504 DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1505 DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1506 DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1507 DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1508 DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1509 DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1510 DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1511 DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1512 DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1513 DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1514 DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1515 DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1516 DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1517 DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1518 DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1519 DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1520 DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1521 DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1522 DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1523 DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1524 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1525 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1526 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1527 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1528 DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1529 DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1530 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1531 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1532 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1533 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1534 DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1535 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1536 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1537 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1538 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1539 DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1540 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1541 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1542 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1543 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1544 DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1545 DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1546 DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1547 DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1548 DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1549 DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1550 DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1551 DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1552 DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1553 DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1554 DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1555 DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1556 DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1557 DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1558 DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1559 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1560 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1561 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1562 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1563 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1564 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1565 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1566 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1567 DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1568 DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1569 DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1570 DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1571 DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1572 DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1573 DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1574 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1575 DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1576 DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1577 DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1578 DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1579 DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1580 DEBUGFS_REG32(DC_WIN_POSITION),
1581 DEBUGFS_REG32(DC_WIN_SIZE),
1582 DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1583 DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1584 DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1585 DEBUGFS_REG32(DC_WIN_DDA_INC),
1586 DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1587 DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1588 DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1589 DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1590 DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1591 DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1592 DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1593 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1594 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1595 DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1596 DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1597 DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1598 DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1599 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1600 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1601 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1602 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1603 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1604 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1605 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1606 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1607 DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1608 DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1609 DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1610 DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1613 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1615 struct drm_info_node *node = s->private;
1616 struct tegra_dc *dc = node->info_ent->data;
1620 drm_modeset_lock(&dc->base.mutex, NULL);
1622 if (!dc->base.state->active) {
1627 for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1628 unsigned int offset = tegra_dc_regs[i].offset;
1630 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1631 offset, tegra_dc_readl(dc, offset));
1635 drm_modeset_unlock(&dc->base.mutex);
1639 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1641 struct drm_info_node *node = s->private;
1642 struct tegra_dc *dc = node->info_ent->data;
1646 drm_modeset_lock(&dc->base.mutex, NULL);
1648 if (!dc->base.state->active) {
1653 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1654 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1655 tegra_dc_commit(dc);
1657 drm_crtc_wait_one_vblank(&dc->base);
1658 drm_crtc_wait_one_vblank(&dc->base);
1660 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1661 seq_printf(s, "%08x\n", value);
1663 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1666 drm_modeset_unlock(&dc->base.mutex);
1670 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1672 struct drm_info_node *node = s->private;
1673 struct tegra_dc *dc = node->info_ent->data;
1675 seq_printf(s, "frames: %lu\n", dc->stats.frames);
1676 seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1677 seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1678 seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1680 seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
1681 seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
1682 seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
1683 seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
1688 static struct drm_info_list debugfs_files[] = {
1689 { "regs", tegra_dc_show_regs, 0, NULL },
1690 { "crc", tegra_dc_show_crc, 0, NULL },
1691 { "stats", tegra_dc_show_stats, 0, NULL },
1694 static int tegra_dc_late_register(struct drm_crtc *crtc)
1696 unsigned int i, count = ARRAY_SIZE(debugfs_files);
1697 struct drm_minor *minor = crtc->dev->primary;
1698 struct dentry *root;
1699 struct tegra_dc *dc = to_tegra_dc(crtc);
1701 #ifdef CONFIG_DEBUG_FS
1702 root = crtc->debugfs_entry;
1707 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1709 if (!dc->debugfs_files)
1712 for (i = 0; i < count; i++)
1713 dc->debugfs_files[i].data = dc;
1715 drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1720 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1722 unsigned int count = ARRAY_SIZE(debugfs_files);
1723 struct drm_minor *minor = crtc->dev->primary;
1724 struct tegra_dc *dc = to_tegra_dc(crtc);
1726 drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1727 kfree(dc->debugfs_files);
1728 dc->debugfs_files = NULL;
1731 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1733 struct tegra_dc *dc = to_tegra_dc(crtc);
1735 /* XXX vblank syncpoints don't work with nvdisplay yet */
1736 if (dc->syncpt && !dc->soc->has_nvdisplay)
1737 return host1x_syncpt_read(dc->syncpt);
1739 /* fallback to software emulated VBLANK counter */
1740 return (u32)drm_crtc_vblank_count(&dc->base);
1743 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1745 struct tegra_dc *dc = to_tegra_dc(crtc);
1748 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1749 value |= VBLANK_INT;
1750 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1755 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1757 struct tegra_dc *dc = to_tegra_dc(crtc);
1760 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1761 value &= ~VBLANK_INT;
1762 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1765 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1766 .page_flip = drm_atomic_helper_page_flip,
1767 .set_config = drm_atomic_helper_set_config,
1768 .destroy = tegra_dc_destroy,
1769 .reset = tegra_crtc_reset,
1770 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1771 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1772 .late_register = tegra_dc_late_register,
1773 .early_unregister = tegra_dc_early_unregister,
1774 .get_vblank_counter = tegra_dc_get_vblank_counter,
1775 .enable_vblank = tegra_dc_enable_vblank,
1776 .disable_vblank = tegra_dc_disable_vblank,
1779 static int tegra_dc_set_timings(struct tegra_dc *dc,
1780 struct drm_display_mode *mode)
1782 unsigned int h_ref_to_sync = 1;
1783 unsigned int v_ref_to_sync = 1;
1784 unsigned long value;
1786 if (!dc->soc->has_nvdisplay) {
1787 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1789 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1790 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1793 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1794 ((mode->hsync_end - mode->hsync_start) << 0);
1795 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1797 value = ((mode->vtotal - mode->vsync_end) << 16) |
1798 ((mode->htotal - mode->hsync_end) << 0);
1799 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1801 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1802 ((mode->hsync_start - mode->hdisplay) << 0);
1803 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1805 value = (mode->vdisplay << 16) | mode->hdisplay;
1806 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1812 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1814 * @dc: display controller
1815 * @crtc_state: CRTC atomic state
1816 * @clk: parent clock for display controller
1817 * @pclk: pixel clock
1818 * @div: shift clock divider
1821 * 0 on success or a negative error-code on failure.
