]> Git Repo - linux.git/blob - drivers/mtd/nand/raw/nand_base.c
Merge tag 'mtd/for-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux
[linux.git] / drivers / mtd / nand / raw / nand_base.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Overview:
4  *   This is the generic MTD driver for NAND flash devices. It should be
5  *   capable of working with almost all NAND chips currently available.
6  *
7  *      Additional technical information is available on
8  *      http://www.linux-mtd.infradead.org/doc/nand.html
9  *
10  *  Copyright (C) 2000 Steven J. Hill ([email protected])
11  *                2002-2006 Thomas Gleixner ([email protected])
12  *
13  *  Credits:
14  *      David Woodhouse for adding multichip support
15  *
16  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17  *      rework for 2K page size chips
18  *
19  *  TODO:
20  *      Enable cached programming for 2k page size chips
21  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
22  *      if we have HW ECC support.
23  *      BBT table is not serialized, has to be fixed
24  */
25
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand-ecc-sw-hamming.h>
39 #include <linux/mtd/nand-ecc-sw-bch.h>
40 #include <linux/interrupt.h>
41 #include <linux/bitops.h>
42 #include <linux/io.h>
43 #include <linux/mtd/partitions.h>
44 #include <linux/of.h>
45 #include <linux/gpio/consumer.h>
46
47 #include "internals.h"
48
49 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
50                                        struct mtd_pairing_info *info)
51 {
52         int lastpage = (mtd->erasesize / mtd->writesize) - 1;
53         int dist = 3;
54
55         if (page == lastpage)
56                 dist = 2;
57
58         if (!page || (page & 1)) {
59                 info->group = 0;
60                 info->pair = (page + 1) / 2;
61         } else {
62                 info->group = 1;
63                 info->pair = (page + 1 - dist) / 2;
64         }
65
66         return 0;
67 }
68
69 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
70                                         const struct mtd_pairing_info *info)
71 {
72         int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
73         int page = info->pair * 2;
74         int dist = 3;
75
76         if (!info->group && !info->pair)
77                 return 0;
78
79         if (info->pair == lastpair && info->group)
80                 dist = 2;
81
82         if (!info->group)
83                 page--;
84         else if (info->pair)
85                 page += dist - 1;
86
87         if (page >= mtd->erasesize / mtd->writesize)
88                 return -EINVAL;
89
90         return page;
91 }
92
93 const struct mtd_pairing_scheme dist3_pairing_scheme = {
94         .ngroups = 2,
95         .get_info = nand_pairing_dist3_get_info,
96         .get_wunit = nand_pairing_dist3_get_wunit,
97 };
98
99 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
100 {
101         int ret = 0;
102
103         /* Start address must align on block boundary */
104         if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
105                 pr_debug("%s: unaligned address\n", __func__);
106                 ret = -EINVAL;
107         }
108
109         /* Length must align on block boundary */
110         if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
111                 pr_debug("%s: length not block aligned\n", __func__);
112                 ret = -EINVAL;
113         }
114
115         return ret;
116 }
117
118 /**
119  * nand_extract_bits - Copy unaligned bits from one buffer to another one
120  * @dst: destination buffer
121  * @dst_off: bit offset at which the writing starts
122  * @src: source buffer
123  * @src_off: bit offset at which the reading starts
124  * @nbits: number of bits to copy from @src to @dst
125  *
126  * Copy bits from one memory region to another (overlap authorized).
127  */
128 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
129                        unsigned int src_off, unsigned int nbits)
130 {
131         unsigned int tmp, n;
132
133         dst += dst_off / 8;
134         dst_off %= 8;
135         src += src_off / 8;
136         src_off %= 8;
137
138         while (nbits) {
139                 n = min3(8 - dst_off, 8 - src_off, nbits);
140
141                 tmp = (*src >> src_off) & GENMASK(n - 1, 0);
142                 *dst &= ~GENMASK(n - 1 + dst_off, dst_off);
143                 *dst |= tmp << dst_off;
144
145                 dst_off += n;
146                 if (dst_off >= 8) {
147                         dst++;
148                         dst_off -= 8;
149                 }
150
151                 src_off += n;
152                 if (src_off >= 8) {
153                         src++;
154                         src_off -= 8;
155                 }
156
157                 nbits -= n;
158         }
159 }
160 EXPORT_SYMBOL_GPL(nand_extract_bits);
161
162 /**
163  * nand_select_target() - Select a NAND target (A.K.A. die)
164  * @chip: NAND chip object
165  * @cs: the CS line to select. Note that this CS id is always from the chip
166  *      PoV, not the controller one
167  *
168  * Select a NAND target so that further operations executed on @chip go to the
169  * selected NAND target.
170  */
171 void nand_select_target(struct nand_chip *chip, unsigned int cs)
172 {
173         /*
174          * cs should always lie between 0 and nanddev_ntargets(), when that's
175          * not the case it's a bug and the caller should be fixed.
176          */
177         if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
178                 return;
179
180         chip->cur_cs = cs;
181
182         if (chip->legacy.select_chip)
183                 chip->legacy.select_chip(chip, cs);
184 }
185 EXPORT_SYMBOL_GPL(nand_select_target);
186
187 /**
188  * nand_deselect_target() - Deselect the currently selected target
189  * @chip: NAND chip object
190  *
191  * Deselect the currently selected NAND target. The result of operations
192  * executed on @chip after the target has been deselected is undefined.
193  */
194 void nand_deselect_target(struct nand_chip *chip)
195 {
196         if (chip->legacy.select_chip)
197                 chip->legacy.select_chip(chip, -1);
198
199         chip->cur_cs = -1;
200 }
201 EXPORT_SYMBOL_GPL(nand_deselect_target);
202
203 /**
204  * nand_release_device - [GENERIC] release chip
205  * @chip: NAND chip object
206  *
207  * Release chip lock and wake up anyone waiting on the device.
208  */
209 static void nand_release_device(struct nand_chip *chip)
210 {
211         /* Release the controller and the chip */
212         mutex_unlock(&chip->controller->lock);
213         mutex_unlock(&chip->lock);
214 }
215
216 /**
217  * nand_bbm_get_next_page - Get the next page for bad block markers
218  * @chip: NAND chip object
219  * @page: First page to start checking for bad block marker usage
220  *
221  * Returns an integer that corresponds to the page offset within a block, for
222  * a page that is used to store bad block markers. If no more pages are
223  * available, -EINVAL is returned.
224  */
225 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
226 {
227         struct mtd_info *mtd = nand_to_mtd(chip);
228         int last_page = ((mtd->erasesize - mtd->writesize) >>
229                          chip->page_shift) & chip->pagemask;
230         unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
231                 | NAND_BBM_LASTPAGE;
232
233         if (page == 0 && !(chip->options & bbm_flags))
234                 return 0;
235         if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
236                 return 0;
237         if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
238                 return 1;
239         if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
240                 return last_page;
241
242         return -EINVAL;
243 }
244
245 /**
246  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
247  * @chip: NAND chip object
248  * @ofs: offset from device start
249  *
250  * Check, if the block is bad.
251  */
252 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
253 {
254         int first_page, page_offset;
255         int res;
256         u8 bad;
257
258         first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
259         page_offset = nand_bbm_get_next_page(chip, 0);
260
261         while (page_offset >= 0) {
262                 res = chip->ecc.read_oob(chip, first_page + page_offset);
263                 if (res < 0)
264                         return res;
265
266                 bad = chip->oob_poi[chip->badblockpos];
267
268                 if (likely(chip->badblockbits == 8))
269                         res = bad != 0xFF;
270                 else
271                         res = hweight8(bad) < chip->badblockbits;
272                 if (res)
273                         return res;
274
275                 page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
276         }
277
278         return 0;
279 }
280
281 /**
282  * nand_region_is_secured() - Check if the region is secured
283  * @chip: NAND chip object
284  * @offset: Offset of the region to check
285  * @size: Size of the region to check
286  *
287  * Checks if the region is secured by comparing the offset and size with the
288  * list of secure regions obtained from DT. Returns true if the region is
289  * secured else false.
290  */
291 static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size)
292 {
293         int i;
294
295         /* Skip touching the secure regions if present */
296         for (i = 0; i < chip->nr_secure_regions; i++) {
297                 const struct nand_secure_region *region = &chip->secure_regions[i];
298
299                 if (offset + size <= region->offset ||
300                     offset >= region->offset + region->size)
301                         continue;
302
303                 pr_debug("%s: Region 0x%llx - 0x%llx is secured!",
304                          __func__, offset, offset + size);
305
306                 return true;
307         }
308
309         return false;
310 }
311
312 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
313 {
314         struct mtd_info *mtd = nand_to_mtd(chip);
315
316         if (chip->options & NAND_NO_BBM_QUIRK)
317                 return 0;
318
319         /* Check if the region is secured */
320         if (nand_region_is_secured(chip, ofs, mtd->erasesize))
321                 return -EIO;
322
323         if (mtd_check_expert_analysis_mode())
324                 return 0;
325
326         if (chip->legacy.block_bad)
327                 return chip->legacy.block_bad(chip, ofs);
328
329         return nand_block_bad(chip, ofs);
330 }
331
332 /**
333  * nand_get_device - [GENERIC] Get chip for selected access
334  * @chip: NAND chip structure
335  *
336  * Lock the device and its controller for exclusive access
337  */
338 static void nand_get_device(struct nand_chip *chip)
339 {
340         /* Wait until the device is resumed. */
341         while (1) {
342                 mutex_lock(&chip->lock);
343                 if (!chip->suspended) {
344                         mutex_lock(&chip->controller->lock);
345                         return;
346                 }
347                 mutex_unlock(&chip->lock);
348
349                 wait_event(chip->resume_wq, !chip->suspended);
350         }
351 }
352
353 /**
354  * nand_check_wp - [GENERIC] check if the chip is write protected
355  * @chip: NAND chip object
356  *
357  * Check, if the device is write protected. The function expects, that the
358  * device is already selected.
359  */
360 static int nand_check_wp(struct nand_chip *chip)
361 {
362         u8 status;
363         int ret;
364
365         /* Broken xD cards report WP despite being writable */
366         if (chip->options & NAND_BROKEN_XD)
367                 return 0;
368
369         /* Check the WP bit */
370         ret = nand_status_op(chip, &status);
371         if (ret)
372                 return ret;
373
374         return status & NAND_STATUS_WP ? 0 : 1;
375 }
376
377 /**
378  * nand_fill_oob - [INTERN] Transfer client buffer to oob
379  * @chip: NAND chip object
380  * @oob: oob data buffer
381  * @len: oob data write length
382  * @ops: oob ops structure
383  */
384 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
385                               struct mtd_oob_ops *ops)
386 {
387         struct mtd_info *mtd = nand_to_mtd(chip);
388         int ret;
389
390         /*
391          * Initialise to all 0xFF, to avoid the possibility of left over OOB
392          * data from a previous OOB read.
393          */
394         memset(chip->oob_poi, 0xff, mtd->oobsize);
395
396         switch (ops->mode) {
397
398         case MTD_OPS_PLACE_OOB:
399         case MTD_OPS_RAW:
400                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
401                 return oob + len;
402
403         case MTD_OPS_AUTO_OOB:
404                 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
405                                                   ops->ooboffs, len);
406                 BUG_ON(ret);
407                 return oob + len;
408
409         default:
410                 BUG();
411         }
412         return NULL;
413 }
414
415 /**
416  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
417  * @chip: NAND chip object
418  * @to: offset to write to
419  * @ops: oob operation description structure
420  *
421  * NAND write out-of-band.
422  */
423 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
424                              struct mtd_oob_ops *ops)
425 {
426         struct mtd_info *mtd = nand_to_mtd(chip);
427         int chipnr, page, status, len, ret;
428
429         pr_debug("%s: to = 0x%08x, len = %i\n",
430                          __func__, (unsigned int)to, (int)ops->ooblen);
431
432         len = mtd_oobavail(mtd, ops);
433
434         /* Do not allow write past end of page */
435         if ((ops->ooboffs + ops->ooblen) > len) {
436                 pr_debug("%s: attempt to write past end of page\n",
437                                 __func__);
438                 return -EINVAL;
439         }
440
441         /* Check if the region is secured */
442         if (nand_region_is_secured(chip, to, ops->ooblen))
443                 return -EIO;
444
445         chipnr = (int)(to >> chip->chip_shift);
446
447         /*
448          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
449          * of my DiskOnChip 2000 test units) will clear the whole data page too
450          * if we don't do this. I have no clue why, but I seem to have 'fixed'
451          * it in the doc2000 driver in August 1999.  dwmw2.
452          */
453         ret = nand_reset(chip, chipnr);
454         if (ret)
455                 return ret;
456
457         nand_select_target(chip, chipnr);
458
459         /* Shift to get page */
460         page = (int)(to >> chip->page_shift);
461
462         /* Check, if it is write protected */
463         if (nand_check_wp(chip)) {
464                 nand_deselect_target(chip);
465                 return -EROFS;
466         }
467
468         /* Invalidate the page cache, if we write to the cached page */
469         if (page == chip->pagecache.page)
470                 chip->pagecache.page = -1;
471
472         nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
473
474         if (ops->mode == MTD_OPS_RAW)
475                 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
476         else
477                 status = chip->ecc.write_oob(chip, page & chip->pagemask);
478
479         nand_deselect_target(chip);
480
481         if (status)
482                 return status;
483
484         ops->oobretlen = ops->ooblen;
485
486         return 0;
487 }
488
489 /**
490  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
491  * @chip: NAND chip object
492  * @ofs: offset from device start
493  *
494  * This is the default implementation, which can be overridden by a hardware
495  * specific driver. It provides the details for writing a bad block marker to a
496  * block.
497  */
498 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
499 {
500         struct mtd_info *mtd = nand_to_mtd(chip);
501         struct mtd_oob_ops ops;
502         uint8_t buf[2] = { 0, 0 };
503         int ret = 0, res, page_offset;
504
505         memset(&ops, 0, sizeof(ops));
506         ops.oobbuf = buf;
507         ops.ooboffs = chip->badblockpos;
508         if (chip->options & NAND_BUSWIDTH_16) {
509                 ops.ooboffs &= ~0x01;
510                 ops.len = ops.ooblen = 2;
511         } else {
512                 ops.len = ops.ooblen = 1;
513         }
514         ops.mode = MTD_OPS_PLACE_OOB;
515
516         page_offset = nand_bbm_get_next_page(chip, 0);
517
518         while (page_offset >= 0) {
519                 res = nand_do_write_oob(chip,
520                                         ofs + (page_offset * mtd->writesize),
521                                         &ops);
522
523                 if (!ret)
524                         ret = res;
525
526                 page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
527         }
528
529         return ret;
530 }
531
532 /**
533  * nand_markbad_bbm - mark a block by updating the BBM
534  * @chip: NAND chip object
535  * @ofs: offset of the block to mark bad
536  */
537 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
538 {
539         if (chip->legacy.block_markbad)
540                 return chip->legacy.block_markbad(chip, ofs);
541
542         return nand_default_block_markbad(chip, ofs);
543 }
544
545 /**
546  * nand_block_markbad_lowlevel - mark a block bad
547  * @chip: NAND chip object
548  * @ofs: offset from device start
549  *
550  * This function performs the generic NAND bad block marking steps (i.e., bad
551  * block table(s) and/or marker(s)). We only allow the hardware driver to
552  * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
553  *
554  * We try operations in the following order:
555  *
556  *  (1) erase the affected block, to allow OOB marker to be written cleanly
557  *  (2) write bad block marker to OOB area of affected block (unless flag
558  *      NAND_BBT_NO_OOB_BBM is present)
559  *  (3) update the BBT
560  *
561  * Note that we retain the first error encountered in (2) or (3), finish the
562  * procedures, and dump the error in the end.
563 */
564 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
565 {
566         struct mtd_info *mtd = nand_to_mtd(chip);
567         int res, ret = 0;
568
569         if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
570                 struct erase_info einfo;
571
572                 /* Attempt erase before marking OOB */
573                 memset(&einfo, 0, sizeof(einfo));
574                 einfo.addr = ofs;
575                 einfo.len = 1ULL << chip->phys_erase_shift;
576                 nand_erase_nand(chip, &einfo, 0);
577
578                 /* Write bad block marker to OOB */
579                 nand_get_device(chip);
580
581                 ret = nand_markbad_bbm(chip, ofs);
582                 nand_release_device(chip);
583         }
584
585         /* Mark block bad in BBT */
586         if (chip->bbt) {
587                 res = nand_markbad_bbt(chip, ofs);
588                 if (!ret)
589                         ret = res;
590         }
591
592         if (!ret)
593                 mtd->ecc_stats.badblocks++;
594
595         return ret;
596 }
597
598 /**
599  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
600  * @mtd: MTD device structure
601  * @ofs: offset from device start
602  *
603  * Check if the block is marked as reserved.
604  */
605 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
606 {
607         struct nand_chip *chip = mtd_to_nand(mtd);
608
609         if (!chip->bbt)
610                 return 0;
611         /* Return info from the table */
612         return nand_isreserved_bbt(chip, ofs);
613 }
614
615 /**
616  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
617  * @chip: NAND chip object
618  * @ofs: offset from device start
619  * @allowbbt: 1, if its allowed to access the bbt area
620  *
621  * Check, if the block is bad. Either by reading the bad block table or
622  * calling of the scan function.
623  */
624 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
625 {
626         /* Return info from the table */
627         if (chip->bbt)
628                 return nand_isbad_bbt(chip, ofs, allowbbt);
629
630         return nand_isbad_bbm(chip, ofs);
631 }
632
633 /**
634  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
635  * @chip: NAND chip structure
636  * @timeout_ms: Timeout in ms
637  *
638  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
639  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
640  * returned.
641  *
642  * This helper is intended to be used when the controller does not have access
643  * to the NAND R/B pin.
644  *
645  * Be aware that calling this helper from an ->exec_op() implementation means
646  * ->exec_op() must be re-entrant.
647  *
648  * Return 0 if the NAND chip is ready, a negative error otherwise.
649  */
650 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
651 {
652         const struct nand_interface_config *conf;
653         u8 status = 0;
654         int ret;
655
656         if (!nand_has_exec_op(chip))
657                 return -ENOTSUPP;
658
659         /* Wait tWB before polling the STATUS reg. */
660         conf = nand_get_interface_config(chip);
661         ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max));
662
663         ret = nand_status_op(chip, NULL);
664         if (ret)
665                 return ret;
666
667         /*
668          * +1 below is necessary because if we are now in the last fraction
669          * of jiffy and msecs_to_jiffies is 1 then we will wait only that
670          * small jiffy fraction - possibly leading to false timeout
671          */
672         timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
673         do {
674                 ret = nand_read_data_op(chip, &status, sizeof(status), true,
675                                         false);
676                 if (ret)
677                         break;
678
679                 if (status & NAND_STATUS_READY)
680                         break;
681
682                 /*
683                  * Typical lowest execution time for a tR on most NANDs is 10us,
684                  * use this as polling delay before doing something smarter (ie.
685                  * deriving a delay from the timeout value, timeout_ms/ratio).
686                  */
687                 udelay(10);
688         } while (time_before(jiffies, timeout_ms));
689
690         /*
691          * We have to exit READ_STATUS mode in order to read real data on the
692          * bus in case the WAITRDY instruction is preceding a DATA_IN
693          * instruction.
694          */
695         nand_exit_status_op(chip);
696
697         if (ret)
698                 return ret;
699
700         return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
701 };
702 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
703
704 /**
705  * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
706  * @chip: NAND chip structure
707  * @gpiod: GPIO descriptor of R/B pin
708  * @timeout_ms: Timeout in ms
709  *
710  * Poll the R/B GPIO pin until it becomes ready. If that does not happen
711  * whitin the specified timeout, -ETIMEDOUT is returned.
712  *
713  * This helper is intended to be used when the controller has access to the
714  * NAND R/B pin over GPIO.
715  *
716  * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
717  */
718 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
719                       unsigned long timeout_ms)
720 {
721
722         /*
723          * Wait until R/B pin indicates chip is ready or timeout occurs.
724          * +1 below is necessary because if we are now in the last fraction
725          * of jiffy and msecs_to_jiffies is 1 then we will wait only that
726          * small jiffy fraction - possibly leading to false timeout.
727          */
728         timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
729         do {
730                 if (gpiod_get_value_cansleep(gpiod))
731                         return 0;
732
733                 cond_resched();
734         } while (time_before(jiffies, timeout_ms));
735
736         return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
737 };
738 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
739
740 /**
741  * panic_nand_wait - [GENERIC] wait until the command is done
742  * @chip: NAND chip structure
743  * @timeo: timeout
744  *
745  * Wait for command done. This is a helper function for nand_wait used when
746  * we are in interrupt context. May happen when in panic and trying to write
747  * an oops through mtdoops.
748  */
749 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
750 {
751         int i;
752         for (i = 0; i < timeo; i++) {
753                 if (chip->legacy.dev_ready) {
754                         if (chip->legacy.dev_ready(chip))
755                                 break;
756                 } else {
757                         int ret;
758                         u8 status;
759
760                         ret = nand_read_data_op(chip, &status, sizeof(status),
761                                                 true, false);
762                         if (ret)
763                                 return;
764
765                         if (status & NAND_STATUS_READY)
766                                 break;
767                 }
768                 mdelay(1);
769         }
770 }
771
772 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
773 {
774         return (chip->parameters.supports_set_get_features &&
775                 test_bit(addr, chip->parameters.get_feature_list));
776 }
777
778 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
779 {
780         return (chip->parameters.supports_set_get_features &&
781                 test_bit(addr, chip->parameters.set_feature_list));
782 }
783
784 /**
785  * nand_reset_interface - Reset data interface and timings
786  * @chip: The NAND chip
787  * @chipnr: Internal die id
788  *
789  * Reset the Data interface and timings to ONFI mode 0.
790  *
791  * Returns 0 for success or negative error code otherwise.
792  */
793 static int nand_reset_interface(struct nand_chip *chip, int chipnr)
794 {
795         const struct nand_controller_ops *ops = chip->controller->ops;
796         int ret;
797
798         if (!nand_controller_can_setup_interface(chip))
799                 return 0;
800
801         /*
802          * The ONFI specification says:
803          * "
804          * To transition from NV-DDR or NV-DDR2 to the SDR data
805          * interface, the host shall use the Reset (FFh) command
806          * using SDR timing mode 0. A device in any timing mode is
807          * required to recognize Reset (FFh) command issued in SDR
808          * timing mode 0.
809          * "
810          *
811          * Configure the data interface in SDR mode and set the
812          * timings to timing mode 0.
813          */
814
815         chip->current_interface_config = nand_get_reset_interface_config();
816         ret = ops->setup_interface(chip, chipnr,
817                                    chip->current_interface_config);
818         if (ret)
819                 pr_err("Failed to configure data interface to SDR timing mode 0\n");
820
821         return ret;
822 }
823
824 /**
825  * nand_setup_interface - Setup the best data interface and timings
826  * @chip: The NAND chip
827  * @chipnr: Internal die id
828  *
829  * Configure what has been reported to be the best data interface and NAND
830  * timings supported by the chip and the driver.
831  *
832  * Returns 0 for success or negative error code otherwise.
833  */
834 static int nand_setup_interface(struct nand_chip *chip, int chipnr)
835 {
836         const struct nand_controller_ops *ops = chip->controller->ops;
837         u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request;
838         int ret;
839
840         if (!nand_controller_can_setup_interface(chip))
841                 return 0;
842
843         /*
844          * A nand_reset_interface() put both the NAND chip and the NAND
845          * controller in timings mode 0. If the default mode for this chip is
846          * also 0, no need to proceed to the change again. Plus, at probe time,
847          * nand_setup_interface() uses ->set/get_features() which would
848          * fail anyway as the parameter page is not available yet.
849          */
850         if (!chip->best_interface_config)
851                 return 0;
852
853         request = chip->best_interface_config->timings.mode;
854         if (nand_interface_is_sdr(chip->best_interface_config))
855                 request |= ONFI_DATA_INTERFACE_SDR;
856         else
857                 request |= ONFI_DATA_INTERFACE_NVDDR;
858         tmode_param[0] = request;
859
860         /* Change the mode on the chip side (if supported by the NAND chip) */
861         if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
862                 nand_select_target(chip, chipnr);
863                 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
864                                         tmode_param);
865                 nand_deselect_target(chip);
866                 if (ret)
867                         return ret;
868         }
869
870         /* Change the mode on the controller side */
871         ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
872         if (ret)
873                 return ret;
874
875         /* Check the mode has been accepted by the chip, if supported */
876         if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
877                 goto update_interface_config;
878
879         memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
880         nand_select_target(chip, chipnr);
881         ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
882                                 tmode_param);
883         nand_deselect_target(chip);
884         if (ret)
885                 goto err_reset_chip;
886
887         if (request != tmode_param[0]) {
888                 pr_warn("%s timing mode %d not acknowledged by the NAND chip\n",
889                         nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR",
890                         chip->best_interface_config->timings.mode);
891                 pr_debug("NAND chip would work in %s timing mode %d\n",
892                          tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR",
893                          (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0]));
894                 goto err_reset_chip;
895         }
896
897 update_interface_config:
898         chip->current_interface_config = chip->best_interface_config;
899
900         return 0;
901
902 err_reset_chip:
903         /*
904          * Fallback to mode 0 if the chip explicitly did not ack the chosen
905          * timing mode.
906          */
907         nand_reset_interface(chip, chipnr);
908         nand_select_target(chip, chipnr);
909         nand_reset_op(chip);
910         nand_deselect_target(chip);
911
912         return ret;
913 }
914
915 /**
916  * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
917  *                                NAND controller and the NAND chip support
918  * @chip: the NAND chip
919  * @iface: the interface configuration (can eventually be updated)
920  * @spec_timings: specific timings, when not fitting the ONFI specification
921  *
922  * If specific timings are provided, use them. Otherwise, retrieve supported
923  * timing modes from ONFI information.
