2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
24 #include "kvm_cache_regs.h"
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
40 #include <asm/cmpxchg.h>
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
51 bool tdp_enabled = false;
55 AUDIT_POST_PAGE_FAULT,
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
78 module_param(dbg, bool, 0644);
82 #define ASSERT(x) do { } while (0)
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
91 #define PTE_PREFETCH_NUM 8
93 #define PT_FIRST_AVAIL_BITS_SHIFT 9
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
96 #define PT64_LEVEL_BITS 9
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
105 #define PT32_LEVEL_BITS 10
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
138 #define PTE_LIST_EXT 4
140 #define ACC_EXEC_MASK 1
141 #define ACC_WRITE_MASK PT_WRITABLE_MASK
142 #define ACC_USER_MASK PT_USER_MASK
143 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
145 #include <trace/events/kvm.h>
147 #define CREATE_TRACE_POINTS
148 #include "mmutrace.h"
150 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
152 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
154 struct pte_list_desc {
155 u64 *sptes[PTE_LIST_EXT];
156 struct pte_list_desc *more;
159 struct kvm_shadow_walk_iterator {
167 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
168 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
169 shadow_walk_okay(&(_walker)); \
170 shadow_walk_next(&(_walker)))
172 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
173 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
174 shadow_walk_okay(&(_walker)) && \
175 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
176 __shadow_walk_next(&(_walker), spte))
178 static struct kmem_cache *pte_list_desc_cache;
179 static struct kmem_cache *mmu_page_header_cache;
180 static struct percpu_counter kvm_total_used_mmu_pages;
182 static u64 __read_mostly shadow_nx_mask;
183 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
184 static u64 __read_mostly shadow_user_mask;
185 static u64 __read_mostly shadow_accessed_mask;
186 static u64 __read_mostly shadow_dirty_mask;
187 static u64 __read_mostly shadow_mmio_mask;
189 static void mmu_spte_set(u64 *sptep, u64 spte);
191 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
193 shadow_mmio_mask = mmio_mask;
195 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
197 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
199 access &= ACC_WRITE_MASK | ACC_USER_MASK;
201 trace_mark_mmio_spte(sptep, gfn, access);
202 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
205 static bool is_mmio_spte(u64 spte)
207 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
210 static gfn_t get_mmio_spte_gfn(u64 spte)
212 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
215 static unsigned get_mmio_spte_access(u64 spte)
217 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
220 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
222 if (unlikely(is_noslot_pfn(pfn))) {
223 mark_mmio_spte(sptep, gfn, access);
230 static inline u64 rsvd_bits(int s, int e)
232 return ((1ULL << (e - s + 1)) - 1) << s;
235 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
236 u64 dirty_mask, u64 nx_mask, u64 x_mask)
238 shadow_user_mask = user_mask;
239 shadow_accessed_mask = accessed_mask;
240 shadow_dirty_mask = dirty_mask;
241 shadow_nx_mask = nx_mask;
242 shadow_x_mask = x_mask;
244 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
246 static int is_cpuid_PSE36(void)
251 static int is_nx(struct kvm_vcpu *vcpu)
253 return vcpu->arch.efer & EFER_NX;
256 static int is_shadow_present_pte(u64 pte)
258 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
261 static int is_large_pte(u64 pte)
263 return pte & PT_PAGE_SIZE_MASK;
266 static int is_dirty_gpte(unsigned long pte)
268 return pte & PT_DIRTY_MASK;
271 static int is_rmap_spte(u64 pte)
273 return is_shadow_present_pte(pte);
276 static int is_last_spte(u64 pte, int level)
278 if (level == PT_PAGE_TABLE_LEVEL)
280 if (is_large_pte(pte))
285 static pfn_t spte_to_pfn(u64 pte)
287 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
290 static gfn_t pse36_gfn_delta(u32 gpte)
292 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
294 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298 static void __set_spte(u64 *sptep, u64 spte)
303 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
308 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
310 return xchg(sptep, spte);
313 static u64 __get_spte_lockless(u64 *sptep)
315 return ACCESS_ONCE(*sptep);
318 static bool __check_direct_spte_mmio_pf(u64 spte)
320 /* It is valid if the spte is zapped. */
332 static void count_spte_clear(u64 *sptep, u64 spte)
334 struct kvm_mmu_page *sp = page_header(__pa(sptep));
336 if (is_shadow_present_pte(spte))
339 /* Ensure the spte is completely set before we increase the count */
341 sp->clear_spte_count++;
344 static void __set_spte(u64 *sptep, u64 spte)
346 union split_spte *ssptep, sspte;
348 ssptep = (union split_spte *)sptep;
349 sspte = (union split_spte)spte;
351 ssptep->spte_high = sspte.spte_high;
354 * If we map the spte from nonpresent to present, We should store
355 * the high bits firstly, then set present bit, so cpu can not
356 * fetch this spte while we are setting the spte.
