1 // SPDX-License-Identifier: GPL-2.0
3 // Register map access API
5 // Copyright 2011 Wolfson Microelectronics plc
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
22 #define CREATE_TRACE_POINTS
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
36 static inline bool regmap_should_log(struct regmap *map)
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
51 static int _regmap_bus_read(void *context, unsigned int reg,
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
60 bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
64 const struct regmap_range *r;
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
92 if (map->max_register && reg > map->max_register)
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
99 return regmap_check_range_table(map, reg, map->wr_table);
104 bool regmap_cached(struct regmap *map, unsigned int reg)
109 if (map->cache_type == REGCACHE_NONE)
115 if (map->max_register && reg > map->max_register)
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
127 bool regmap_readable(struct regmap *map, unsigned int reg)
132 if (map->max_register && reg > map->max_register)
135 if (map->format.format_write)
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
142 return regmap_check_range_table(map, reg, map->rd_table);
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
149 if (!map->format.format_write && !regmap_readable(map, reg))
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
164 bool regmap_precious(struct regmap *map, unsigned int reg)
166 if (!regmap_readable(map, reg))
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
212 static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
215 u8 *out = map->work_buf;
218 out[1] = (reg << 4) | (val >> 16);
224 static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
227 u8 *out = map->work_buf;
229 *out = (reg << 6) | val;
232 static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
239 static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
246 static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
249 u8 *out = map->work_buf;
253 out[0] = (val >> 16) | (reg << 1);
256 static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
259 u8 *out = map->work_buf;
262 out[1] = (val >> 8) | (reg << 6);
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
275 put_unaligned_be16(val << shift, buf);
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
280 put_unaligned_le16(val << shift, buf);
283 static void regmap_format_16_native(void *buf, unsigned int val,
286 u16 v = val << shift;
288 memcpy(buf, &v, sizeof(v));
291 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
302 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
304 put_unaligned_be32(val << shift, buf);
307 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
309 put_unaligned_le32(val << shift, buf);
312 static void regmap_format_32_native(void *buf, unsigned int val,
315 u32 v = val << shift;
317 memcpy(buf, &v, sizeof(v));
321 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
323 put_unaligned_be64((u64) val << shift, buf);
326 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
328 put_unaligned_le64((u64) val << shift, buf);
331 static void regmap_format_64_native(void *buf, unsigned int val,
334 u64 v = (u64) val << shift;
336 memcpy(buf, &v, sizeof(v));
340 static void regmap_parse_inplace_noop(void *buf)
344 static unsigned int regmap_parse_8(const void *buf)
351 static unsigned int regmap_parse_16_be(const void *buf)
353 return get_unaligned_be16(buf);
356 static unsigned int regmap_parse_16_le(const void *buf)
358 return get_unaligned_le16(buf);
361 static void regmap_parse_16_be_inplace(void *buf)
363 u16 v = get_unaligned_be16(buf);
365 memcpy(buf, &v, sizeof(v));
368 static void regmap_parse_16_le_inplace(void *buf)
370 u16 v = get_unaligned_le16(buf);
372 memcpy(buf, &v, sizeof(v));
375 static unsigned int regmap_parse_16_native(const void *buf)
379 memcpy(&v, buf, sizeof(v));
383 static unsigned int regmap_parse_24(const void *buf)
386 unsigned int ret = b[2];
387 ret |= ((unsigned int)b[1]) << 8;
388 ret |= ((unsigned int)b[0]) << 16;
393 static unsigned int regmap_parse_32_be(const void *buf)
395 return get_unaligned_be32(buf);
398 static unsigned int regmap_parse_32_le(const void *buf)
400 return get_unaligned_le32(buf);
403 static void regmap_parse_32_be_inplace(void *buf)
405 u32 v = get_unaligned_be32(buf);
407 memcpy(buf, &v, sizeof(v));
410 static void regmap_parse_32_le_inplace(void *buf)
412 u32 v = get_unaligned_le32(buf);
414 memcpy(buf, &v, sizeof(v));
417 static unsigned int regmap_parse_32_native(const void *buf)
421 memcpy(&v, buf, sizeof(v));
426 static unsigned int regmap_parse_64_be(const void *buf)
428 return get_unaligned_be64(buf);
431 static unsigned int regmap_parse_64_le(const void *buf)
433 return get_unaligned_le64(buf);
436 static void regmap_parse_64_be_inplace(void *buf)
438 u64 v = get_unaligned_be64(buf);
440 memcpy(buf, &v, sizeof(v));
443 static void regmap_parse_64_le_inplace(void *buf)
445 u64 v = get_unaligned_le64(buf);
447 memcpy(buf, &v, sizeof(v));
450 static unsigned int regmap_parse_64_native(const void *buf)
454 memcpy(&v, buf, sizeof(v));
459 static void regmap_lock_hwlock(void *__map)
461 struct regmap *map = __map;
463 hwspin_lock_timeout(map->hwlock, UINT_MAX);
466 static void regmap_lock_hwlock_irq(void *__map)
468 struct regmap *map = __map;
470 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
473 static void regmap_lock_hwlock_irqsave(void *__map)
475 struct regmap *map = __map;
477 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
478 &map->spinlock_flags);
481 static void regmap_unlock_hwlock(void *__map)
483 struct regmap *map = __map;
485 hwspin_unlock(map->hwlock);
488 static void regmap_unlock_hwlock_irq(void *__map)
490 struct regmap *map = __map;
492 hwspin_unlock_irq(map->hwlock);
495 static void regmap_unlock_hwlock_irqrestore(void *__map)
497 struct regmap *map = __map;
499 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
502 static void regmap_lock_unlock_none(void *__map)
507 static void regmap_lock_mutex(void *__map)
509 struct regmap *map = __map;
510 mutex_lock(&map->mutex);
513 static void regmap_unlock_mutex(void *__map)
515 struct regmap *map = __map;
516 mutex_unlock(&map->mutex);
519 static void regmap_lock_spinlock(void *__map)
520 __acquires(&map->spinlock)
522 struct regmap *map = __map;
525 spin_lock_irqsave(&map->spinlock, flags);
526 map->spinlock_flags = flags;
529 static void regmap_unlock_spinlock(void *__map)
530 __releases(&map->spinlock)
532 struct regmap *map = __map;
533 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
536 static void regmap_lock_raw_spinlock(void *__map)
537 __acquires(&map->raw_spinlock)
539 struct regmap *map = __map;
542 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
543 map->raw_spinlock_flags = flags;
546 static void regmap_unlock_raw_spinlock(void *__map)
547 __releases(&map->raw_spinlock)
549 struct regmap *map = __map;
550 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
553 static void dev_get_regmap_release(struct device *dev, void *res)
556 * We don't actually have anything to do here; the goal here
557 * is not to manage the regmap but to provide a simple way to
558 * get the regmap back given a struct device.