924  */
925 int nand_choose_best_sdr_timings(struct nand_chip *chip,
926                                  struct nand_interface_config *iface,
927                                  struct nand_sdr_timings *spec_timings)
928 {
929         const struct nand_controller_ops *ops = chip->controller->ops;
930         int best_mode = 0, mode, ret = -EOPNOTSUPP;
931
932         iface->type = NAND_SDR_IFACE;
933
934         if (spec_timings) {
935                 iface->timings.sdr = *spec_timings;
936                 iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
937
938                 /* Verify the controller supports the requested interface */
939                 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
940                                            iface);
941                 if (!ret) {
942                         chip->best_interface_config = iface;
943                         return ret;
944                 }
945
946                 /* Fallback to slower modes */
947                 best_mode = iface->timings.mode;
948         } else if (chip->parameters.onfi) {
949                 best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1;
950         }
951
952         for (mode = best_mode; mode >= 0; mode--) {
953                 onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
954
955                 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
956                                            iface);
957                 if (!ret) {
958                         chip->best_interface_config = iface;
959                         break;
960                 }
961         }
962
963         return ret;
964 }
965
966 /**
967  * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the
968  *                                  NAND controller and the NAND chip support
969  * @chip: the NAND chip
970  * @iface: the interface configuration (can eventually be updated)
971  * @spec_timings: specific timings, when not fitting the ONFI specification
972  *
973  * If specific timings are provided, use them. Otherwise, retrieve supported
974  * timing modes from ONFI information.
975  */
976 int nand_choose_best_nvddr_timings(struct nand_chip *chip,
977                                    struct nand_interface_config *iface,
978                                    struct nand_nvddr_timings *spec_timings)
979 {
980         const struct nand_controller_ops *ops = chip->controller->ops;
981         int best_mode = 0, mode, ret = -EOPNOTSUPP;
982
983         iface->type = NAND_NVDDR_IFACE;
984
985         if (spec_timings) {
986                 iface->timings.nvddr = *spec_timings;
987                 iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings);
988
989                 /* Verify the controller supports the requested interface */
990                 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
991                                            iface);
992                 if (!ret) {
993                         chip->best_interface_config = iface;
994                         return ret;
995                 }
996
997                 /* Fallback to slower modes */
998                 best_mode = iface->timings.mode;
999         } else if (chip->parameters.onfi) {
1000                 best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1;
1001         }
1002
1003         for (mode = best_mode; mode >= 0; mode--) {
1004                 onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode);
1005
1006                 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1007                                            iface);
1008                 if (!ret) {
1009                         chip->best_interface_config = iface;
1010                         break;
1011                 }
1012         }
1013
1014         return ret;
1015 }
1016
1017 /**
1018  * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both
1019  *                            NAND controller and the NAND chip support
1020  * @chip: the NAND chip
1021  * @iface: the interface configuration (can eventually be updated)
1022  *
1023  * If specific timings are provided, use them. Otherwise, retrieve supported
1024  * timing modes from ONFI information.
1025  */
1026 static int nand_choose_best_timings(struct nand_chip *chip,
1027                                     struct nand_interface_config *iface)
1028 {
1029         int ret;
1030
1031         /* Try the fastest timings: NV-DDR */
1032         ret = nand_choose_best_nvddr_timings(chip, iface, NULL);
1033         if (!ret)
1034                 return 0;
1035
1036         /* Fallback to SDR timings otherwise */
1037         return nand_choose_best_sdr_timings(chip, iface, NULL);
1038 }
1039
1040 /**
1041  * nand_choose_interface_config - find the best data interface and timings
1042  * @chip: The NAND chip
1043  *
1044  * Find the best data interface and NAND timings supported by the chip
1045  * and the driver. Eventually let the NAND manufacturer driver propose his own
1046  * set of timings.
1047  *
1048  * After this function nand_chip->interface_config is initialized with the best
1049  * timing mode available.
1050  *
1051  * Returns 0 for success or negative error code otherwise.
1052  */
1053 static int nand_choose_interface_config(struct nand_chip *chip)
1054 {
1055         struct nand_interface_config *iface;
1056         int ret;
1057
1058         if (!nand_controller_can_setup_interface(chip))
1059                 return 0;
1060
1061         iface = kzalloc(sizeof(*iface), GFP_KERNEL);
1062         if (!iface)
1063                 return -ENOMEM;
1064
1065         if (chip->ops.choose_interface_config)
1066                 ret = chip->ops.choose_interface_config(chip, iface);
1067         else
1068                 ret = nand_choose_best_timings(chip, iface);
1069
1070         if (ret)
1071                 kfree(iface);
1072
1073         return ret;
1074 }
1075
1076 /**
1077  * nand_fill_column_cycles - fill the column cycles of an address
1078  * @chip: The NAND chip
1079  * @addrs: Array of address cycles to fill
1080  * @offset_in_page: The offset in the page
1081  *
1082  * Fills the first or the first two bytes of the @addrs field depending
1083  * on the NAND bus width and the page size.
1084  *
1085  * Returns the number of cycles needed to encode the column, or a negative
1086  * error code in case one of the arguments is invalid.
1087  */
1088 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1089                                    unsigned int offset_in_page)
1090 {
1091         struct mtd_info *mtd = nand_to_mtd(chip);
1092
1093         /* Make sure the offset is less than the actual page size. */
1094         if (offset_in_page > mtd->writesize + mtd->oobsize)
1095                 return -EINVAL;
1096
1097         /*
1098          * On small page NANDs, there's a dedicated command to access the OOB
1099          * area, and the column address is relative to the start of the OOB
1100          * area, not the start of the page. Asjust the address accordingly.
1101          */
1102         if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1103                 offset_in_page -= mtd->writesize;
1104
1105         /*
1106          * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1107          * wide, then it must be divided by 2.
1108          */
1109         if (chip->options & NAND_BUSWIDTH_16) {
1110                 if (WARN_ON(offset_in_page % 2))
1111                         return -EINVAL;
1112
1113                 offset_in_page /= 2;
1114         }
1115
1116         addrs[0] = offset_in_page;
1117
1118         /*
1119          * Small page NANDs use 1 cycle for the columns, while large page NANDs
1120          * need 2
1121          */
1122         if (mtd->writesize <= 512)
1123                 return 1;
1124
1125         addrs[1] = offset_in_page >> 8;
1126
1127         return 2;
1128 }
1129
1130 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1131                                      unsigned int offset_in_page, void *buf,
1132                                      unsigned int len)
1133 {
1134         const struct nand_interface_config *conf =
1135                 nand_get_interface_config(chip);
1136         struct mtd_info *mtd = nand_to_mtd(chip);
1137         u8 addrs[4];
1138         struct nand_op_instr instrs[] = {
1139                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1140                 NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1141                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1142                                  NAND_COMMON_TIMING_NS(conf, tRR_min)),
1143                 NAND_OP_DATA_IN(len, buf, 0),
1144         };
1145         struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1146         int ret;
1147
1148         /* Drop the DATA_IN instruction if len is set to 0. */
1149         if (!len)
1150                 op.ninstrs--;
1151
1152         if (offset_in_page >= mtd->writesize)
1153                 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1154         else if (offset_in_page >= 256 &&
1155                  !(chip->options & NAND_BUSWIDTH_16))
1156                 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1157
1158         ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1159         if (ret < 0)
1160                 return ret;
1161
1162         addrs[1] = page;
1163         addrs[2] = page >> 8;
1164
1165         if (chip->options & NAND_ROW_ADDR_3) {
1166                 addrs[3] = page >> 16;
1167                 instrs[1].ctx.addr.naddrs++;
1168         }
1169
1170         return nand_exec_op(chip, &op);
1171 }
1172
1173 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1174                                      unsigned int offset_in_page, void *buf,
1175                                      unsigned int len)
1176 {
1177         const struct nand_interface_config *conf =
1178                 nand_get_interface_config(chip);
1179         u8 addrs[5];
1180         struct nand_op_instr instrs[] = {
1181                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1182                 NAND_OP_ADDR(4, addrs, 0),
1183                 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1184                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1185                                  NAND_COMMON_TIMING_NS(conf, tRR_min)),
1186                 NAND_OP_DATA_IN(len, buf, 0),
1187         };
1188         struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1189         int ret;
1190
1191         /* Drop the DATA_IN instruction if len is set to 0. */
1192         if (!len)
1193                 op.ninstrs--;
1194
1195         ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1196         if (ret < 0)
1197                 return ret;
1198
1199         addrs[2] = page;
1200         addrs[3] = page >> 8;
1201
1202         if (chip->options & NAND_ROW_ADDR_3) {
1203                 addrs[4] = page >> 16;
1204                 instrs[1].ctx.addr.naddrs++;
1205         }
1206
1207         return nand_exec_op(chip, &op);
1208 }
1209
1210 static int nand_lp_exec_cont_read_page_op(struct nand_chip *chip, unsigned int page,
1211                                           unsigned int offset_in_page, void *buf,
1212                                           unsigned int len, bool check_only)
1213 {
1214         const struct nand_interface_config *conf =
1215                 nand_get_interface_config(chip);
1216         u8 addrs[5];
1217         struct nand_op_instr start_instrs[] = {
1218                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1219                 NAND_OP_ADDR(4, addrs, 0),
1220                 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1221                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 0),
1222                 NAND_OP_CMD(NAND_CMD_READCACHESEQ, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1223                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1224                                  NAND_COMMON_TIMING_NS(conf, tRR_min)),
1225                 NAND_OP_DATA_IN(len, buf, 0),
1226         };
1227         struct nand_op_instr cont_instrs[] = {
1228                 NAND_OP_CMD(page == chip->cont_read.last_page ?
1229                             NAND_CMD_READCACHEEND : NAND_CMD_READCACHESEQ,
1230                             NAND_COMMON_TIMING_NS(conf, tWB_max)),
1231                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1232                                  NAND_COMMON_TIMING_NS(conf, tRR_min)),
1233                 NAND_OP_DATA_IN(len, buf, 0),
1234         };
1235         struct nand_operation start_op = NAND_OPERATION(chip->cur_cs, start_instrs);
1236         struct nand_operation cont_op = NAND_OPERATION(chip->cur_cs, cont_instrs);
1237         int ret;
1238
1239         if (!len) {
1240                 start_op.ninstrs--;
1241                 cont_op.ninstrs--;
1242         }
1243
1244         ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1245         if (ret < 0)
1246                 return ret;
1247
1248         addrs[2] = page;
1249         addrs[3] = page >> 8;
1250
1251         if (chip->options & NAND_ROW_ADDR_3) {
1252                 addrs[4] = page >> 16;
1253                 start_instrs[1].ctx.addr.naddrs++;
1254         }
1255
1256         /* Check if cache reads are supported */
1257         if (check_only) {
1258                 if (nand_check_op(chip, &start_op) || nand_check_op(chip, &cont_op))
1259                         return -EOPNOTSUPP;
1260
1261                 return 0;
1262         }
1263
1264         if (page == chip->cont_read.first_page)
1265                 return nand_exec_op(chip, &start_op);
1266         else
1267                 return nand_exec_op(chip, &cont_op);
1268 }
1269
1270 static bool rawnand_cont_read_ongoing(struct nand_chip *chip, unsigned int page)
1271 {
1272         return chip->cont_read.ongoing &&
1273                 page >= chip->cont_read.first_page &&
1274                 page <= chip->cont_read.last_page;
1275 }
1276
1277 /**
1278  * nand_read_page_op - Do a READ PAGE operation
1279  * @chip: The NAND chip
1280  * @page: page to read
1281  * @offset_in_page: offset within the page
1282  * @buf: buffer used to store the data
1283  * @len: length of the buffer
1284  *
1285  * This function issues a READ PAGE operation.
1286  * This function does not select/unselect the CS line.
1287  *
1288  * Returns 0 on success, a negative error code otherwise.
1289  */
1290 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1291                       unsigned int offset_in_page, void *buf, unsigned int len)
1292 {
1293         struct mtd_info *mtd = nand_to_mtd(chip);
1294
1295         if (len && !buf)
1296                 return -EINVAL;
1297
1298         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1299                 return -EINVAL;
1300
1301         if (nand_has_exec_op(chip)) {
1302                 if (mtd->writesize > 512) {
1303                         if (rawnand_cont_read_ongoing(chip, page))
1304                                 return nand_lp_exec_cont_read_page_op(chip, page,
1305                                                                       offset_in_page,
1306                                                                       buf, len, false);
1307                         else
1308                                 return nand_lp_exec_read_page_op(chip, page,
1309                                                                  offset_in_page, buf,
1310                                                                  len);
1311                 }
1312
1313                 return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1314                                                  buf, len);
1315         }
1316
1317         chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1318         if (len)
1319                 chip->legacy.read_buf(chip, buf, len);
1320
1321         return 0;
1322 }
1323 EXPORT_SYMBOL_GPL(nand_read_page_op);
1324
1325 /**
1326  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1327  * @chip: The NAND chip
1328  * @page: parameter page to read
1329  * @buf: buffer used to store the data
1330  * @len: length of the buffer
1331  *
1332  * This function issues a READ PARAMETER PAGE operation.
1333  * This function does not select/unselect the CS line.
1334  *
1335  * Returns 0 on success, a negative error code otherwise.
1336  */
1337 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1338                             unsigned int len)
1339 {
1340         unsigned int i;
1341         u8 *p = buf;
1342
1343         if (len && !buf)
1344                 return -EINVAL;
1345
1346         if (nand_has_exec_op(chip)) {
1347                 const struct nand_interface_config *conf =
1348                         nand_get_interface_config(chip);
1349                 struct nand_op_instr instrs[] = {
1350                         NAND_OP_CMD(NAND_CMD_PARAM, 0),
1351                         NAND_OP_ADDR(1, &page,
1352                                      NAND_COMMON_TIMING_NS(conf, tWB_max)),
1353                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1354                                          NAND_COMMON_TIMING_NS(conf, tRR_min)),
1355                         NAND_OP_8BIT_DATA_IN(len, buf, 0),
1356                 };
1357                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1358
1359                 /* Drop the DATA_IN instruction if len is set to 0. */
1360                 if (!len)
1361                         op.ninstrs--;
1362
1363                 return nand_exec_op(chip, &op);
1364         }
1365
1366         chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1367         for (i = 0; i < len; i++)
1368                 p[i] = chip->legacy.read_byte(chip);
1369
1370         return 0;
1371 }
1372
1373 /**
1374  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1375  * @chip: The NAND chip
1376  * @offset_in_page: offset within the page
1377  * @buf: buffer used to store the data
1378  * @len: length of the buffer
1379  * @force_8bit: force 8-bit bus access
1380  *
1381  * This function issues a CHANGE READ COLUMN operation.
1382  * This function does not select/unselect the CS line.
1383  *
1384  * Returns 0 on success, a negative error code otherwise.
1385  */
1386 int nand_change_read_column_op(struct nand_chip *chip,
1387                                unsigned int offset_in_page, void *buf,
1388                                unsigned int len, bool force_8bit)
1389 {
1390         struct mtd_info *mtd = nand_to_mtd(chip);
1391
1392         if (len && !buf)
1393                 return -EINVAL;
1394
1395         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1396                 return -EINVAL;
1397
1398         /* Small page NANDs do not support column change. */
1399         if (mtd->writesize <= 512)
1400                 return -ENOTSUPP;
1401
1402         if (nand_has_exec_op(chip)) {
1403                 const struct nand_interface_config *conf =
1404                         nand_get_interface_config(chip);
1405                 u8 addrs[2] = {};
1406                 struct nand_op_instr instrs[] = {
1407                         NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1408                         NAND_OP_ADDR(2, addrs, 0),
1409                         NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1410                                     NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1411                         NAND_OP_DATA_IN(len, buf, 0),
1412                 };
1413                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1414                 int ret;
1415
1416                 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1417                 if (ret < 0)
1418                         return ret;
1419
1420                 /* Drop the DATA_IN instruction if len is set to 0. */
1421                 if (!len)
1422                         op.ninstrs--;
1423
1424                 instrs[3].ctx.data.force_8bit = force_8bit;
1425
1426                 return nand_exec_op(chip, &op);
1427         }
1428
1429         chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1430         if (len)
1431                 chip->legacy.read_buf(chip, buf, len);
1432
1433         return 0;
1434 }
1435 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1436
1437 /**
1438  * nand_read_oob_op - Do a READ OOB operation
1439  * @chip: The NAND chip
1440  * @page: page to read
1441  * @offset_in_oob: offset within the OOB area
1442  * @buf: buffer used to store the data
1443  * @len: length of the buffer
1444  *
1445  * This function issues a READ OOB operation.
1446  * This function does not select/unselect the CS line.
1447  *
1448  * Returns 0 on success, a negative error code otherwise.
1449  */
1450 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1451                      unsigned int offset_in_oob, void *buf, unsigned int len)
1452 {
1453         struct mtd_info *mtd = nand_to_mtd(chip);
1454
1455         if (len && !buf)
1456                 return -EINVAL;
1457
1458         if (offset_in_oob + len > mtd->oobsize)
1459                 return -EINVAL;
1460
1461         if (nand_has_exec_op(chip))
1462                 return nand_read_page_op(chip, page,
1463                                          mtd->writesize + offset_in_oob,
1464                                          buf, len);
1465
1466         chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1467         if (len)
1468                 chip->legacy.read_buf(chip, buf, len);
1469
1470         return 0;
1471 }
1472 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1473
1474 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1475                                   unsigned int offset_in_page, const void *buf,
1476                                   unsigned int len, bool prog)
1477 {
1478         const struct nand_interface_config *conf =
1479                 nand_get_interface_config(chip);
1480         struct mtd_info *mtd = nand_to_mtd(chip);
1481         u8 addrs[5] = {};
1482         struct nand_op_instr instrs[] = {
1483                 /*
1484                  * The first instruction will be dropped if we're dealing
1485                  * with a large page NAND and adjusted if we're dealing
1486                  * with a small page NAND and the page offset is > 255.
1487                  */
1488                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1489                 NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1490                 NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)),
1491                 NAND_OP_DATA_OUT(len, buf, 0),
1492                 NAND_OP_CMD(NAND_CMD_PAGEPROG,
1493                             NAND_COMMON_TIMING_NS(conf, tWB_max)),
1494                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0),
1495         };
1496         struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1497         int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1498
1499         if (naddrs < 0)
1500                 return naddrs;
1501
1502         addrs[naddrs++] = page;
1503         addrs[naddrs++] = page >> 8;
1504         if (chip->options & NAND_ROW_ADDR_3)
1505                 addrs[naddrs++] = page >> 16;
1506
1507         instrs[2].ctx.addr.naddrs = naddrs;
1508
1509         /* Drop the last two instructions if we're not programming the page. */
1510         if (!prog) {
1511                 op.ninstrs -= 2;
1512                 /* Also drop the DATA_OUT instruction if empty. */
1513                 if (!len)
1514                         op.ninstrs--;
1515         }
1516
1517         if (mtd->writesize <= 512) {
1518                 /*
1519                  * Small pages need some more tweaking: we have to adjust the
1520                  * first instruction depending on the page offset we're trying
1521                  * to access.
1522                  */
1523                 if (offset_in_page >= mtd->writesize)
1524                         instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1525                 else if (offset_in_page >= 256 &&
1526                          !(chip->options & NAND_BUSWIDTH_16))
1527                         instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1528         } else {
1529                 /*
1530                  * Drop the first command if we're dealing with a large page
1531                  * NAND.
1532                  */
1533                 op.instrs++;
1534                 op.ninstrs--;
1535         }
1536
1537         return nand_exec_op(chip, &op);
1538 }
1539
1540 /**
1541  * nand_prog_page_begin_op - starts a PROG PAGE operation
1542  * @chip: The NAND chip
1543  * @page: page to write
1544  * @offset_in_page: offset within the page
1545  * @buf: buffer containing the data to write to the page
1546  * @len: length of the buffer
1547  *
1548  * This function issues the first half of a PROG PAGE operation.
1549  * This function does not select/unselect the CS line.
1550  *
1551  * Returns 0 on success, a negative error code otherwise.
1552  */
1553 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1554                             unsigned int offset_in_page, const void *buf,
1555                             unsigned int len)
1556 {
1557         struct mtd_info *mtd = nand_to_mtd(chip);
1558
1559         if (len && !buf)
1560                 return -EINVAL;
1561
1562         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1563                 return -EINVAL;
1564
1565         if (nand_has_exec_op(chip))
1566                 return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1567                                               len, false);
1568
1569         chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1570
1571         if (buf)
1572                 chip->legacy.write_buf(chip, buf, len);
1573
1574         return 0;
1575 }
1576 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1577
1578 /**
1579  * nand_prog_page_end_op - ends a PROG PAGE operation
1580  * @chip: The NAND chip
1581  *
1582  * This function issues the second half of a PROG PAGE operation.
1583  * This function does not select/unselect the CS line.
1584  *
1585  * Returns 0 on success, a negative error code otherwise.
1586  */
1587 int nand_prog_page_end_op(struct nand_chip *chip)
1588 {
1589         int ret;
1590         u8 status;
1591
1592         if (nand_has_exec_op(chip)) {
1593                 const struct nand_interface_config *conf =
1594                         nand_get_interface_config(chip);
1595                 struct nand_op_instr instrs[] = {
1596                         NAND_OP_CMD(NAND_CMD_PAGEPROG,
1597                                     NAND_COMMON_TIMING_NS(conf, tWB_max)),
1598                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max),
1599                                          0),
1600                 };
1601                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1602
1603                 ret = nand_exec_op(chip, &op);
1604                 if (ret)
1605                         return ret;
1606
1607                 ret = nand_status_op(chip, &status);
1608                 if (ret)
1609                         return ret;
1610         } else {
1611                 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1612                 ret = chip->legacy.waitfunc(chip);
1613                 if (ret < 0)
1614                         return ret;
1615
1616                 status = ret;
1617         }
1618
1619         if (status & NAND_STATUS_FAIL)
1620                 return -EIO;
1621
1622         return 0;
1623 }
1624 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1625
1626 /**
1627  * nand_prog_page_op - Do a full PROG PAGE operation
1628  * @chip: The NAND chip
1629  * @page: page to write
1630  * @offset_in_page: offset within the page
1631  * @buf: buffer containing the data to write to the page
1632  * @len: length of the buffer
1633  *
1634  * This function issues a full PROG PAGE operation.
1635  * This function does not select/unselect the CS line.
1636  *
1637  * Returns 0 on success, a negative error code otherwise.
1638  */
1639 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1640                       unsigned int offset_in_page, const void *buf,
1641                       unsigned int len)
1642 {
1643         struct mtd_info *mtd = nand_to_mtd(chip);
1644         u8 status;
1645         int ret;
1646
1647         if (!len || !buf)
1648                 return -EINVAL;
1649
1650         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1651                 return -EINVAL;
1652
1653         if (nand_has_exec_op(chip)) {
1654                 ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1655                                                 len, true);
1656                 if (ret)
1657                         return ret;
1658
1659                 ret = nand_status_op(chip, &status);
1660                 if (ret)
1661                         return ret;
1662         } else {
1663                 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1664                                      page);
1665                 chip->legacy.write_buf(chip, buf, len);
1666                 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1667                 ret = chip->legacy.waitfunc(chip);
1668                 if (ret < 0)
1669                         return ret;
1670
1671                 status = ret;
1672         }
1673
1674         if (status & NAND_STATUS_FAIL)
1675                 return -EIO;
1676
1677         return 0;
1678 }
1679 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1680
1681 /**
1682  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1683  * @chip: The NAND chip
1684  * @offset_in_page: offset within the page
1685  * @buf: buffer containing the data to send to the NAND
1686  * @len: length of the buffer
1687  * @force_8bit: force 8-bit bus access
1688  *
1689  * This function issues a CHANGE WRITE COLUMN operation.
1690  * This function does not select/unselect the CS line.
1691  *
1692  * Returns 0 on success, a negative error code otherwise.
1693  */
1694 int nand_change_write_column_op(struct nand_chip *chip,
1695                                 unsigned int offset_in_page,
1696                                 const void *buf, unsigned int len,
1697                                 bool force_8bit)
1698 {
1699         struct mtd_info *mtd = nand_to_mtd(chip);
1700
1701         if (len && !buf)
1702                 return -EINVAL;
1703
1704         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1705                 return -EINVAL;
1706
1707         /* Small page NANDs do not support column change. */
1708         if (mtd->writesize <= 512)
1709                 return -ENOTSUPP;
1710
1711         if (nand_has_exec_op(chip)) {
1712                 const struct nand_interface_config *conf =
1713                         nand_get_interface_config(chip);
1714                 u8 addrs[2];
1715                 struct nand_op_instr instrs[] = {
1716                         NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1717                         NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1718                         NAND_OP_DATA_OUT(len, buf, 0),
1719                 };
1720                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1721                 int ret;
1722
1723                 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1724                 if (ret < 0)
1725                         return ret;
1726
1727                 instrs[2].ctx.data.force_8bit = force_8bit;
1728
1729                 /* Drop the DATA_OUT instruction if len is set to 0. */
1730                 if (!len)
1731                         op.ninstrs--;
1732
1733                 return nand_exec_op(chip, &op);
1734         }
1735
1736         chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1737         if (len)
1738                 chip->legacy.write_buf(chip, buf, len);
1739
1740         return 0;
1741 }
1742 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1743
1744 /**
1745  * nand_readid_op - Do a READID operation
1746  * @chip: The NAND chip
1747  * @addr: address cycle to pass after the READID command
1748  * @buf: buffer used to store the ID
1749  * @len: length of the buffer
1750  *
1751  * This function sends a READID command and reads back the ID returned by the
1752  * NAND.
1753  * This function does not select/unselect the CS line.
1754  *
1755  * Returns 0 on success, a negative error code otherwise.