360 ssptep->spte_low = sspte.spte_low;
363 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
365 union split_spte *ssptep, sspte;
367 ssptep = (union split_spte *)sptep;
368 sspte = (union split_spte)spte;
370 ssptep->spte_low = sspte.spte_low;
373 * If we map the spte from present to nonpresent, we should clear
374 * present bit firstly to avoid vcpu fetch the old high bits.
378 ssptep->spte_high = sspte.spte_high;
379 count_spte_clear(sptep, spte);
382 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
384 union split_spte *ssptep, sspte, orig;
386 ssptep = (union split_spte *)sptep;
387 sspte = (union split_spte)spte;
389 /* xchg acts as a barrier before the setting of the high bits */
390 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
391 orig.spte_high = ssptep->spte_high;
392 ssptep->spte_high = sspte.spte_high;
393 count_spte_clear(sptep, spte);
399 * The idea using the light way get the spte on x86_32 guest is from
400 * gup_get_pte(arch/x86/mm/gup.c).
401 * The difference is we can not catch the spte tlb flush if we leave
402 * guest mode, so we emulate it by increase clear_spte_count when spte
405 static u64 __get_spte_lockless(u64 *sptep)
407 struct kvm_mmu_page *sp = page_header(__pa(sptep));
408 union split_spte spte, *orig = (union split_spte *)sptep;
412 count = sp->clear_spte_count;
415 spte.spte_low = orig->spte_low;
418 spte.spte_high = orig->spte_high;
421 if (unlikely(spte.spte_low != orig->spte_low ||
422 count != sp->clear_spte_count))
428 static bool __check_direct_spte_mmio_pf(u64 spte)
430 union split_spte sspte = (union split_spte)spte;
431 u32 high_mmio_mask = shadow_mmio_mask >> 32;
433 /* It is valid if the spte is zapped. */
437 /* It is valid if the spte is being zapped. */
438 if (sspte.spte_low == 0ull &&
439 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
446 static bool spte_has_volatile_bits(u64 spte)
448 if (!shadow_accessed_mask)
451 if (!is_shadow_present_pte(spte))
454 if ((spte & shadow_accessed_mask) &&
455 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
461 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
463 return (old_spte & bit_mask) && !(new_spte & bit_mask);
466 /* Rules for using mmu_spte_set:
467 * Set the sptep from nonpresent to present.
468 * Note: the sptep being assigned *must* be either not present
469 * or in a state where the hardware will not attempt to update
472 static void mmu_spte_set(u64 *sptep, u64 new_spte)
474 WARN_ON(is_shadow_present_pte(*sptep));
475 __set_spte(sptep, new_spte);
478 /* Rules for using mmu_spte_update:
479 * Update the state bits, it means the mapped pfn is not changged.