1823 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1824 struct drm_crtc_state *crtc_state,
1825 struct clk *clk, unsigned long pclk,
1828 struct tegra_dc_state *state = to_dc_state(crtc_state);
1830 if (!clk_has_parent(dc->clk, clk))
1840 static void tegra_dc_update_voltage_state(struct tegra_dc *dc,
1841 struct tegra_dc_state *state)
1843 unsigned long rate, pstate;
1844 struct dev_pm_opp *opp;
1847 if (!dc->has_opp_table)
1850 /* calculate actual pixel clock rate which depends on internal divider */
1851 rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2);
1853 /* find suitable OPP for the rate */
1854 opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate);
1857 * Very high resolution modes may results in a clock rate that is
1858 * above the characterized maximum. In this case it's okay to fall
1859 * back to the characterized maximum.
1861 if (opp == ERR_PTR(-ERANGE))
1862 opp = dev_pm_opp_find_freq_floor(dc->dev, &rate);
1865 dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n",
1870 pstate = dev_pm_opp_get_required_pstate(opp, 0);
1871 dev_pm_opp_put(opp);
1874 * The minimum core voltage depends on the pixel clock rate (which
1875 * depends on internal clock divider of the CRTC) and not on the
1876 * rate of the display controller clock. This is why we're not using
1877 * dev_pm_opp_set_rate() API and instead controlling the power domain
1880 err = dev_pm_genpd_set_performance_state(dc->dev, pstate);
1882 dev_err(dc->dev, "failed to set power domain state to %lu: %d\n",
1886 static void tegra_dc_set_clock_rate(struct tegra_dc *dc,
1887 struct tegra_dc_state *state)
1891 err = clk_set_parent(dc->clk, state->clk);
1893 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1896 * Outputs may not want to change the parent clock rate. This is only
1897 * relevant to Tegra20 where only a single display PLL is available.
1898 * Since that PLL would typically be used for HDMI, an internal LVDS
1899 * panel would need to be driven by some other clock such as PLL_P
1900 * which is shared with other peripherals. Changing the clock rate
1901 * should therefore be avoided.
1903 if (state->pclk > 0) {
1904 err = clk_set_rate(state->clk, state->pclk);
1907 "failed to set clock rate to %lu Hz\n",
1910 err = clk_set_rate(dc->clk, state->pclk);
1912 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1913 dc->clk, state->pclk, err);
1916 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1918 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1920 tegra_dc_update_voltage_state(dc, state);
1923 static void tegra_dc_stop(struct tegra_dc *dc)
1927 /* stop the display controller */
1928 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1929 value &= ~DISP_CTRL_MODE_MASK;
1930 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1932 tegra_dc_commit(dc);
1935 static bool tegra_dc_idle(struct tegra_dc *dc)
1939 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1941 return (value & DISP_CTRL_MODE_MASK) == 0;
1944 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1946 timeout = jiffies + msecs_to_jiffies(timeout);
1948 while (time_before(jiffies, timeout)) {
1949 if (tegra_dc_idle(dc))
1952 usleep_range(1000, 2000);
1955 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1960 tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
1961 struct drm_atomic_state *state,
1962 bool prepare_bandwidth_transition)
1964 const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
1965 u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
1966 const struct drm_plane_state *old_plane_state;
1967 const struct drm_crtc_state *old_crtc_state;
1968 struct tegra_dc_window window, old_window;
1969 struct tegra_dc *dc = to_tegra_dc(crtc);
1970 struct tegra_plane *tegra;
1971 struct drm_plane *plane;
1973 if (dc->soc->has_nvdisplay)
1976 old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
1978 if (!crtc->state->active) {
1979 if (!old_crtc_state->active)
1983 * When CRTC is disabled on DPMS, the state of attached planes
1984 * is kept unchanged. Hence we need to enforce removal of the
1985 * bandwidths from the ICC paths.