562 static bool _regmap_range_add(struct regmap *map,
563 struct regmap_range_node *data)
565 struct rb_root *root = &map->range_tree;
566 struct rb_node **new = &(root->rb_node), *parent = NULL;
569 struct regmap_range_node *this =
570 rb_entry(*new, struct regmap_range_node, node);
573 if (data->range_max < this->range_min)
574 new = &((*new)->rb_left);
575 else if (data->range_min > this->range_max)
576 new = &((*new)->rb_right);
581 rb_link_node(&data->node, parent, new);
582 rb_insert_color(&data->node, root);
587 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
590 struct rb_node *node = map->range_tree.rb_node;
593 struct regmap_range_node *this =
594 rb_entry(node, struct regmap_range_node, node);
596 if (reg < this->range_min)
597 node = node->rb_left;
598 else if (reg > this->range_max)
599 node = node->rb_right;
607 static void regmap_range_exit(struct regmap *map)
609 struct rb_node *next;
610 struct regmap_range_node *range_node;
612 next = rb_first(&map->range_tree);
614 range_node = rb_entry(next, struct regmap_range_node, node);
615 next = rb_next(&range_node->node);
616 rb_erase(&range_node->node, &map->range_tree);
620 kfree(map->selector_work_buf);
623 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
626 const char *name = kstrdup_const(config->name, GFP_KERNEL);
631 kfree_const(map->name);
638 int regmap_attach_dev(struct device *dev, struct regmap *map,
639 const struct regmap_config *config)
646 ret = regmap_set_name(map, config);
650 regmap_debugfs_exit(map);
651 regmap_debugfs_init(map);
653 /* Add a devres resource for dev_get_regmap() */
654 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
656 regmap_debugfs_exit(map);
664 EXPORT_SYMBOL_GPL(regmap_attach_dev);
666 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
667 const struct regmap_config *config)
669 enum regmap_endian endian;
671 /* Retrieve the endianness specification from the regmap config */
672 endian = config->reg_format_endian;
674 /* If the regmap config specified a non-default value, use that */
675 if (endian != REGMAP_ENDIAN_DEFAULT)
678 /* Retrieve the endianness specification from the bus config */
679 if (bus && bus->reg_format_endian_default)
680 endian = bus->reg_format_endian_default;
682 /* If the bus specified a non-default value, use that */
683 if (endian != REGMAP_ENDIAN_DEFAULT)
686 /* Use this if no other value was found */
687 return REGMAP_ENDIAN_BIG;
690 enum regmap_endian regmap_get_val_endian(struct device *dev,
691 const struct regmap_bus *bus,
692 const struct regmap_config *config)
694 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
695 enum regmap_endian endian;
697 /* Retrieve the endianness specification from the regmap config */
698 endian = config->val_format_endian;
700 /* If the regmap config specified a non-default value, use that */
701 if (endian != REGMAP_ENDIAN_DEFAULT)
704 /* If the firmware node exist try to get endianness from it */
705 if (fwnode_property_read_bool(fwnode, "big-endian"))
706 endian = REGMAP_ENDIAN_BIG;
707 else if (fwnode_property_read_bool(fwnode, "little-endian"))
708 endian = REGMAP_ENDIAN_LITTLE;
709 else if (fwnode_property_read_bool(fwnode, "native-endian"))
710 endian = REGMAP_ENDIAN_NATIVE;
712 /* If the endianness was specified in fwnode, use that */
713 if (endian != REGMAP_ENDIAN_DEFAULT)
716 /* Retrieve the endianness specification from the bus config */
717 if (bus && bus->val_format_endian_default)
718 endian = bus->val_format_endian_default;
720 /* If the bus specified a non-default value, use that */
721 if (endian != REGMAP_ENDIAN_DEFAULT)
724 /* Use this if no other value was found */
725 return REGMAP_ENDIAN_BIG;
727 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
729 struct regmap *__regmap_init(struct device *dev,
730 const struct regmap_bus *bus,
732 const struct regmap_config *config,
733 struct lock_class_key *lock_key,
734 const char *lock_name)
738 enum regmap_endian reg_endian, val_endian;
744 map = kzalloc(sizeof(*map), GFP_KERNEL);
750 ret = regmap_set_name(map, config);
754 ret = -EINVAL; /* Later error paths rely on this */
756 if (config->disable_locking) {
757 map->lock = map->unlock = regmap_lock_unlock_none;
758 map->can_sleep = config->can_sleep;
759 regmap_debugfs_disable(map);
760 } else if (config->lock && config->unlock) {
761 map->lock = config->lock;
762 map->unlock = config->unlock;
763 map->lock_arg = config->lock_arg;
764 map->can_sleep = config->can_sleep;
765 } else if (config->use_hwlock) {
766 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
772 switch (config->hwlock_mode) {
773 case HWLOCK_IRQSTATE:
774 map->lock = regmap_lock_hwlock_irqsave;
775 map->unlock = regmap_unlock_hwlock_irqrestore;
778 map->lock = regmap_lock_hwlock_irq;
779 map->unlock = regmap_unlock_hwlock_irq;
782 map->lock = regmap_lock_hwlock;
783 map->unlock = regmap_unlock_hwlock;
789 if ((bus && bus->fast_io) ||
791 if (config->use_raw_spinlock) {
792 raw_spin_lock_init(&map->raw_spinlock);
793 map->lock = regmap_lock_raw_spinlock;
794 map->unlock = regmap_unlock_raw_spinlock;
795 lockdep_set_class_and_name(&map->raw_spinlock,
796 lock_key, lock_name);
798 spin_lock_init(&map->spinlock);
799 map->lock = regmap_lock_spinlock;
800 map->unlock = regmap_unlock_spinlock;
801 lockdep_set_class_and_name(&map->spinlock,
802 lock_key, lock_name);
805 mutex_init(&map->mutex);
806 map->lock = regmap_lock_mutex;
807 map->unlock = regmap_unlock_mutex;
808 map->can_sleep = true;
809 lockdep_set_class_and_name(&map->mutex,
810 lock_key, lock_name);
816 * When we write in fast-paths with regmap_bulk_write() don't allocate
817 * scratch buffers with sleeping allocations.
819 if ((bus && bus->fast_io) || config->fast_io)
820 map->alloc_flags = GFP_ATOMIC;
822 map->alloc_flags = GFP_KERNEL;
824 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
825 map->format.pad_bytes = config->pad_bits / 8;
826 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
827 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
828 config->val_bits + config->pad_bits, 8);
829 map->reg_shift = config->pad_bits % 8;
830 if (config->reg_stride)
831 map->reg_stride = config->reg_stride;
834 if (is_power_of_2(map->reg_stride))
835 map->reg_stride_order = ilog2(map->reg_stride);
837 map->reg_stride_order = -1;
838 map->use_single_read = config->use_single_read || !bus || !bus->read;
839 map->use_single_write = config->use_single_write || !bus || !bus->write;
840 map->can_multi_write = config->can_multi_write && bus && bus->write;
842 map->max_raw_read = bus->max_raw_read;
843 map->max_raw_write = bus->max_raw_write;
847 map->bus_context = bus_context;
848 map->max_register = config->max_register;
849 map->wr_table = config->wr_table;
850 map->rd_table = config->rd_table;
851 map->volatile_table = config->volatile_table;
852 map->precious_table = config->precious_table;
853 map->wr_noinc_table = config->wr_noinc_table;
854 map->rd_noinc_table = config->rd_noinc_table;
855 map->writeable_reg = config->writeable_reg;
856 map->readable_reg = config->readable_reg;
857 map->volatile_reg = config->volatile_reg;
858 map->precious_reg = config->precious_reg;
859 map->writeable_noinc_reg = config->writeable_noinc_reg;
860 map->readable_noinc_reg = config->readable_noinc_reg;
861 map->cache_type = config->cache_type;
863 spin_lock_init(&map->async_lock);
864 INIT_LIST_HEAD(&map->async_list);
865 INIT_LIST_HEAD(&map->async_free);
866 init_waitqueue_head(&map->async_waitq);
868 if (config->read_flag_mask ||
869 config->write_flag_mask ||
870 config->zero_flag_mask) {
871 map->read_flag_mask = config->read_flag_mask;
872 map->write_flag_mask = config->write_flag_mask;
874 map->read_flag_mask = bus->read_flag_mask;
878 map->reg_read = config->reg_read;
879 map->reg_write = config->reg_write;
880 map->reg_update_bits = config->reg_update_bits;
882 map->defer_caching = false;
883 goto skip_format_initialization;
884 } else if (!bus->read || !bus->write) {
885 map->reg_read = _regmap_bus_reg_read;
886 map->reg_write = _regmap_bus_reg_write;
887 map->reg_update_bits = bus->reg_update_bits;
889 map->defer_caching = false;
890 goto skip_format_initialization;
892 map->reg_read = _regmap_bus_read;
893 map->reg_update_bits = bus->reg_update_bits;
896 reg_endian = regmap_get_reg_endian(bus, config);
897 val_endian = regmap_get_val_endian(dev, bus, config);
899 switch (config->reg_bits + map->reg_shift) {