481 static void mmu_spte_update(u64 *sptep, u64 new_spte)
483 u64 mask, old_spte = *sptep;
485 WARN_ON(!is_rmap_spte(new_spte));
487 if (!is_shadow_present_pte(old_spte))
488 return mmu_spte_set(sptep, new_spte);
490 new_spte |= old_spte & shadow_dirty_mask;
492 mask = shadow_accessed_mask;
493 if (is_writable_pte(old_spte))
494 mask |= shadow_dirty_mask;
496 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
497 __update_clear_spte_fast(sptep, new_spte);
499 old_spte = __update_clear_spte_slow(sptep, new_spte);
501 if (!shadow_accessed_mask)
504 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
505 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
506 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
507 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
511 * Rules for using mmu_spte_clear_track_bits:
512 * It sets the sptep from present to nonpresent, and track the
513 * state bits, it is used to clear the last level sptep.
515 static int mmu_spte_clear_track_bits(u64 *sptep)
518 u64 old_spte = *sptep;
520 if (!spte_has_volatile_bits(old_spte))
521 __update_clear_spte_fast(sptep, 0ull);
523 old_spte = __update_clear_spte_slow(sptep, 0ull);
525 if (!is_rmap_spte(old_spte))
528 pfn = spte_to_pfn(old_spte);
529 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
530 kvm_set_pfn_accessed(pfn);
531 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
532 kvm_set_pfn_dirty(pfn);
537 * Rules for using mmu_spte_clear_no_track:
538 * Directly clear spte without caring the state bits of sptep,
539 * it is used to set the upper level spte.
541 static void mmu_spte_clear_no_track(u64 *sptep)
543 __update_clear_spte_fast(sptep, 0ull);
546 static u64 mmu_spte_get_lockless(u64 *sptep)
548 return __get_spte_lockless(sptep);
551 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
554 atomic_inc(&vcpu->kvm->arch.reader_counter);
556 /* Increase the counter before walking shadow page table */
557 smp_mb__after_atomic_inc();
560 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
562 /* Decrease the counter after walking shadow page table finished */
563 smp_mb__before_atomic_dec();
564 atomic_dec(&vcpu->kvm->arch.reader_counter);
568 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
569 struct kmem_cache *base_cache, int min)
573 if (cache->nobjs >= min)
575 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
576 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
579 cache->objects[cache->nobjs++] = obj;
584 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
589 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
590 struct kmem_cache *cache)
593 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
596 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
601 if (cache->nobjs >= min)
603 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
604 page = (void *)__get_free_page(GFP_KERNEL);
607 cache->objects[cache->nobjs++] = page;
612 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
615 free_page((unsigned long)mc->objects[--mc->nobjs]);
618 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
622 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
623 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
626 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
629 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
630 mmu_page_header_cache, 4);
635 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
637 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
638 pte_list_desc_cache);
639 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
640 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
641 mmu_page_header_cache);
644 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
650 p = mc->objects[--mc->nobjs];
654 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
656 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
657 sizeof(struct pte_list_desc));
660 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
662 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
665 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
667 if (!sp->role.direct)
668 return sp->gfns[index];
670 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
673 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
676 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
678 sp->gfns[index] = gfn;
682 * Return the pointer to the large page information for a given gfn,
683 * handling slots that are not large page aligned.
685 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
686 struct kvm_memory_slot *slot,
691 idx = gfn_to_index(gfn, slot->base_gfn, level);
692 return &slot->arch.lpage_info[level - 2][idx];
695 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
697 struct kvm_memory_slot *slot;
698 struct kvm_lpage_info *linfo;
701 slot = gfn_to_memslot(kvm, gfn);
702 for (i = PT_DIRECTORY_LEVEL;
703 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
704 linfo = lpage_info_slot(gfn, slot, i);
705 linfo->write_count += 1;
707 kvm->arch.indirect_shadow_pages++;
710 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
712 struct kvm_memory_slot *slot;
713 struct kvm_lpage_info *linfo;
716 slot = gfn_to_memslot(kvm, gfn);
717 for (i = PT_DIRECTORY_LEVEL;
718 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
719 linfo = lpage_info_slot(gfn, slot, i);
720 linfo->write_count -= 1;
721 WARN_ON(linfo->write_count < 0);
723 kvm->arch.indirect_shadow_pages--;
726 static int has_wrprotected_page(struct kvm *kvm,
730 struct kvm_memory_slot *slot;
731 struct kvm_lpage_info *linfo;
733 slot = gfn_to_memslot(kvm, gfn);
735 linfo = lpage_info_slot(gfn, slot, level);
736 return linfo->write_count;
742 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
744 unsigned long page_size;
747 page_size = kvm_host_page_size(kvm, gfn);
749 for (i = PT_PAGE_TABLE_LEVEL;
750 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
751 if (page_size >= KVM_HPAGE_SIZE(i))
760 static struct kvm_memory_slot *
761 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
764 struct kvm_memory_slot *slot;
766 slot = gfn_to_memslot(vcpu->kvm, gfn);
767 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
768 (no_dirty_log && slot->dirty_bitmap))
774 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
776 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
779 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
781 int host_level, level, max_level;
783 host_level = host_mapping_level(vcpu->kvm, large_gfn);
785 if (host_level == PT_PAGE_TABLE_LEVEL)
788 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
789 kvm_x86_ops->get_lpage_level() : host_level;
791 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
792 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
799 * Pte mapping structures:
801 * If pte_list bit zero is zero, then pte_list point to the spte.