1756  */
1757 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1758                    unsigned int len)
1759 {
1760         unsigned int i;
1761         u8 *id = buf, *ddrbuf = NULL;
1762
1763         if (len && !buf)
1764                 return -EINVAL;
1765
1766         if (nand_has_exec_op(chip)) {
1767                 const struct nand_interface_config *conf =
1768                         nand_get_interface_config(chip);
1769                 struct nand_op_instr instrs[] = {
1770                         NAND_OP_CMD(NAND_CMD_READID, 0),
1771                         NAND_OP_ADDR(1, &addr,
1772                                      NAND_COMMON_TIMING_NS(conf, tADL_min)),
1773                         NAND_OP_8BIT_DATA_IN(len, buf, 0),
1774                 };
1775                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1776                 int ret;
1777
1778                 /* READ_ID data bytes are received twice in NV-DDR mode */
1779                 if (len && nand_interface_is_nvddr(conf)) {
1780                         ddrbuf = kzalloc(len * 2, GFP_KERNEL);
1781                         if (!ddrbuf)
1782                                 return -ENOMEM;
1783
1784                         instrs[2].ctx.data.len *= 2;
1785                         instrs[2].ctx.data.buf.in = ddrbuf;
1786                 }
1787
1788                 /* Drop the DATA_IN instruction if len is set to 0. */
1789                 if (!len)
1790                         op.ninstrs--;
1791
1792                 ret = nand_exec_op(chip, &op);
1793                 if (!ret && len && nand_interface_is_nvddr(conf)) {
1794                         for (i = 0; i < len; i++)
1795                                 id[i] = ddrbuf[i * 2];
1796                 }
1797
1798                 kfree(ddrbuf);
1799
1800                 return ret;
1801         }
1802
1803         chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1804
1805         for (i = 0; i < len; i++)
1806                 id[i] = chip->legacy.read_byte(chip);
1807
1808         return 0;
1809 }
1810 EXPORT_SYMBOL_GPL(nand_readid_op);
1811
1812 /**
1813  * nand_status_op - Do a STATUS operation
1814  * @chip: The NAND chip
1815  * @status: out variable to store the NAND status
1816  *
1817  * This function sends a STATUS command and reads back the status returned by
1818  * the NAND.
1819  * This function does not select/unselect the CS line.
1820  *
1821  * Returns 0 on success, a negative error code otherwise.
1822  */
1823 int nand_status_op(struct nand_chip *chip, u8 *status)
1824 {
1825         if (nand_has_exec_op(chip)) {
1826                 const struct nand_interface_config *conf =
1827                         nand_get_interface_config(chip);
1828                 u8 ddrstatus[2];
1829                 struct nand_op_instr instrs[] = {
1830                         NAND_OP_CMD(NAND_CMD_STATUS,
1831                                     NAND_COMMON_TIMING_NS(conf, tADL_min)),
1832                         NAND_OP_8BIT_DATA_IN(1, status, 0),
1833                 };
1834                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1835                 int ret;
1836
1837                 /* The status data byte will be received twice in NV-DDR mode */
1838                 if (status && nand_interface_is_nvddr(conf)) {
1839                         instrs[1].ctx.data.len *= 2;
1840                         instrs[1].ctx.data.buf.in = ddrstatus;
1841                 }
1842
1843                 if (!status)
1844                         op.ninstrs--;
1845
1846                 ret = nand_exec_op(chip, &op);
1847                 if (!ret && status && nand_interface_is_nvddr(conf))
1848                         *status = ddrstatus[0];
1849
1850                 return ret;
1851         }
1852
1853         chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1854         if (status)
1855                 *status = chip->legacy.read_byte(chip);
1856
1857         return 0;
1858 }
1859 EXPORT_SYMBOL_GPL(nand_status_op);
1860
1861 /**
1862  * nand_exit_status_op - Exit a STATUS operation
1863  * @chip: The NAND chip
1864  *
1865  * This function sends a READ0 command to cancel the effect of the STATUS
1866  * command to avoid reading only the status until a new read command is sent.
1867  *
1868  * This function does not select/unselect the CS line.
1869  *
1870  * Returns 0 on success, a negative error code otherwise.
1871  */
1872 int nand_exit_status_op(struct nand_chip *chip)
1873 {
1874         if (nand_has_exec_op(chip)) {
1875                 struct nand_op_instr instrs[] = {
1876                         NAND_OP_CMD(NAND_CMD_READ0, 0),
1877                 };
1878                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1879
1880                 return nand_exec_op(chip, &op);
1881         }
1882
1883         chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1884
1885         return 0;
1886 }
1887 EXPORT_SYMBOL_GPL(nand_exit_status_op);
1888
1889 /**
1890  * nand_erase_op - Do an erase operation
1891  * @chip: The NAND chip
1892  * @eraseblock: block to erase
1893  *
1894  * This function sends an ERASE command and waits for the NAND to be ready
1895  * before returning.
1896  * This function does not select/unselect the CS line.
1897  *
1898  * Returns 0 on success, a negative error code otherwise.
1899  */
1900 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1901 {
1902         unsigned int page = eraseblock <<
1903                             (chip->phys_erase_shift - chip->page_shift);
1904         int ret;
1905         u8 status;
1906
1907         if (nand_has_exec_op(chip)) {
1908                 const struct nand_interface_config *conf =
1909                         nand_get_interface_config(chip);
1910                 u8 addrs[3] = { page, page >> 8, page >> 16 };
1911                 struct nand_op_instr instrs[] = {
1912                         NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1913                         NAND_OP_ADDR(2, addrs, 0),
1914                         NAND_OP_CMD(NAND_CMD_ERASE2,
1915                                     NAND_COMMON_TIMING_NS(conf, tWB_max)),
1916                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max),
1917                                          0),
1918                 };
1919                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1920
1921                 if (chip->options & NAND_ROW_ADDR_3)
1922                         instrs[1].ctx.addr.naddrs++;
1923
1924                 ret = nand_exec_op(chip, &op);
1925                 if (ret)
1926                         return ret;
1927
1928                 ret = nand_status_op(chip, &status);
1929                 if (ret)
1930                         return ret;
1931         } else {
1932                 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1933                 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1934
1935                 ret = chip->legacy.waitfunc(chip);
1936                 if (ret < 0)
1937                         return ret;
1938
1939                 status = ret;
1940         }
1941
1942         if (status & NAND_STATUS_FAIL)
1943                 return -EIO;
1944
1945         return 0;
1946 }
1947 EXPORT_SYMBOL_GPL(nand_erase_op);
1948
1949 /**
1950  * nand_set_features_op - Do a SET FEATURES operation
1951  * @chip: The NAND chip
1952  * @feature: feature id
1953  * @data: 4 bytes of data
1954  *
1955  * This function sends a SET FEATURES command and waits for the NAND to be
1956  * ready before returning.
1957  * This function does not select/unselect the CS line.
1958  *
1959  * Returns 0 on success, a negative error code otherwise.
1960  */
1961 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1962                                 const void *data)
1963 {
1964         const u8 *params = data;
1965         int i, ret;
1966
1967         if (nand_has_exec_op(chip)) {
1968                 const struct nand_interface_config *conf =
1969                         nand_get_interface_config(chip);
1970                 struct nand_op_instr instrs[] = {
1971                         NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
1972                         NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf,
1973                                                                         tADL_min)),
1974                         NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
1975                                               NAND_COMMON_TIMING_NS(conf,
1976                                                                     tWB_max)),
1977                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
1978                                          0),
1979                 };
1980                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1981
1982                 return nand_exec_op(chip, &op);
1983         }
1984
1985         chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
1986         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1987                 chip->legacy.write_byte(chip, params[i]);
1988
1989         ret = chip->legacy.waitfunc(chip);
1990         if (ret < 0)
1991                 return ret;
1992
1993         if (ret & NAND_STATUS_FAIL)
1994                 return -EIO;
1995
1996         return 0;
1997 }
1998
1999 /**
2000  * nand_get_features_op - Do a GET FEATURES operation
2001  * @chip: The NAND chip
2002  * @feature: feature id
2003  * @data: 4 bytes of data
2004  *
2005  * This function sends a GET FEATURES command and waits for the NAND to be
2006  * ready before returning.
2007  * This function does not select/unselect the CS line.
2008  *
2009  * Returns 0 on success, a negative error code otherwise.
2010  */
2011 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
2012                                 void *data)
2013 {
2014         u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2];
2015         int i;
2016
2017         if (nand_has_exec_op(chip)) {
2018                 const struct nand_interface_config *conf =
2019                         nand_get_interface_config(chip);
2020                 struct nand_op_instr instrs[] = {
2021                         NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
2022                         NAND_OP_ADDR(1, &feature,
2023                                      NAND_COMMON_TIMING_NS(conf, tWB_max)),
2024                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2025                                          NAND_COMMON_TIMING_NS(conf, tRR_min)),
2026                         NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
2027                                              data, 0),
2028                 };
2029                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2030                 int ret;
2031
2032                 /* GET_FEATURE data bytes are received twice in NV-DDR mode */
2033                 if (nand_interface_is_nvddr(conf)) {
2034                         instrs[3].ctx.data.len *= 2;
2035                         instrs[3].ctx.data.buf.in = ddrbuf;
2036                 }
2037
2038                 ret = nand_exec_op(chip, &op);
2039                 if (nand_interface_is_nvddr(conf)) {
2040                         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++)
2041                                 params[i] = ddrbuf[i * 2];
2042                 }
2043
2044                 return ret;
2045         }
2046
2047         chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
2048         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2049                 params[i] = chip->legacy.read_byte(chip);
2050
2051         return 0;
2052 }
2053
2054 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
2055                             unsigned int delay_ns)
2056 {
2057         if (nand_has_exec_op(chip)) {
2058                 struct nand_op_instr instrs[] = {
2059                         NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
2060                                          PSEC_TO_NSEC(delay_ns)),
2061                 };
2062                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2063
2064                 return nand_exec_op(chip, &op);
2065         }
2066
2067         /* Apply delay or wait for ready/busy pin */
2068         if (!chip->legacy.dev_ready)
2069                 udelay(chip->legacy.chip_delay);
2070         else
2071                 nand_wait_ready(chip);
2072
2073         return 0;
2074 }
2075
2076 /**
2077  * nand_reset_op - Do a reset operation
2078  * @chip: The NAND chip
2079  *
2080  * This function sends a RESET command and waits for the NAND to be ready
2081  * before returning.
2082  * This function does not select/unselect the CS line.
2083  *
2084  * Returns 0 on success, a negative error code otherwise.
2085  */
2086 int nand_reset_op(struct nand_chip *chip)
2087 {
2088         if (nand_has_exec_op(chip)) {
2089                 const struct nand_interface_config *conf =
2090                         nand_get_interface_config(chip);
2091                 struct nand_op_instr instrs[] = {
2092                         NAND_OP_CMD(NAND_CMD_RESET,
2093                                     NAND_COMMON_TIMING_NS(conf, tWB_max)),
2094                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max),
2095                                          0),
2096                 };
2097                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2098
2099                 return nand_exec_op(chip, &op);
2100         }
2101
2102         chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
2103
2104         return 0;
2105 }
2106 EXPORT_SYMBOL_GPL(nand_reset_op);
2107
2108 /**
2109  * nand_read_data_op - Read data from the NAND
2110  * @chip: The NAND chip
2111  * @buf: buffer used to store the data
2112  * @len: length of the buffer
2113  * @force_8bit: force 8-bit bus access
2114  * @check_only: do not actually run the command, only checks if the
2115  *              controller driver supports it
2116  *
2117  * This function does a raw data read on the bus. Usually used after launching
2118  * another NAND operation like nand_read_page_op().
2119  * This function does not select/unselect the CS line.
2120  *
2121  * Returns 0 on success, a negative error code otherwise.
2122  */
2123 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2124                       bool force_8bit, bool check_only)
2125 {
2126         if (!len || !buf)
2127                 return -EINVAL;
2128
2129         if (nand_has_exec_op(chip)) {
2130                 const struct nand_interface_config *conf =
2131                         nand_get_interface_config(chip);
2132                 struct nand_op_instr instrs[] = {
2133                         NAND_OP_DATA_IN(len, buf, 0),
2134                 };
2135                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2136                 u8 *ddrbuf = NULL;
2137                 int ret, i;
2138
2139                 instrs[0].ctx.data.force_8bit = force_8bit;
2140
2141                 /*
2142                  * Parameter payloads (ID, status, features, etc) do not go
2143                  * through the same pipeline as regular data, hence the
2144                  * force_8bit flag must be set and this also indicates that in
2145                  * case NV-DDR timings are being used the data will be received
2146                  * twice.
2147                  */
2148                 if (force_8bit && nand_interface_is_nvddr(conf)) {
2149                         ddrbuf = kzalloc(len * 2, GFP_KERNEL);
2150                         if (!ddrbuf)
2151                                 return -ENOMEM;
2152
2153                         instrs[0].ctx.data.len *= 2;
2154                         instrs[0].ctx.data.buf.in = ddrbuf;
2155                 }
2156
2157                 if (check_only) {
2158                         ret = nand_check_op(chip, &op);
2159                         kfree(ddrbuf);
2160                         return ret;
2161                 }
2162
2163                 ret = nand_exec_op(chip, &op);
2164                 if (!ret && force_8bit && nand_interface_is_nvddr(conf)) {
2165                         u8 *dst = buf;
2166
2167                         for (i = 0; i < len; i++)
2168                                 dst[i] = ddrbuf[i * 2];
2169                 }
2170
2171                 kfree(ddrbuf);
2172
2173                 return ret;
2174         }
2175
2176         if (check_only)
2177                 return 0;
2178
2179         if (force_8bit) {
2180                 u8 *p = buf;
2181                 unsigned int i;
2182
2183                 for (i = 0; i < len; i++)
2184                         p[i] = chip->legacy.read_byte(chip);
2185         } else {
2186                 chip->legacy.read_buf(chip, buf, len);
2187         }
2188
2189         return 0;
2190 }
2191 EXPORT_SYMBOL_GPL(nand_read_data_op);
2192
2193 /**
2194  * nand_write_data_op - Write data from the NAND
2195  * @chip: The NAND chip
2196  * @buf: buffer containing the data to send on the bus
2197  * @len: length of the buffer
2198  * @force_8bit: force 8-bit bus access
2199  *
2200  * This function does a raw data write on the bus. Usually used after launching
2201  * another NAND operation like nand_write_page_begin_op().
2202  * This function does not select/unselect the CS line.
2203  *
2204  * Returns 0 on success, a negative error code otherwise.
2205  */
2206 int nand_write_data_op(struct nand_chip *chip, const void *buf,
2207                        unsigned int len, bool force_8bit)
2208 {
2209         if (!len || !buf)
2210                 return -EINVAL;
2211
2212         if (nand_has_exec_op(chip)) {
2213                 struct nand_op_instr instrs[] = {
2214                         NAND_OP_DATA_OUT(len, buf, 0),
2215                 };
2216                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2217
2218                 instrs[0].ctx.data.force_8bit = force_8bit;
2219
2220                 return nand_exec_op(chip, &op);
2221         }
2222
2223         if (force_8bit) {
2224                 const u8 *p = buf;
2225                 unsigned int i;
2226
2227                 for (i = 0; i < len; i++)
2228                         chip->legacy.write_byte(chip, p[i]);
2229         } else {
2230                 chip->legacy.write_buf(chip, buf, len);
2231         }
2232
2233         return 0;
2234 }
2235 EXPORT_SYMBOL_GPL(nand_write_data_op);
2236
2237 /**
2238  * struct nand_op_parser_ctx - Context used by the parser
2239  * @instrs: array of all the instructions that must be addressed
2240  * @ninstrs: length of the @instrs array
2241  * @subop: Sub-operation to be passed to the NAND controller
2242  *
2243  * This structure is used by the core to split NAND operations into
2244  * sub-operations that can be handled by the NAND controller.
2245  */
2246 struct nand_op_parser_ctx {
2247         const struct nand_op_instr *instrs;
2248         unsigned int ninstrs;
2249         struct nand_subop subop;
2250 };
2251
2252 /**
2253  * nand_op_parser_must_split_instr - Checks if an instruction must be split
2254  * @pat: the parser pattern element that matches @instr
2255  * @instr: pointer to the instruction to check
2256  * @start_offset: this is an in/out parameter. If @instr has already been
2257  *                split, then @start_offset is the offset from which to start
2258  *                (either an address cycle or an offset in the data buffer).
2259  *                Conversely, if the function returns true (ie. instr must be
2260  *                split), this parameter is updated to point to the first
2261  *                data/address cycle that has not been taken care of.
2262  *
2263  * Some NAND controllers are limited and cannot send X address cycles with a
2264  * unique operation, or cannot read/write more than Y bytes at the same time.
2265  * In this case, split the instruction that does not fit in a single
2266  * controller-operation into two or more chunks.
2267  *
2268  * Returns true if the instruction must be split, false otherwise.
2269  * The @start_offset parameter is also updated to the offset at which the next
2270  * bundle of instruction must start (if an address or a data instruction).
2271  */
2272 static bool
2273 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2274                                 const struct nand_op_instr *instr,
2275                                 unsigned int *start_offset)
2276 {
2277         switch (pat->type) {
2278         case NAND_OP_ADDR_INSTR:
2279                 if (!pat->ctx.addr.maxcycles)
2280                         break;
2281
2282                 if (instr->ctx.addr.naddrs - *start_offset >
2283                     pat->ctx.addr.maxcycles) {
2284                         *start_offset += pat->ctx.addr.maxcycles;
2285                         return true;
2286                 }
2287                 break;
2288
2289         case NAND_OP_DATA_IN_INSTR:
2290         case NAND_OP_DATA_OUT_INSTR:
2291                 if (!pat->ctx.data.maxlen)
2292                         break;
2293
2294                 if (instr->ctx.data.len - *start_offset >
2295                     pat->ctx.data.maxlen) {
2296                         *start_offset += pat->ctx.data.maxlen;
2297                         return true;
2298                 }
2299                 break;
2300
2301         default:
2302                 break;
2303         }
2304
2305         return false;
2306 }
2307
2308 /**
2309  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2310  *                            remaining in the parser context
2311  * @pat: the pattern to test
2312  * @ctx: the parser context structure to match with the pattern @pat
2313  *
2314  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2315  * Returns true if this is the case, false ortherwise. When true is returned,
2316  * @ctx->subop is updated with the set of instructions to be passed to the
2317  * controller driver.
2318  */
2319 static bool
2320 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2321                          struct nand_op_parser_ctx *ctx)
2322 {
2323         unsigned int instr_offset = ctx->subop.first_instr_start_off;
2324         const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2325         const struct nand_op_instr *instr = ctx->subop.instrs;
2326         unsigned int i, ninstrs;
2327
2328         for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2329                 /*
2330                  * The pattern instruction does not match the operation
2331                  * instruction. If the instruction is marked optional in the
2332                  * pattern definition, we skip the pattern element and continue
2333                  * to the next one. If the element is mandatory, there's no
2334                  * match and we can return false directly.
2335                  */
2336                 if (instr->type != pat->elems[i].type) {
2337                         if (!pat->elems[i].optional)
2338                                 return false;
2339
2340                         continue;
2341                 }
2342
2343                 /*
2344                  * Now check the pattern element constraints. If the pattern is
2345                  * not able to handle the whole instruction in a single step,
2346                  * we have to split it.
2347                  * The last_instr_end_off value comes back updated to point to
2348                  * the position where we have to split the instruction (the
2349                  * start of the next subop chunk).
2350                  */
2351                 if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2352                                                     &instr_offset)) {
2353                         ninstrs++;
2354                         i++;
2355                         break;
2356                 }
2357
2358                 instr++;
2359                 ninstrs++;
2360                 instr_offset = 0;
2361         }
2362
2363         /*
2364          * This can happen if all instructions of a pattern are optional.
2365          * Still, if there's not at least one instruction handled by this
2366          * pattern, this is not a match, and we should try the next one (if
2367          * any).
2368          */
2369         if (!ninstrs)
2370                 return false;
2371
2372         /*
2373          * We had a match on the pattern head, but the pattern may be longer
2374          * than the instructions we're asked to execute. We need to make sure
2375          * there's no mandatory elements in the pattern tail.
2376          */
2377         for (; i < pat->nelems; i++) {
2378                 if (!pat->elems[i].optional)
2379                         return false;
2380         }
2381
2382         /*
2383          * We have a match: update the subop structure accordingly and return
2384          * true.
2385          */
2386         ctx->subop.ninstrs = ninstrs;
2387         ctx->subop.last_instr_end_off = instr_offset;
2388
2389         return true;
2390 }
2391
2392 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2393 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2394 {
2395         const struct nand_op_instr *instr;
2396         char *prefix = "      ";
2397         unsigned int i;
2398
2399         pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2400
2401         for (i = 0; i < ctx->ninstrs; i++) {
2402                 instr = &ctx->instrs[i];
2403
2404                 if (instr == &ctx->subop.instrs[0])
2405                         prefix = "    ->";
2406
2407                 nand_op_trace(prefix, instr);
2408
2409                 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2410                         prefix = "      ";
2411         }
2412 }
2413 #else
2414 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2415 {
2416         /* NOP */
2417 }
2418 #endif
2419
2420 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2421                                   const struct nand_op_parser_ctx *b)
2422 {
2423         if (a->subop.ninstrs < b->subop.ninstrs)
2424                 return -1;
2425         else if (a->subop.ninstrs > b->subop.ninstrs)
2426                 return 1;
2427
2428         if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2429                 return -1;
2430         else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2431                 return 1;
2432
2433         return 0;
2434 }
2435
2436 /**
2437  * nand_op_parser_exec_op - exec_op parser
2438  * @chip: the NAND chip
2439  * @parser: patterns description provided by the controller driver
2440  * @op: the NAND operation to address
2441  * @check_only: when true, the function only checks if @op can be handled but
2442  *              does not execute the operation
2443  *
2444  * Helper function designed to ease integration of NAND controller drivers that
2445  * only support a limited set of instruction sequences. The supported sequences
2446  * are described in @parser, and the framework takes care of splitting @op into
2447  * multiple sub-operations (if required) and pass them back to the ->exec()
2448  * callback of the matching pattern if @check_only is set to false.
2449  *
2450  * NAND controller drivers should call this function from their own ->exec_op()
2451  * implementation.
2452  *
2453  * Returns 0 on success, a negative error code otherwise. A failure can be
2454  * caused by an unsupported operation (none of the supported patterns is able
2455  * to handle the requested operation), or an error returned by one of the
2456  * matching pattern->exec() hook.
2457  */
2458 int nand_op_parser_exec_op(struct nand_chip *chip,
2459                            const struct nand_op_parser *parser,
2460                            const struct nand_operation *op, bool check_only)
2461 {
2462         struct nand_op_parser_ctx ctx = {
2463                 .subop.cs = op->cs,
2464                 .subop.instrs = op->instrs,
2465                 .instrs = op->instrs,
2466                 .ninstrs = op->ninstrs,
2467         };
2468         unsigned int i;
2469
2470         while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2471                 const struct nand_op_parser_pattern *pattern;
2472                 struct nand_op_parser_ctx best_ctx;
2473                 int ret, best_pattern = -1;
2474
2475                 for (i = 0; i < parser->npatterns; i++) {
2476                         struct nand_op_parser_ctx test_ctx = ctx;
2477
2478                         pattern = &parser->patterns[i];
2479                         if (!nand_op_parser_match_pat(pattern, &test_ctx))
2480                                 continue;
2481
2482                         if (best_pattern >= 0 &&
2483                             nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2484                                 continue;
2485
2486                         best_pattern = i;
2487                         best_ctx = test_ctx;
2488                 }
2489
2490                 if (best_pattern < 0) {
2491                         pr_debug("->exec_op() parser: pattern not found!\n");
2492                         return -ENOTSUPP;
2493                 }
2494
2495                 ctx = best_ctx;
2496                 nand_op_parser_trace(&ctx);
2497
2498                 if (!check_only) {
2499                         pattern = &parser->patterns[best_pattern];
2500                         ret = pattern->exec(chip, &ctx.subop);
2501                         if (ret)
2502                                 return ret;
2503                 }
2504
2505                 /*
2506                  * Update the context structure by pointing to the start of the
2507                  * next subop.
2508                  */
2509                 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2510                 if (ctx.subop.last_instr_end_off)
2511                         ctx.subop.instrs -= 1;
2512
2513                 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2514         }
2515
2516         return 0;
2517 }
2518 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2519
2520 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2521 {
2522         return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2523                          instr->type == NAND_OP_DATA_OUT_INSTR);
2524 }
2525
2526 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2527                                       unsigned int instr_idx)
2528 {
2529         return subop && instr_idx < subop->ninstrs;
2530 }
2531
2532 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2533                                              unsigned int instr_idx)
2534 {
2535         if (instr_idx)
2536                 return 0;
2537
2538         return subop->first_instr_start_off;
2539 }
2540
2541 /**
2542  * nand_subop_get_addr_start_off - Get the start offset in an address array
2543  * @subop: The entire sub-operation
2544  * @instr_idx: Index of the instruction inside the sub-operation
2545  *
2546  * During driver development, one could be tempted to directly use the
2547  * ->addr.addrs field of address instructions. This is wrong as address
2548  * instructions might be split.
2549  *
2550  * Given an address instruction, returns the offset of the first cycle to issue.
2551  */
2552 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2553                                            unsigned int instr_idx)
2554 {
2555         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2556                     subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2557                 return 0;
2558
2559         return nand_subop_get_start_off(subop, instr_idx);
2560 }
2561 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2562
2563 /**
2564  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2565  * @subop: The entire sub-operation
2566  * @instr_idx: Index of the instruction inside the sub-operation
2567  *
2568  * During driver development, one could be tempted to directly use the
2569  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2570  * might be split.
2571  *
2572  * Given an address instruction, returns the number of address cycle to issue.