901 switch (config->val_bits) {
903 map->format.format_write = regmap_format_2_6_write;
911 switch (config->val_bits) {
913 map->format.format_write = regmap_format_4_12_write;
921 switch (config->val_bits) {
923 map->format.format_write = regmap_format_7_9_write;
926 map->format.format_write = regmap_format_7_17_write;
934 switch (config->val_bits) {
936 map->format.format_write = regmap_format_10_14_write;
944 switch (config->val_bits) {
946 map->format.format_write = regmap_format_12_20_write;
954 map->format.format_reg = regmap_format_8;
958 switch (reg_endian) {
959 case REGMAP_ENDIAN_BIG:
960 map->format.format_reg = regmap_format_16_be;
962 case REGMAP_ENDIAN_LITTLE:
963 map->format.format_reg = regmap_format_16_le;
965 case REGMAP_ENDIAN_NATIVE:
966 map->format.format_reg = regmap_format_16_native;
974 if (reg_endian != REGMAP_ENDIAN_BIG)
976 map->format.format_reg = regmap_format_24;
980 switch (reg_endian) {
981 case REGMAP_ENDIAN_BIG:
982 map->format.format_reg = regmap_format_32_be;
984 case REGMAP_ENDIAN_LITTLE:
985 map->format.format_reg = regmap_format_32_le;
987 case REGMAP_ENDIAN_NATIVE:
988 map->format.format_reg = regmap_format_32_native;
997 switch (reg_endian) {
998 case REGMAP_ENDIAN_BIG:
999 map->format.format_reg = regmap_format_64_be;
1001 case REGMAP_ENDIAN_LITTLE:
1002 map->format.format_reg = regmap_format_64_le;
1004 case REGMAP_ENDIAN_NATIVE:
1005 map->format.format_reg = regmap_format_64_native;
1017 if (val_endian == REGMAP_ENDIAN_NATIVE)
1018 map->format.parse_inplace = regmap_parse_inplace_noop;
1020 switch (config->val_bits) {
1022 map->format.format_val = regmap_format_8;
1023 map->format.parse_val = regmap_parse_8;
1024 map->format.parse_inplace = regmap_parse_inplace_noop;
1027 switch (val_endian) {
1028 case REGMAP_ENDIAN_BIG:
1029 map->format.format_val = regmap_format_16_be;
1030 map->format.parse_val = regmap_parse_16_be;
1031 map->format.parse_inplace = regmap_parse_16_be_inplace;
1033 case REGMAP_ENDIAN_LITTLE:
1034 map->format.format_val = regmap_format_16_le;
1035 map->format.parse_val = regmap_parse_16_le;
1036 map->format.parse_inplace = regmap_parse_16_le_inplace;
1038 case REGMAP_ENDIAN_NATIVE:
1039 map->format.format_val = regmap_format_16_native;
1040 map->format.parse_val = regmap_parse_16_native;
1047 if (val_endian != REGMAP_ENDIAN_BIG)
1049 map->format.format_val = regmap_format_24;
1050 map->format.parse_val = regmap_parse_24;
1053 switch (val_endian) {
1054 case REGMAP_ENDIAN_BIG:
1055 map->format.format_val = regmap_format_32_be;
1056 map->format.parse_val = regmap_parse_32_be;
1057 map->format.parse_inplace = regmap_parse_32_be_inplace;
1059 case REGMAP_ENDIAN_LITTLE:
1060 map->format.format_val = regmap_format_32_le;
1061 map->format.parse_val = regmap_parse_32_le;
1062 map->format.parse_inplace = regmap_parse_32_le_inplace;
1064 case REGMAP_ENDIAN_NATIVE:
1065 map->format.format_val = regmap_format_32_native;
1066 map->format.parse_val = regmap_parse_32_native;
1074 switch (val_endian) {
1075 case REGMAP_ENDIAN_BIG:
1076 map->format.format_val = regmap_format_64_be;
1077 map->format.parse_val = regmap_parse_64_be;
1078 map->format.parse_inplace = regmap_parse_64_be_inplace;
1080 case REGMAP_ENDIAN_LITTLE:
1081 map->format.format_val = regmap_format_64_le;
1082 map->format.parse_val = regmap_parse_64_le;
1083 map->format.parse_inplace = regmap_parse_64_le_inplace;
1085 case REGMAP_ENDIAN_NATIVE:
1086 map->format.format_val = regmap_format_64_native;
1087 map->format.parse_val = regmap_parse_64_native;
1096 if (map->format.format_write) {
1097 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1098 (val_endian != REGMAP_ENDIAN_BIG))
1100 map->use_single_write = true;
1103 if (!map->format.format_write &&
1104 !(map->format.format_reg && map->format.format_val))
1107 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1108 if (map->work_buf == NULL) {
1113 if (map->format.format_write) {
1114 map->defer_caching = false;
1115 map->reg_write = _regmap_bus_formatted_write;
1116 } else if (map->format.format_val) {
1117 map->defer_caching = true;
1118 map->reg_write = _regmap_bus_raw_write;
1121 skip_format_initialization:
1123 map->range_tree = RB_ROOT;
1124 for (i = 0; i < config->num_ranges; i++) {
1125 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1126 struct regmap_range_node *new;
1129 if (range_cfg->range_max < range_cfg->range_min) {
1130 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1131 range_cfg->range_max, range_cfg->range_min);
1135 if (range_cfg->range_max > map->max_register) {
1136 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1137 range_cfg->range_max, map->max_register);
1141 if (range_cfg->selector_reg > map->max_register) {
1143 "Invalid range %d: selector out of map\n", i);
1147 if (range_cfg->window_len == 0) {
1148 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1153 /* Make sure, that this register range has no selector
1154 or data window within its boundary */
1155 for (j = 0; j < config->num_ranges; j++) {
1156 unsigned int sel_reg = config->ranges[j].selector_reg;
1157 unsigned int win_min = config->ranges[j].window_start;
1158 unsigned int win_max = win_min +
1159 config->ranges[j].window_len - 1;
1161 /* Allow data window inside its own virtual range */
1165 if (range_cfg->range_min <= sel_reg &&
1166 sel_reg <= range_cfg->range_max) {
1168 "Range %d: selector for %d in window\n",
1173 if (!(win_max < range_cfg->range_min ||
1174 win_min > range_cfg->range_max)) {
1176 "Range %d: window for %d in window\n",
1182 new = kzalloc(sizeof(*new), GFP_KERNEL);
1189 new->name = range_cfg->name;
1190 new->range_min = range_cfg->range_min;
1191 new->range_max = range_cfg->range_max;
1192 new->selector_reg = range_cfg->selector_reg;
1193 new->selector_mask = range_cfg->selector_mask;
1194 new->selector_shift = range_cfg->selector_shift;
1195 new->window_start = range_cfg->window_start;
1196 new->window_len = range_cfg->window_len;
1198 if (!_regmap_range_add(map, new)) {
1199 dev_err(map->dev, "Failed to add range %d\n", i);
1204 if (map->selector_work_buf == NULL) {
1205 map->selector_work_buf =
1206 kzalloc(map->format.buf_size, GFP_KERNEL);
1207 if (map->selector_work_buf == NULL) {
1214 ret = regcache_init(map, config);
1219 ret = regmap_attach_dev(dev, map, config);
1223 regmap_debugfs_init(map);
1231 regmap_range_exit(map);
1232 kfree(map->work_buf);
1235 hwspin_lock_free(map->hwlock);
1237 kfree_const(map->name);
1241 return ERR_PTR(ret);
1243 EXPORT_SYMBOL_GPL(__regmap_init);
1245 static void devm_regmap_release(struct device *dev, void *res)
1247 regmap_exit(*(struct regmap **)res);
1250 struct regmap *__devm_regmap_init(struct device *dev,
1251 const struct regmap_bus *bus,
1253 const struct regmap_config *config,
1254 struct lock_class_key *lock_key,
1255 const char *lock_name)
1257 struct regmap **ptr, *regmap;
1259 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1261 return ERR_PTR(-ENOMEM);
1263 regmap = __regmap_init(dev, bus, bus_context, config,
1264 lock_key, lock_name);
1265 if (!IS_ERR(regmap)) {
1267 devres_add(dev, ptr);
1274 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1276 static void regmap_field_init(struct regmap_field *rm_field,
1277 struct regmap *regmap, struct reg_field reg_field)
1279 rm_field->regmap = regmap;
1280 rm_field->reg = reg_field.reg;
1281 rm_field->shift = reg_field.lsb;
1282 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1283 rm_field->id_size = reg_field.id_size;
1284 rm_field->id_offset = reg_field.id_offset;
1288 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1290 * @dev: Device that will be interacted with
1291 * @regmap: regmap bank in which this register field is located.
1292 * @reg_field: Register field with in the bank.
1294 * The return value will be an ERR_PTR() on error or a valid pointer
1295 * to a struct regmap_field. The regmap_field will be automatically freed
1296 * by the device management code.
1298 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1299 struct regmap *regmap, struct reg_field reg_field)
1301 struct regmap_field *rm_field = devm_kzalloc(dev,
1302 sizeof(*rm_field), GFP_KERNEL);
1304 return ERR_PTR(-ENOMEM);
1306 regmap_field_init(rm_field, regmap, reg_field);
1311 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1315 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1317 * @regmap: regmap bank in which this register field is located.