803 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
804 * pte_list_desc containing more mappings.
806 * Returns the number of pte entries before the spte was added or zero if
807 * the spte was not added.
810 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
811 unsigned long *pte_list)
813 struct pte_list_desc *desc;
817 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
818 *pte_list = (unsigned long)spte;
819 } else if (!(*pte_list & 1)) {
820 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
821 desc = mmu_alloc_pte_list_desc(vcpu);
822 desc->sptes[0] = (u64 *)*pte_list;
823 desc->sptes[1] = spte;
824 *pte_list = (unsigned long)desc | 1;
827 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
828 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
829 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
831 count += PTE_LIST_EXT;
833 if (desc->sptes[PTE_LIST_EXT-1]) {
834 desc->more = mmu_alloc_pte_list_desc(vcpu);
837 for (i = 0; desc->sptes[i]; ++i)
839 desc->sptes[i] = spte;
844 static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
846 struct pte_list_desc *desc;
852 else if (!(*pte_list & 1)) {
854 return (u64 *)*pte_list;
857 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
860 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
861 if (prev_spte == spte)
862 return desc->sptes[i];
863 prev_spte = desc->sptes[i];
871 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
872 int i, struct pte_list_desc *prev_desc)
876 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
878 desc->sptes[i] = desc->sptes[j];
879 desc->sptes[j] = NULL;
882 if (!prev_desc && !desc->more)
883 *pte_list = (unsigned long)desc->sptes[0];
886 prev_desc->more = desc->more;
888 *pte_list = (unsigned long)desc->more | 1;
889 mmu_free_pte_list_desc(desc);
892 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
894 struct pte_list_desc *desc;
895 struct pte_list_desc *prev_desc;
899 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
901 } else if (!(*pte_list & 1)) {
902 rmap_printk("pte_list_remove: %p 1->0\n", spte);
903 if ((u64 *)*pte_list != spte) {
904 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
909 rmap_printk("pte_list_remove: %p many->many\n", spte);
910 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
913 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
914 if (desc->sptes[i] == spte) {
915 pte_list_desc_remove_entry(pte_list,
923 pr_err("pte_list_remove: %p many->many\n", spte);
928 typedef void (*pte_list_walk_fn) (u64 *spte);
929 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
931 struct pte_list_desc *desc;
937 if (!(*pte_list & 1))
938 return fn((u64 *)*pte_list);
940 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
942 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
948 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
949 struct kvm_memory_slot *slot)
951 struct kvm_lpage_info *linfo;
953 if (likely(level == PT_PAGE_TABLE_LEVEL))
954 return &slot->rmap[gfn - slot->base_gfn];
956 linfo = lpage_info_slot(gfn, slot, level);
957 return &linfo->rmap_pde;
961 * Take gfn and return the reverse mapping to it.