2573  */
2574 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2575                                          unsigned int instr_idx)
2576 {
2577         int start_off, end_off;
2578
2579         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2580                     subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2581                 return 0;
2582
2583         start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2584
2585         if (instr_idx == subop->ninstrs - 1 &&
2586             subop->last_instr_end_off)
2587                 end_off = subop->last_instr_end_off;
2588         else
2589                 end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2590
2591         return end_off - start_off;
2592 }
2593 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2594
2595 /**
2596  * nand_subop_get_data_start_off - Get the start offset in a data array
2597  * @subop: The entire sub-operation
2598  * @instr_idx: Index of the instruction inside the sub-operation
2599  *
2600  * During driver development, one could be tempted to directly use the
2601  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2602  * instructions might be split.
2603  *
2604  * Given a data instruction, returns the offset to start from.
2605  */
2606 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2607                                            unsigned int instr_idx)
2608 {
2609         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2610                     !nand_instr_is_data(&subop->instrs[instr_idx])))
2611                 return 0;
2612
2613         return nand_subop_get_start_off(subop, instr_idx);
2614 }
2615 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2616
2617 /**
2618  * nand_subop_get_data_len - Get the number of bytes to retrieve
2619  * @subop: The entire sub-operation
2620  * @instr_idx: Index of the instruction inside the sub-operation
2621  *
2622  * During driver development, one could be tempted to directly use the
2623  * ->data->len field of a data instruction. This is wrong as data instructions
2624  * might be split.
2625  *
2626  * Returns the length of the chunk of data to send/receive.
2627  */
2628 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2629                                      unsigned int instr_idx)
2630 {
2631         int start_off = 0, end_off;
2632
2633         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2634                     !nand_instr_is_data(&subop->instrs[instr_idx])))
2635                 return 0;
2636
2637         start_off = nand_subop_get_data_start_off(subop, instr_idx);
2638
2639         if (instr_idx == subop->ninstrs - 1 &&
2640             subop->last_instr_end_off)
2641                 end_off = subop->last_instr_end_off;
2642         else
2643                 end_off = subop->instrs[instr_idx].ctx.data.len;
2644
2645         return end_off - start_off;
2646 }
2647 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2648
2649 /**
2650  * nand_reset - Reset and initialize a NAND device
2651  * @chip: The NAND chip
2652  * @chipnr: Internal die id
2653  *
2654  * Save the timings data structure, then apply SDR timings mode 0 (see
2655  * nand_reset_interface for details), do the reset operation, and apply
2656  * back the previous timings.
2657  *
2658  * Returns 0 on success, a negative error code otherwise.
2659  */
2660 int nand_reset(struct nand_chip *chip, int chipnr)
2661 {
2662         int ret;
2663
2664         ret = nand_reset_interface(chip, chipnr);
2665         if (ret)
2666                 return ret;
2667
2668         /*
2669          * The CS line has to be released before we can apply the new NAND
2670          * interface settings, hence this weird nand_select_target()
2671          * nand_deselect_target() dance.
2672          */
2673         nand_select_target(chip, chipnr);
2674         ret = nand_reset_op(chip);
2675         nand_deselect_target(chip);
2676         if (ret)
2677                 return ret;
2678
2679         ret = nand_setup_interface(chip, chipnr);
2680         if (ret)
2681                 return ret;
2682
2683         return 0;
2684 }
2685 EXPORT_SYMBOL_GPL(nand_reset);
2686
2687 /**
2688  * nand_get_features - wrapper to perform a GET_FEATURE
2689  * @chip: NAND chip info structure
2690  * @addr: feature address
2691  * @subfeature_param: the subfeature parameters, a four bytes array
2692  *
2693  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2694  * operation cannot be handled.
2695  */
2696 int nand_get_features(struct nand_chip *chip, int addr,
2697                       u8 *subfeature_param)
2698 {
2699         if (!nand_supports_get_features(chip, addr))
2700                 return -ENOTSUPP;
2701
2702         if (chip->legacy.get_features)
2703                 return chip->legacy.get_features(chip, addr, subfeature_param);
2704
2705         return nand_get_features_op(chip, addr, subfeature_param);
2706 }
2707
2708 /**
2709  * nand_set_features - wrapper to perform a SET_FEATURE
2710  * @chip: NAND chip info structure
2711  * @addr: feature address
2712  * @subfeature_param: the subfeature parameters, a four bytes array
2713  *
2714  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2715  * operation cannot be handled.
2716  */
2717 int nand_set_features(struct nand_chip *chip, int addr,
2718                       u8 *subfeature_param)
2719 {
2720         if (!nand_supports_set_features(chip, addr))
2721                 return -ENOTSUPP;
2722
2723         if (chip->legacy.set_features)
2724                 return chip->legacy.set_features(chip, addr, subfeature_param);
2725
2726         return nand_set_features_op(chip, addr, subfeature_param);
2727 }
2728
2729 /**
2730  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2731  * @buf: buffer to test
2732  * @len: buffer length
2733  * @bitflips_threshold: maximum number of bitflips
2734  *
2735  * Check if a buffer contains only 0xff, which means the underlying region
2736  * has been erased and is ready to be programmed.
2737  * The bitflips_threshold specify the maximum number of bitflips before
2738  * considering the region is not erased.
2739  * Note: The logic of this function has been extracted from the memweight
2740  * implementation, except that nand_check_erased_buf function exit before
2741  * testing the whole buffer if the number of bitflips exceed the
2742  * bitflips_threshold value.
2743  *
2744  * Returns a positive number of bitflips less than or equal to
2745  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2746  * threshold.
2747  */
2748 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2749 {
2750         const unsigned char *bitmap = buf;
2751         int bitflips = 0;
2752         int weight;
2753
2754         for (; len && ((uintptr_t)bitmap) % sizeof(long);
2755              len--, bitmap++) {
2756                 weight = hweight8(*bitmap);
2757                 bitflips += BITS_PER_BYTE - weight;
2758                 if (unlikely(bitflips > bitflips_threshold))
2759                         return -EBADMSG;
2760         }
2761
2762         for (; len >= sizeof(long);
2763              len -= sizeof(long), bitmap += sizeof(long)) {
2764                 unsigned long d = *((unsigned long *)bitmap);
2765                 if (d == ~0UL)
2766                         continue;
2767                 weight = hweight_long(d);
2768                 bitflips += BITS_PER_LONG - weight;
2769                 if (unlikely(bitflips > bitflips_threshold))
2770                         return -EBADMSG;
2771         }
2772
2773         for (; len > 0; len--, bitmap++) {
2774                 weight = hweight8(*bitmap);
2775                 bitflips += BITS_PER_BYTE - weight;
2776                 if (unlikely(bitflips > bitflips_threshold))
2777                         return -EBADMSG;
2778         }
2779
2780         return bitflips;
2781 }
2782
2783 /**
2784  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2785  *                               0xff data
2786  * @data: data buffer to test
2787  * @datalen: data length
2788  * @ecc: ECC buffer
2789  * @ecclen: ECC length
2790  * @extraoob: extra OOB buffer
2791  * @extraooblen: extra OOB length
2792  * @bitflips_threshold: maximum number of bitflips
2793  *
2794  * Check if a data buffer and its associated ECC and OOB data contains only
2795  * 0xff pattern, which means the underlying region has been erased and is
2796  * ready to be programmed.
2797  * The bitflips_threshold specify the maximum number of bitflips before
2798  * considering the region as not erased.
2799  *
2800  * Note:
2801  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2802  *    different from the NAND page size. When fixing bitflips, ECC engines will
2803  *    report the number of errors per chunk, and the NAND core infrastructure
2804  *    expect you to return the maximum number of bitflips for the whole page.
2805  *    This is why you should always use this function on a single chunk and
2806  *    not on the whole page. After checking each chunk you should update your
2807  *    max_bitflips value accordingly.
2808  * 2/ When checking for bitflips in erased pages you should not only check
2809  *    the payload data but also their associated ECC data, because a user might
2810  *    have programmed almost all bits to 1 but a few. In this case, we
2811  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2812  *    this case.
2813  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2814  *    data are protected by the ECC engine.
2815  *    It could also be used if you support subpages and want to attach some
2816  *    extra OOB data to an ECC chunk.
2817  *
2818  * Returns a positive number of bitflips less than or equal to
2819  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2820  * threshold. In case of success, the passed buffers are filled with 0xff.
2821  */
2822 int nand_check_erased_ecc_chunk(void *data, int datalen,
2823                                 void *ecc, int ecclen,
2824                                 void *extraoob, int extraooblen,
2825                                 int bitflips_threshold)
2826 {
2827         int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2828
2829         data_bitflips = nand_check_erased_buf(data, datalen,
2830                                               bitflips_threshold);
2831         if (data_bitflips < 0)
2832                 return data_bitflips;
2833
2834         bitflips_threshold -= data_bitflips;
2835
2836         ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2837         if (ecc_bitflips < 0)
2838                 return ecc_bitflips;
2839
2840         bitflips_threshold -= ecc_bitflips;
2841
2842         extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2843                                                   bitflips_threshold);
2844         if (extraoob_bitflips < 0)
2845                 return extraoob_bitflips;
2846
2847         if (data_bitflips)
2848                 memset(data, 0xff, datalen);
2849
2850         if (ecc_bitflips)
2851                 memset(ecc, 0xff, ecclen);
2852
2853         if (extraoob_bitflips)
2854                 memset(extraoob, 0xff, extraooblen);
2855
2856         return data_bitflips + ecc_bitflips + extraoob_bitflips;
2857 }
2858 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2859
2860 /**
2861  * nand_read_page_raw_notsupp - dummy read raw page function
2862  * @chip: nand chip info structure
2863  * @buf: buffer to store read data
2864  * @oob_required: caller requires OOB data read to chip->oob_poi
2865  * @page: page number to read
2866  *
2867  * Returns -ENOTSUPP unconditionally.
2868  */
2869 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2870                                int oob_required, int page)
2871 {
2872         return -ENOTSUPP;
2873 }
2874
2875 /**
2876  * nand_read_page_raw - [INTERN] read raw page data without ecc
2877  * @chip: nand chip info structure
2878  * @buf: buffer to store read data
2879  * @oob_required: caller requires OOB data read to chip->oob_poi
2880  * @page: page number to read
2881  *
2882  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2883  */
2884 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2885                        int page)
2886 {
2887         struct mtd_info *mtd = nand_to_mtd(chip);
2888         int ret;
2889
2890         ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2891         if (ret)
2892                 return ret;
2893
2894         if (oob_required) {
2895                 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2896                                         false, false);
2897                 if (ret)
2898                         return ret;
2899         }
2900
2901         return 0;
2902 }
2903 EXPORT_SYMBOL(nand_read_page_raw);
2904
2905 /**
2906  * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2907  * @chip: NAND chip info structure
2908  * @buf: buffer to store read data
2909  * @oob_required: caller requires OOB data read to chip->oob_poi
2910  * @page: page number to read
2911  *
2912  * This is a raw page read, ie. without any error detection/correction.
2913  * Monolithic means we are requesting all the relevant data (main plus
2914  * eventually OOB) to be loaded in the NAND cache and sent over the
2915  * bus (from the NAND chip to the NAND controller) in a single
2916  * operation. This is an alternative to nand_read_page_raw(), which
2917  * first reads the main data, and if the OOB data is requested too,
2918  * then reads more data on the bus.
2919  */
2920 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2921                                   int oob_required, int page)
2922 {
2923         struct mtd_info *mtd = nand_to_mtd(chip);
2924         unsigned int size = mtd->writesize;
2925         u8 *read_buf = buf;
2926         int ret;
2927
2928         if (oob_required) {
2929                 size += mtd->oobsize;
2930
2931                 if (buf != chip->data_buf)
2932                         read_buf = nand_get_data_buf(chip);
2933         }
2934
2935         ret = nand_read_page_op(chip, page, 0, read_buf, size);
2936         if (ret)
2937                 return ret;
2938
2939         if (buf != chip->data_buf)
2940                 memcpy(buf, read_buf, mtd->writesize);
2941
2942         return 0;
2943 }
2944 EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2945
2946 /**
2947  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2948  * @chip: nand chip info structure
2949  * @buf: buffer to store read data
2950  * @oob_required: caller requires OOB data read to chip->oob_poi
2951  * @page: page number to read
2952  *
2953  * We need a special oob layout and handling even when OOB isn't used.
2954  */
2955 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2956                                        int oob_required, int page)
2957 {
2958         struct mtd_info *mtd = nand_to_mtd(chip);
2959         int eccsize = chip->ecc.size;
2960         int eccbytes = chip->ecc.bytes;
2961         uint8_t *oob = chip->oob_poi;
2962         int steps, size, ret;
2963
2964         ret = nand_read_page_op(chip, page, 0, NULL, 0);
2965         if (ret)
2966                 return ret;
2967
2968         for (steps = chip->ecc.steps; steps > 0; steps--) {
2969                 ret = nand_read_data_op(chip, buf, eccsize, false, false);
2970                 if (ret)
2971                         return ret;
2972
2973                 buf += eccsize;
2974
2975                 if (chip->ecc.prepad) {
2976                         ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2977                                                 false, false);
2978                         if (ret)
2979                                 return ret;
2980
2981                         oob += chip->ecc.prepad;
2982                 }
2983
2984                 ret = nand_read_data_op(chip, oob, eccbytes, false, false);
2985                 if (ret)
2986                         return ret;
2987
2988                 oob += eccbytes;
2989
2990                 if (chip->ecc.postpad) {
2991                         ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2992                                                 false, false);
2993                         if (ret)
2994                                 return ret;
2995
2996                         oob += chip->ecc.postpad;
2997                 }
2998         }
2999
3000         size = mtd->oobsize - (oob - chip->oob_poi);
3001         if (size) {
3002                 ret = nand_read_data_op(chip, oob, size, false, false);
3003                 if (ret)
3004                         return ret;
3005         }
3006
3007         return 0;
3008 }
3009
3010 /**
3011  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
3012  * @chip: nand chip info structure
3013  * @buf: buffer to store read data
3014  * @oob_required: caller requires OOB data read to chip->oob_poi
3015  * @page: page number to read
3016  */
3017 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
3018                                 int oob_required, int page)
3019 {
3020         struct mtd_info *mtd = nand_to_mtd(chip);
3021         int i, eccsize = chip->ecc.size, ret;
3022         int eccbytes = chip->ecc.bytes;
3023         int eccsteps = chip->ecc.steps;
3024         uint8_t *p = buf;
3025         uint8_t *ecc_calc = chip->ecc.calc_buf;
3026         uint8_t *ecc_code = chip->ecc.code_buf;
3027         unsigned int max_bitflips = 0;
3028
3029         chip->ecc.read_page_raw(chip, buf, 1, page);
3030
3031         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3032                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
3033
3034         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3035                                          chip->ecc.total);
3036         if (ret)
3037                 return ret;
3038
3039         eccsteps = chip->ecc.steps;
3040         p = buf;
3041
3042         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3043                 int stat;
3044
3045                 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3046                 if (stat < 0) {
3047                         mtd->ecc_stats.failed++;
3048                 } else {
3049                         mtd->ecc_stats.corrected += stat;
3050                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3051                 }
3052         }
3053         return max_bitflips;
3054 }
3055
3056 /**
3057  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
3058  * @chip: nand chip info structure
3059  * @data_offs: offset of requested data within the page
3060  * @readlen: data length
3061  * @bufpoi: buffer to store read data
3062  * @page: page number to read
3063  */
3064 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
3065                              uint32_t readlen, uint8_t *bufpoi, int page)
3066 {
3067         struct mtd_info *mtd = nand_to_mtd(chip);
3068         int start_step, end_step, num_steps, ret;
3069         uint8_t *p;
3070         int data_col_addr, i, gaps = 0;
3071         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
3072         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
3073         int index, section = 0;
3074         unsigned int max_bitflips = 0;
3075         struct mtd_oob_region oobregion = { };
3076
3077         /* Column address within the page aligned to ECC size (256bytes) */
3078         start_step = data_offs / chip->ecc.size;
3079         end_step = (data_offs + readlen - 1) / chip->ecc.size;
3080         num_steps = end_step - start_step + 1;
3081         index = start_step * chip->ecc.bytes;
3082
3083         /* Data size aligned to ECC ecc.size */
3084         datafrag_len = num_steps * chip->ecc.size;
3085         eccfrag_len = num_steps * chip->ecc.bytes;
3086
3087         data_col_addr = start_step * chip->ecc.size;
3088         /* If we read not a page aligned data */
3089         p = bufpoi + data_col_addr;
3090         ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
3091         if (ret)
3092                 return ret;
3093
3094         /* Calculate ECC */
3095         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
3096                 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
3097
3098         /*
3099          * The performance is faster if we position offsets according to
3100          * ecc.pos. Let's make sure that there are no gaps in ECC positions.
3101          */
3102         ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
3103         if (ret)
3104                 return ret;
3105
3106         if (oobregion.length < eccfrag_len)
3107                 gaps = 1;
3108
3109         if (gaps) {
3110                 ret = nand_change_read_column_op(chip, mtd->writesize,
3111                                                  chip->oob_poi, mtd->oobsize,
3112                                                  false);
3113                 if (ret)
3114                         return ret;
3115         } else {
3116                 /*
3117                  * Send the command to read the particular ECC bytes take care
3118                  * about buswidth alignment in read_buf.
3119                  */
3120                 aligned_pos = oobregion.offset & ~(busw - 1);
3121                 aligned_len = eccfrag_len;
3122                 if (oobregion.offset & (busw - 1))
3123                         aligned_len++;
3124                 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3125                     (busw - 1))
3126                         aligned_len++;
3127
3128                 ret = nand_change_read_column_op(chip,
3129                                                  mtd->writesize + aligned_pos,
3130                                                  &chip->oob_poi[aligned_pos],
3131                                                  aligned_len, false);
3132                 if (ret)
3133                         return ret;
3134         }
3135
3136         ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3137                                          chip->oob_poi, index, eccfrag_len);
3138         if (ret)
3139                 return ret;
3140
3141         p = bufpoi + data_col_addr;
3142         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3143                 int stat;
3144
3145                 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
3146                                          &chip->ecc.calc_buf[i]);
3147                 if (stat == -EBADMSG &&
3148                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3149                         /* check for empty pages with bitflips */
3150                         stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3151                                                 &chip->ecc.code_buf[i],
3152                                                 chip->ecc.bytes,
3153                                                 NULL, 0,
3154                                                 chip->ecc.strength);
3155                 }
3156
3157                 if (stat < 0) {
3158                         mtd->ecc_stats.failed++;
3159                 } else {
3160                         mtd->ecc_stats.corrected += stat;
3161                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3162                 }
3163         }
3164         return max_bitflips;
3165 }
3166
3167 /**
3168  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3169  * @chip: nand chip info structure
3170  * @buf: buffer to store read data
3171  * @oob_required: caller requires OOB data read to chip->oob_poi
3172  * @page: page number to read
3173  *
3174  * Not for syndrome calculating ECC controllers which need a special oob layout.
3175  */
3176 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
3177                                 int oob_required, int page)
3178 {
3179         struct mtd_info *mtd = nand_to_mtd(chip);
3180         int i, eccsize = chip->ecc.size, ret;
3181         int eccbytes = chip->ecc.bytes;
3182         int eccsteps = chip->ecc.steps;
3183         uint8_t *p = buf;
3184         uint8_t *ecc_calc = chip->ecc.calc_buf;
3185         uint8_t *ecc_code = chip->ecc.code_buf;
3186         unsigned int max_bitflips = 0;
3187
3188         ret = nand_read_page_op(chip, page, 0, NULL, 0);
3189         if (ret)
3190                 return ret;
3191
3192         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3193                 chip->ecc.hwctl(chip, NAND_ECC_READ);
3194
3195                 ret = nand_read_data_op(chip, p, eccsize, false, false);
3196                 if (ret)
3197                         return ret;
3198
3199                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
3200         }
3201
3202         ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
3203                                 false);
3204         if (ret)
3205                 return ret;
3206
3207         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3208                                          chip->ecc.total);
3209         if (ret)
3210                 return ret;
3211
3212         eccsteps = chip->ecc.steps;
3213         p = buf;
3214
3215         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3216                 int stat;
3217
3218                 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3219                 if (stat == -EBADMSG &&
3220                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3221                         /* check for empty pages with bitflips */
3222                         stat = nand_check_erased_ecc_chunk(p, eccsize,
3223                                                 &ecc_code[i], eccbytes,
3224                                                 NULL, 0,
3225                                                 chip->ecc.strength);
3226                 }
3227
3228                 if (stat < 0) {
3229                         mtd->ecc_stats.failed++;
3230                 } else {
3231                         mtd->ecc_stats.corrected += stat;
3232                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3233                 }
3234         }
3235         return max_bitflips;
3236 }
3237
3238 /**
3239  * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC
3240  *                                  data read from OOB area
3241  * @chip: nand chip info structure
3242  * @buf: buffer to store read data
3243  * @oob_required: caller requires OOB data read to chip->oob_poi
3244  * @page: page number to read
3245  *
3246  * Hardware ECC for large page chips, which requires the ECC data to be
3247  * extracted from the OOB before the actual data is read.
3248  */
3249 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
3250                                    int oob_required, int page)
3251 {
3252         struct mtd_info *mtd = nand_to_mtd(chip);
3253         int i, eccsize = chip->ecc.size, ret;
3254         int eccbytes = chip->ecc.bytes;
3255         int eccsteps = chip->ecc.steps;
3256         uint8_t *p = buf;
3257         uint8_t *ecc_code = chip->ecc.code_buf;
3258         unsigned int max_bitflips = 0;
3259
3260         /* Read the OOB area first */
3261         ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3262         if (ret)
3263                 return ret;
3264
3265         /* Move read cursor to start of page */
3266         ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
3267         if (ret)
3268                 return ret;
3269
3270         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3271                                          chip->ecc.total);
3272         if (ret)
3273                 return ret;
3274
3275         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3276                 int stat;
3277
3278                 chip->ecc.hwctl(chip, NAND_ECC_READ);
3279
3280                 ret = nand_read_data_op(chip, p, eccsize, false, false);
3281                 if (ret)
3282                         return ret;
3283
3284                 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
3285                 if (stat == -EBADMSG &&
3286                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3287                         /* check for empty pages with bitflips */
3288                         stat = nand_check_erased_ecc_chunk(p, eccsize,
3289                                                            &ecc_code[i],
3290                                                            eccbytes, NULL, 0,
3291                                                            chip->ecc.strength);
3292                 }
3293
3294                 if (stat < 0) {
3295                         mtd->ecc_stats.failed++;
3296                 } else {
3297                         mtd->ecc_stats.corrected += stat;
3298                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3299                 }
3300         }
3301         return max_bitflips;
3302 }
3303 EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first);
3304
3305 /**
3306  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3307  * @chip: nand chip info structure
3308  * @buf: buffer to store read data
3309  * @oob_required: caller requires OOB data read to chip->oob_poi
3310  * @page: page number to read
3311  *
3312  * The hw generator calculates the error syndrome automatically. Therefore we
3313  * need a special oob layout and handling.
3314  */
3315 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3316                                    int oob_required, int page)
3317 {
3318         struct mtd_info *mtd = nand_to_mtd(chip);
3319         int ret, i, eccsize = chip->ecc.size;
3320         int eccbytes = chip->ecc.bytes;
3321         int eccsteps = chip->ecc.steps;
3322         int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3323         uint8_t *p = buf;
3324         uint8_t *oob = chip->oob_poi;
3325         unsigned int max_bitflips = 0;
3326
3327         ret = nand_read_page_op(chip, page, 0, NULL, 0);
3328         if (ret)
3329                 return ret;
3330
3331         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3332                 int stat;
3333
3334                 chip->ecc.hwctl(chip, NAND_ECC_READ);
3335
3336                 ret = nand_read_data_op(chip, p, eccsize, false, false);
3337                 if (ret)
3338                         return ret;
3339
3340                 if (chip->ecc.prepad) {
3341                         ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3342                                                 false, false);
3343                         if (ret)
3344                                 return ret;
3345
3346                         oob += chip->ecc.prepad;
3347                 }
3348
3349                 chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3350
3351                 ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3352                 if (ret)
3353                         return ret;
3354
3355                 stat = chip->ecc.correct(chip, p, oob, NULL);
3356
3357                 oob += eccbytes;
3358
3359                 if (chip->ecc.postpad) {
3360                         ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3361                                                 false, false);
3362                         if (ret)
3363                                 return ret;
3364
3365                         oob += chip->ecc.postpad;
3366                 }
3367
3368                 if (stat == -EBADMSG &&
3369                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3370                         /* check for empty pages with bitflips */
3371                         stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3372                                                            oob - eccpadbytes,
3373                                                            eccpadbytes,
3374                                                            NULL, 0,
3375                                                            chip->ecc.strength);
3376                 }
3377
3378                 if (stat < 0) {
3379                         mtd->ecc_stats.failed++;
3380                 } else {
3381                         mtd->ecc_stats.corrected += stat;
3382                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3383                 }
3384         }
3385
3386         /* Calculate remaining oob bytes */
3387         i = mtd->oobsize - (oob - chip->oob_poi);
3388         if (i) {
3389                 ret = nand_read_data_op(chip, oob, i, false, false);
3390                 if (ret)
3391                         return ret;
3392         }
3393
3394         return max_bitflips;
3395 }
3396
3397 /**
3398  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3399  * @chip: NAND chip object
3400  * @oob: oob destination address
3401  * @ops: oob ops structure
3402  * @len: size of oob to transfer
3403  */
3404 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3405                                   struct mtd_oob_ops *ops, size_t len)
3406 {
3407         struct mtd_info *mtd = nand_to_mtd(chip);
3408         int ret;
3409
3410         switch (ops->mode) {
3411
3412         case MTD_OPS_PLACE_OOB:
3413         case MTD_OPS_RAW:
3414                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3415                 return oob + len;
3416
3417         case MTD_OPS_AUTO_OOB:
3418                 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3419                                                   ops->ooboffs, len);
3420                 BUG_ON(ret);
3421                 return oob + len;
3422
3423         default:
3424                 BUG();
3425         }
3426         return NULL;
3427 }
3428
3429 static void rawnand_enable_cont_reads(struct nand_chip *chip, unsigned int page,
3430                                       u32 readlen, int col)
3431 {
3432         struct mtd_info *mtd = nand_to_mtd(chip);
3433
3434         if (!chip->controller->supported_op.cont_read)
3435                 return;
3436
3437         if ((col && col + readlen < (3 * mtd->writesize)) ||
3438             (!col && readlen < (2 * mtd->writesize))) {
3439                 chip->cont_read.ongoing = false;
3440                 return;
3441         }
3442
3443         chip->cont_read.ongoing = true;
3444         chip->cont_read.first_page = page;
3445         if (col)
3446                 chip->cont_read.first_page++;
3447         chip->cont_read.last_page = page + ((readlen >> chip->page_shift) & chip->pagemask);
3448 }
3449
3450 /**
3451  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3452  * @chip: NAND chip object
3453  * @retry_mode: the retry mode to use
3454  *
3455  * Some vendors supply a special command to shift the Vt threshold, to be used
3456  * when there are too many bitflips in a page (i.e., ECC error). After setting
3457  * a new threshold, the host should retry reading the page.