1318 * @rm_field: regmap register fields within the bank.
1319 * @reg_field: Register fields within the bank.
1320 * @num_fields: Number of register fields.
1322 * The return value will be an -ENOMEM on error or zero for success.
1323 * Newly allocated regmap_fields should be freed by calling
1324 * regmap_field_bulk_free()
1326 int regmap_field_bulk_alloc(struct regmap *regmap,
1327 struct regmap_field **rm_field,
1328 const struct reg_field *reg_field,
1331 struct regmap_field *rf;
1334 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1338 for (i = 0; i < num_fields; i++) {
1339 regmap_field_init(&rf[i], regmap, reg_field[i]);
1340 rm_field[i] = &rf[i];
1345 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1348 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1351 * @dev: Device that will be interacted with
1352 * @regmap: regmap bank in which this register field is located.
1353 * @rm_field: regmap register fields within the bank.
1354 * @reg_field: Register fields within the bank.
1355 * @num_fields: Number of register fields.
1357 * The return value will be an -ENOMEM on error or zero for success.
1358 * Newly allocated regmap_fields will be automatically freed by the
1359 * device management code.
1361 int devm_regmap_field_bulk_alloc(struct device *dev,
1362 struct regmap *regmap,
1363 struct regmap_field **rm_field,
1364 const struct reg_field *reg_field,
1367 struct regmap_field *rf;
1370 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1374 for (i = 0; i < num_fields; i++) {
1375 regmap_field_init(&rf[i], regmap, reg_field[i]);
1376 rm_field[i] = &rf[i];
1381 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1384 * regmap_field_bulk_free() - Free register field allocated using
1385 * regmap_field_bulk_alloc.
1387 * @field: regmap fields which should be freed.
1389 void regmap_field_bulk_free(struct regmap_field *field)
1393 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1396 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1397 * devm_regmap_field_bulk_alloc.
1399 * @dev: Device that will be interacted with
1400 * @field: regmap field which should be freed.
1402 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1403 * drivers need not call this function, as the memory allocated via devm
1404 * will be freed as per device-driver life-cycle.
1406 void devm_regmap_field_bulk_free(struct device *dev,
1407 struct regmap_field *field)
1409 devm_kfree(dev, field);
1411 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1414 * devm_regmap_field_free() - Free a register field allocated using
1415 * devm_regmap_field_alloc.
1417 * @dev: Device that will be interacted with
1418 * @field: regmap field which should be freed.
1420 * Free register field allocated using devm_regmap_field_alloc(). Usually
1421 * drivers need not call this function, as the memory allocated via devm
1422 * will be freed as per device-driver life-cyle.
1424 void devm_regmap_field_free(struct device *dev,
1425 struct regmap_field *field)
1427 devm_kfree(dev, field);
1429 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1432 * regmap_field_alloc() - Allocate and initialise a register field.
1434 * @regmap: regmap bank in which this register field is located.
1435 * @reg_field: Register field with in the bank.
1437 * The return value will be an ERR_PTR() on error or a valid pointer
1438 * to a struct regmap_field. The regmap_field should be freed by the
1439 * user once its finished working with it using regmap_field_free().
1441 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1442 struct reg_field reg_field)
1444 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1447 return ERR_PTR(-ENOMEM);
1449 regmap_field_init(rm_field, regmap, reg_field);
1453 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1456 * regmap_field_free() - Free register field allocated using
1457 * regmap_field_alloc.
1459 * @field: regmap field which should be freed.
1461 void regmap_field_free(struct regmap_field *field)
1465 EXPORT_SYMBOL_GPL(regmap_field_free);
1468 * regmap_reinit_cache() - Reinitialise the current register cache
1470 * @map: Register map to operate on.
1471 * @config: New configuration. Only the cache data will be used.
1473 * Discard any existing register cache for the map and initialize a
1474 * new cache. This can be used to restore the cache to defaults or to
1475 * update the cache configuration to reflect runtime discovery of the
1478 * No explicit locking is done here, the user needs to ensure that
1479 * this function will not race with other calls to regmap.
1481 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1486 regmap_debugfs_exit(map);
1488 map->max_register = config->max_register;
1489 map->writeable_reg = config->writeable_reg;
1490 map->readable_reg = config->readable_reg;
1491 map->volatile_reg = config->volatile_reg;
1492 map->precious_reg = config->precious_reg;
1493 map->writeable_noinc_reg = config->writeable_noinc_reg;
1494 map->readable_noinc_reg = config->readable_noinc_reg;
1495 map->cache_type = config->cache_type;
1497 ret = regmap_set_name(map, config);
1501 regmap_debugfs_init(map);
1503 map->cache_bypass = false;
1504 map->cache_only = false;
1506 return regcache_init(map, config);
1508 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1511 * regmap_exit() - Free a previously allocated register map
1513 * @map: Register map to operate on.
1515 void regmap_exit(struct regmap *map)
1517 struct regmap_async *async;
1520 regmap_debugfs_exit(map);
1521 regmap_range_exit(map);
1522 if (map->bus && map->bus->free_context)
1523 map->bus->free_context(map->bus_context);
1524 kfree(map->work_buf);
1525 while (!list_empty(&map->async_free)) {
1526 async = list_first_entry_or_null(&map->async_free,
1527 struct regmap_async,
1529 list_del(&async->list);
1530 kfree(async->work_buf);
1534 hwspin_lock_free(map->hwlock);
1535 if (map->lock == regmap_lock_mutex)
1536 mutex_destroy(&map->mutex);
1537 kfree_const(map->name);
1539 if (map->bus && map->bus->free_on_exit)
1543 EXPORT_SYMBOL_GPL(regmap_exit);
1545 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1547 struct regmap **r = res;
1553 /* If the user didn't specify a name match any */
1555 return !strcmp((*r)->name, data);
1561 * dev_get_regmap() - Obtain the regmap (if any) for a device
1563 * @dev: Device to retrieve the map for
1564 * @name: Optional name for the register map, usually NULL.
1566 * Returns the regmap for the device if one is present, or NULL. If
1567 * name is specified then it must match the name specified when
1568 * registering the device, if it is NULL then the first regmap found
1569 * will be used. Devices with multiple register maps are very rare,
1570 * generic code should normally not need to specify a name.
1572 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1574 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1575 dev_get_regmap_match, (void *)name);
1581 EXPORT_SYMBOL_GPL(dev_get_regmap);
1584 * regmap_get_device() - Obtain the device from a regmap
1586 * @map: Register map to operate on.
1588 * Returns the underlying device that the regmap has been created for.
1590 struct device *regmap_get_device(struct regmap *map)
1594 EXPORT_SYMBOL_GPL(regmap_get_device);
1596 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1597 struct regmap_range_node *range,
1598 unsigned int val_num)
1600 void *orig_work_buf;
1601 unsigned int win_offset;
1602 unsigned int win_page;
1606 win_offset = (*reg - range->range_min) % range->window_len;
1607 win_page = (*reg - range->range_min) / range->window_len;
1610 /* Bulk write shouldn't cross range boundary */
1611 if (*reg + val_num - 1 > range->range_max)
1614 /* ... or single page boundary */
1615 if (val_num > range->window_len - win_offset)
1619 /* It is possible to have selector register inside data window.