963 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
965 struct kvm_memory_slot *slot;
967 slot = gfn_to_memslot(kvm, gfn);
968 return __gfn_to_rmap(gfn, level, slot);
971 static bool rmap_can_add(struct kvm_vcpu *vcpu)
973 struct kvm_mmu_memory_cache *cache;
975 cache = &vcpu->arch.mmu_pte_list_desc_cache;
976 return mmu_memory_cache_free_objects(cache);
979 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
981 struct kvm_mmu_page *sp;
982 unsigned long *rmapp;
984 sp = page_header(__pa(spte));
985 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
986 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
987 return pte_list_add(vcpu, spte, rmapp);
990 static u64 *rmap_next(unsigned long *rmapp, u64 *spte)
992 return pte_list_next(rmapp, spte);
995 static void rmap_remove(struct kvm *kvm, u64 *spte)
997 struct kvm_mmu_page *sp;
999 unsigned long *rmapp;
1001 sp = page_header(__pa(spte));
1002 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1003 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1004 pte_list_remove(spte, rmapp);
1007 static void drop_spte(struct kvm *kvm, u64 *sptep)
1009 if (mmu_spte_clear_track_bits(sptep))
1010 rmap_remove(kvm, sptep);
1013 int kvm_mmu_rmap_write_protect(struct kvm *kvm, u64 gfn,
1014 struct kvm_memory_slot *slot)
1016 unsigned long *rmapp;
1018 int i, write_protected = 0;
1020 rmapp = __gfn_to_rmap(gfn, PT_PAGE_TABLE_LEVEL, slot);
1021 spte = rmap_next(rmapp, NULL);
1023 BUG_ON(!(*spte & PT_PRESENT_MASK));
1024 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
1025 if (is_writable_pte(*spte)) {
1026 mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
1027 write_protected = 1;
1029 spte = rmap_next(rmapp, spte);
1032 /* check for huge page mappings */
1033 for (i = PT_DIRECTORY_LEVEL;
1034 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1035 rmapp = __gfn_to_rmap(gfn, i, slot);
1036 spte = rmap_next(rmapp, NULL);
1038 BUG_ON(!(*spte & PT_PRESENT_MASK));
1039 BUG_ON(!is_large_pte(*spte));
1040 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
1041 if (is_writable_pte(*spte)) {
1042 drop_spte(kvm, spte);
1045 write_protected = 1;
1047 spte = rmap_next(rmapp, spte);
1051 return write_protected;
1054 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1056 struct kvm_memory_slot *slot;
1058 slot = gfn_to_memslot(kvm, gfn);
1059 return kvm_mmu_rmap_write_protect(kvm, gfn, slot);
1062 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1066 int need_tlb_flush = 0;
1068 while ((spte = rmap_next(rmapp, NULL))) {
1069 BUG_ON(!(*spte & PT_PRESENT_MASK));
1070 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
1071 drop_spte(kvm, spte);
1074 return need_tlb_flush;
1077 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1081 u64 *spte, new_spte;
1082 pte_t *ptep = (pte_t *)data;
1085 WARN_ON(pte_huge(*ptep));
1086 new_pfn = pte_pfn(*ptep);
1087 spte = rmap_next(rmapp, NULL);
1089 BUG_ON(!is_shadow_present_pte(*spte));
1090 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
1092 if (pte_write(*ptep)) {
1093 drop_spte(kvm, spte);
1094 spte = rmap_next(rmapp, NULL);
1096 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
1097 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1099 new_spte &= ~PT_WRITABLE_MASK;
1100 new_spte &= ~SPTE_HOST_WRITEABLE;
1101 new_spte &= ~shadow_accessed_mask;
1102 mmu_spte_clear_track_bits(spte);
1103 mmu_spte_set(spte, new_spte);
1104 spte = rmap_next(rmapp, spte);
1108 kvm_flush_remote_tlbs(kvm);
1113 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1115 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1116 unsigned long data))
1121 struct kvm_memslots *slots;
1122 struct kvm_memory_slot *memslot;
1124 slots = kvm_memslots(kvm);
1126 kvm_for_each_memslot(memslot, slots) {
1127 unsigned long start = memslot->userspace_addr;
1130 end = start + (memslot->npages << PAGE_SHIFT);
1131 if (hva >= start && hva < end) {
1132 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
1133 gfn_t gfn = memslot->base_gfn + gfn_offset;
1135 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
1137 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
1138 struct kvm_lpage_info *linfo;
1140 linfo = lpage_info_slot(gfn, memslot,
1141 PT_DIRECTORY_LEVEL + j);
1142 ret |= handler(kvm, &linfo->rmap_pde, data);
1144 trace_kvm_age_page(hva, memslot, ret);
1152 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1154 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1157 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1159 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1162 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1169 * Emulate the accessed bit for EPT, by checking if this page has
1170 * an EPT mapping, and clearing it if it does. On the next access,
1171 * a new EPT mapping will be established.