3458  */
3459 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3460 {
3461         pr_debug("setting READ RETRY mode %d\n", retry_mode);
3462
3463         if (retry_mode >= chip->read_retries)
3464                 return -EINVAL;
3465
3466         if (!chip->ops.setup_read_retry)
3467                 return -EOPNOTSUPP;
3468
3469         return chip->ops.setup_read_retry(chip, retry_mode);
3470 }
3471
3472 static void nand_wait_readrdy(struct nand_chip *chip)
3473 {
3474         const struct nand_interface_config *conf;
3475
3476         if (!(chip->options & NAND_NEED_READRDY))
3477                 return;
3478
3479         conf = nand_get_interface_config(chip);
3480         WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0));
3481 }
3482
3483 /**
3484  * nand_do_read_ops - [INTERN] Read data with ECC
3485  * @chip: NAND chip object
3486  * @from: offset to read from
3487  * @ops: oob ops structure
3488  *
3489  * Internal function. Called with chip held.
3490  */
3491 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3492                             struct mtd_oob_ops *ops)
3493 {
3494         int chipnr, page, realpage, col, bytes, aligned, oob_required;
3495         struct mtd_info *mtd = nand_to_mtd(chip);
3496         int ret = 0;
3497         uint32_t readlen = ops->len;
3498         uint32_t oobreadlen = ops->ooblen;
3499         uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3500
3501         uint8_t *bufpoi, *oob, *buf;
3502         int use_bounce_buf;
3503         unsigned int max_bitflips = 0;
3504         int retry_mode = 0;
3505         bool ecc_fail = false;
3506
3507         /* Check if the region is secured */
3508         if (nand_region_is_secured(chip, from, readlen))
3509                 return -EIO;
3510
3511         chipnr = (int)(from >> chip->chip_shift);
3512         nand_select_target(chip, chipnr);
3513
3514         realpage = (int)(from >> chip->page_shift);
3515         page = realpage & chip->pagemask;
3516
3517         col = (int)(from & (mtd->writesize - 1));
3518
3519         buf = ops->datbuf;
3520         oob = ops->oobbuf;
3521         oob_required = oob ? 1 : 0;
3522
3523         rawnand_enable_cont_reads(chip, page, readlen, col);
3524
3525         while (1) {
3526                 struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3527
3528                 bytes = min(mtd->writesize - col, readlen);
3529                 aligned = (bytes == mtd->writesize);
3530
3531                 if (!aligned)
3532                         use_bounce_buf = 1;
3533                 else if (chip->options & NAND_USES_DMA)
3534                         use_bounce_buf = !virt_addr_valid(buf) ||
3535                                          !IS_ALIGNED((unsigned long)buf,
3536                                                      chip->buf_align);
3537                 else
3538                         use_bounce_buf = 0;
3539
3540                 /* Is the current page in the buffer? */
3541                 if (realpage != chip->pagecache.page || oob) {
3542                         bufpoi = use_bounce_buf ? chip->data_buf : buf;
3543
3544                         if (use_bounce_buf && aligned)
3545                                 pr_debug("%s: using read bounce buffer for buf@%p\n",
3546                                                  __func__, buf);
3547
3548 read_retry:
3549                         /*
3550                          * Now read the page into the buffer.  Absent an error,
3551                          * the read methods return max bitflips per ecc step.
3552                          */
3553                         if (unlikely(ops->mode == MTD_OPS_RAW))
3554                                 ret = chip->ecc.read_page_raw(chip, bufpoi,
3555                                                               oob_required,
3556                                                               page);
3557                         else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3558                                  !oob)
3559                                 ret = chip->ecc.read_subpage(chip, col, bytes,
3560                                                              bufpoi, page);
3561                         else
3562                                 ret = chip->ecc.read_page(chip, bufpoi,
3563                                                           oob_required, page);
3564                         if (ret < 0) {
3565                                 if (use_bounce_buf)
3566                                         /* Invalidate page cache */
3567                                         chip->pagecache.page = -1;
3568                                 break;
3569                         }
3570
3571                         /*
3572                          * Copy back the data in the initial buffer when reading
3573                          * partial pages or when a bounce buffer is required.
3574                          */
3575                         if (use_bounce_buf) {
3576                                 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3577                                     !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3578                                     (ops->mode != MTD_OPS_RAW)) {
3579                                         chip->pagecache.page = realpage;
3580                                         chip->pagecache.bitflips = ret;
3581                                 } else {
3582                                         /* Invalidate page cache */
3583                                         chip->pagecache.page = -1;
3584                                 }
3585                                 memcpy(buf, bufpoi + col, bytes);
3586                         }
3587
3588                         if (unlikely(oob)) {
3589                                 int toread = min(oobreadlen, max_oobsize);
3590
3591                                 if (toread) {
3592                                         oob = nand_transfer_oob(chip, oob, ops,
3593                                                                 toread);
3594                                         oobreadlen -= toread;
3595                                 }
3596                         }
3597
3598                         nand_wait_readrdy(chip);
3599
3600                         if (mtd->ecc_stats.failed - ecc_stats.failed) {
3601                                 if (retry_mode + 1 < chip->read_retries) {
3602                                         retry_mode++;
3603                                         ret = nand_setup_read_retry(chip,
3604                                                         retry_mode);
3605                                         if (ret < 0)
3606                                                 break;
3607
3608                                         /* Reset ecc_stats; retry */
3609                                         mtd->ecc_stats = ecc_stats;
3610                                         goto read_retry;
3611                                 } else {
3612                                         /* No more retry modes; real failure */
3613                                         ecc_fail = true;
3614                                 }
3615                         }
3616
3617                         buf += bytes;
3618                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
3619                 } else {
3620                         memcpy(buf, chip->data_buf + col, bytes);
3621                         buf += bytes;
3622                         max_bitflips = max_t(unsigned int, max_bitflips,
3623                                              chip->pagecache.bitflips);
3624                 }
3625
3626                 readlen -= bytes;
3627
3628                 /* Reset to retry mode 0 */
3629                 if (retry_mode) {
3630                         ret = nand_setup_read_retry(chip, 0);
3631                         if (ret < 0)
3632                                 break;
3633                         retry_mode = 0;
3634                 }
3635
3636                 if (!readlen)
3637                         break;
3638
3639                 /* For subsequent reads align to page boundary */
3640                 col = 0;
3641                 /* Increment page address */
3642                 realpage++;
3643
3644                 page = realpage & chip->pagemask;
3645                 /* Check, if we cross a chip boundary */
3646                 if (!page) {
3647                         chipnr++;
3648                         nand_deselect_target(chip);
3649                         nand_select_target(chip, chipnr);
3650                 }
3651         }
3652         nand_deselect_target(chip);
3653
3654         ops->retlen = ops->len - (size_t) readlen;
3655         if (oob)
3656                 ops->oobretlen = ops->ooblen - oobreadlen;
3657
3658         if (ret < 0)
3659                 return ret;
3660
3661         if (ecc_fail)
3662                 return -EBADMSG;
3663
3664         return max_bitflips;
3665 }
3666
3667 /**
3668  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3669  * @chip: nand chip info structure
3670  * @page: page number to read
3671  */
3672 int nand_read_oob_std(struct nand_chip *chip, int page)
3673 {
3674         struct mtd_info *mtd = nand_to_mtd(chip);
3675
3676         return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3677 }
3678 EXPORT_SYMBOL(nand_read_oob_std);
3679
3680 /**
3681  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3682  *                          with syndromes
3683  * @chip: nand chip info structure
3684  * @page: page number to read
3685  */
3686 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3687 {
3688         struct mtd_info *mtd = nand_to_mtd(chip);
3689         int length = mtd->oobsize;
3690         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3691         int eccsize = chip->ecc.size;
3692         uint8_t *bufpoi = chip->oob_poi;
3693         int i, toread, sndrnd = 0, pos, ret;
3694
3695         ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3696         if (ret)
3697                 return ret;
3698
3699         for (i = 0; i < chip->ecc.steps; i++) {
3700                 if (sndrnd) {
3701                         int ret;
3702
3703                         pos = eccsize + i * (eccsize + chunk);
3704                         if (mtd->writesize > 512)
3705                                 ret = nand_change_read_column_op(chip, pos,
3706                                                                  NULL, 0,
3707                                                                  false);
3708                         else
3709                                 ret = nand_read_page_op(chip, page, pos, NULL,
3710                                                         0);
3711
3712                         if (ret)
3713                                 return ret;
3714                 } else
3715                         sndrnd = 1;
3716                 toread = min_t(int, length, chunk);
3717
3718                 ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3719                 if (ret)
3720                         return ret;
3721
3722                 bufpoi += toread;
3723                 length -= toread;
3724         }
3725         if (length > 0) {
3726                 ret = nand_read_data_op(chip, bufpoi, length, false, false);
3727                 if (ret)
3728                         return ret;
3729         }
3730
3731         return 0;
3732 }
3733
3734 /**
3735  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3736  * @chip: nand chip info structure
3737  * @page: page number to write
3738  */
3739 int nand_write_oob_std(struct nand_chip *chip, int page)
3740 {
3741         struct mtd_info *mtd = nand_to_mtd(chip);
3742
3743         return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3744                                  mtd->oobsize);
3745 }
3746 EXPORT_SYMBOL(nand_write_oob_std);
3747
3748 /**
3749  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3750  *                           with syndrome - only for large page flash
3751  * @chip: nand chip info structure
3752  * @page: page number to write
3753  */
3754 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3755 {
3756         struct mtd_info *mtd = nand_to_mtd(chip);
3757         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3758         int eccsize = chip->ecc.size, length = mtd->oobsize;
3759         int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3760         const uint8_t *bufpoi = chip->oob_poi;
3761
3762         /*
3763          * data-ecc-data-ecc ... ecc-oob
3764          * or
3765          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3766          */
3767         if (!chip->ecc.prepad && !chip->ecc.postpad) {
3768                 pos = steps * (eccsize + chunk);
3769                 steps = 0;
3770         } else
3771                 pos = eccsize;
3772
3773         ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3774         if (ret)
3775                 return ret;
3776
3777         for (i = 0; i < steps; i++) {
3778                 if (sndcmd) {
3779                         if (mtd->writesize <= 512) {
3780                                 uint32_t fill = 0xFFFFFFFF;
3781
3782                                 len = eccsize;
3783                                 while (len > 0) {
3784                                         int num = min_t(int, len, 4);
3785
3786                                         ret = nand_write_data_op(chip, &fill,
3787                                                                  num, false);
3788                                         if (ret)
3789                                                 return ret;
3790
3791                                         len -= num;
3792                                 }
3793                         } else {
3794                                 pos = eccsize + i * (eccsize + chunk);
3795                                 ret = nand_change_write_column_op(chip, pos,
3796                                                                   NULL, 0,
3797                                                                   false);
3798                                 if (ret)
3799                                         return ret;
3800                         }
3801                 } else
3802                         sndcmd = 1;
3803                 len = min_t(int, length, chunk);
3804
3805                 ret = nand_write_data_op(chip, bufpoi, len, false);
3806                 if (ret)
3807                         return ret;
3808
3809                 bufpoi += len;
3810                 length -= len;
3811         }
3812         if (length > 0) {
3813                 ret = nand_write_data_op(chip, bufpoi, length, false);
3814                 if (ret)
3815                         return ret;
3816         }
3817
3818         return nand_prog_page_end_op(chip);
3819 }
3820
3821 /**
3822  * nand_do_read_oob - [INTERN] NAND read out-of-band
3823  * @chip: NAND chip object
3824  * @from: offset to read from
3825  * @ops: oob operations description structure
3826  *
3827  * NAND read out-of-band data from the spare area.
3828  */
3829 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3830                             struct mtd_oob_ops *ops)
3831 {
3832         struct mtd_info *mtd = nand_to_mtd(chip);
3833         unsigned int max_bitflips = 0;
3834         int page, realpage, chipnr;
3835         struct mtd_ecc_stats stats;
3836         int readlen = ops->ooblen;
3837         int len;
3838         uint8_t *buf = ops->oobbuf;
3839         int ret = 0;
3840
3841         pr_debug("%s: from = 0x%08Lx, len = %i\n",
3842                         __func__, (unsigned long long)from, readlen);
3843
3844         /* Check if the region is secured */
3845         if (nand_region_is_secured(chip, from, readlen))
3846                 return -EIO;
3847
3848         stats = mtd->ecc_stats;
3849
3850         len = mtd_oobavail(mtd, ops);
3851
3852         chipnr = (int)(from >> chip->chip_shift);
3853         nand_select_target(chip, chipnr);
3854
3855         /* Shift to get page */
3856         realpage = (int)(from >> chip->page_shift);
3857         page = realpage & chip->pagemask;
3858
3859         while (1) {
3860                 if (ops->mode == MTD_OPS_RAW)
3861                         ret = chip->ecc.read_oob_raw(chip, page);
3862                 else
3863                         ret = chip->ecc.read_oob(chip, page);
3864
3865                 if (ret < 0)
3866                         break;
3867
3868                 len = min(len, readlen);
3869                 buf = nand_transfer_oob(chip, buf, ops, len);
3870
3871                 nand_wait_readrdy(chip);
3872
3873                 max_bitflips = max_t(unsigned int, max_bitflips, ret);
3874
3875                 readlen -= len;
3876                 if (!readlen)
3877                         break;
3878
3879                 /* Increment page address */
3880                 realpage++;
3881
3882                 page = realpage & chip->pagemask;
3883                 /* Check, if we cross a chip boundary */
3884                 if (!page) {
3885                         chipnr++;
3886                         nand_deselect_target(chip);
3887                         nand_select_target(chip, chipnr);
3888                 }
3889         }
3890         nand_deselect_target(chip);
3891
3892         ops->oobretlen = ops->ooblen - readlen;
3893
3894         if (ret < 0)
3895                 return ret;
3896
3897         if (mtd->ecc_stats.failed - stats.failed)
3898                 return -EBADMSG;
3899
3900         return max_bitflips;
3901 }
3902
3903 /**
3904  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3905  * @mtd: MTD device structure
3906  * @from: offset to read from
3907  * @ops: oob operation description structure
3908  *
3909  * NAND read data and/or out-of-band data.
3910  */
3911 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3912                          struct mtd_oob_ops *ops)
3913 {
3914         struct nand_chip *chip = mtd_to_nand(mtd);
3915         struct mtd_ecc_stats old_stats;
3916         int ret;
3917
3918         ops->retlen = 0;
3919
3920         if (ops->mode != MTD_OPS_PLACE_OOB &&
3921             ops->mode != MTD_OPS_AUTO_OOB &&
3922             ops->mode != MTD_OPS_RAW)
3923                 return -ENOTSUPP;
3924
3925         nand_get_device(chip);
3926
3927         old_stats = mtd->ecc_stats;
3928
3929         if (!ops->datbuf)
3930                 ret = nand_do_read_oob(chip, from, ops);
3931         else
3932                 ret = nand_do_read_ops(chip, from, ops);
3933
3934         if (ops->stats) {
3935                 ops->stats->uncorrectable_errors +=
3936                         mtd->ecc_stats.failed - old_stats.failed;
3937                 ops->stats->corrected_bitflips +=
3938                         mtd->ecc_stats.corrected - old_stats.corrected;
3939         }
3940
3941         nand_release_device(chip);
3942         return ret;
3943 }
3944
3945 /**
3946  * nand_write_page_raw_notsupp - dummy raw page write function
3947  * @chip: nand chip info structure
3948  * @buf: data buffer
3949  * @oob_required: must write chip->oob_poi to OOB
3950  * @page: page number to write
3951  *
3952  * Returns -ENOTSUPP unconditionally.
3953  */
3954 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
3955                                 int oob_required, int page)
3956 {
3957         return -ENOTSUPP;
3958 }
3959
3960 /**
3961  * nand_write_page_raw - [INTERN] raw page write function
3962  * @chip: nand chip info structure
3963  * @buf: data buffer
3964  * @oob_required: must write chip->oob_poi to OOB
3965  * @page: page number to write
3966  *
3967  * Not for syndrome calculating ECC controllers, which use a special oob layout.
3968  */
3969 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
3970                         int oob_required, int page)
3971 {
3972         struct mtd_info *mtd = nand_to_mtd(chip);
3973         int ret;
3974
3975         ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3976         if (ret)
3977                 return ret;
3978
3979         if (oob_required) {
3980                 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3981                                          false);
3982                 if (ret)
3983                         return ret;
3984         }
3985
3986         return nand_prog_page_end_op(chip);
3987 }
3988 EXPORT_SYMBOL(nand_write_page_raw);
3989
3990 /**
3991  * nand_monolithic_write_page_raw - Monolithic page write in raw mode
3992  * @chip: NAND chip info structure
3993  * @buf: data buffer to write
3994  * @oob_required: must write chip->oob_poi to OOB
3995  * @page: page number to write
3996  *
3997  * This is a raw page write, ie. without any error detection/correction.
3998  * Monolithic means we are requesting all the relevant data (main plus
3999  * eventually OOB) to be sent over the bus and effectively programmed
4000  * into the NAND chip arrays in a single operation. This is an
4001  * alternative to nand_write_page_raw(), which first sends the main
4002  * data, then eventually send the OOB data by latching more data
4003  * cycles on the NAND bus, and finally sends the program command to
4004  * synchronyze the NAND chip cache.
4005  */
4006 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
4007                                    int oob_required, int page)
4008 {
4009         struct mtd_info *mtd = nand_to_mtd(chip);
4010         unsigned int size = mtd->writesize;
4011         u8 *write_buf = (u8 *)buf;
4012
4013         if (oob_required) {
4014                 size += mtd->oobsize;
4015
4016                 if (buf != chip->data_buf) {
4017                         write_buf = nand_get_data_buf(chip);
4018                         memcpy(write_buf, buf, mtd->writesize);
4019                 }
4020         }
4021
4022         return nand_prog_page_op(chip, page, 0, write_buf, size);
4023 }
4024 EXPORT_SYMBOL(nand_monolithic_write_page_raw);
4025
4026 /**
4027  * nand_write_page_raw_syndrome - [INTERN] raw page write function
4028  * @chip: nand chip info structure
4029  * @buf: data buffer
4030  * @oob_required: must write chip->oob_poi to OOB
4031  * @page: page number to write
4032  *
4033  * We need a special oob layout and handling even when ECC isn't checked.
4034  */
4035 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
4036                                         const uint8_t *buf, int oob_required,
4037                                         int page)
4038 {
4039         struct mtd_info *mtd = nand_to_mtd(chip);
4040         int eccsize = chip->ecc.size;
4041         int eccbytes = chip->ecc.bytes;
4042         uint8_t *oob = chip->oob_poi;
4043         int steps, size, ret;
4044
4045         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4046         if (ret)
4047                 return ret;
4048
4049         for (steps = chip->ecc.steps; steps > 0; steps--) {
4050                 ret = nand_write_data_op(chip, buf, eccsize, false);
4051                 if (ret)
4052                         return ret;
4053
4054                 buf += eccsize;
4055
4056                 if (chip->ecc.prepad) {
4057                         ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4058                                                  false);
4059                         if (ret)
4060                                 return ret;
4061
4062                         oob += chip->ecc.prepad;
4063                 }
4064
4065                 ret = nand_write_data_op(chip, oob, eccbytes, false);
4066                 if (ret)
4067                         return ret;
4068
4069                 oob += eccbytes;
4070
4071                 if (chip->ecc.postpad) {
4072                         ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4073                                                  false);
4074                         if (ret)
4075                                 return ret;
4076
4077                         oob += chip->ecc.postpad;
4078                 }
4079         }
4080
4081         size = mtd->oobsize - (oob - chip->oob_poi);
4082         if (size) {
4083                 ret = nand_write_data_op(chip, oob, size, false);
4084                 if (ret)
4085                         return ret;
4086         }
4087
4088         return nand_prog_page_end_op(chip);
4089 }
4090 /**
4091  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
4092  * @chip: nand chip info structure
4093  * @buf: data buffer
4094  * @oob_required: must write chip->oob_poi to OOB
4095  * @page: page number to write
4096  */
4097 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
4098                                  int oob_required, int page)
4099 {
4100         struct mtd_info *mtd = nand_to_mtd(chip);
4101         int i, eccsize = chip->ecc.size, ret;
4102         int eccbytes = chip->ecc.bytes;
4103         int eccsteps = chip->ecc.steps;
4104         uint8_t *ecc_calc = chip->ecc.calc_buf;
4105         const uint8_t *p = buf;
4106
4107         /* Software ECC calculation */
4108         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4109                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
4110
4111         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4112                                          chip->ecc.total);
4113         if (ret)
4114                 return ret;
4115
4116         return chip->ecc.write_page_raw(chip, buf, 1, page);
4117 }
4118
4119 /**
4120  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
4121  * @chip: nand chip info structure
4122  * @buf: data buffer
4123  * @oob_required: must write chip->oob_poi to OOB
4124  * @page: page number to write
4125  */
4126 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
4127                                  int oob_required, int page)
4128 {
4129         struct mtd_info *mtd = nand_to_mtd(chip);
4130         int i, eccsize = chip->ecc.size, ret;
4131         int eccbytes = chip->ecc.bytes;
4132         int eccsteps = chip->ecc.steps;
4133         uint8_t *ecc_calc = chip->ecc.calc_buf;
4134         const uint8_t *p = buf;
4135
4136         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4137         if (ret)
4138                 return ret;
4139
4140         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4141                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4142
4143                 ret = nand_write_data_op(chip, p, eccsize, false);
4144                 if (ret)
4145                         return ret;
4146
4147                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
4148         }
4149
4150         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4151                                          chip->ecc.total);
4152         if (ret)
4153                 return ret;
4154
4155         ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4156         if (ret)
4157                 return ret;
4158
4159         return nand_prog_page_end_op(chip);
4160 }
4161
4162
4163 /**
4164  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
4165  * @chip:       nand chip info structure
4166  * @offset:     column address of subpage within the page
4167  * @data_len:   data length
4168  * @buf:        data buffer
4169  * @oob_required: must write chip->oob_poi to OOB
4170  * @page: page number to write
4171  */
4172 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
4173                                     uint32_t data_len, const uint8_t *buf,
4174                                     int oob_required, int page)
4175 {
4176         struct mtd_info *mtd = nand_to_mtd(chip);
4177         uint8_t *oob_buf  = chip->oob_poi;
4178         uint8_t *ecc_calc = chip->ecc.calc_buf;
4179         int ecc_size      = chip->ecc.size;
4180         int ecc_bytes     = chip->ecc.bytes;
4181         int ecc_steps     = chip->ecc.steps;
4182         uint32_t start_step = offset / ecc_size;
4183         uint32_t end_step   = (offset + data_len - 1) / ecc_size;
4184         int oob_bytes       = mtd->oobsize / ecc_steps;
4185         int step, ret;
4186
4187         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4188         if (ret)
4189                 return ret;
4190
4191         for (step = 0; step < ecc_steps; step++) {
4192                 /* configure controller for WRITE access */
4193                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4194
4195                 /* write data (untouched subpages already masked by 0xFF) */
4196                 ret = nand_write_data_op(chip, buf, ecc_size, false);
4197                 if (ret)
4198                         return ret;
4199
4200                 /* mask ECC of un-touched subpages by padding 0xFF */
4201                 if ((step < start_step) || (step > end_step))
4202                         memset(ecc_calc, 0xff, ecc_bytes);
4203                 else
4204                         chip->ecc.calculate(chip, buf, ecc_calc);
4205
4206                 /* mask OOB of un-touched subpages by padding 0xFF */
4207                 /* if oob_required, preserve OOB metadata of written subpage */
4208                 if (!oob_required || (step < start_step) || (step > end_step))
4209                         memset(oob_buf, 0xff, oob_bytes);
4210
4211                 buf += ecc_size;
4212                 ecc_calc += ecc_bytes;
4213                 oob_buf  += oob_bytes;
4214         }
4215
4216         /* copy calculated ECC for whole page to chip->buffer->oob */
4217         /* this include masked-value(0xFF) for unwritten subpages */
4218         ecc_calc = chip->ecc.calc_buf;
4219         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4220                                          chip->ecc.total);
4221         if (ret)
4222                 return ret;
4223
4224         /* write OOB buffer to NAND device */
4225         ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4226         if (ret)
4227                 return ret;
4228
4229         return nand_prog_page_end_op(chip);
4230 }
4231
4232
4233 /**
4234  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
4235  * @chip: nand chip info structure
4236  * @buf: data buffer
4237  * @oob_required: must write chip->oob_poi to OOB
4238  * @page: page number to write
4239  *
4240  * The hw generator calculates the error syndrome automatically. Therefore we
4241  * need a special oob layout and handling.