1620 In that case, selector register is located on every page and
1621 it needs no page switching, when accessed alone. */
1623 range->window_start + win_offset != range->selector_reg) {
1624 /* Use separate work_buf during page switching */
1625 orig_work_buf = map->work_buf;
1626 map->work_buf = map->selector_work_buf;
1628 ret = _regmap_update_bits(map, range->selector_reg,
1629 range->selector_mask,
1630 win_page << range->selector_shift,
1633 map->work_buf = orig_work_buf;
1639 *reg = range->window_start + win_offset;
1644 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1650 if (!mask || !map->work_buf)
1653 buf = map->work_buf;
1655 for (i = 0; i < max_bytes; i++)
1656 buf[i] |= (mask >> (8 * i)) & 0xff;
1659 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1660 const void *val, size_t val_len, bool noinc)
1662 struct regmap_range_node *range;
1663 unsigned long flags;
1664 void *work_val = map->work_buf + map->format.reg_bytes +
1665 map->format.pad_bytes;
1667 int ret = -ENOTSUPP;
1673 /* Check for unwritable or noinc registers in range
1676 if (!regmap_writeable_noinc(map, reg)) {
1677 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1678 unsigned int element =
1679 reg + regmap_get_offset(map, i);
1680 if (!regmap_writeable(map, element) ||
1681 regmap_writeable_noinc(map, element))
1686 if (!map->cache_bypass && map->format.parse_val) {
1688 int val_bytes = map->format.val_bytes;
1689 for (i = 0; i < val_len / val_bytes; i++) {
1690 ival = map->format.parse_val(val + (i * val_bytes));
1691 ret = regcache_write(map,
1692 reg + regmap_get_offset(map, i),
1696 "Error in caching of register: %x ret: %d\n",
1697 reg + regmap_get_offset(map, i), ret);
1701 if (map->cache_only) {
1702 map->cache_dirty = true;
1707 range = _regmap_range_lookup(map, reg);
1709 int val_num = val_len / map->format.val_bytes;
1710 int win_offset = (reg - range->range_min) % range->window_len;
1711 int win_residue = range->window_len - win_offset;
1713 /* If the write goes beyond the end of the window split it */
1714 while (val_num > win_residue) {
1715 dev_dbg(map->dev, "Writing window %d/%zu\n",
1716 win_residue, val_len / map->format.val_bytes);
1717 ret = _regmap_raw_write_impl(map, reg, val,
1719 map->format.val_bytes, noinc);
1724 val_num -= win_residue;
1725 val += win_residue * map->format.val_bytes;
1726 val_len -= win_residue * map->format.val_bytes;
1728 win_offset = (reg - range->range_min) %
1730 win_residue = range->window_len - win_offset;
1733 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1738 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1739 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1740 map->write_flag_mask);
1743 * Essentially all I/O mechanisms will be faster with a single
1744 * buffer to write. Since register syncs often generate raw
1745 * writes of single registers optimise that case.
1747 if (val != work_val && val_len == map->format.val_bytes) {
1748 memcpy(work_val, val, map->format.val_bytes);
1752 if (map->async && map->bus->async_write) {
1753 struct regmap_async *async;
1755 trace_regmap_async_write_start(map, reg, val_len);
1757 spin_lock_irqsave(&map->async_lock, flags);
1758 async = list_first_entry_or_null(&map->async_free,
1759 struct regmap_async,
1762 list_del(&async->list);
1763 spin_unlock_irqrestore(&map->async_lock, flags);
1766 async = map->bus->async_alloc();
1770 async->work_buf = kzalloc(map->format.buf_size,
1771 GFP_KERNEL | GFP_DMA);
1772 if (!async->work_buf) {
1780 /* If the caller supplied the value we can use it safely. */
1781 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1782 map->format.reg_bytes + map->format.val_bytes);
1784 spin_lock_irqsave(&map->async_lock, flags);
1785 list_add_tail(&async->list, &map->async_list);
1786 spin_unlock_irqrestore(&map->async_lock, flags);
1788 if (val != work_val)
1789 ret = map->bus->async_write(map->bus_context,
1791 map->format.reg_bytes +
1792 map->format.pad_bytes,
1793 val, val_len, async);
1795 ret = map->bus->async_write(map->bus_context,
1797 map->format.reg_bytes +
1798 map->format.pad_bytes +
1799 val_len, NULL, 0, async);
1802 dev_err(map->dev, "Failed to schedule write: %d\n",
1805 spin_lock_irqsave(&map->async_lock, flags);
1806 list_move(&async->list, &map->async_free);
1807 spin_unlock_irqrestore(&map->async_lock, flags);
1813 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1815 /* If we're doing a single register write we can probably just
1816 * send the work_buf directly, otherwise try to do a gather
1819 if (val == work_val)
1820 ret = map->bus->write(map->bus_context, map->work_buf,
1821 map->format.reg_bytes +
1822 map->format.pad_bytes +
1824 else if (map->bus->gather_write)
1825 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1826 map->format.reg_bytes +
1827 map->format.pad_bytes,
1832 /* If that didn't work fall back on linearising by hand. */
1833 if (ret == -ENOTSUPP) {
1834 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1835 buf = kzalloc(len, GFP_KERNEL);
1839 memcpy(buf, map->work_buf, map->format.reg_bytes);
1840 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1842 ret = map->bus->write(map->bus_context, buf, len);
1845 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1846 /* regcache_drop_region() takes lock that we already have,
1847 * thus call map->cache_ops->drop() directly
1849 if (map->cache_ops && map->cache_ops->drop)
1850 map->cache_ops->drop(map, reg, reg + 1);
1853 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1859 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1861 * @map: Map to check.
1863 bool regmap_can_raw_write(struct regmap *map)
1865 return map->bus && map->bus->write && map->format.format_val &&
1866 map->format.format_reg;
1868 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1871 * regmap_get_raw_read_max - Get the maximum size we can read
1873 * @map: Map to check.
1875 size_t regmap_get_raw_read_max(struct regmap *map)
1877 return map->max_raw_read;
1879 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1882 * regmap_get_raw_write_max - Get the maximum size we can read
1884 * @map: Map to check.
1886 size_t regmap_get_raw_write_max(struct regmap *map)
1888 return map->max_raw_write;
1890 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1892 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1896 struct regmap_range_node *range;
1897 struct regmap *map = context;
1899 WARN_ON(!map->bus || !map->format.format_write);
1901 range = _regmap_range_lookup(map, reg);
1903 ret = _regmap_select_page(map, ®, range, 1);
1908 map->format.format_write(map, reg, val);
1910 trace_regmap_hw_write_start(map, reg, 1);
1912 ret = map->bus->write(map->bus_context, map->work_buf,
1913 map->format.buf_size);
1915 trace_regmap_hw_write_done(map, reg, 1);
1920 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1923 struct regmap *map = context;
1925 return map->bus->reg_write(map->bus_context, reg, val);
1928 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1931 struct regmap *map = context;
1933 WARN_ON(!map->bus || !map->format.format_val);
1935 map->format.format_val(map->work_buf + map->format.reg_bytes
1936 + map->format.pad_bytes, val, 0);
1937 return _regmap_raw_write_impl(map, reg,
1939 map->format.reg_bytes +
1940 map->format.pad_bytes,
1941 map->format.val_bytes,
1945 static inline void *_regmap_map_get_context(struct regmap *map)
1947 return (map->bus) ? map : map->bus_context;
1950 int _regmap_write(struct regmap *map, unsigned int reg,
1954 void *context = _regmap_map_get_context(map);
1956 if (!regmap_writeable(map, reg))
1959 if (!map->cache_bypass && !map->defer_caching) {
1960 ret = regcache_write(map, reg, val);
1963 if (map->cache_only) {
1964 map->cache_dirty = true;
1969 ret = map->reg_write(context, reg, val);
1971 if (regmap_should_log(map))
1972 dev_info(map->dev, "%x <= %x\n", reg, val);
1974 trace_regmap_reg_write(map, reg, val);
1981 * regmap_write() - Write a value to a single register
1983 * @map: Register map to write to
1984 * @reg: Register to write to
1985 * @val: Value to be written
1987 * A value of zero will be returned on success, a negative errno will
1988 * be returned in error cases.
1990 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1994 if (!IS_ALIGNED(reg, map->reg_stride))
1997 map->lock(map->lock_arg);
1999 ret = _regmap_write(map, reg, val);
2001 map->unlock(map->lock_arg);
2005 EXPORT_SYMBOL_GPL(regmap_write);
2008 * regmap_write_async() - Write a value to a single register asynchronously
2010 * @map: Register map to write to
2011 * @reg: Register to write to
2012 * @val: Value to be written
2014 * A value of zero will be returned on success, a negative errno will
2015 * be returned in error cases.
2017 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2021 if (!IS_ALIGNED(reg, map->reg_stride))
2024 map->lock(map->lock_arg);
2028 ret = _regmap_write(map, reg, val);
2032 map->unlock(map->lock_arg);
2036 EXPORT_SYMBOL_GPL(regmap_write_async);
2038 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2039 const void *val, size_t val_len, bool noinc)
2041 size_t val_bytes = map->format.val_bytes;
2042 size_t val_count = val_len / val_bytes;
2043 size_t chunk_count, chunk_bytes;
2044 size_t chunk_regs = val_count;
2050 if (map->use_single_write)
2052 else if (map->max_raw_write && val_len > map->max_raw_write)
2053 chunk_regs = map->max_raw_write / val_bytes;
2055 chunk_count = val_count / chunk_regs;
2056 chunk_bytes = chunk_regs * val_bytes;
2058 /* Write as many bytes as possible with chunk_size */
2059 for (i = 0; i < chunk_count; i++) {
2060 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2064 reg += regmap_get_offset(map, chunk_regs);
2066 val_len -= chunk_bytes;
2069 /* Write remaining bytes */
2071 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2077 * regmap_raw_write() - Write raw values to one or more registers
2079 * @map: Register map to write to
2080 * @reg: Initial register to write to
2081 * @val: Block of data to be written, laid out for direct transmission to the
2083 * @val_len: Length of data pointed to by val.