1172 * This has some overhead, but not as much as the cost of swapping
1173 * out actively used pages or breaking up actively used hugepages.
1175 if (!shadow_accessed_mask)
1176 return kvm_unmap_rmapp(kvm, rmapp, data);
1178 spte = rmap_next(rmapp, NULL);
1182 BUG_ON(!(_spte & PT_PRESENT_MASK));
1183 _young = _spte & PT_ACCESSED_MASK;
1186 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1188 spte = rmap_next(rmapp, spte);
1193 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1200 * If there's no access bit in the secondary pte set by the
1201 * hardware it's up to gup-fast/gup to set the access bit in
1202 * the primary pte or in the page structure.
1204 if (!shadow_accessed_mask)
1207 spte = rmap_next(rmapp, NULL);
1210 BUG_ON(!(_spte & PT_PRESENT_MASK));
1211 young = _spte & PT_ACCESSED_MASK;
1216 spte = rmap_next(rmapp, spte);
1222 #define RMAP_RECYCLE_THRESHOLD 1000
1224 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1226 unsigned long *rmapp;
1227 struct kvm_mmu_page *sp;
1229 sp = page_header(__pa(spte));
1231 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1233 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1234 kvm_flush_remote_tlbs(vcpu->kvm);
1237 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1239 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1242 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1244 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1248 static int is_empty_shadow_page(u64 *spt)
1253 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1254 if (is_shadow_present_pte(*pos)) {
1255 printk(KERN_ERR "%s: %p %llx\n", __func__,
1264 * This value is the sum of all of the kvm instances's
1265 * kvm->arch.n_used_mmu_pages values. We need a global,
1266 * aggregate version in order to make the slab shrinker
1269 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1271 kvm->arch.n_used_mmu_pages += nr;
1272 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1276 * Remove the sp from shadow page cache, after call it,
1277 * we can not find this sp from the cache, and the shadow
1278 * page table is still valid.
1279 * It should be under the protection of mmu lock.
1281 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1283 ASSERT(is_empty_shadow_page(sp->spt));
1284 hlist_del(&sp->hash_link);
1285 if (!sp->role.direct)
1286 free_page((unsigned long)sp->gfns);
1290 * Free the shadow page table and the sp, we can do it
1291 * out of the protection of mmu lock.