4242  */
4243 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
4244                                     int oob_required, int page)
4245 {
4246         struct mtd_info *mtd = nand_to_mtd(chip);
4247         int i, eccsize = chip->ecc.size;
4248         int eccbytes = chip->ecc.bytes;
4249         int eccsteps = chip->ecc.steps;
4250         const uint8_t *p = buf;
4251         uint8_t *oob = chip->oob_poi;
4252         int ret;
4253
4254         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4255         if (ret)
4256                 return ret;
4257
4258         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4259                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4260
4261                 ret = nand_write_data_op(chip, p, eccsize, false);
4262                 if (ret)
4263                         return ret;
4264
4265                 if (chip->ecc.prepad) {
4266                         ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4267                                                  false);
4268                         if (ret)
4269                                 return ret;
4270
4271                         oob += chip->ecc.prepad;
4272                 }
4273
4274                 chip->ecc.calculate(chip, p, oob);
4275
4276                 ret = nand_write_data_op(chip, oob, eccbytes, false);
4277                 if (ret)
4278                         return ret;
4279
4280                 oob += eccbytes;
4281
4282                 if (chip->ecc.postpad) {
4283                         ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4284                                                  false);
4285                         if (ret)
4286                                 return ret;
4287
4288                         oob += chip->ecc.postpad;
4289                 }
4290         }
4291
4292         /* Calculate remaining oob bytes */
4293         i = mtd->oobsize - (oob - chip->oob_poi);
4294         if (i) {
4295                 ret = nand_write_data_op(chip, oob, i, false);
4296                 if (ret)
4297                         return ret;
4298         }
4299
4300         return nand_prog_page_end_op(chip);
4301 }
4302
4303 /**
4304  * nand_write_page - write one page
4305  * @chip: NAND chip descriptor
4306  * @offset: address offset within the page
4307  * @data_len: length of actual data to be written
4308  * @buf: the data to write
4309  * @oob_required: must write chip->oob_poi to OOB
4310  * @page: page number to write
4311  * @raw: use _raw version of write_page
4312  */
4313 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
4314                            int data_len, const uint8_t *buf, int oob_required,
4315                            int page, int raw)
4316 {
4317         struct mtd_info *mtd = nand_to_mtd(chip);
4318         int status, subpage;
4319
4320         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4321                 chip->ecc.write_subpage)
4322                 subpage = offset || (data_len < mtd->writesize);
4323         else
4324                 subpage = 0;
4325
4326         if (unlikely(raw))
4327                 status = chip->ecc.write_page_raw(chip, buf, oob_required,
4328                                                   page);
4329         else if (subpage)
4330                 status = chip->ecc.write_subpage(chip, offset, data_len, buf,
4331                                                  oob_required, page);
4332         else
4333                 status = chip->ecc.write_page(chip, buf, oob_required, page);
4334
4335         if (status < 0)
4336                 return status;
4337
4338         return 0;
4339 }
4340
4341 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
4342
4343 /**
4344  * nand_do_write_ops - [INTERN] NAND write with ECC
4345  * @chip: NAND chip object
4346  * @to: offset to write to
4347  * @ops: oob operations description structure
4348  *
4349  * NAND write with ECC.
4350  */
4351 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4352                              struct mtd_oob_ops *ops)
4353 {
4354         struct mtd_info *mtd = nand_to_mtd(chip);
4355         int chipnr, realpage, page, column;
4356         uint32_t writelen = ops->len;
4357
4358         uint32_t oobwritelen = ops->ooblen;
4359         uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4360
4361         uint8_t *oob = ops->oobbuf;
4362         uint8_t *buf = ops->datbuf;
4363         int ret;
4364         int oob_required = oob ? 1 : 0;
4365
4366         ops->retlen = 0;
4367         if (!writelen)
4368                 return 0;
4369
4370         /* Reject writes, which are not page aligned */
4371         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4372                 pr_notice("%s: attempt to write non page aligned data\n",
4373                            __func__);
4374                 return -EINVAL;
4375         }
4376
4377         /* Check if the region is secured */
4378         if (nand_region_is_secured(chip, to, writelen))
4379                 return -EIO;
4380
4381         column = to & (mtd->writesize - 1);
4382
4383         chipnr = (int)(to >> chip->chip_shift);
4384         nand_select_target(chip, chipnr);
4385
4386         /* Check, if it is write protected */
4387         if (nand_check_wp(chip)) {
4388                 ret = -EIO;
4389                 goto err_out;
4390         }
4391
4392         realpage = (int)(to >> chip->page_shift);
4393         page = realpage & chip->pagemask;
4394
4395         /* Invalidate the page cache, when we write to the cached page */
4396         if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4397             ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4398                 chip->pagecache.page = -1;
4399
4400         /* Don't allow multipage oob writes with offset */
4401         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4402                 ret = -EINVAL;
4403                 goto err_out;
4404         }
4405
4406         while (1) {
4407                 int bytes = mtd->writesize;
4408                 uint8_t *wbuf = buf;
4409                 int use_bounce_buf;
4410                 int part_pagewr = (column || writelen < mtd->writesize);
4411
4412                 if (part_pagewr)
4413                         use_bounce_buf = 1;
4414                 else if (chip->options & NAND_USES_DMA)
4415                         use_bounce_buf = !virt_addr_valid(buf) ||
4416                                          !IS_ALIGNED((unsigned long)buf,
4417                                                      chip->buf_align);
4418                 else
4419                         use_bounce_buf = 0;
4420
4421                 /*
4422                  * Copy the data from the initial buffer when doing partial page
4423                  * writes or when a bounce buffer is required.
4424                  */
4425                 if (use_bounce_buf) {
4426                         pr_debug("%s: using write bounce buffer for buf@%p\n",
4427                                          __func__, buf);
4428                         if (part_pagewr)
4429                                 bytes = min_t(int, bytes - column, writelen);
4430                         wbuf = nand_get_data_buf(chip);
4431                         memset(wbuf, 0xff, mtd->writesize);
4432                         memcpy(&wbuf[column], buf, bytes);
4433                 }
4434
4435                 if (unlikely(oob)) {
4436                         size_t len = min(oobwritelen, oobmaxlen);
4437                         oob = nand_fill_oob(chip, oob, len, ops);
4438                         oobwritelen -= len;
4439                 } else {
4440                         /* We still need to erase leftover OOB data */
4441                         memset(chip->oob_poi, 0xff, mtd->oobsize);
4442                 }
4443
4444                 ret = nand_write_page(chip, column, bytes, wbuf,
4445                                       oob_required, page,
4446                                       (ops->mode == MTD_OPS_RAW));
4447                 if (ret)
4448                         break;
4449
4450                 writelen -= bytes;
4451                 if (!writelen)
4452                         break;
4453
4454                 column = 0;
4455                 buf += bytes;
4456                 realpage++;
4457
4458                 page = realpage & chip->pagemask;
4459                 /* Check, if we cross a chip boundary */
4460                 if (!page) {
4461                         chipnr++;
4462                         nand_deselect_target(chip);
4463                         nand_select_target(chip, chipnr);
4464                 }
4465         }
4466
4467         ops->retlen = ops->len - writelen;
4468         if (unlikely(oob))
4469                 ops->oobretlen = ops->ooblen;
4470
4471 err_out:
4472         nand_deselect_target(chip);
4473         return ret;
4474 }
4475
4476 /**
4477  * panic_nand_write - [MTD Interface] NAND write with ECC
4478  * @mtd: MTD device structure
4479  * @to: offset to write to
4480  * @len: number of bytes to write
4481  * @retlen: pointer to variable to store the number of written bytes
4482  * @buf: the data to write
4483  *
4484  * NAND write with ECC. Used when performing writes in interrupt context, this
4485  * may for example be called by mtdoops when writing an oops while in panic.
4486  */
4487 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4488                             size_t *retlen, const uint8_t *buf)
4489 {
4490         struct nand_chip *chip = mtd_to_nand(mtd);
4491         int chipnr = (int)(to >> chip->chip_shift);
4492         struct mtd_oob_ops ops;
4493         int ret;
4494
4495         nand_select_target(chip, chipnr);
4496
4497         /* Wait for the device to get ready */
4498         panic_nand_wait(chip, 400);
4499
4500         memset(&ops, 0, sizeof(ops));
4501         ops.len = len;
4502         ops.datbuf = (uint8_t *)buf;
4503         ops.mode = MTD_OPS_PLACE_OOB;
4504
4505         ret = nand_do_write_ops(chip, to, &ops);
4506
4507         *retlen = ops.retlen;
4508         return ret;
4509 }
4510
4511 /**
4512  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4513  * @mtd: MTD device structure
4514  * @to: offset to write to
4515  * @ops: oob operation description structure
4516  */
4517 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4518                           struct mtd_oob_ops *ops)
4519 {
4520         struct nand_chip *chip = mtd_to_nand(mtd);
4521         int ret = 0;
4522
4523         ops->retlen = 0;
4524
4525         nand_get_device(chip);
4526
4527         switch (ops->mode) {
4528         case MTD_OPS_PLACE_OOB:
4529         case MTD_OPS_AUTO_OOB:
4530         case MTD_OPS_RAW:
4531                 break;
4532
4533         default:
4534                 goto out;
4535         }
4536
4537         if (!ops->datbuf)
4538                 ret = nand_do_write_oob(chip, to, ops);
4539         else
4540                 ret = nand_do_write_ops(chip, to, ops);
4541
4542 out:
4543         nand_release_device(chip);
4544         return ret;
4545 }
4546
4547 /**
4548  * nand_erase - [MTD Interface] erase block(s)
4549  * @mtd: MTD device structure
4550  * @instr: erase instruction
4551  *
4552  * Erase one ore more blocks.
4553  */
4554 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4555 {
4556         return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4557 }
4558
4559 /**
4560  * nand_erase_nand - [INTERN] erase block(s)
4561  * @chip: NAND chip object
4562  * @instr: erase instruction
4563  * @allowbbt: allow erasing the bbt area
4564  *
4565  * Erase one ore more blocks.
4566  */
4567 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4568                     int allowbbt)
4569 {
4570         int page, pages_per_block, ret, chipnr;
4571         loff_t len;
4572
4573         pr_debug("%s: start = 0x%012llx, len = %llu\n",
4574                         __func__, (unsigned long long)instr->addr,
4575                         (unsigned long long)instr->len);
4576
4577         if (check_offs_len(chip, instr->addr, instr->len))
4578                 return -EINVAL;
4579
4580         /* Check if the region is secured */
4581         if (nand_region_is_secured(chip, instr->addr, instr->len))
4582                 return -EIO;
4583
4584         /* Grab the lock and see if the device is available */
4585         nand_get_device(chip);
4586
4587         /* Shift to get first page */
4588         page = (int)(instr->addr >> chip->page_shift);
4589         chipnr = (int)(instr->addr >> chip->chip_shift);
4590
4591         /* Calculate pages in each block */
4592         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4593
4594         /* Select the NAND device */
4595         nand_select_target(chip, chipnr);
4596
4597         /* Check, if it is write protected */
4598         if (nand_check_wp(chip)) {
4599                 pr_debug("%s: device is write protected!\n",
4600                                 __func__);
4601                 ret = -EIO;
4602                 goto erase_exit;
4603         }
4604
4605         /* Loop through the pages */
4606         len = instr->len;
4607
4608         while (len) {
4609                 loff_t ofs = (loff_t)page << chip->page_shift;
4610
4611                 /* Check if we have a bad block, we do not erase bad blocks! */
4612                 if (nand_block_checkbad(chip, ((loff_t) page) <<
4613                                         chip->page_shift, allowbbt)) {
4614                         pr_warn("%s: attempt to erase a bad block at 0x%08llx\n",
4615                                     __func__, (unsigned long long)ofs);
4616                         ret = -EIO;
4617                         goto erase_exit;
4618                 }
4619
4620                 /*
4621                  * Invalidate the page cache, if we erase the block which
4622                  * contains the current cached page.
4623                  */
4624                 if (page <= chip->pagecache.page && chip->pagecache.page <
4625                     (page + pages_per_block))
4626                         chip->pagecache.page = -1;
4627
4628                 ret = nand_erase_op(chip, (page & chip->pagemask) >>
4629                                     (chip->phys_erase_shift - chip->page_shift));
4630                 if (ret) {
4631                         pr_debug("%s: failed erase, page 0x%08x\n",
4632                                         __func__, page);
4633                         instr->fail_addr = ofs;
4634                         goto erase_exit;
4635                 }
4636
4637                 /* Increment page address and decrement length */
4638                 len -= (1ULL << chip->phys_erase_shift);
4639                 page += pages_per_block;
4640
4641                 /* Check, if we cross a chip boundary */
4642                 if (len && !(page & chip->pagemask)) {
4643                         chipnr++;
4644                         nand_deselect_target(chip);
4645                         nand_select_target(chip, chipnr);
4646                 }
4647         }
4648
4649         ret = 0;
4650 erase_exit:
4651
4652         /* Deselect and wake up anyone waiting on the device */
4653         nand_deselect_target(chip);
4654         nand_release_device(chip);
4655
4656         /* Return more or less happy */
4657         return ret;
4658 }
4659
4660 /**
4661  * nand_sync - [MTD Interface] sync
4662  * @mtd: MTD device structure
4663  *
4664  * Sync is actually a wait for chip ready function.
4665  */
4666 static void nand_sync(struct mtd_info *mtd)
4667 {
4668         struct nand_chip *chip = mtd_to_nand(mtd);
4669
4670         pr_debug("%s: called\n", __func__);
4671
4672         /* Grab the lock and see if the device is available */
4673         nand_get_device(chip);
4674         /* Release it and go back */
4675         nand_release_device(chip);
4676 }
4677
4678 /**
4679  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4680  * @mtd: MTD device structure
4681  * @offs: offset relative to mtd start
4682  */
4683 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4684 {
4685         struct nand_chip *chip = mtd_to_nand(mtd);
4686         int chipnr = (int)(offs >> chip->chip_shift);
4687         int ret;
4688
4689         /* Select the NAND device */
4690         nand_get_device(chip);
4691
4692         nand_select_target(chip, chipnr);
4693
4694         ret = nand_block_checkbad(chip, offs, 0);
4695
4696         nand_deselect_target(chip);
4697         nand_release_device(chip);
4698
4699         return ret;
4700 }
4701
4702 /**
4703  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4704  * @mtd: MTD device structure
4705  * @ofs: offset relative to mtd start
4706  */
4707 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4708 {
4709         int ret;
4710
4711         ret = nand_block_isbad(mtd, ofs);
4712         if (ret) {
4713                 /* If it was bad already, return success and do nothing */
4714                 if (ret > 0)
4715                         return 0;
4716                 return ret;
4717         }
4718
4719         return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4720 }
4721
4722 /**
4723  * nand_suspend - [MTD Interface] Suspend the NAND flash
4724  * @mtd: MTD device structure
4725  *
4726  * Returns 0 for success or negative error code otherwise.
4727  */
4728 static int nand_suspend(struct mtd_info *mtd)
4729 {
4730         struct nand_chip *chip = mtd_to_nand(mtd);
4731         int ret = 0;
4732
4733         mutex_lock(&chip->lock);
4734         if (chip->ops.suspend)
4735                 ret = chip->ops.suspend(chip);
4736         if (!ret)
4737                 chip->suspended = 1;
4738         mutex_unlock(&chip->lock);
4739
4740         return ret;
4741 }
4742
4743 /**
4744  * nand_resume - [MTD Interface] Resume the NAND flash
4745  * @mtd: MTD device structure
4746  */
4747 static void nand_resume(struct mtd_info *mtd)
4748 {
4749         struct nand_chip *chip = mtd_to_nand(mtd);
4750
4751         mutex_lock(&chip->lock);
4752         if (chip->suspended) {
4753                 if (chip->ops.resume)
4754                         chip->ops.resume(chip);
4755                 chip->suspended = 0;
4756         } else {
4757                 pr_err("%s called for a chip which is not in suspended state\n",
4758                         __func__);
4759         }
4760         mutex_unlock(&chip->lock);
4761
4762         wake_up_all(&chip->resume_wq);
4763 }
4764
4765 /**
4766  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4767  *                 prevent further operations
4768  * @mtd: MTD device structure
4769  */
4770 static void nand_shutdown(struct mtd_info *mtd)
4771 {
4772         nand_suspend(mtd);
4773 }
4774
4775 /**
4776  * nand_lock - [MTD Interface] Lock the NAND flash
4777  * @mtd: MTD device structure
4778  * @ofs: offset byte address
4779  * @len: number of bytes to lock (must be a multiple of block/page size)
4780  */
4781 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4782 {
4783         struct nand_chip *chip = mtd_to_nand(mtd);
4784
4785         if (!chip->ops.lock_area)
4786                 return -ENOTSUPP;
4787
4788         return chip->ops.lock_area(chip, ofs, len);
4789 }
4790
4791 /**
4792  * nand_unlock - [MTD Interface] Unlock the NAND flash
4793  * @mtd: MTD device structure
4794  * @ofs: offset byte address
4795  * @len: number of bytes to unlock (must be a multiple of block/page size)
4796  */
4797 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4798 {
4799         struct nand_chip *chip = mtd_to_nand(mtd);
4800
4801         if (!chip->ops.unlock_area)
4802                 return -ENOTSUPP;
4803
4804         return chip->ops.unlock_area(chip, ofs, len);
4805 }
4806
4807 /* Set default functions */
4808 static void nand_set_defaults(struct nand_chip *chip)
4809 {
4810         /* If no controller is provided, use the dummy, legacy one. */
4811         if (!chip->controller) {
4812                 chip->controller = &chip->legacy.dummy_controller;
4813                 nand_controller_init(chip->controller);
4814         }
4815
4816         nand_legacy_set_defaults(chip);
4817
4818         if (!chip->buf_align)
4819                 chip->buf_align = 1;
4820 }
4821
4822 /* Sanitize ONFI strings so we can safely print them */
4823 void sanitize_string(uint8_t *s, size_t len)
4824 {
4825         ssize_t i;
4826
4827         /* Null terminate */
4828         s[len - 1] = 0;
4829
4830         /* Remove non printable chars */
4831         for (i = 0; i < len - 1; i++) {
4832                 if (s[i] < ' ' || s[i] > 127)
4833                         s[i] = '?';
4834         }
4835
4836         /* Remove trailing spaces */
4837         strim(s);
4838 }
4839
4840 /*
4841  * nand_id_has_period - Check if an ID string has a given wraparound period
4842  * @id_data: the ID string
4843  * @arrlen: the length of the @id_data array
4844  * @period: the period of repitition
4845  *
4846  * Check if an ID string is repeated within a given sequence of bytes at
4847  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4848  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4849  * if the repetition has a period of @period; otherwise, returns zero.
4850  */
4851 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4852 {
4853         int i, j;
4854         for (i = 0; i < period; i++)
4855                 for (j = i + period; j < arrlen; j += period)
4856                         if (id_data[i] != id_data[j])
4857                                 return 0;
4858         return 1;
4859 }
4860
4861 /*
4862  * nand_id_len - Get the length of an ID string returned by CMD_READID
4863  * @id_data: the ID string
4864  * @arrlen: the length of the @id_data array
4865
4866  * Returns the length of the ID string, according to known wraparound/trailing
4867  * zero patterns. If no pattern exists, returns the length of the array.
4868  */
4869 static int nand_id_len(u8 *id_data, int arrlen)
4870 {
4871         int last_nonzero, period;
4872
4873         /* Find last non-zero byte */
4874         for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4875                 if (id_data[last_nonzero])
4876                         break;
4877
4878         /* All zeros */
4879         if (last_nonzero < 0)
4880                 return 0;
4881
4882         /* Calculate wraparound period */
4883         for (period = 1; period < arrlen; period++)
4884                 if (nand_id_has_period(id_data, arrlen, period))
4885                         break;
4886
4887         /* There's a repeated pattern */
4888         if (period < arrlen)
4889                 return period;
4890
4891         /* There are trailing zeros */
4892         if (last_nonzero < arrlen - 1)
4893                 return last_nonzero + 1;
4894
4895         /* No pattern detected */
4896         return arrlen;
4897 }
4898
4899 /* Extract the bits of per cell from the 3rd byte of the extended ID */
4900 static int nand_get_bits_per_cell(u8 cellinfo)
4901 {
4902         int bits;
4903
4904         bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4905         bits >>= NAND_CI_CELLTYPE_SHIFT;
4906         return bits + 1;
4907 }
4908
4909 /*
4910  * Many new NAND share similar device ID codes, which represent the size of the
4911  * chip. The rest of the parameters must be decoded according to generic or
4912  * manufacturer-specific "extended ID" decoding patterns.
4913  */
4914 void nand_decode_ext_id(struct nand_chip *chip)
4915 {
4916         struct nand_memory_organization *memorg;
4917         struct mtd_info *mtd = nand_to_mtd(chip);
4918         int extid;
4919         u8 *id_data = chip->id.data;
4920
4921         memorg = nanddev_get_memorg(&chip->base);
4922
4923         /* The 3rd id byte holds MLC / multichip data */
4924         memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4925         /* The 4th id byte is the important one */
4926         extid = id_data[3];
4927
4928         /* Calc pagesize */
4929         memorg->pagesize = 1024 << (extid & 0x03);
4930         mtd->writesize = memorg->pagesize;
4931         extid >>= 2;
4932         /* Calc oobsize */
4933         memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4934         mtd->oobsize = memorg->oobsize;
4935         extid >>= 2;
4936         /* Calc blocksize. Blocksize is multiples of 64KiB */
4937         memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4938                                        memorg->pagesize;
4939         mtd->erasesize = (64 * 1024) << (extid & 0x03);
4940         extid >>= 2;
4941         /* Get buswidth information */
4942         if (extid & 0x1)
4943                 chip->options |= NAND_BUSWIDTH_16;
4944 }
4945 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
4946
4947 /*
4948  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4949  * decodes a matching ID table entry and assigns the MTD size parameters for
4950  * the chip.
4951  */
4952 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
4953 {
4954         struct mtd_info *mtd = nand_to_mtd(chip);
4955         struct nand_memory_organization *memorg;
4956
4957         memorg = nanddev_get_memorg(&chip->base);
4958
4959         memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
4960         mtd->erasesize = type->erasesize;
4961         memorg->pagesize = type->pagesize;
4962         mtd->writesize = memorg->pagesize;
4963         memorg->oobsize = memorg->pagesize / 32;
4964         mtd->oobsize = memorg->oobsize;
4965
4966         /* All legacy ID NAND are small-page, SLC */
4967         memorg->bits_per_cell = 1;
4968 }
4969
4970 /*
4971  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4972  * heuristic patterns using various detected parameters (e.g., manufacturer,
4973  * page size, cell-type information).
4974  */
4975 static void nand_decode_bbm_options(struct nand_chip *chip)
4976 {
4977         struct mtd_info *mtd = nand_to_mtd(chip);
4978
4979         /* Set the bad block position */
4980         if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4981                 chip->badblockpos = NAND_BBM_POS_LARGE;
4982         else
4983                 chip->badblockpos = NAND_BBM_POS_SMALL;
4984 }
4985
4986 static inline bool is_full_id_nand(struct nand_flash_dev *type)
4987 {
4988         return type->id_len;
4989 }
4990
4991 static bool find_full_id_nand(struct nand_chip *chip,
4992                               struct nand_flash_dev *type)
4993 {
4994         struct nand_device *base = &chip->base;
4995         struct nand_ecc_props requirements;
4996         struct mtd_info *mtd = nand_to_mtd(chip);
4997         struct nand_memory_organization *memorg;
4998         u8 *id_data = chip->id.data;
4999
5000         memorg = nanddev_get_memorg(&chip->base);
5001
5002         if (!strncmp(type->id, id_data, type->id_len)) {
5003                 memorg->pagesize = type->pagesize;
5004                 mtd->writesize = memorg->pagesize;
5005                 memorg->pages_per_eraseblock = type->erasesize /
5006                                                type->pagesize;
5007                 mtd->erasesize = type->erasesize;
5008                 memorg->oobsize = type->oobsize;
5009                 mtd->oobsize = memorg->oobsize;
5010
5011                 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
5012                 memorg->eraseblocks_per_lun =
5013                         DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5014                                            memorg->pagesize *
5015                                            memorg->pages_per_eraseblock);
5016                 chip->options |= type->options;
5017                 requirements.strength = NAND_ECC_STRENGTH(type);
5018                 requirements.step_size = NAND_ECC_STEP(type);
5019                 nanddev_set_ecc_requirements(base, &requirements);
5020
5021                 chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5022                 if (!chip->parameters.model)
5023                         return false;
5024
5025                 return true;
5026         }
5027         return false;
5028 }
5029
5030 /*
5031  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
5032  * compliant and does not have a full-id or legacy-id entry in the nand_ids
5033  * table.
5034  */
5035 static void nand_manufacturer_detect(struct nand_chip *chip)
5036 {
5037         /*
5038          * Try manufacturer detection if available and use
5039          * nand_decode_ext_id() otherwise.
5040          */
5041         if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5042             chip->manufacturer.desc->ops->detect) {
5043                 struct nand_memory_organization *memorg;
5044
5045                 memorg = nanddev_get_memorg(&chip->base);
5046
5047                 /* The 3rd id byte holds MLC / multichip data */
5048                 memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
5049                 chip->manufacturer.desc->ops->detect(chip);
5050         } else {
5051                 nand_decode_ext_id(chip);
5052         }
5053 }
5054
5055 /*
5056  * Manufacturer initialization. This function is called for all NANDs including
5057  * ONFI and JEDEC compliant ones.
5058  * Manufacturer drivers should put all their specific initialization code in
5059  * their ->init() hook.
5060  */
5061 static int nand_manufacturer_init(struct nand_chip *chip)
5062 {
5063         if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
5064             !chip->manufacturer.desc->ops->init)
5065                 return 0;
5066
5067         return chip->manufacturer.desc->ops->init(chip);
5068 }
5069
5070 /*
5071  * Manufacturer cleanup. This function is called for all NANDs including
5072  * ONFI and JEDEC compliant ones.
5073  * Manufacturer drivers should put all their specific cleanup code in their
5074  * ->cleanup() hook.