1987 drm_atomic_crtc_for_each_plane(plane, crtc) {
1988 tegra = to_tegra_plane(plane);
1990 icc_set_bw(tegra->icc_mem, 0, 0);
1991 icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
1997 for_each_old_plane_in_state(old_crtc_state->state, plane,
1998 old_plane_state, i) {
1999 old_tegra_state = to_const_tegra_plane_state(old_plane_state);
2000 new_tegra_state = to_const_tegra_plane_state(plane->state);
2001 tegra = to_tegra_plane(plane);
2004 * We're iterating over the global atomic state and it contains
2005 * planes from another CRTC, hence we need to filter out the
2006 * planes unrelated to this CRTC.
2008 if (tegra->dc != dc)
2011 new_avg_bw = new_tegra_state->avg_memory_bandwidth;
2012 old_avg_bw = old_tegra_state->avg_memory_bandwidth;
2014 new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
2015 old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
2018 * See the comment related to !crtc->state->active above,
2019 * which explains why bandwidths need to be updated when
2020 * CRTC is turning ON.
2022 if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
2023 old_crtc_state->active)
2026 window.src.h = drm_rect_height(&plane->state->src) >> 16;
2027 window.dst.h = drm_rect_height(&plane->state->dst);
2029 old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
2030 old_window.dst.h = drm_rect_height(&old_plane_state->dst);
2033 * During the preparation phase (atomic_begin), the memory
2034 * freq should go high before the DC changes are committed
2035 * if bandwidth requirement goes up, otherwise memory freq
2036 * should to stay high if BW requirement goes down. The
2037 * opposite applies to the completion phase (post_commit).
2039 if (prepare_bandwidth_transition) {
2040 new_avg_bw = max(old_avg_bw, new_avg_bw);
2041 new_peak_bw = max(old_peak_bw, new_peak_bw);
2043 if (tegra_plane_use_vertical_filtering(tegra, &old_window))
2044 window = old_window;
2047 icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
2049 if (tegra_plane_use_vertical_filtering(tegra, &window))
2050 icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
2052 icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2056 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
2057 struct drm_atomic_state *state)
2059 struct tegra_dc *dc = to_tegra_dc(crtc);
2063 if (!tegra_dc_idle(dc)) {
2067 * Ignore the return value, there isn't anything useful to do
2068 * in case this fails.
2070 tegra_dc_wait_idle(dc, 100);
2074 * This should really be part of the RGB encoder driver, but clearing
2075 * these bits has the side-effect of stopping the display controller.
2076 * When that happens no VBLANK interrupts will be raised. At the same
2077 * time the encoder is disabled before the display controller, so the
2078 * above code is always going to timeout waiting for the controller
2081 * Given the close coupling between the RGB encoder and the display
2082 * controller doing it here is still kind of okay. None of the other
2083 * encoder drivers require these bits to be cleared.
2085 * XXX: Perhaps given that the display controller is switched off at
2086 * this point anyway maybe clearing these bits isn't even useful for
2090 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2091 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2092 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
2093 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2096 tegra_dc_stats_reset(&dc->stats);
2097 drm_crtc_vblank_off(crtc);
2099 spin_lock_irq(&crtc->dev->event_lock);
2101 if (crtc->state->event) {
2102 drm_crtc_send_vblank_event(crtc, crtc->state->event);
2103 crtc->state->event = NULL;
2106 spin_unlock_irq(&crtc->dev->event_lock);
2108 err = host1x_client_suspend(&dc->client);
2110 dev_err(dc->dev, "failed to suspend: %d\n", err);
2112 if (dc->has_opp_table) {
2113 err = dev_pm_genpd_set_performance_state(dc->dev, 0);
2116 "failed to clear power domain state: %d\n", err);
2120 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
2121 struct drm_atomic_state *state)
2123 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
2124 struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
2125 struct tegra_dc *dc = to_tegra_dc(crtc);
2129 /* apply PLL changes */
2130 tegra_dc_set_clock_rate(dc, crtc_state);
2132 err = host1x_client_resume(&dc->client);
2134 dev_err(dc->dev, "failed to resume: %d\n", err);
2138 /* initialize display controller */
2140 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
2142 if (dc->soc->has_nvdisplay)
2147 value = SYNCPT_CNTRL_NO_STALL;
2148 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
2150 value = enable | syncpt;
2151 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
2154 if (dc->soc->has_nvdisplay) {
2155 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2157 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2159 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2160 DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
2161 HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
2162 REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
2163 VBLANK_INT | FRAME_END_INT;
2164 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2166 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
2168 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2170 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
2171 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2173 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
2175 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2176 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2177 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2179 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2180 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2181 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2183 /* initialize timer */
2184 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
2185 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
2186 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
2188 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
2189 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
2190 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