1293 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1295 list_del(&sp->link);
1296 free_page((unsigned long)sp->spt);
1297 kmem_cache_free(mmu_page_header_cache, sp);
1300 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1302 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1305 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1306 struct kvm_mmu_page *sp, u64 *parent_pte)
1311 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1314 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1317 pte_list_remove(parent_pte, &sp->parent_ptes);
1320 static void drop_parent_pte(struct kvm_mmu_page *sp,
1323 mmu_page_remove_parent_pte(sp, parent_pte);
1324 mmu_spte_clear_no_track(parent_pte);
1327 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1328 u64 *parent_pte, int direct)
1330 struct kvm_mmu_page *sp;
1331 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1333 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1335 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1337 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1338 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1339 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1340 sp->parent_ptes = 0;
1341 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1342 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1346 static void mark_unsync(u64 *spte);
1347 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1349 pte_list_walk(&sp->parent_ptes, mark_unsync);
1352 static void mark_unsync(u64 *spte)
1354 struct kvm_mmu_page *sp;
1357 sp = page_header(__pa(spte));
1358 index = spte - sp->spt;
1359 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1361 if (sp->unsync_children++)
1363 kvm_mmu_mark_parents_unsync(sp);
1366 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1367 struct kvm_mmu_page *sp)
1372 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1376 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1377 struct kvm_mmu_page *sp, u64 *spte,
1383 #define KVM_PAGE_ARRAY_NR 16
1385 struct kvm_mmu_pages {
1386 struct mmu_page_and_offset {
1387 struct kvm_mmu_page *sp;
1389 } page[KVM_PAGE_ARRAY_NR];
1393 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1399 for (i=0; i < pvec->nr; i++)
1400 if (pvec->page[i].sp == sp)
1403 pvec->page[pvec->nr].sp = sp;
1404 pvec->page[pvec->nr].idx = idx;
1406 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1409 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1410 struct kvm_mmu_pages *pvec)
1412 int i, ret, nr_unsync_leaf = 0;
1414 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1415 struct kvm_mmu_page *child;
1416 u64 ent = sp->spt[i];
1418 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1419 goto clear_child_bitmap;
1421 child = page_header(ent & PT64_BASE_ADDR_MASK);
1423 if (child->unsync_children) {
1424 if (mmu_pages_add(pvec, child, i))
1427 ret = __mmu_unsync_walk(child, pvec);
1429 goto clear_child_bitmap;
1431 nr_unsync_leaf += ret;
1434 } else if (child->unsync) {
1436 if (mmu_pages_add(pvec, child, i))
1439 goto clear_child_bitmap;
1444 __clear_bit(i, sp->unsync_child_bitmap);
1445 sp->unsync_children--;
1446 WARN_ON((int)sp->unsync_children < 0);
1450 return nr_unsync_leaf;
1453 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1454 struct kvm_mmu_pages *pvec)
1456 if (!sp->unsync_children)
1459 mmu_pages_add(pvec, sp, 0);
1460 return __mmu_unsync_walk(sp, pvec);
1463 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1465 WARN_ON(!sp->unsync);
1466 trace_kvm_mmu_sync_page(sp);
1468 --kvm->stat.mmu_unsync;
1471 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1472 struct list_head *invalid_list);
1473 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1474 struct list_head *invalid_list);
1476 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1477 hlist_for_each_entry(sp, pos, \
1478 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1479 if ((sp)->gfn != (gfn)) {} else
1481 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1482 hlist_for_each_entry(sp, pos, \
1483 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1484 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1485 (sp)->role.invalid) {} else
1487 /* @sp->gfn should be write-protected at the call site */
1488 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1489 struct list_head *invalid_list, bool clear_unsync)
1491 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1492 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1497 kvm_unlink_unsync_page(vcpu->kvm, sp);
1499 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1500 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1504 kvm_mmu_flush_tlb(vcpu);
1508 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1509 struct kvm_mmu_page *sp)
1511 LIST_HEAD(invalid_list);
1514 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1516 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1521 #ifdef CONFIG_KVM_MMU_AUDIT
1522 #include "mmu_audit.c"
1524 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1525 static void mmu_audit_disable(void) { }
1528 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1529 struct list_head *invalid_list)
1531 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1534 /* @gfn should be write-protected at the call site */
1535 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1537 struct kvm_mmu_page *s;
1538 struct hlist_node *node;
1539 LIST_HEAD(invalid_list);