5075  */
5076 static void nand_manufacturer_cleanup(struct nand_chip *chip)
5077 {
5078         /* Release manufacturer private data */
5079         if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5080             chip->manufacturer.desc->ops->cleanup)
5081                 chip->manufacturer.desc->ops->cleanup(chip);
5082 }
5083
5084 static const char *
5085 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
5086 {
5087         return manufacturer_desc ? manufacturer_desc->name : "Unknown";
5088 }
5089
5090 static void rawnand_check_data_only_read_support(struct nand_chip *chip)
5091 {
5092         /* Use an arbitrary size for the check */
5093         if (!nand_read_data_op(chip, NULL, SZ_512, true, true))
5094                 chip->controller->supported_op.data_only_read = 1;
5095 }
5096
5097 static void rawnand_early_check_supported_ops(struct nand_chip *chip)
5098 {
5099         /* The supported_op fields should not be set by individual drivers */
5100         WARN_ON_ONCE(chip->controller->supported_op.data_only_read);
5101
5102         if (!nand_has_exec_op(chip))
5103                 return;
5104
5105         rawnand_check_data_only_read_support(chip);
5106 }
5107
5108 static void rawnand_check_cont_read_support(struct nand_chip *chip)
5109 {
5110         struct mtd_info *mtd = nand_to_mtd(chip);
5111
5112         if (!chip->parameters.supports_read_cache)
5113                 return;
5114
5115         if (chip->read_retries)
5116                 return;
5117
5118         if (!nand_lp_exec_cont_read_page_op(chip, 0, 0, NULL,
5119                                             mtd->writesize, true))
5120                 chip->controller->supported_op.cont_read = 1;
5121 }
5122
5123 static void rawnand_late_check_supported_ops(struct nand_chip *chip)
5124 {
5125         /* The supported_op fields should not be set by individual drivers */
5126         WARN_ON_ONCE(chip->controller->supported_op.cont_read);
5127
5128         if (!nand_has_exec_op(chip))
5129                 return;
5130
5131         rawnand_check_cont_read_support(chip);
5132 }
5133
5134 /*
5135  * Get the flash and manufacturer id and lookup if the type is supported.
5136  */
5137 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
5138 {
5139         const struct nand_manufacturer_desc *manufacturer_desc;
5140         struct mtd_info *mtd = nand_to_mtd(chip);
5141         struct nand_memory_organization *memorg;
5142         int busw, ret;
5143         u8 *id_data = chip->id.data;
5144         u8 maf_id, dev_id;
5145         u64 targetsize;
5146
5147         /*
5148          * Let's start by initializing memorg fields that might be left
5149          * unassigned by the ID-based detection logic.
5150          */
5151         memorg = nanddev_get_memorg(&chip->base);
5152         memorg->planes_per_lun = 1;
5153         memorg->luns_per_target = 1;
5154
5155         /*
5156          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
5157          * after power-up.
5158          */
5159         ret = nand_reset(chip, 0);
5160         if (ret)
5161                 return ret;
5162
5163         /* Select the device */
5164         nand_select_target(chip, 0);
5165
5166         rawnand_early_check_supported_ops(chip);
5167
5168         /* Send the command for reading device ID */
5169         ret = nand_readid_op(chip, 0, id_data, 2);
5170         if (ret)
5171                 return ret;
5172
5173         /* Read manufacturer and device IDs */
5174         maf_id = id_data[0];
5175         dev_id = id_data[1];
5176
5177         /*
5178          * Try again to make sure, as some systems the bus-hold or other
5179          * interface concerns can cause random data which looks like a
5180          * possibly credible NAND flash to appear. If the two results do
5181          * not match, ignore the device completely.
5182          */
5183
5184         /* Read entire ID string */
5185         ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5186         if (ret)
5187                 return ret;
5188
5189         if (id_data[0] != maf_id || id_data[1] != dev_id) {
5190                 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
5191                         maf_id, dev_id, id_data[0], id_data[1]);
5192                 return -ENODEV;
5193         }
5194
5195         chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
5196
5197         /* Try to identify manufacturer */
5198         manufacturer_desc = nand_get_manufacturer_desc(maf_id);
5199         chip->manufacturer.desc = manufacturer_desc;
5200
5201         if (!type)
5202                 type = nand_flash_ids;
5203
5204         /*
5205          * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5206          * override it.
5207          * This is required to make sure initial NAND bus width set by the
5208          * NAND controller driver is coherent with the real NAND bus width
5209          * (extracted by auto-detection code).
5210          */
5211         busw = chip->options & NAND_BUSWIDTH_16;
5212
5213         /*
5214          * The flag is only set (never cleared), reset it to its default value
5215          * before starting auto-detection.
5216          */
5217         chip->options &= ~NAND_BUSWIDTH_16;
5218
5219         for (; type->name != NULL; type++) {
5220                 if (is_full_id_nand(type)) {
5221                         if (find_full_id_nand(chip, type))
5222                                 goto ident_done;
5223                 } else if (dev_id == type->dev_id) {
5224                         break;
5225                 }
5226         }
5227
5228         if (!type->name || !type->pagesize) {
5229                 /* Check if the chip is ONFI compliant */
5230                 ret = nand_onfi_detect(chip);
5231                 if (ret < 0)
5232                         return ret;
5233                 else if (ret)
5234                         goto ident_done;
5235
5236                 /* Check if the chip is JEDEC compliant */
5237                 ret = nand_jedec_detect(chip);
5238                 if (ret < 0)
5239                         return ret;
5240                 else if (ret)
5241                         goto ident_done;
5242         }
5243
5244         if (!type->name)
5245                 return -ENODEV;
5246
5247         chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5248         if (!chip->parameters.model)
5249                 return -ENOMEM;
5250
5251         if (!type->pagesize)
5252                 nand_manufacturer_detect(chip);
5253         else
5254                 nand_decode_id(chip, type);
5255
5256         /* Get chip options */
5257         chip->options |= type->options;
5258
5259         memorg->eraseblocks_per_lun =
5260                         DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5261                                            memorg->pagesize *
5262                                            memorg->pages_per_eraseblock);
5263
5264 ident_done:
5265         if (!mtd->name)
5266                 mtd->name = chip->parameters.model;
5267
5268         if (chip->options & NAND_BUSWIDTH_AUTO) {
5269                 WARN_ON(busw & NAND_BUSWIDTH_16);
5270                 nand_set_defaults(chip);
5271         } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5272                 /*
5273                  * Check, if buswidth is correct. Hardware drivers should set
5274                  * chip correct!
5275                  */
5276                 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5277                         maf_id, dev_id);
5278                 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5279                         mtd->name);
5280                 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5281                         (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
5282                 ret = -EINVAL;
5283
5284                 goto free_detect_allocation;
5285         }
5286
5287         nand_decode_bbm_options(chip);
5288
5289         /* Calculate the address shift from the page size */
5290         chip->page_shift = ffs(mtd->writesize) - 1;
5291         /* Convert chipsize to number of pages per chip -1 */
5292         targetsize = nanddev_target_size(&chip->base);
5293         chip->pagemask = (targetsize >> chip->page_shift) - 1;
5294
5295         chip->bbt_erase_shift = chip->phys_erase_shift =
5296                 ffs(mtd->erasesize) - 1;
5297         if (targetsize & 0xffffffff)
5298                 chip->chip_shift = ffs((unsigned)targetsize) - 1;
5299         else {
5300                 chip->chip_shift = ffs((unsigned)(targetsize >> 32));
5301                 chip->chip_shift += 32 - 1;
5302         }
5303
5304         if (chip->chip_shift - chip->page_shift > 16)
5305                 chip->options |= NAND_ROW_ADDR_3;
5306
5307         chip->badblockbits = 8;
5308
5309         nand_legacy_adjust_cmdfunc(chip);
5310
5311         pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5312                 maf_id, dev_id);
5313         pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5314                 chip->parameters.model);
5315         pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5316                 (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5317                 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5318         return 0;
5319
5320 free_detect_allocation:
5321         kfree(chip->parameters.model);
5322
5323         return ret;
5324 }
5325
5326 static enum nand_ecc_engine_type
5327 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
5328 {
5329         enum nand_ecc_legacy_mode {
5330                 NAND_ECC_INVALID,
5331                 NAND_ECC_NONE,
5332                 NAND_ECC_SOFT,
5333                 NAND_ECC_SOFT_BCH,
5334                 NAND_ECC_HW,
5335                 NAND_ECC_HW_SYNDROME,
5336                 NAND_ECC_ON_DIE,
5337         };
5338         const char * const nand_ecc_legacy_modes[] = {
5339                 [NAND_ECC_NONE]         = "none",
5340                 [NAND_ECC_SOFT]         = "soft",
5341                 [NAND_ECC_SOFT_BCH]     = "soft_bch",
5342                 [NAND_ECC_HW]           = "hw",
5343                 [NAND_ECC_HW_SYNDROME]  = "hw_syndrome",
5344                 [NAND_ECC_ON_DIE]       = "on-die",
5345         };
5346         enum nand_ecc_legacy_mode eng_type;
5347         const char *pm;
5348         int err;
5349
5350         err = of_property_read_string(np, "nand-ecc-mode", &pm);
5351         if (err)
5352                 return NAND_ECC_ENGINE_TYPE_INVALID;
5353
5354         for (eng_type = NAND_ECC_NONE;
5355              eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
5356                 if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) {
5357                         switch (eng_type) {
5358                         case NAND_ECC_NONE:
5359                                 return NAND_ECC_ENGINE_TYPE_NONE;
5360                         case NAND_ECC_SOFT:
5361                         case NAND_ECC_SOFT_BCH:
5362                                 return NAND_ECC_ENGINE_TYPE_SOFT;
5363                         case NAND_ECC_HW:
5364                         case NAND_ECC_HW_SYNDROME:
5365                                 return NAND_ECC_ENGINE_TYPE_ON_HOST;
5366                         case NAND_ECC_ON_DIE:
5367                                 return NAND_ECC_ENGINE_TYPE_ON_DIE;
5368                         default:
5369                                 break;
5370                         }
5371                 }
5372         }
5373
5374         return NAND_ECC_ENGINE_TYPE_INVALID;
5375 }
5376
5377 static enum nand_ecc_placement
5378 of_get_rawnand_ecc_placement_legacy(struct device_node *np)
5379 {
5380         const char *pm;
5381         int err;
5382
5383         err = of_property_read_string(np, "nand-ecc-mode", &pm);
5384         if (!err) {
5385                 if (!strcasecmp(pm, "hw_syndrome"))
5386                         return NAND_ECC_PLACEMENT_INTERLEAVED;
5387         }
5388
5389         return NAND_ECC_PLACEMENT_UNKNOWN;
5390 }
5391
5392 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
5393 {
5394         const char *pm;
5395         int err;
5396
5397         err = of_property_read_string(np, "nand-ecc-mode", &pm);
5398         if (!err) {
5399                 if (!strcasecmp(pm, "soft"))
5400                         return NAND_ECC_ALGO_HAMMING;
5401                 else if (!strcasecmp(pm, "soft_bch"))
5402                         return NAND_ECC_ALGO_BCH;
5403         }
5404
5405         return NAND_ECC_ALGO_UNKNOWN;
5406 }
5407
5408 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
5409 {
5410         struct device_node *dn = nand_get_flash_node(chip);
5411         struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;
5412
5413         if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5414                 user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn);
5415
5416         if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
5417                 user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn);
5418
5419         if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
5420                 user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn);
5421 }
5422
5423 static int of_get_nand_bus_width(struct nand_chip *chip)
5424 {
5425         struct device_node *dn = nand_get_flash_node(chip);
5426         u32 val;
5427         int ret;
5428
5429         ret = of_property_read_u32(dn, "nand-bus-width", &val);
5430         if (ret == -EINVAL)
5431                 /* Buswidth defaults to 8 if the property does not exist .*/
5432                 return 0;
5433         else if (ret)
5434                 return ret;
5435
5436         if (val == 16)
5437                 chip->options |= NAND_BUSWIDTH_16;
5438         else if (val != 8)
5439                 return -EINVAL;
5440         return 0;
5441 }
5442
5443 static int of_get_nand_secure_regions(struct nand_chip *chip)
5444 {
5445         struct device_node *dn = nand_get_flash_node(chip);
5446         struct property *prop;
5447         int nr_elem, i, j;
5448
5449         /* Only proceed if the "secure-regions" property is present in DT */
5450         prop = of_find_property(dn, "secure-regions", NULL);
5451         if (!prop)
5452                 return 0;
5453
5454         nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64));
5455         if (nr_elem <= 0)
5456                 return nr_elem;
5457
5458         chip->nr_secure_regions = nr_elem / 2;
5459         chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions),
5460                                        GFP_KERNEL);
5461         if (!chip->secure_regions)
5462                 return -ENOMEM;
5463
5464         for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) {
5465                 of_property_read_u64_index(dn, "secure-regions", j,
5466                                            &chip->secure_regions[i].offset);
5467                 of_property_read_u64_index(dn, "secure-regions", j + 1,
5468                                            &chip->secure_regions[i].size);
5469         }
5470
5471         return 0;
5472 }
5473
5474 /**
5475  * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller
5476  * @dev: Device that will be parsed. Also used for managed allocations.
5477  * @cs_array: Array of GPIO desc pointers allocated on success
5478  * @ncs_array: Number of entries in @cs_array updated on success.
5479  * @return 0 on success, an error otherwise.
5480  */
5481 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
5482                              unsigned int *ncs_array)
5483 {
5484         struct gpio_desc **descs;
5485         int ndescs, i;
5486
5487         ndescs = gpiod_count(dev, "cs");
5488         if (ndescs < 0) {
5489                 dev_dbg(dev, "No valid cs-gpios property\n");
5490                 return 0;
5491         }
5492
5493         descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL);
5494         if (!descs)
5495                 return -ENOMEM;
5496
5497         for (i = 0; i < ndescs; i++) {
5498                 descs[i] = gpiod_get_index_optional(dev, "cs", i,
5499                                                     GPIOD_OUT_HIGH);
5500                 if (IS_ERR(descs[i]))
5501                         return PTR_ERR(descs[i]);
5502         }
5503
5504         *ncs_array = ndescs;
5505         *cs_array = descs;
5506
5507         return 0;
5508 }
5509 EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs);
5510
5511 static int rawnand_dt_init(struct nand_chip *chip)
5512 {
5513         struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip));
5514         struct device_node *dn = nand_get_flash_node(chip);
5515         int ret;
5516
5517         if (!dn)
5518                 return 0;
5519
5520         ret = of_get_nand_bus_width(chip);
5521         if (ret)
5522                 return ret;
5523
5524         if (of_property_read_bool(dn, "nand-is-boot-medium"))
5525                 chip->options |= NAND_IS_BOOT_MEDIUM;
5526
5527         if (of_property_read_bool(dn, "nand-on-flash-bbt"))
5528                 chip->bbt_options |= NAND_BBT_USE_FLASH;
5529
5530         of_get_nand_ecc_user_config(nand);
5531         of_get_nand_ecc_legacy_user_config(chip);
5532
5533         /*
5534          * If neither the user nor the NAND controller have requested a specific
5535          * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
5536          */
5537         nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
5538
5539         /*
5540          * Use the user requested engine type, unless there is none, in this
5541          * case default to the NAND controller choice, otherwise fallback to
5542          * the raw NAND default one.
5543          */
5544         if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
5545                 chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
5546         if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5547                 chip->ecc.engine_type = nand->ecc.defaults.engine_type;
5548
5549         chip->ecc.placement = nand->ecc.user_conf.placement;
5550         chip->ecc.algo = nand->ecc.user_conf.algo;
5551         chip->ecc.strength = nand->ecc.user_conf.strength;
5552         chip->ecc.size = nand->ecc.user_conf.step_size;
5553
5554         return 0;
5555 }
5556
5557 /**
5558  * nand_scan_ident - Scan for the NAND device
5559  * @chip: NAND chip object
5560  * @maxchips: number of chips to scan for
5561  * @table: alternative NAND ID table
5562  *
5563  * This is the first phase of the normal nand_scan() function. It reads the
5564  * flash ID and sets up MTD fields accordingly.
5565  *
5566  * This helper used to be called directly from controller drivers that needed
5567  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5568  * prevented dynamic allocations during this phase which was unconvenient and
5569  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5570  */
5571 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5572                            struct nand_flash_dev *table)
5573 {
5574         struct mtd_info *mtd = nand_to_mtd(chip);
5575         struct nand_memory_organization *memorg;
5576         int nand_maf_id, nand_dev_id;
5577         unsigned int i;
5578         int ret;
5579
5580         memorg = nanddev_get_memorg(&chip->base);
5581
5582         /* Assume all dies are deselected when we enter nand_scan_ident(). */
5583         chip->cur_cs = -1;
5584
5585         mutex_init(&chip->lock);
5586         init_waitqueue_head(&chip->resume_wq);
5587
5588         /* Enforce the right timings for reset/detection */
5589         chip->current_interface_config = nand_get_reset_interface_config();
5590
5591         ret = rawnand_dt_init(chip);
5592         if (ret)
5593                 return ret;
5594
5595         if (!mtd->name && mtd->dev.parent)
5596                 mtd->name = dev_name(mtd->dev.parent);
5597
5598         /* Set the default functions */
5599         nand_set_defaults(chip);
5600
5601         ret = nand_legacy_check_hooks(chip);
5602         if (ret)
5603                 return ret;
5604
5605         memorg->ntargets = maxchips;
5606
5607         /* Read the flash type */
5608         ret = nand_detect(chip, table);
5609         if (ret) {
5610                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5611                         pr_warn("No NAND device found\n");
5612                 nand_deselect_target(chip);
5613                 return ret;
5614         }
5615
5616         nand_maf_id = chip->id.data[0];
5617         nand_dev_id = chip->id.data[1];
5618
5619         nand_deselect_target(chip);
5620
5621         /* Check for a chip array */
5622         for (i = 1; i < maxchips; i++) {
5623                 u8 id[2];
5624
5625                 /* See comment in nand_get_flash_type for reset */
5626                 ret = nand_reset(chip, i);
5627                 if (ret)
5628                         break;
5629
5630                 nand_select_target(chip, i);
5631                 /* Send the command for reading device ID */
5632                 ret = nand_readid_op(chip, 0, id, sizeof(id));
5633                 if (ret)
5634                         break;
5635                 /* Read manufacturer and device IDs */
5636                 if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5637                         nand_deselect_target(chip);
5638                         break;
5639                 }
5640                 nand_deselect_target(chip);
5641         }
5642         if (i > 1)
5643                 pr_info("%d chips detected\n", i);
5644
5645         /* Store the number of chips and calc total size for mtd */
5646         memorg->ntargets = i;
5647         mtd->size = i * nanddev_target_size(&chip->base);
5648
5649         return 0;
5650 }
5651
5652 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5653 {
5654         kfree(chip->parameters.model);
5655         kfree(chip->parameters.onfi);
5656 }
5657
5658 int rawnand_sw_hamming_init(struct nand_chip *chip)
5659 {
5660         struct nand_ecc_sw_hamming_conf *engine_conf;
5661         struct nand_device *base = &chip->base;
5662         int ret;
5663
5664         base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5665         base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
5666         base->ecc.user_conf.strength = chip->ecc.strength;
5667         base->ecc.user_conf.step_size = chip->ecc.size;
5668
5669         ret = nand_ecc_sw_hamming_init_ctx(base);
5670         if (ret)
5671                 return ret;
5672
5673         engine_conf = base->ecc.ctx.priv;
5674
5675         if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
5676                 engine_conf->sm_order = true;
5677
5678         chip->ecc.size = base->ecc.ctx.conf.step_size;
5679         chip->ecc.strength = base->ecc.ctx.conf.strength;
5680         chip->ecc.total = base->ecc.ctx.total;
5681         chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5682         chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5683
5684         return 0;
5685 }
5686 EXPORT_SYMBOL(rawnand_sw_hamming_init);
5687
5688 int rawnand_sw_hamming_calculate(struct nand_chip *chip,
5689                                  const unsigned char *buf,
5690                                  unsigned char *code)
5691 {
5692         struct nand_device *base = &chip->base;
5693
5694         return nand_ecc_sw_hamming_calculate(base, buf, code);
5695 }
5696 EXPORT_SYMBOL(rawnand_sw_hamming_calculate);
5697
5698 int rawnand_sw_hamming_correct(struct nand_chip *chip,
5699                                unsigned char *buf,
5700                                unsigned char *read_ecc,
5701                                unsigned char *calc_ecc)
5702 {
5703         struct nand_device *base = &chip->base;
5704
5705         return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc);
5706 }
5707 EXPORT_SYMBOL(rawnand_sw_hamming_correct);
5708
5709 void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
5710 {
5711         struct nand_device *base = &chip->base;
5712
5713         nand_ecc_sw_hamming_cleanup_ctx(base);
5714 }
5715 EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);
5716
5717 int rawnand_sw_bch_init(struct nand_chip *chip)
5718 {
5719         struct nand_device *base = &chip->base;
5720         const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base);
5721         int ret;
5722
5723         base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5724         base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
5725         base->ecc.user_conf.step_size = chip->ecc.size;
5726         base->ecc.user_conf.strength = chip->ecc.strength;
5727
5728         ret = nand_ecc_sw_bch_init_ctx(base);
5729         if (ret)
5730                 return ret;
5731
5732         chip->ecc.size = ecc_conf->step_size;
5733         chip->ecc.strength = ecc_conf->strength;
5734         chip->ecc.total = base->ecc.ctx.total;
5735         chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5736         chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5737
5738         return 0;
5739 }
5740 EXPORT_SYMBOL(rawnand_sw_bch_init);
5741
5742 static int rawnand_sw_bch_calculate(struct nand_chip *chip,
5743                                     const unsigned char *buf,
5744                                     unsigned char *code)
5745 {
5746         struct nand_device *base = &chip->base;
5747
5748         return nand_ecc_sw_bch_calculate(base, buf, code);
5749 }
5750
5751 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
5752                            unsigned char *read_ecc, unsigned char *calc_ecc)
5753 {
5754         struct nand_device *base = &chip->base;
5755
5756         return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc);
5757 }
5758 EXPORT_SYMBOL(rawnand_sw_bch_correct);
5759
5760 void rawnand_sw_bch_cleanup(struct nand_chip *chip)
5761 {
5762         struct nand_device *base = &chip->base;
5763
5764         nand_ecc_sw_bch_cleanup_ctx(base);
5765 }
5766 EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
5767
5768 static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
5769 {
5770         struct nand_ecc_ctrl *ecc = &chip->ecc;
5771
5772         switch (ecc->placement) {
5773         case NAND_ECC_PLACEMENT_UNKNOWN:
5774         case NAND_ECC_PLACEMENT_OOB:
5775                 /* Use standard hwecc read page function? */
5776                 if (!ecc->read_page)
5777                         ecc->read_page = nand_read_page_hwecc;
5778                 if (!ecc->write_page)
5779                         ecc->write_page = nand_write_page_hwecc;
5780                 if (!ecc->read_page_raw)
5781                         ecc->read_page_raw = nand_read_page_raw;
5782                 if (!ecc->write_page_raw)
5783                         ecc->write_page_raw = nand_write_page_raw;
5784                 if (!ecc->read_oob)
5785                         ecc->read_oob = nand_read_oob_std;
5786                 if (!ecc->write_oob)
5787                         ecc->write_oob = nand_write_oob_std;
5788                 if (!ecc->read_subpage)
5789                         ecc->read_subpage = nand_read_subpage;
5790                 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5791                         ecc->write_subpage = nand_write_subpage_hwecc;
5792                 fallthrough;
5793
5794         case NAND_ECC_PLACEMENT_INTERLEAVED:
5795                 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5796                     (!ecc->read_page ||
5797                      ecc->read_page == nand_read_page_hwecc ||
5798                      !ecc->write_page ||
5799                      ecc->write_page == nand_write_page_hwecc)) {
5800                         WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5801                         return -EINVAL;
5802                 }
5803                 /* Use standard syndrome read/write page function? */
5804                 if (!ecc->read_page)
5805                         ecc->read_page = nand_read_page_syndrome;
5806                 if (!ecc->write_page)
5807                         ecc->write_page = nand_write_page_syndrome;
5808                 if (!ecc->read_page_raw)
5809                         ecc->read_page_raw = nand_read_page_raw_syndrome;
5810                 if (!ecc->write_page_raw)
5811                         ecc->write_page_raw = nand_write_page_raw_syndrome;
5812                 if (!ecc->read_oob)
5813                         ecc->read_oob = nand_read_oob_syndrome;
5814                 if (!ecc->write_oob)
5815                         ecc->write_oob = nand_write_oob_syndrome;
5816                 break;
5817
5818         default:
5819                 pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
5820                         ecc->placement);
5821                 return -EINVAL;
5822         }
5823
5824         return 0;
5825 }
5826
5827 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5828 {
5829         struct mtd_info *mtd = nand_to_mtd(chip);
5830         struct nand_device *nanddev = mtd_to_nanddev(mtd);
5831         struct nand_ecc_ctrl *ecc = &chip->ecc;
5832         int ret;
5833
5834         if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
5835                 return -EINVAL;
5836
5837         switch (ecc->algo) {
5838         case NAND_ECC_ALGO_HAMMING:
5839                 ecc->calculate = rawnand_sw_hamming_calculate;
5840                 ecc->correct = rawnand_sw_hamming_correct;
5841                 ecc->read_page = nand_read_page_swecc;
5842                 ecc->read_subpage = nand_read_subpage;
5843                 ecc->write_page = nand_write_page_swecc;
5844                 if (!ecc->read_page_raw)
5845                         ecc->read_page_raw = nand_read_page_raw;
5846                 if (!ecc->write_page_raw)
5847                         ecc->write_page_raw = nand_write_page_raw;
5848                 ecc->read_oob = nand_read_oob_std;
5849                 ecc->write_oob = nand_write_oob_std;
5850                 if (!ecc->size)
5851                         ecc->size = 256;
5852                 ecc->bytes = 3;
5853                 ecc->strength = 1;
5854
5855                 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5856                         ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5857
5858                 ret = rawnand_sw_hamming_init(chip);
5859                 if (ret) {
5860                         WARN(1, "Hamming ECC initialization failed!\n");
5861                         return ret;
5862                 }
5863
5864                 return 0;
5865         case NAND_ECC_ALGO_BCH:
5866                 if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
5867                         WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5868                         return -EINVAL;
5869                 }
5870                 ecc->calculate = rawnand_sw_bch_calculate;
5871                 ecc->correct = rawnand_sw_bch_correct;
5872                 ecc->read_page = nand_read_page_swecc;
5873                 ecc->read_subpage = nand_read_subpage;
5874                 ecc->write_page = nand_write_page_swecc;
5875                 if (!ecc->read_page_raw)
5876                         ecc->read_page_raw = nand_read_page_raw;
5877                 if (!ecc->write_page_raw)
5878                         ecc->write_page_raw = nand_write_page_raw;
5879                 ecc->read_oob = nand_read_oob_std;
5880                 ecc->write_oob = nand_write_oob_std;
5881
5882                 /*
5883                  * We can only maximize ECC config when the default layout is
5884                  * used, otherwise we don't know how many bytes can really be
5885                  * used.