2192 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2193 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2194 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2196 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2197 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2198 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2201 if (dc->soc->supports_background_color)
2202 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
2204 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
2206 /* apply pixel clock changes */
2207 if (!dc->soc->has_nvdisplay) {
2208 value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1;
2209 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
2212 /* program display mode */
2213 tegra_dc_set_timings(dc, mode);
2215 /* interlacing isn't supported yet, so disable it */
2216 if (dc->soc->supports_interlacing) {
2217 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
2218 value &= ~INTERLACE_ENABLE;
2219 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
2222 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
2223 value &= ~DISP_CTRL_MODE_MASK;
2224 value |= DISP_CTRL_MODE_C_DISPLAY;
2225 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
2227 if (!dc->soc->has_nvdisplay) {
2228 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2229 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2230 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
2231 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2234 /* enable underflow reporting and display red for missing pixels */
2235 if (dc->soc->has_nvdisplay) {
2236 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
2237 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
2241 /* XXX: parameterize? */
2242 value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
2243 tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
2246 tegra_dc_commit(dc);
2248 drm_crtc_vblank_on(crtc);
2251 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
2252 struct drm_atomic_state *state)
2254 unsigned long flags;
2256 tegra_crtc_update_memory_bandwidth(crtc, state, true);
2258 if (crtc->state->event) {
2259 spin_lock_irqsave(&crtc->dev->event_lock, flags);
2261 if (drm_crtc_vblank_get(crtc) != 0)
2262 drm_crtc_send_vblank_event(crtc, crtc->state->event);
2264 drm_crtc_arm_vblank_event(crtc, crtc->state->event);
2266 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2268 crtc->state->event = NULL;
2272 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2273 struct drm_atomic_state *state)
2275 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2277 struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2278 struct tegra_dc *dc = to_tegra_dc(crtc);
2281 value = dc_state->planes << 8 | GENERAL_UPDATE;
2282 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2283 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2285 value = dc_state->planes | GENERAL_ACT_REQ;
2286 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2287 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2290 static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
2292 const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
2293 const struct drm_format_info *fmt = state->fb->format;
2294 unsigned int src_w = drm_rect_width(&state->src) >> 16;
2295 unsigned int dst_w = drm_rect_width(&state->dst);
2297 if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
2300 if (soc->supports_cursor)
2303 if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
2309 static unsigned long
2310 tegra_plane_overlap_mask(struct drm_crtc_state *state,
2311 const struct drm_plane_state *plane_state)
2313 const struct drm_plane_state *other_state;
2314 const struct tegra_plane *tegra;
2315 unsigned long overlap_mask = 0;
2316 struct drm_plane *plane;
2317 struct drm_rect rect;
2319 if (!plane_state->visible || !plane_state->fb)
2323 * Data-prefetch FIFO will easily help to overcome temporal memory
2324 * pressure if other plane overlaps with the cursor plane.
2326 if (tegra_plane_is_cursor(plane_state))
2329 drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
2330 rect = plane_state->dst;
2332 tegra = to_tegra_plane(other_state->plane);
2334 if (!other_state->visible || !other_state->fb)
2338 * Ignore cursor plane overlaps because it's not practical to
2339 * assume that it contributes to the bandwidth in overlapping
2340 * area if window width is small.
2342 if (tegra_plane_is_cursor(other_state))
2345 if (drm_rect_intersect(&rect, &other_state->dst))
2346 overlap_mask |= BIT(tegra->index);
2349 return overlap_mask;
2352 static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
2353 struct drm_atomic_state *state)
2355 ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
2356 u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
2357 bool all_planes_overlap_simultaneously = true;
2358 const struct tegra_plane_state *tegra_state;
2359 const struct drm_plane_state *plane_state;
2360 struct tegra_dc *dc = to_tegra_dc(crtc);
2361 const struct drm_crtc_state *old_state;
2362 struct drm_crtc_state *new_state;
2363 struct tegra_plane *tegra;
2364 struct drm_plane *plane;
2367 * The nv-display uses shared planes. The algorithm below assumes
2368 * maximum 3 planes per-CRTC, this assumption isn't applicable to
2369 * the nv-display. Note that T124 support has additional windows,
2370 * but currently they aren't supported by the driver.
2372 if (dc->soc->has_nvdisplay)
2375 new_state = drm_atomic_get_new_crtc_state(state, crtc);
2376 old_state = drm_atomic_get_old_crtc_state(state, crtc);
2379 * For overlapping planes pixel's data is fetched for each plane at
2380 * the same time, hence bandwidths are accumulated in this case.
2381 * This needs to be taken into account for calculating total bandwidth
2382 * consumed by all planes.
2384 * Here we get the overlapping state of each plane, which is a
2385 * bitmask of plane indices telling with what planes there is an
2386 * overlap. Note that bitmask[plane] includes BIT(plane) in order
2387 * to make further code nicer and simpler.
2389 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2390 tegra_state = to_const_tegra_plane_state(plane_state);
2391 tegra = to_tegra_plane(plane);
2393 if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
2396 plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
2397 mask = tegra_plane_overlap_mask(new_state, plane_state);
2398 overlap_mask[tegra->index] = mask;
2400 if (hweight_long(mask) != 3)
2401 all_planes_overlap_simultaneously = false;
2405 * Then we calculate maximum bandwidth of each plane state.