2085 * This function is intended to be used for things like firmware
2086 * download where a large block of data needs to be transferred to the
2087 * device. No formatting will be done on the data provided.
2089 * A value of zero will be returned on success, a negative errno will
2090 * be returned in error cases.
2092 int regmap_raw_write(struct regmap *map, unsigned int reg,
2093 const void *val, size_t val_len)
2097 if (!regmap_can_raw_write(map))
2099 if (val_len % map->format.val_bytes)
2102 map->lock(map->lock_arg);
2104 ret = _regmap_raw_write(map, reg, val, val_len, false);
2106 map->unlock(map->lock_arg);
2110 EXPORT_SYMBOL_GPL(regmap_raw_write);
2113 * regmap_noinc_write(): Write data from a register without incrementing the
2116 * @map: Register map to write to
2117 * @reg: Register to write to
2118 * @val: Pointer to data buffer
2119 * @val_len: Length of output buffer in bytes.
2121 * The regmap API usually assumes that bulk bus write operations will write a
2122 * range of registers. Some devices have certain registers for which a write
2123 * operation can write to an internal FIFO.
2125 * The target register must be volatile but registers after it can be
2126 * completely unrelated cacheable registers.
2128 * This will attempt multiple writes as required to write val_len bytes.
2130 * A value of zero will be returned on success, a negative errno will be
2131 * returned in error cases.
2133 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2134 const void *val, size_t val_len)
2141 if (!map->bus->write)
2143 if (val_len % map->format.val_bytes)
2145 if (!IS_ALIGNED(reg, map->reg_stride))
2150 map->lock(map->lock_arg);
2152 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2158 if (map->max_raw_write && map->max_raw_write < val_len)
2159 write_len = map->max_raw_write;
2161 write_len = val_len;
2162 ret = _regmap_raw_write(map, reg, val, write_len, true);
2165 val = ((u8 *)val) + write_len;
2166 val_len -= write_len;
2170 map->unlock(map->lock_arg);
2173 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2176 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2179 * @field: Register field to write to
2180 * @mask: Bitmask to change
2181 * @val: Value to be written
2182 * @change: Boolean indicating if a write was done
2183 * @async: Boolean indicating asynchronously
2184 * @force: Boolean indicating use force update
2186 * Perform a read/modify/write cycle on the register field with change,
2187 * async, force option.
2189 * A value of zero will be returned on success, a negative errno will
2190 * be returned in error cases.
2192 int regmap_field_update_bits_base(struct regmap_field *field,
2193 unsigned int mask, unsigned int val,
2194 bool *change, bool async, bool force)
2196 mask = (mask << field->shift) & field->mask;
2198 return regmap_update_bits_base(field->regmap, field->reg,
2199 mask, val << field->shift,
2200 change, async, force);
2202 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2205 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2206 * register field with port ID
2208 * @field: Register field to write to
2210 * @mask: Bitmask to change
2211 * @val: Value to be written
2212 * @change: Boolean indicating if a write was done
2213 * @async: Boolean indicating asynchronously
2214 * @force: Boolean indicating use force update
2216 * A value of zero will be returned on success, a negative errno will
2217 * be returned in error cases.
2219 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2220 unsigned int mask, unsigned int val,
2221 bool *change, bool async, bool force)
2223 if (id >= field->id_size)
2226 mask = (mask << field->shift) & field->mask;
2228 return regmap_update_bits_base(field->regmap,
2229 field->reg + (field->id_offset * id),
2230 mask, val << field->shift,
2231 change, async, force);
2233 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2236 * regmap_bulk_write() - Write multiple registers to the device
2238 * @map: Register map to write to
2239 * @reg: First register to be write from
2240 * @val: Block of data to be written, in native register size for device
2241 * @val_count: Number of registers to write
2243 * This function is intended to be used for writing a large block of
2244 * data to the device either in single transfer or multiple transfer.
2246 * A value of zero will be returned on success, a negative errno will
2247 * be returned in error cases.
2249 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2253 size_t val_bytes = map->format.val_bytes;
2255 if (!IS_ALIGNED(reg, map->reg_stride))
2259 * Some devices don't support bulk write, for them we have a series of
2260 * single write operations.
2262 if (!map->bus || !map->format.parse_inplace) {
2263 map->lock(map->lock_arg);
2264 for (i = 0; i < val_count; i++) {
2267 switch (val_bytes) {
2269 ival = *(u8 *)(val + (i * val_bytes));
2272 ival = *(u16 *)(val + (i * val_bytes));
2275 ival = *(u32 *)(val + (i * val_bytes));
2279 ival = *(u64 *)(val + (i * val_bytes));
2287 ret = _regmap_write(map,
2288 reg + regmap_get_offset(map, i),
2294 map->unlock(map->lock_arg);
2298 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2302 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2303 map->format.parse_inplace(wval + i);
2305 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2311 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2314 * _regmap_raw_multi_reg_write()
2316 * the (register,newvalue) pairs in regs have not been formatted, but
2317 * they are all in the same page and have been changed to being page
2318 * relative. The page register has been written if that was necessary.
2320 static int _regmap_raw_multi_reg_write(struct regmap *map,
2321 const struct reg_sequence *regs,
2328 size_t val_bytes = map->format.val_bytes;
2329 size_t reg_bytes = map->format.reg_bytes;
2330 size_t pad_bytes = map->format.pad_bytes;
2331 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2332 size_t len = pair_size * num_regs;
2337 buf = kzalloc(len, GFP_KERNEL);
2341 /* We have to linearise by hand. */
2345 for (i = 0; i < num_regs; i++) {
2346 unsigned int reg = regs[i].reg;
2347 unsigned int val = regs[i].def;
2348 trace_regmap_hw_write_start(map, reg, 1);
2349 map->format.format_reg(u8, reg, map->reg_shift);
2350 u8 += reg_bytes + pad_bytes;
2351 map->format.format_val(u8, val, 0);
2355 *u8 |= map->write_flag_mask;
2357 ret = map->bus->write(map->bus_context, buf, len);
2361 for (i = 0; i < num_regs; i++) {
2362 int reg = regs[i].reg;
2363 trace_regmap_hw_write_done(map, reg, 1);
2368 static unsigned int _regmap_register_page(struct regmap *map,
2370 struct regmap_range_node *range)
2372 unsigned int win_page = (reg - range->range_min) / range->window_len;
2377 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2378 struct reg_sequence *regs,
2383 struct reg_sequence *base;
2384 unsigned int this_page = 0;
2385 unsigned int page_change = 0;
2387 * the set of registers are not neccessarily in order, but
2388 * since the order of write must be preserved this algorithm
2389 * chops the set each time the page changes. This also applies
2390 * if there is a delay required at any point in the sequence.