5886                  */
5887                 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
5888                     mtd->ooblayout != nand_get_large_page_ooblayout())
5889                         nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;
5890
5891                 ret = rawnand_sw_bch_init(chip);
5892                 if (ret) {
5893                         WARN(1, "BCH ECC initialization failed!\n");
5894                         return ret;
5895                 }
5896
5897                 return 0;
5898         default:
5899                 WARN(1, "Unsupported ECC algorithm!\n");
5900                 return -EINVAL;
5901         }
5902 }
5903
5904 /**
5905  * nand_check_ecc_caps - check the sanity of preset ECC settings
5906  * @chip: nand chip info structure
5907  * @caps: ECC caps info structure
5908  * @oobavail: OOB size that the ECC engine can use
5909  *
5910  * When ECC step size and strength are already set, check if they are supported
5911  * by the controller and the calculated ECC bytes fit within the chip's OOB.
5912  * On success, the calculated ECC bytes is set.
5913  */
5914 static int
5915 nand_check_ecc_caps(struct nand_chip *chip,
5916                     const struct nand_ecc_caps *caps, int oobavail)
5917 {
5918         struct mtd_info *mtd = nand_to_mtd(chip);
5919         const struct nand_ecc_step_info *stepinfo;
5920         int preset_step = chip->ecc.size;
5921         int preset_strength = chip->ecc.strength;
5922         int ecc_bytes, nsteps = mtd->writesize / preset_step;
5923         int i, j;
5924
5925         for (i = 0; i < caps->nstepinfos; i++) {
5926                 stepinfo = &caps->stepinfos[i];
5927
5928                 if (stepinfo->stepsize != preset_step)
5929                         continue;
5930
5931                 for (j = 0; j < stepinfo->nstrengths; j++) {
5932                         if (stepinfo->strengths[j] != preset_strength)
5933                                 continue;
5934
5935                         ecc_bytes = caps->calc_ecc_bytes(preset_step,
5936                                                          preset_strength);
5937                         if (WARN_ON_ONCE(ecc_bytes < 0))
5938                                 return ecc_bytes;
5939
5940                         if (ecc_bytes * nsteps > oobavail) {
5941                                 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
5942                                        preset_step, preset_strength);
5943                                 return -ENOSPC;
5944                         }
5945
5946                         chip->ecc.bytes = ecc_bytes;
5947
5948                         return 0;
5949                 }
5950         }
5951
5952         pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
5953                preset_step, preset_strength);
5954
5955         return -ENOTSUPP;
5956 }
5957
5958 /**
5959  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
5960  * @chip: nand chip info structure
5961  * @caps: ECC engine caps info structure
5962  * @oobavail: OOB size that the ECC engine can use
5963  *
5964  * If a chip's ECC requirement is provided, try to meet it with the least
5965  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
5966  * On success, the chosen ECC settings are set.
5967  */
5968 static int
5969 nand_match_ecc_req(struct nand_chip *chip,
5970                    const struct nand_ecc_caps *caps, int oobavail)
5971 {
5972         const struct nand_ecc_props *requirements =
5973                 nanddev_get_ecc_requirements(&chip->base);
5974         struct mtd_info *mtd = nand_to_mtd(chip);
5975         const struct nand_ecc_step_info *stepinfo;
5976         int req_step = requirements->step_size;
5977         int req_strength = requirements->strength;
5978         int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
5979         int best_step = 0, best_strength = 0, best_ecc_bytes = 0;
5980         int best_ecc_bytes_total = INT_MAX;
5981         int i, j;
5982
5983         /* No information provided by the NAND chip */
5984         if (!req_step || !req_strength)
5985                 return -ENOTSUPP;
5986
5987         /* number of correctable bits the chip requires in a page */
5988         req_corr = mtd->writesize / req_step * req_strength;
5989
5990         for (i = 0; i < caps->nstepinfos; i++) {
5991                 stepinfo = &caps->stepinfos[i];
5992                 step_size = stepinfo->stepsize;
5993
5994                 for (j = 0; j < stepinfo->nstrengths; j++) {
5995                         strength = stepinfo->strengths[j];
5996
5997                         /*
5998                          * If both step size and strength are smaller than the
5999                          * chip's requirement, it is not easy to compare the
6000                          * resulted reliability.
6001                          */
6002                         if (step_size < req_step && strength < req_strength)
6003                                 continue;
6004
6005                         if (mtd->writesize % step_size)
6006                                 continue;
6007
6008                         nsteps = mtd->writesize / step_size;
6009
6010                         ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6011                         if (WARN_ON_ONCE(ecc_bytes < 0))
6012                                 continue;
6013                         ecc_bytes_total = ecc_bytes * nsteps;
6014
6015                         if (ecc_bytes_total > oobavail ||
6016                             strength * nsteps < req_corr)
6017                                 continue;
6018
6019                         /*
6020                          * We assume the best is to meet the chip's requrement
6021                          * with the least number of ECC bytes.
6022                          */
6023                         if (ecc_bytes_total < best_ecc_bytes_total) {
6024                                 best_ecc_bytes_total = ecc_bytes_total;
6025                                 best_step = step_size;
6026                                 best_strength = strength;
6027                                 best_ecc_bytes = ecc_bytes;
6028                         }
6029                 }
6030         }
6031
6032         if (best_ecc_bytes_total == INT_MAX)
6033                 return -ENOTSUPP;
6034
6035         chip->ecc.size = best_step;
6036         chip->ecc.strength = best_strength;
6037         chip->ecc.bytes = best_ecc_bytes;
6038
6039         return 0;
6040 }
6041
6042 /**
6043  * nand_maximize_ecc - choose the max ECC strength available
6044  * @chip: nand chip info structure
6045  * @caps: ECC engine caps info structure
6046  * @oobavail: OOB size that the ECC engine can use
6047  *
6048  * Choose the max ECC strength that is supported on the controller, and can fit
6049  * within the chip's OOB.  On success, the chosen ECC settings are set.
6050  */
6051 static int
6052 nand_maximize_ecc(struct nand_chip *chip,
6053                   const struct nand_ecc_caps *caps, int oobavail)
6054 {
6055         struct mtd_info *mtd = nand_to_mtd(chip);
6056         const struct nand_ecc_step_info *stepinfo;
6057         int step_size, strength, nsteps, ecc_bytes, corr;
6058         int best_corr = 0;
6059         int best_step = 0;
6060         int best_strength = 0, best_ecc_bytes = 0;
6061         int i, j;
6062
6063         for (i = 0; i < caps->nstepinfos; i++) {
6064                 stepinfo = &caps->stepinfos[i];
6065                 step_size = stepinfo->stepsize;
6066
6067                 /* If chip->ecc.size is already set, respect it */
6068                 if (chip->ecc.size && step_size != chip->ecc.size)
6069                         continue;
6070
6071                 for (j = 0; j < stepinfo->nstrengths; j++) {
6072                         strength = stepinfo->strengths[j];
6073
6074                         if (mtd->writesize % step_size)
6075                                 continue;
6076
6077                         nsteps = mtd->writesize / step_size;
6078
6079                         ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6080                         if (WARN_ON_ONCE(ecc_bytes < 0))
6081                                 continue;
6082
6083                         if (ecc_bytes * nsteps > oobavail)
6084                                 continue;
6085
6086                         corr = strength * nsteps;
6087
6088                         /*
6089                          * If the number of correctable bits is the same,
6090                          * bigger step_size has more reliability.
6091                          */
6092                         if (corr > best_corr ||
6093                             (corr == best_corr && step_size > best_step)) {
6094                                 best_corr = corr;
6095                                 best_step = step_size;
6096                                 best_strength = strength;
6097                                 best_ecc_bytes = ecc_bytes;
6098                         }
6099                 }
6100         }
6101
6102         if (!best_corr)
6103                 return -ENOTSUPP;
6104
6105         chip->ecc.size = best_step;
6106         chip->ecc.strength = best_strength;
6107         chip->ecc.bytes = best_ecc_bytes;
6108
6109         return 0;
6110 }
6111
6112 /**
6113  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
6114  * @chip: nand chip info structure
6115  * @caps: ECC engine caps info structure
6116  * @oobavail: OOB size that the ECC engine can use
6117  *
6118  * Choose the ECC configuration according to following logic.
6119  *
6120  * 1. If both ECC step size and ECC strength are already set (usually by DT)
6121  *    then check if it is supported by this controller.
6122  * 2. If the user provided the nand-ecc-maximize property, then select maximum
6123  *    ECC strength.
6124  * 3. Otherwise, try to match the ECC step size and ECC strength closest
6125  *    to the chip's requirement. If available OOB size can't fit the chip
6126  *    requirement then fallback to the maximum ECC step size and ECC strength.
6127  *
6128  * On success, the chosen ECC settings are set.
6129  */
6130 int nand_ecc_choose_conf(struct nand_chip *chip,
6131                          const struct nand_ecc_caps *caps, int oobavail)
6132 {
6133         struct mtd_info *mtd = nand_to_mtd(chip);
6134         struct nand_device *nanddev = mtd_to_nanddev(mtd);
6135
6136         if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
6137                 return -EINVAL;
6138
6139         if (chip->ecc.size && chip->ecc.strength)
6140                 return nand_check_ecc_caps(chip, caps, oobavail);
6141
6142         if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
6143                 return nand_maximize_ecc(chip, caps, oobavail);
6144
6145         if (!nand_match_ecc_req(chip, caps, oobavail))
6146                 return 0;
6147
6148         return nand_maximize_ecc(chip, caps, oobavail);
6149 }
6150 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
6151
6152 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
6153 {
6154         struct nand_chip *chip = container_of(nand, struct nand_chip,
6155                                               base);
6156         unsigned int eb = nanddev_pos_to_row(nand, pos);
6157         int ret;
6158
6159         eb >>= nand->rowconv.eraseblock_addr_shift;
6160
6161         nand_select_target(chip, pos->target);
6162         ret = nand_erase_op(chip, eb);
6163         nand_deselect_target(chip);
6164
6165         return ret;
6166 }
6167
6168 static int rawnand_markbad(struct nand_device *nand,
6169                            const struct nand_pos *pos)
6170 {
6171         struct nand_chip *chip = container_of(nand, struct nand_chip,
6172                                               base);
6173
6174         return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6175 }
6176
6177 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
6178 {
6179         struct nand_chip *chip = container_of(nand, struct nand_chip,
6180                                               base);
6181         int ret;
6182
6183         nand_select_target(chip, pos->target);
6184         ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6185         nand_deselect_target(chip);
6186
6187         return ret;
6188 }
6189
6190 static const struct nand_ops rawnand_ops = {
6191         .erase = rawnand_erase,
6192         .markbad = rawnand_markbad,
6193         .isbad = rawnand_isbad,
6194 };
6195
6196 /**
6197  * nand_scan_tail - Scan for the NAND device
6198  * @chip: NAND chip object
6199  *
6200  * This is the second phase of the normal nand_scan() function. It fills out
6201  * all the uninitialized function pointers with the defaults and scans for a
6202  * bad block table if appropriate.
6203  */
6204 static int nand_scan_tail(struct nand_chip *chip)
6205 {
6206         struct mtd_info *mtd = nand_to_mtd(chip);
6207         struct nand_ecc_ctrl *ecc = &chip->ecc;
6208         int ret, i;
6209
6210         /* New bad blocks should be marked in OOB, flash-based BBT, or both */
6211         if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
6212                    !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
6213                 return -EINVAL;
6214         }
6215
6216         chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
6217         if (!chip->data_buf)
6218                 return -ENOMEM;
6219
6220         /*
6221          * FIXME: some NAND manufacturer drivers expect the first die to be
6222          * selected when manufacturer->init() is called. They should be fixed
6223          * to explictly select the relevant die when interacting with the NAND
6224          * chip.
6225          */
6226         nand_select_target(chip, 0);
6227         ret = nand_manufacturer_init(chip);
6228         nand_deselect_target(chip);
6229         if (ret)
6230                 goto err_free_buf;
6231
6232         /* Set the internal oob buffer location, just after the page data */
6233         chip->oob_poi = chip->data_buf + mtd->writesize;
6234
6235         /*
6236          * If no default placement scheme is given, select an appropriate one.
6237          */
6238         if (!mtd->ooblayout &&
6239             !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6240               ecc->algo == NAND_ECC_ALGO_BCH) &&
6241             !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6242               ecc->algo == NAND_ECC_ALGO_HAMMING)) {
6243                 switch (mtd->oobsize) {
6244                 case 8:
6245                 case 16:
6246                         mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
6247                         break;
6248                 case 64:
6249                 case 128:
6250                         mtd_set_ooblayout(mtd,
6251                                           nand_get_large_page_hamming_ooblayout());
6252                         break;
6253                 default:
6254                         /*
6255                          * Expose the whole OOB area to users if ECC_NONE
6256                          * is passed. We could do that for all kind of
6257                          * ->oobsize, but we must keep the old large/small
6258                          * page with ECC layout when ->oobsize <= 128 for
6259                          * compatibility reasons.
6260                          */
6261                         if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
6262                                 mtd_set_ooblayout(mtd,
6263                                                   nand_get_large_page_ooblayout());
6264                                 break;
6265                         }
6266
6267                         WARN(1, "No oob scheme defined for oobsize %d\n",
6268                                 mtd->oobsize);
6269                         ret = -EINVAL;
6270                         goto err_nand_manuf_cleanup;
6271                 }
6272         }
6273
6274         /*
6275          * Check ECC mode, default to software if 3byte/512byte hardware ECC is
6276          * selected and we have 256 byte pagesize fallback to software ECC
6277          */
6278
6279         switch (ecc->engine_type) {
6280         case NAND_ECC_ENGINE_TYPE_ON_HOST:
6281                 ret = nand_set_ecc_on_host_ops(chip);
6282                 if (ret)
6283                         goto err_nand_manuf_cleanup;
6284
6285                 if (mtd->writesize >= ecc->size) {
6286                         if (!ecc->strength) {
6287                                 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6288                                 ret = -EINVAL;
6289                                 goto err_nand_manuf_cleanup;
6290                         }
6291                         break;
6292                 }
6293                 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6294                         ecc->size, mtd->writesize);
6295                 ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
6296                 ecc->algo = NAND_ECC_ALGO_HAMMING;
6297                 fallthrough;
6298
6299         case NAND_ECC_ENGINE_TYPE_SOFT:
6300                 ret = nand_set_ecc_soft_ops(chip);
6301                 if (ret)
6302                         goto err_nand_manuf_cleanup;
6303                 break;
6304
6305         case NAND_ECC_ENGINE_TYPE_ON_DIE:
6306                 if (!ecc->read_page || !ecc->write_page) {
6307                         WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6308                         ret = -EINVAL;
6309                         goto err_nand_manuf_cleanup;
6310                 }
6311                 if (!ecc->read_oob)
6312                         ecc->read_oob = nand_read_oob_std;
6313                 if (!ecc->write_oob)
6314                         ecc->write_oob = nand_write_oob_std;
6315                 break;
6316
6317         case NAND_ECC_ENGINE_TYPE_NONE:
6318                 pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
6319                 ecc->read_page = nand_read_page_raw;
6320                 ecc->write_page = nand_write_page_raw;
6321                 ecc->read_oob = nand_read_oob_std;
6322                 ecc->read_page_raw = nand_read_page_raw;
6323                 ecc->write_page_raw = nand_write_page_raw;
6324                 ecc->write_oob = nand_write_oob_std;
6325                 ecc->size = mtd->writesize;
6326                 ecc->bytes = 0;
6327                 ecc->strength = 0;
6328                 break;
6329
6330         default:
6331                 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
6332                 ret = -EINVAL;
6333                 goto err_nand_manuf_cleanup;
6334         }
6335
6336         if (ecc->correct || ecc->calculate) {
6337                 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6338                 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6339                 if (!ecc->calc_buf || !ecc->code_buf) {
6340                         ret = -ENOMEM;
6341                         goto err_nand_manuf_cleanup;
6342                 }
6343         }
6344
6345         /* For many systems, the standard OOB write also works for raw */
6346         if (!ecc->read_oob_raw)
6347                 ecc->read_oob_raw = ecc->read_oob;
6348         if (!ecc->write_oob_raw)
6349                 ecc->write_oob_raw = ecc->write_oob;
6350
6351         /* propagate ecc info to mtd_info */
6352         mtd->ecc_strength = ecc->strength;
6353         mtd->ecc_step_size = ecc->size;
6354
6355         /*
6356          * Set the number of read / write steps for one page depending on ECC
6357          * mode.
6358          */
6359         if (!ecc->steps)
6360                 ecc->steps = mtd->writesize / ecc->size;
6361         if (ecc->steps * ecc->size != mtd->writesize) {
6362                 WARN(1, "Invalid ECC parameters\n");
6363                 ret = -EINVAL;
6364                 goto err_nand_manuf_cleanup;
6365         }
6366
6367         if (!ecc->total) {
6368                 ecc->total = ecc->steps * ecc->bytes;
6369                 chip->base.ecc.ctx.total = ecc->total;
6370         }
6371
6372         if (ecc->total > mtd->oobsize) {
6373                 WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6374                 ret = -EINVAL;
6375                 goto err_nand_manuf_cleanup;
6376         }
6377
6378         /*
6379          * The number of bytes available for a client to place data into
6380          * the out of band area.
6381          */
6382         ret = mtd_ooblayout_count_freebytes(mtd);
6383         if (ret < 0)
6384                 ret = 0;
6385
6386         mtd->oobavail = ret;
6387
6388         /* ECC sanity check: warn if it's too weak */
6389         if (!nand_ecc_is_strong_enough(&chip->base))
6390                 pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
6391                         mtd->name, chip->ecc.strength, chip->ecc.size,
6392                         nanddev_get_ecc_requirements(&chip->base)->strength,
6393                         nanddev_get_ecc_requirements(&chip->base)->step_size);
6394
6395         /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
6396         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
6397                 switch (ecc->steps) {
6398                 case 2:
6399                         mtd->subpage_sft = 1;
6400                         break;
6401                 case 4:
6402                 case 8:
6403                 case 16:
6404                         mtd->subpage_sft = 2;
6405                         break;
6406                 }
6407         }
6408         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6409
6410         /* Invalidate the pagebuffer reference */
6411         chip->pagecache.page = -1;
6412
6413         /* Large page NAND with SOFT_ECC should support subpage reads */
6414         switch (ecc->engine_type) {
6415         case NAND_ECC_ENGINE_TYPE_SOFT:
6416                 if (chip->page_shift > 9)
6417                         chip->options |= NAND_SUBPAGE_READ;
6418                 break;
6419
6420         default:
6421                 break;
6422         }
6423
6424         ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
6425         if (ret)
6426                 goto err_nand_manuf_cleanup;
6427
6428         /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
6429         if (chip->options & NAND_ROM)
6430                 mtd->flags = MTD_CAP_ROM;
6431
6432         /* Fill in remaining MTD driver data */
6433         mtd->_erase = nand_erase;
6434         mtd->_point = NULL;
6435         mtd->_unpoint = NULL;
6436         mtd->_panic_write = panic_nand_write;
6437         mtd->_read_oob = nand_read_oob;
6438         mtd->_write_oob = nand_write_oob;
6439         mtd->_sync = nand_sync;
6440         mtd->_lock = nand_lock;
6441         mtd->_unlock = nand_unlock;
6442         mtd->_suspend = nand_suspend;
6443         mtd->_resume = nand_resume;
6444         mtd->_reboot = nand_shutdown;
6445         mtd->_block_isreserved = nand_block_isreserved;
6446         mtd->_block_isbad = nand_block_isbad;
6447         mtd->_block_markbad = nand_block_markbad;
6448         mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
6449
6450         /*
6451          * Initialize bitflip_threshold to its default prior scan_bbt() call.
6452          * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6453          * properly set.
6454          */
6455         if (!mtd->bitflip_threshold)
6456                 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6457
6458         /* Find the fastest data interface for this chip */
6459         ret = nand_choose_interface_config(chip);
6460         if (ret)
6461                 goto err_nanddev_cleanup;
6462
6463         /* Enter fastest possible mode on all dies. */
6464         for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
6465                 ret = nand_setup_interface(chip, i);
6466                 if (ret)
6467                         goto err_free_interface_config;
6468         }
6469
6470         rawnand_late_check_supported_ops(chip);
6471
6472         /*
6473          * Look for secure regions in the NAND chip. These regions are supposed
6474          * to be protected by a secure element like Trustzone. So the read/write
6475          * accesses to these regions will be blocked in the runtime by this
6476          * driver.
6477          */
6478         ret = of_get_nand_secure_regions(chip);
6479         if (ret)
6480                 goto err_free_interface_config;
6481
6482         /* Check, if we should skip the bad block table scan */
6483         if (chip->options & NAND_SKIP_BBTSCAN)
6484                 return 0;
6485
6486         /* Build bad block table */
6487         ret = nand_create_bbt(chip);
6488         if (ret)
6489                 goto err_free_secure_regions;
6490
6491         return 0;
6492
6493 err_free_secure_regions:
6494         kfree(chip->secure_regions);
6495
6496 err_free_interface_config:
6497         kfree(chip->best_interface_config);
6498
6499 err_nanddev_cleanup:
6500         nanddev_cleanup(&chip->base);
6501
6502 err_nand_manuf_cleanup:
6503         nand_manufacturer_cleanup(chip);
6504
6505 err_free_buf:
6506         kfree(chip->data_buf);
6507         kfree(ecc->code_buf);
6508         kfree(ecc->calc_buf);
6509
6510         return ret;
6511 }
6512
6513 static int nand_attach(struct nand_chip *chip)
6514 {
6515         if (chip->controller->ops && chip->controller->ops->attach_chip)
6516                 return chip->controller->ops->attach_chip(chip);
6517
6518         return 0;
6519 }
6520
6521 static void nand_detach(struct nand_chip *chip)
6522 {
6523         if (chip->controller->ops && chip->controller->ops->detach_chip)
6524                 chip->controller->ops->detach_chip(chip);
6525 }
6526
6527 /**
6528  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6529  * @chip: NAND chip object
6530  * @maxchips: number of chips to scan for.
6531  * @ids: optional flash IDs table
6532  *
6533  * This fills out all the uninitialized function pointers with the defaults.
6534  * The flash ID is read and the mtd/chip structures are filled with the
6535  * appropriate values.
6536  */
6537 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6538                        struct nand_flash_dev *ids)
6539 {
6540         int ret;
6541
6542         if (!maxchips)
6543                 return -EINVAL;
6544
6545         ret = nand_scan_ident(chip, maxchips, ids);
6546         if (ret)
6547                 return ret;
6548
6549         ret = nand_attach(chip);
6550         if (ret)
6551                 goto cleanup_ident;
6552
6553         ret = nand_scan_tail(chip);
6554         if (ret)
6555                 goto detach_chip;
6556
6557         return 0;
6558
6559 detach_chip:
6560         nand_detach(chip);
6561 cleanup_ident:
6562         nand_scan_ident_cleanup(chip);
6563
6564         return ret;
6565 }
6566 EXPORT_SYMBOL(nand_scan_with_ids);
6567
6568 /**
6569  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6570  * @chip: NAND chip object
6571  */
6572 void nand_cleanup(struct nand_chip *chip)
6573 {
6574         if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
6575                 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
6576                         rawnand_sw_hamming_cleanup(chip);
6577                 else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
6578                         rawnand_sw_bch_cleanup(chip);
6579         }
6580
6581         nanddev_cleanup(&chip->base);
6582
6583         /* Free secure regions data */
6584         kfree(chip->secure_regions);
6585
6586         /* Free bad block table memory */
6587         kfree(chip->bbt);
6588         kfree(chip->data_buf);
6589         kfree(chip->ecc.code_buf);
6590         kfree(chip->ecc.calc_buf);
6591
6592         /* Free bad block descriptor memory */
6593         if (chip->badblock_pattern && chip->badblock_pattern->options
6594                         & NAND_BBT_DYNAMICSTRUCT)
6595                 kfree(chip->badblock_pattern);
6596
6597         /* Free the data interface */
6598         kfree(chip->best_interface_config);
6599
6600         /* Free manufacturer priv data. */
6601         nand_manufacturer_cleanup(chip);
6602
6603         /* Free controller specific allocations after chip identification */
6604         nand_detach(chip);
6605
6606         /* Free identification phase allocations */
6607         nand_scan_ident_cleanup(chip);
6608 }
6609
6610 EXPORT_SYMBOL_GPL(nand_cleanup);
6611
6612 MODULE_LICENSE("GPL");
6613 MODULE_AUTHOR("Steven J. Hill <[email protected]>");
6614 MODULE_AUTHOR("Thomas Gleixner <[email protected]>");
6615 MODULE_DESCRIPTION("Generic NAND flash driver code");
This page took 0.430365 seconds and 4 git commands to generate.