2406 * The bandwidth includes the plane BW + BW of the "simultaneously"
2407 * overlapping planes, where "simultaneously" means areas where DC
2408 * fetches from the planes simultaneously during of scan-out process.
2410 * For example, if plane A overlaps with planes B and C, but B and C
2411 * don't overlap, then the peak bandwidth will be either in area where
2412 * A-and-B or A-and-C planes overlap.
2414 * The plane_peak_bw[] contains peak memory bandwidth values of
2415 * each plane, this information is needed by interconnect provider
2416 * in order to set up latency allowance based on the peak BW, see
2417 * tegra_crtc_update_memory_bandwidth().
2419 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2420 u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
2423 * Note that plane's atomic check doesn't touch the
2424 * total_peak_memory_bandwidth of enabled plane, hence the
2425 * current state contains the old bandwidth state from the
2426 * previous CRTC commit.
2428 tegra_state = to_const_tegra_plane_state(plane_state);
2429 tegra = to_tegra_plane(plane);
2431 for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
2432 if (i == tegra->index)
2435 if (all_planes_overlap_simultaneously)
2436 overlap_bw += plane_peak_bw[i];
2438 overlap_bw = max(overlap_bw, plane_peak_bw[i]);
2441 new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
2442 old_peak_bw = tegra_state->total_peak_memory_bandwidth;
2445 * If plane's peak bandwidth changed (for example plane isn't
2446 * overlapped anymore) and plane isn't in the atomic state,
2447 * then add plane to the state in order to have the bandwidth
2450 if (old_peak_bw != new_peak_bw) {
2451 struct tegra_plane_state *new_tegra_state;
2452 struct drm_plane_state *new_plane_state;
2454 new_plane_state = drm_atomic_get_plane_state(state, plane);
2455 if (IS_ERR(new_plane_state))
2456 return PTR_ERR(new_plane_state);
2458 new_tegra_state = to_tegra_plane_state(new_plane_state);
2459 new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
2466 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
2467 struct drm_atomic_state *state)
2471 err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
2478 void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
2479 struct drm_atomic_state *state)
2482 * Display bandwidth is allowed to go down only once hardware state
2483 * is known to be armed, i.e. state was committed and VBLANK event
2486 tegra_crtc_update_memory_bandwidth(crtc, state, false);
2489 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2490 .atomic_check = tegra_crtc_atomic_check,
2491 .atomic_begin = tegra_crtc_atomic_begin,
2492 .atomic_flush = tegra_crtc_atomic_flush,
2493 .atomic_enable = tegra_crtc_atomic_enable,
2494 .atomic_disable = tegra_crtc_atomic_disable,
2497 static irqreturn_t tegra_dc_irq(int irq, void *data)
2499 struct tegra_dc *dc = data;
2500 unsigned long status;
2502 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2503 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2505 if (status & FRAME_END_INT) {
2507 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2509 dc->stats.frames_total++;
2513 if (status & VBLANK_INT) {
2515 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2517 drm_crtc_handle_vblank(&dc->base);
2518 dc->stats.vblank_total++;
2522 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2524 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2526 dc->stats.underflow_total++;
2527 dc->stats.underflow++;
2530 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2532 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2534 dc->stats.overflow_total++;
2535 dc->stats.overflow++;
2538 if (status & HEAD_UF_INT) {
2539 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2540 dc->stats.underflow_total++;
2541 dc->stats.underflow++;
2547 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2551 if (!dc->soc->wgrps)
2554 for (i = 0; i < dc->soc->num_wgrps; i++) {
2555 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2557 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2564 static int tegra_dc_early_init(struct host1x_client *client)
2566 struct drm_device *drm = dev_get_drvdata(client->host);
2567 struct tegra_drm *tegra = drm->dev_private;
2574 static int tegra_dc_init(struct host1x_client *client)
2576 struct drm_device *drm = dev_get_drvdata(client->host);
2577 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2578 struct tegra_dc *dc = host1x_client_to_dc(client);
2579 struct tegra_drm *tegra = drm->dev_private;
2580 struct drm_plane *primary = NULL;
2581 struct drm_plane *cursor = NULL;
2585 * DC has been reset by now, so VBLANK syncpoint can be released
2588 host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2591 * XXX do not register DCs with no window groups because we cannot
2592 * assign a primary plane to them, which in turn will cause KMS to
2595 if (!tegra_dc_has_window_groups(dc))
2599 * Set the display hub as the host1x client parent for the display
2600 * controller. This is needed for the runtime reference counting that
2601 * ensures the display hub is always powered when any of the display
2604 if (dc->soc->has_nvdisplay)
2605 client->parent = &tegra->hub->client;
2607 dc->syncpt = host1x_syncpt_request(client, flags);
2609 dev_warn(dc->dev, "failed to allocate syncpoint\n");
2611 err = host1x_client_iommu_attach(client);
2612 if (err < 0 && err != -ENODEV) {
2613 dev_err(client->dev, "failed to attach to domain: %d\n", err);
2618 primary = tegra_dc_add_shared_planes(drm, dc);
2620 primary = tegra_dc_add_planes(drm, dc);
2622 if (IS_ERR(primary)) {
2623 err = PTR_ERR(primary);
2627 if (dc->soc->supports_cursor) {
2628 cursor = tegra_dc_cursor_plane_create(drm, dc);
2629 if (IS_ERR(cursor)) {
2630 err = PTR_ERR(cursor);
2634 /* dedicate one overlay to mouse cursor */
2635 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2636 if (IS_ERR(cursor)) {
2637 err = PTR_ERR(cursor);
2642 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2643 &tegra_crtc_funcs, NULL);
2647 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2650 * Keep track of the minimum pitch alignment across all display
2653 if (dc->soc->pitch_align > tegra->pitch_align)
2654 tegra->pitch_align = dc->soc->pitch_align;
2656 /* track maximum resolution */
2657 if (dc->soc->has_nvdisplay)
2658 drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2660 drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2662 err = tegra_dc_rgb_init(drm, dc);
2663 if (err < 0 && err != -ENODEV) {
2664 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2668 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2669 dev_name(dc->dev), dc);
2671 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2677 * Inherit the DMA parameters (such as maximum segment size) from the
2678 * parent host1x device.