2393 for (i = 0, n = 0; i < num_regs; i++, n++) {
2394 unsigned int reg = regs[i].reg;
2395 struct regmap_range_node *range;
2397 range = _regmap_range_lookup(map, reg);
2399 unsigned int win_page = _regmap_register_page(map, reg,
2403 this_page = win_page;
2404 if (win_page != this_page) {
2405 this_page = win_page;
2410 /* If we have both a page change and a delay make sure to
2411 * write the regs and apply the delay before we change the
2415 if (page_change || regs[i].delay_us) {
2417 /* For situations where the first write requires
2418 * a delay we need to make sure we don't call
2419 * raw_multi_reg_write with n=0
2420 * This can't occur with page breaks as we
2421 * never write on the first iteration
2423 if (regs[i].delay_us && i == 0)
2426 ret = _regmap_raw_multi_reg_write(map, base, n);
2430 if (regs[i].delay_us) {
2432 fsleep(regs[i].delay_us);
2434 udelay(regs[i].delay_us);
2441 ret = _regmap_select_page(map,
2454 return _regmap_raw_multi_reg_write(map, base, n);
2458 static int _regmap_multi_reg_write(struct regmap *map,
2459 const struct reg_sequence *regs,
2465 if (!map->can_multi_write) {
2466 for (i = 0; i < num_regs; i++) {
2467 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2471 if (regs[i].delay_us) {
2473 fsleep(regs[i].delay_us);
2475 udelay(regs[i].delay_us);
2481 if (!map->format.parse_inplace)
2484 if (map->writeable_reg)
2485 for (i = 0; i < num_regs; i++) {
2486 int reg = regs[i].reg;
2487 if (!map->writeable_reg(map->dev, reg))
2489 if (!IS_ALIGNED(reg, map->reg_stride))
2493 if (!map->cache_bypass) {
2494 for (i = 0; i < num_regs; i++) {
2495 unsigned int val = regs[i].def;
2496 unsigned int reg = regs[i].reg;
2497 ret = regcache_write(map, reg, val);
2500 "Error in caching of register: %x ret: %d\n",
2505 if (map->cache_only) {
2506 map->cache_dirty = true;
2513 for (i = 0; i < num_regs; i++) {
2514 unsigned int reg = regs[i].reg;
2515 struct regmap_range_node *range;
2517 /* Coalesce all the writes between a page break or a delay
2520 range = _regmap_range_lookup(map, reg);
2521 if (range || regs[i].delay_us) {
2522 size_t len = sizeof(struct reg_sequence)*num_regs;
2523 struct reg_sequence *base = kmemdup(regs, len,
2527 ret = _regmap_range_multi_paged_reg_write(map, base,
2534 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2538 * regmap_multi_reg_write() - Write multiple registers to the device
2540 * @map: Register map to write to
2541 * @regs: Array of structures containing register,value to be written
2542 * @num_regs: Number of registers to write
2544 * Write multiple registers to the device where the set of register, value
2545 * pairs are supplied in any order, possibly not all in a single range.
2547 * The 'normal' block write mode will send ultimately send data on the
2548 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2549 * addressed. However, this alternative block multi write mode will send
2550 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2551 * must of course support the mode.
2553 * A value of zero will be returned on success, a negative errno will be
2554 * returned in error cases.
2556 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2561 map->lock(map->lock_arg);
2563 ret = _regmap_multi_reg_write(map, regs, num_regs);
2565 map->unlock(map->lock_arg);
2569 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2572 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2573 * device but not the cache
2575 * @map: Register map to write to
2576 * @regs: Array of structures containing register,value to be written
2577 * @num_regs: Number of registers to write
2579 * Write multiple registers to the device but not the cache where the set
2580 * of register are supplied in any order.
2582 * This function is intended to be used for writing a large block of data
2583 * atomically to the device in single transfer for those I2C client devices
2584 * that implement this alternative block write mode.
2586 * A value of zero will be returned on success, a negative errno will
2587 * be returned in error cases.
2589 int regmap_multi_reg_write_bypassed(struct regmap *map,
2590 const struct reg_sequence *regs,
2596 map->lock(map->lock_arg);
2598 bypass = map->cache_bypass;
2599 map->cache_bypass = true;
2601 ret = _regmap_multi_reg_write(map, regs, num_regs);
2603 map->cache_bypass = bypass;
2605 map->unlock(map->lock_arg);
2609 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2612 * regmap_raw_write_async() - Write raw values to one or more registers
2615 * @map: Register map to write to
2616 * @reg: Initial register to write to
2617 * @val: Block of data to be written, laid out for direct transmission to the
2618 * device. Must be valid until regmap_async_complete() is called.
2619 * @val_len: Length of data pointed to by val.
2621 * This function is intended to be used for things like firmware
2622 * download where a large block of data needs to be transferred to the
2623 * device. No formatting will be done on the data provided.
2625 * If supported by the underlying bus the write will be scheduled
2626 * asynchronously, helping maximise I/O speed on higher speed buses
2627 * like SPI. regmap_async_complete() can be called to ensure that all
2628 * asynchrnous writes have been completed.
2630 * A value of zero will be returned on success, a negative errno will
2631 * be returned in error cases.
2633 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2634 const void *val, size_t val_len)
2638 if (val_len % map->format.val_bytes)
2640 if (!IS_ALIGNED(reg, map->reg_stride))
2643 map->lock(map->lock_arg);
2647 ret = _regmap_raw_write(map, reg, val, val_len, false);
2651 map->unlock(map->lock_arg);
2655 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2657 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2658 unsigned int val_len, bool noinc)
2660 struct regmap_range_node *range;
2665 if (!map->bus || !map->bus->read)
2668 range = _regmap_range_lookup(map, reg);
2670 ret = _regmap_select_page(map, ®, range,
2671 noinc ? 1 : val_len / map->format.val_bytes);
2676 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2677 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2678 map->read_flag_mask);
2679 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2681 ret = map->bus->read(map->bus_context, map->work_buf,
2682 map->format.reg_bytes + map->format.pad_bytes,
2685 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2690 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2693 struct regmap *map = context;
2695 return map->bus->reg_read(map->bus_context, reg, val);
2698 static int _regmap_bus_read(void *context, unsigned int reg,
2702 struct regmap *map = context;
2703 void *work_val = map->work_buf + map->format.reg_bytes +
2704 map->format.pad_bytes;
2706 if (!map->format.parse_val)
2709 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2711 *val = map->format.parse_val(work_val);
2716 static int _regmap_read(struct regmap *map, unsigned int reg,
2720 void *context = _regmap_map_get_context(map);
2722 if (!map->cache_bypass) {
2723 ret = regcache_read(map, reg, val);
2728 if (map->cache_only)
2731 if (!regmap_readable(map, reg))
2734 ret = map->reg_read(context, reg, val);
2736 if (regmap_should_log(map))
2737 dev_info(map->dev, "%x => %x\n", reg, *val);
2739 trace_regmap_reg_read(map, reg, *val);
2741 if (!map->cache_bypass)
2742 regcache_write(map, reg, *val);
2749 * regmap_read() - Read a value from a single register
2751 * @map: Register map to read from
2752 * @reg: Register to be read from
2753 * @val: Pointer to store read value
2755 * A value of zero will be returned on success, a negative errno will
2756 * be returned in error cases.
2758 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2762 if (!IS_ALIGNED(reg, map->reg_stride))
2765 map->lock(map->lock_arg);
2767 ret = _regmap_read(map, reg, val);
2769 map->unlock(map->lock_arg);
2773 EXPORT_SYMBOL_GPL(regmap_read);
2776 * regmap_raw_read() - Read raw data from the device
2778 * @map: Register map to read from
2779 * @reg: First register to be read from
2780 * @val: Pointer to store read value
2781 * @val_len: Size of data to read
2783 * A value of zero will be returned on success, a negative errno will
2784 * be returned in error cases.
2786 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2789 size_t val_bytes = map->format.val_bytes;
2790 size_t val_count = val_len / val_bytes;
2796 if (val_len % map->format.val_bytes)
2798 if (!IS_ALIGNED(reg, map->reg_stride))
2803 map->lock(map->lock_arg);
2805 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2806 map->cache_type == REGCACHE_NONE) {
2807 size_t chunk_count, chunk_bytes;
2808 size_t chunk_regs = val_count;
2810 if (!map->bus->read) {
2815 if (map->use_single_read)
2817 else if (map->max_raw_read && val_len > map->max_raw_read)
2818 chunk_regs = map->max_raw_read / val_bytes;
2820 chunk_count = val_count / chunk_regs;
2821 chunk_bytes = chunk_regs * val_bytes;
2823 /* Read bytes that fit into whole chunks */
2824 for (i = 0; i < chunk_count; i++) {
2825 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2829 reg += regmap_get_offset(map, chunk_regs);
2831 val_len -= chunk_bytes;
2834 /* Read remaining bytes */
2836 ret = _regmap_raw_read(map, reg, val, val_len, false);
2841 /* Otherwise go word by word for the cache; should be low
2842 * cost as we expect to hit the cache.
2844 for (i = 0; i < val_count; i++) {
2845 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2850 map->format.format_val(val + (i * val_bytes), v, 0);
2855 map->unlock(map->lock_arg);
2859 EXPORT_SYMBOL_GPL(regmap_raw_read);
2862 * regmap_noinc_read(): Read data from a register without incrementing the
2865 * @map: Register map to read from
2866 * @reg: Register to read from
2867 * @val: Pointer to data buffer
2868 * @val_len: Length of output buffer in bytes.