2680 client->dev->dma_parms = client->host->dma_parms;
2685 if (!IS_ERR_OR_NULL(cursor))
2686 drm_plane_cleanup(cursor);
2688 if (!IS_ERR(primary))
2689 drm_plane_cleanup(primary);
2691 host1x_client_iommu_detach(client);
2692 host1x_syncpt_put(dc->syncpt);
2697 static int tegra_dc_exit(struct host1x_client *client)
2699 struct tegra_dc *dc = host1x_client_to_dc(client);
2702 if (!tegra_dc_has_window_groups(dc))
2705 /* avoid a dangling pointer just in case this disappears */
2706 client->dev->dma_parms = NULL;
2708 devm_free_irq(dc->dev, dc->irq, dc);
2710 err = tegra_dc_rgb_exit(dc);
2712 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2716 host1x_client_iommu_detach(client);
2717 host1x_syncpt_put(dc->syncpt);
2722 static int tegra_dc_late_exit(struct host1x_client *client)
2724 struct drm_device *drm = dev_get_drvdata(client->host);
2725 struct tegra_drm *tegra = drm->dev_private;
2732 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2734 struct tegra_dc *dc = host1x_client_to_dc(client);
2735 struct device *dev = client->dev;
2738 err = reset_control_assert(dc->rst);
2740 dev_err(dev, "failed to assert reset: %d\n", err);
2744 if (dc->soc->has_powergate)
2745 tegra_powergate_power_off(dc->powergate);
2747 clk_disable_unprepare(dc->clk);
2748 pm_runtime_put_sync(dev);
2753 static int tegra_dc_runtime_resume(struct host1x_client *client)
2755 struct tegra_dc *dc = host1x_client_to_dc(client);
2756 struct device *dev = client->dev;
2759 err = pm_runtime_resume_and_get(dev);
2761 dev_err(dev, "failed to get runtime PM: %d\n", err);
2765 if (dc->soc->has_powergate) {
2766 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2769 dev_err(dev, "failed to power partition: %d\n", err);
2773 err = clk_prepare_enable(dc->clk);
2775 dev_err(dev, "failed to enable clock: %d\n", err);
2779 err = reset_control_deassert(dc->rst);
2781 dev_err(dev, "failed to deassert reset: %d\n", err);
2789 clk_disable_unprepare(dc->clk);
2791 pm_runtime_put_sync(dev);
2795 static const struct host1x_client_ops dc_client_ops = {
2796 .early_init = tegra_dc_early_init,
2797 .init = tegra_dc_init,
2798 .exit = tegra_dc_exit,
2799 .late_exit = tegra_dc_late_exit,
2800 .suspend = tegra_dc_runtime_suspend,
2801 .resume = tegra_dc_runtime_resume,
2804 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2805 .supports_background_color = false,
2806 .supports_interlacing = false,
2807 .supports_cursor = false,
2808 .supports_block_linear = false,
2809 .supports_sector_layout = false,
2810 .has_legacy_blending = true,
2812 .has_powergate = false,
2814 .has_nvdisplay = false,
2815 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2816 .primary_formats = tegra20_primary_formats,
2817 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2818 .overlay_formats = tegra20_overlay_formats,
2819 .modifiers = tegra20_modifiers,
2820 .has_win_a_without_filters = true,
2821 .has_win_b_vfilter_mem_client = true,
2822 .has_win_c_without_vert_filter = true,
2823 .plane_tiled_memory_bandwidth_x2 = false,
2824 .has_pll_d2_out0 = false,
2827 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2828 .supports_background_color = false,
2829 .supports_interlacing = false,
2830 .supports_cursor = false,
2831 .supports_block_linear = false,
2832 .supports_sector_layout = false,
2833 .has_legacy_blending = true,
2835 .has_powergate = false,
2836 .coupled_pm = false,
2837 .has_nvdisplay = false,
2838 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2839 .primary_formats = tegra20_primary_formats,
2840 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2841 .overlay_formats = tegra20_overlay_formats,
2842 .modifiers = tegra20_modifiers,
2843 .has_win_a_without_filters = false,
2844 .has_win_b_vfilter_mem_client = true,
2845 .has_win_c_without_vert_filter = false,
2846 .plane_tiled_memory_bandwidth_x2 = true,
2847 .has_pll_d2_out0 = true,
2850 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2851 .supports_background_color = false,
2852 .supports_interlacing = false,
2853 .supports_cursor = false,
2854 .supports_block_linear = false,
2855 .supports_sector_layout = false,
2856 .has_legacy_blending = true,
2858 .has_powergate = true,
2859 .coupled_pm = false,
2860 .has_nvdisplay = false,
2861 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2862 .primary_formats = tegra114_primary_formats,
2863 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2864 .overlay_formats = tegra114_overlay_formats,
2865 .modifiers = tegra20_modifiers,
2866 .has_win_a_without_filters = false,
2867 .has_win_b_vfilter_mem_client = false,
2868 .has_win_c_without_vert_filter = false,
2869 .plane_tiled_memory_bandwidth_x2 = true,
2870 .has_pll_d2_out0 = true,
2873 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2874 .supports_background_color = true,
2875 .supports_interlacing = true,
2876 .supports_cursor = true,
2877 .supports_block_linear = true,
2878 .supports_sector_layout = false,
2879 .has_legacy_blending = false,
2881 .has_powergate = true,
2882 .coupled_pm = false,
2883 .has_nvdisplay = false,
2884 .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2885 .primary_formats = tegra124_primary_formats,
2886 .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2887 .overlay_formats = tegra124_overlay_formats,
2888 .modifiers = tegra124_modifiers,
2889 .has_win_a_without_filters = false,
2890 .has_win_b_vfilter_mem_client = false,
2891 .has_win_c_without_vert_filter = false,
2892 .plane_tiled_memory_bandwidth_x2 = false,
2893 .has_pll_d2_out0 = true,
2896 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2897 .supports_background_color = true,
2898 .supports_interlacing = true,
2899 .supports_cursor = true,
2900 .supports_block_linear = true,
2901 .supports_sector_layout = false,
2902 .has_legacy_blending = false,
2904 .has_powergate = true,
2905 .coupled_pm = false,
2906 .has_nvdisplay = false,
2907 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2908 .primary_formats = tegra114_primary_formats,
2909 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2910 .overlay_formats = tegra114_overlay_formats,
2911 .modifiers = tegra124_modifiers,
2912 .has_win_a_without_filters = false,
2913 .has_win_b_vfilter_mem_client = false,
2914 .has_win_c_without_vert_filter = false,
2915 .plane_tiled_memory_bandwidth_x2 = false,
2916 .has_pll_d2_out0 = true,
2919 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2923 .windows = (const unsigned int[]) { 0 },
2928 .windows = (const unsigned int[]) { 1 },
2933 .windows = (const unsigned int[]) { 2 },
2938 .windows = (const unsigned int[]) { 3 },
2943 .windows = (const unsigned int[]) { 4 },
2948 .windows = (const unsigned int[]) { 5 },
2953 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2954 .supports_background_color = true,
2955 .supports_interlacing = true,
2956 .supports_cursor = true,
2957 .supports_block_linear = true,
2958 .supports_sector_layout = false,
2959 .has_legacy_blending = false,
2961 .has_powergate = false,
2962 .coupled_pm = false,
2963 .has_nvdisplay = true,
2964 .wgrps = tegra186_dc_wgrps,
2965 .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2966 .plane_tiled_memory_bandwidth_x2 = false,
2967 .has_pll_d2_out0 = false,
2970 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2974 .windows = (const unsigned int[]) { 0 },
2979 .windows = (const unsigned int[]) { 1 },
2984 .windows = (const unsigned int[]) { 2 },
2989 .windows = (const unsigned int[]) { 3 },
2994 .windows = (const unsigned int[]) { 4 },
2999 .windows = (const unsigned int[]) { 5 },
3004 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
3005 .supports_background_color = true,
3006 .supports_interlacing = true,
3007 .supports_cursor = true,
3008 .supports_block_linear = true,
3009 .supports_sector_layout = true,
3010 .has_legacy_blending = false,
3012 .has_powergate = false,
3013 .coupled_pm = false,
3014 .has_nvdisplay = true,
3015 .wgrps = tegra194_dc_wgrps,
3016 .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
3017 .plane_tiled_memory_bandwidth_x2 = false,
3018 .has_pll_d2_out0 = false,
3021 static const struct of_device_id tegra_dc_of_match[] = {
3023 .compatible = "nvidia,tegra194-dc",
3024 .data = &tegra194_dc_soc_info,
3026 .compatible = "nvidia,tegra186-dc",
3027 .data = &tegra186_dc_soc_info,
3029 .compatible = "nvidia,tegra210-dc",
3030 .data = &tegra210_dc_soc_info,
3032 .compatible = "nvidia,tegra124-dc",
3033 .data = &tegra124_dc_soc_info,
3035 .compatible = "nvidia,tegra114-dc",
3036 .data = &tegra114_dc_soc_info,
3038 .compatible = "nvidia,tegra30-dc",
3039 .data = &tegra30_dc_soc_info,
3041 .compatible = "nvidia,tegra20-dc",
3042 .data = &tegra20_dc_soc_info,
3047 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
3049 static int tegra_dc_parse_dt(struct tegra_dc *dc)
3051 struct device_node *np;
3055 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
3057 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
3060 * If the nvidia,head property isn't present, try to find the
3061 * correct head number by looking up the position of this
3062 * display controller's node within the device tree. Assuming
3063 * that the nodes are ordered properly in the DTS file and
3064 * that the translation into a flattened device tree blob
3065 * preserves that ordering this will actually yield the right
3068 * If those assumptions don't hold, this will still work for
3069 * cases where only a single display controller is used.