2870 * The regmap API usually assumes that bulk bus read operations will read a
2871 * range of registers. Some devices have certain registers for which a read
2872 * operation read will read from an internal FIFO.
2874 * The target register must be volatile but registers after it can be
2875 * completely unrelated cacheable registers.
2877 * This will attempt multiple reads as required to read val_len bytes.
2879 * A value of zero will be returned on success, a negative errno will be
2880 * returned in error cases.
2882 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2883 void *val, size_t val_len)
2890 if (!map->bus->read)
2892 if (val_len % map->format.val_bytes)
2894 if (!IS_ALIGNED(reg, map->reg_stride))
2899 map->lock(map->lock_arg);
2901 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2907 if (map->max_raw_read && map->max_raw_read < val_len)
2908 read_len = map->max_raw_read;
2911 ret = _regmap_raw_read(map, reg, val, read_len, true);
2914 val = ((u8 *)val) + read_len;
2915 val_len -= read_len;
2919 map->unlock(map->lock_arg);
2922 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2925 * regmap_field_read(): Read a value to a single register field
2927 * @field: Register field to read from
2928 * @val: Pointer to store read value
2930 * A value of zero will be returned on success, a negative errno will
2931 * be returned in error cases.
2933 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2936 unsigned int reg_val;
2937 ret = regmap_read(field->regmap, field->reg, ®_val);
2941 reg_val &= field->mask;
2942 reg_val >>= field->shift;
2947 EXPORT_SYMBOL_GPL(regmap_field_read);
2950 * regmap_fields_read() - Read a value to a single register field with port ID
2952 * @field: Register field to read from
2954 * @val: Pointer to store read value
2956 * A value of zero will be returned on success, a negative errno will
2957 * be returned in error cases.
2959 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2963 unsigned int reg_val;
2965 if (id >= field->id_size)
2968 ret = regmap_read(field->regmap,
2969 field->reg + (field->id_offset * id),
2974 reg_val &= field->mask;
2975 reg_val >>= field->shift;
2980 EXPORT_SYMBOL_GPL(regmap_fields_read);
2983 * regmap_bulk_read() - Read multiple registers from the device
2985 * @map: Register map to read from
2986 * @reg: First register to be read from
2987 * @val: Pointer to store read value, in native register size for device
2988 * @val_count: Number of registers to read
2990 * A value of zero will be returned on success, a negative errno will
2991 * be returned in error cases.
2993 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2997 size_t val_bytes = map->format.val_bytes;
2998 bool vol = regmap_volatile_range(map, reg, val_count);
3000 if (!IS_ALIGNED(reg, map->reg_stride))
3005 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3006 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3010 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3011 map->format.parse_inplace(val + i);
3020 map->lock(map->lock_arg);
3022 for (i = 0; i < val_count; i++) {
3025 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3030 switch (map->format.val_bytes) {
3052 map->unlock(map->lock_arg);
3057 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3059 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3060 unsigned int mask, unsigned int val,
3061 bool *change, bool force_write)
3064 unsigned int tmp, orig;
3069 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3070 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3071 if (ret == 0 && change)
3074 ret = _regmap_read(map, reg, &orig);
3081 if (force_write || (tmp != orig)) {
3082 ret = _regmap_write(map, reg, tmp);
3083 if (ret == 0 && change)
3092 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3094 * @map: Register map to update
3095 * @reg: Register to update
3096 * @mask: Bitmask to change
3097 * @val: New value for bitmask
3098 * @change: Boolean indicating if a write was done
3099 * @async: Boolean indicating asynchronously
3100 * @force: Boolean indicating use force update
3102 * Perform a read/modify/write cycle on a register map with change, async, force
3107 * With most buses the read must be done synchronously so this is most useful
3108 * for devices with a cache which do not need to interact with the hardware to
3109 * determine the current register value.
3111 * Returns zero for success, a negative number on error.
3113 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3114 unsigned int mask, unsigned int val,
3115 bool *change, bool async, bool force)
3119 map->lock(map->lock_arg);
3123 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3127 map->unlock(map->lock_arg);
3131 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3134 * regmap_test_bits() - Check if all specified bits are set in a register.
3136 * @map: Register map to operate on
3137 * @reg: Register to read from
3138 * @bits: Bits to test
3140 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3141 * bits are set and a negative error number if the underlying regmap_read()
3144 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3146 unsigned int val, ret;
3148 ret = regmap_read(map, reg, &val);
3152 return (val & bits) == bits;
3154 EXPORT_SYMBOL_GPL(regmap_test_bits);
3156 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3158 struct regmap *map = async->map;
3161 trace_regmap_async_io_complete(map);
3163 spin_lock(&map->async_lock);
3164 list_move(&async->list, &map->async_free);
3165 wake = list_empty(&map->async_list);
3168 map->async_ret = ret;
3170 spin_unlock(&map->async_lock);
3173 wake_up(&map->async_waitq);
3175 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3177 static int regmap_async_is_done(struct regmap *map)
3179 unsigned long flags;
3182 spin_lock_irqsave(&map->async_lock, flags);
3183 ret = list_empty(&map->async_list);
3184 spin_unlock_irqrestore(&map->async_lock, flags);
3190 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3192 * @map: Map to operate on.
3194 * Blocks until any pending asynchronous I/O has completed. Returns
3195 * an error code for any failed I/O operations.
3197 int regmap_async_complete(struct regmap *map)
3199 unsigned long flags;
3202 /* Nothing to do with no async support */
3203 if (!map->bus || !map->bus->async_write)
3206 trace_regmap_async_complete_start(map);
3208 wait_event(map->async_waitq, regmap_async_is_done(map));
3210 spin_lock_irqsave(&map->async_lock, flags);
3211 ret = map->async_ret;
3213 spin_unlock_irqrestore(&map->async_lock, flags);
3215 trace_regmap_async_complete_done(map);
3219 EXPORT_SYMBOL_GPL(regmap_async_complete);
3222 * regmap_register_patch - Register and apply register updates to be applied
3223 * on device initialistion
3225 * @map: Register map to apply updates to.
3226 * @regs: Values to update.
3227 * @num_regs: Number of entries in regs.
3229 * Register a set of register updates to be applied to the device
3230 * whenever the device registers are synchronised with the cache and
3231 * apply them immediately. Typically this is used to apply
3232 * corrections to be applied to the device defaults on startup, such
3233 * as the updates some vendors provide to undocumented registers.
3235 * The caller must ensure that this function cannot be called
3236 * concurrently with either itself or regcache_sync().
3238 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3241 struct reg_sequence *p;
3245 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3249 p = krealloc(map->patch,
3250 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3253 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3255 map->patch_regs += num_regs;
3260 map->lock(map->lock_arg);
3262 bypass = map->cache_bypass;
3264 map->cache_bypass = true;
3267 ret = _regmap_multi_reg_write(map, regs, num_regs);
3270 map->cache_bypass = bypass;
3272 map->unlock(map->lock_arg);
3274 regmap_async_complete(map);
3278 EXPORT_SYMBOL_GPL(regmap_register_patch);
3281 * regmap_get_val_bytes() - Report the size of a register value
3283 * @map: Register map to operate on.
3285 * Report the size of a register value, mainly intended to for use by
3286 * generic infrastructure built on top of regmap.
3288 int regmap_get_val_bytes(struct regmap *map)
3290 if (map->format.format_write)
3293 return map->format.val_bytes;
3295 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3298 * regmap_get_max_register() - Report the max register value
3300 * @map: Register map to operate on.
3302 * Report the max register value, mainly intended to for use by
3303 * generic infrastructure built on top of regmap.
3305 int regmap_get_max_register(struct regmap *map)
3307 return map->max_register ? map->max_register : -EINVAL;
3309 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3312 * regmap_get_reg_stride() - Report the register address stride
3314 * @map: Register map to operate on.
3316 * Report the register address stride, mainly intended to for use by
3317 * generic infrastructure built on top of regmap.
3319 int regmap_get_reg_stride(struct regmap *map)
3321 return map->reg_stride;
3323 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3325 int regmap_parse_val(struct regmap *map, const void *buf,
3328 if (!map->format.parse_val)
3331 *val = map->format.parse_val(buf);
3335 EXPORT_SYMBOL_GPL(regmap_parse_val);
3337 static int __init regmap_initcall(void)
3339 regmap_debugfs_initcall();
3343 postcore_initcall(regmap_initcall);