3071 for_each_matching_node(np, tegra_dc_of_match) {
3072 if (np == dc->dev->of_node) {
3086 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
3088 struct tegra_dc *dc = dev_get_drvdata(dev);
3089 unsigned int pipe = (unsigned long)(void *)data;
3091 return dc->pipe == pipe;
3094 static int tegra_dc_couple(struct tegra_dc *dc)
3097 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
3098 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
3099 * POWER_CONTROL registers during CRTC enabling.
3101 if (dc->soc->coupled_pm && dc->pipe == 1) {
3102 struct device *companion;
3103 struct tegra_dc *parent;
3105 companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
3106 tegra_dc_match_by_pipe);
3108 return -EPROBE_DEFER;
3110 parent = dev_get_drvdata(companion);
3111 dc->client.parent = &parent->client;
3113 dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
3119 static int tegra_dc_init_opp_table(struct tegra_dc *dc)
3121 struct tegra_core_opp_params opp_params = {};
3124 err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params);
3125 if (err && err != -ENODEV)
3129 dc->has_opp_table = false;
3131 dc->has_opp_table = true;
3136 static int tegra_dc_probe(struct platform_device *pdev)
3138 u64 dma_mask = dma_get_mask(pdev->dev.parent);
3139 struct tegra_dc *dc;
3142 err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
3144 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
3148 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
3152 dc->soc = of_device_get_match_data(&pdev->dev);
3154 INIT_LIST_HEAD(&dc->list);
3155 dc->dev = &pdev->dev;
3157 err = tegra_dc_parse_dt(dc);
3161 err = tegra_dc_couple(dc);
3165 dc->clk = devm_clk_get(&pdev->dev, NULL);
3166 if (IS_ERR(dc->clk)) {
3167 dev_err(&pdev->dev, "failed to get clock\n");
3168 return PTR_ERR(dc->clk);
3171 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
3172 if (IS_ERR(dc->rst)) {
3173 dev_err(&pdev->dev, "failed to get reset\n");
3174 return PTR_ERR(dc->rst);
3177 /* assert reset and disable clock */
3178 err = clk_prepare_enable(dc->clk);
3182 usleep_range(2000, 4000);
3184 err = reset_control_assert(dc->rst);
3188 usleep_range(2000, 4000);
3190 clk_disable_unprepare(dc->clk);
3192 if (dc->soc->has_powergate) {
3194 dc->powergate = TEGRA_POWERGATE_DIS;
3196 dc->powergate = TEGRA_POWERGATE_DISB;
3198 tegra_powergate_power_off(dc->powergate);
3201 err = tegra_dc_init_opp_table(dc);
3205 dc->regs = devm_platform_ioremap_resource(pdev, 0);
3206 if (IS_ERR(dc->regs))
3207 return PTR_ERR(dc->regs);
3209 dc->irq = platform_get_irq(pdev, 0);
3213 err = tegra_dc_rgb_probe(dc);
3214 if (err < 0 && err != -ENODEV) {
3215 const char *level = KERN_ERR;
3217 if (err == -EPROBE_DEFER)
3220 dev_printk(level, dc->dev, "failed to probe RGB output: %d\n",
3225 platform_set_drvdata(pdev, dc);
3226 pm_runtime_enable(&pdev->dev);
3228 INIT_LIST_HEAD(&dc->client.list);
3229 dc->client.ops = &dc_client_ops;
3230 dc->client.dev = &pdev->dev;
3232 err = host1x_client_register(&dc->client);
3234 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3242 pm_runtime_disable(&pdev->dev);
3243 tegra_dc_rgb_remove(dc);
3248 static int tegra_dc_remove(struct platform_device *pdev)
3250 struct tegra_dc *dc = platform_get_drvdata(pdev);
3253 err = host1x_client_unregister(&dc->client);
3255 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
3260 err = tegra_dc_rgb_remove(dc);
3262 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
3266 pm_runtime_disable(&pdev->dev);
3271 struct platform_driver tegra_dc_driver = {
3274 .of_match_table = tegra_dc_of_match,
3276 .probe = tegra_dc_probe,
3277 .remove = tegra_dc_remove,