1542 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1546 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1547 kvm_unlink_unsync_page(vcpu->kvm, s);
1548 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1549 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1550 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1556 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1558 kvm_mmu_flush_tlb(vcpu);
1561 struct mmu_page_path {
1562 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1563 unsigned int idx[PT64_ROOT_LEVEL-1];
1566 #define for_each_sp(pvec, sp, parents, i) \
1567 for (i = mmu_pages_next(&pvec, &parents, -1), \
1568 sp = pvec.page[i].sp; \
1569 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1570 i = mmu_pages_next(&pvec, &parents, i))
1572 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1573 struct mmu_page_path *parents,
1578 for (n = i+1; n < pvec->nr; n++) {
1579 struct kvm_mmu_page *sp = pvec->page[n].sp;
1581 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1582 parents->idx[0] = pvec->page[n].idx;
1586 parents->parent[sp->role.level-2] = sp;
1587 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1593 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1595 struct kvm_mmu_page *sp;
1596 unsigned int level = 0;
1599 unsigned int idx = parents->idx[level];
1601 sp = parents->parent[level];
1605 --sp->unsync_children;
1606 WARN_ON((int)sp->unsync_children < 0);
1607 __clear_bit(idx, sp->unsync_child_bitmap);
1609 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1612 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1613 struct mmu_page_path *parents,
1614 struct kvm_mmu_pages *pvec)
1616 parents->parent[parent->role.level-1] = NULL;
1620 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1621 struct kvm_mmu_page *parent)
1624 struct kvm_mmu_page *sp;
1625 struct mmu_page_path parents;
1626 struct kvm_mmu_pages pages;
1627 LIST_HEAD(invalid_list);
1629 kvm_mmu_pages_init(parent, &parents, &pages);
1630 while (mmu_unsync_walk(parent, &pages)) {
1633 for_each_sp(pages, sp, parents, i)
1634 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1637 kvm_flush_remote_tlbs(vcpu->kvm);
1639 for_each_sp(pages, sp, parents, i) {
1640 kvm_sync_page(vcpu, sp, &invalid_list);
1641 mmu_pages_clear_parents(&parents);
1643 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1644 cond_resched_lock(&vcpu->kvm->mmu_lock);
1645 kvm_mmu_pages_init(parent, &parents, &pages);
1649 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1653 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1657 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1659 sp->write_flooding_count = 0;
1662 static void clear_sp_write_flooding_count(u64 *spte)
1664 struct kvm_mmu_page *sp = page_header(__pa(spte));
1666 __clear_sp_write_flooding_count(sp);
1669 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1677 union kvm_mmu_page_role role;
1679 struct kvm_mmu_page *sp;
1680 struct hlist_node *node;
1681 bool need_sync = false;
1683 role = vcpu->arch.mmu.base_role;
1685 role.direct = direct;
1688 role.access = access;
1689 if (!vcpu->arch.mmu.direct_map
1690 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1691 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1692 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1693 role.quadrant = quadrant;
1695 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1696 if (!need_sync && sp->unsync)
1699 if (sp->role.word != role.word)
1702 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1705 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1706 if (sp->unsync_children) {
1707 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1708 kvm_mmu_mark_parents_unsync(sp);
1709 } else if (sp->unsync)
1710 kvm_mmu_mark_parents_unsync(sp);
1712 __clear_sp_write_flooding_count(sp);
1713 trace_kvm_mmu_get_page(sp, false);
1716 ++vcpu->kvm->stat.mmu_cache_miss;
1717 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1722 hlist_add_head(&sp->hash_link,
1723 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1725 if (rmap_write_protect(vcpu->kvm, gfn))
1726 kvm_flush_remote_tlbs(vcpu->kvm);
1727 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1728 kvm_sync_pages(vcpu, gfn);
1730 account_shadowed(vcpu->kvm, gfn);
1732 init_shadow_page_table(sp);
1733 trace_kvm_mmu_get_page(sp, true);
1737 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1738 struct kvm_vcpu *vcpu, u64 addr)
1740 iterator->addr = addr;
1741 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1742 iterator->level = vcpu->arch.mmu.shadow_root_level;
1744 if (iterator->level == PT64_ROOT_LEVEL &&
1745 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1746 !vcpu->arch.mmu.direct_map)
1749 if (iterator->level == PT32E_ROOT_LEVEL) {
1750 iterator->shadow_addr
1751 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1752 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1754 if (!iterator->shadow_addr)
1755 iterator->level = 0;
1759 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1761 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1764 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1765 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1769 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1772 if (is_last_spte(spte, iterator->level)) {
1773 iterator->level = 0;
1777 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1781 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1783 return __shadow_walk_next(iterator, *iterator->sptep);
1786 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1790 spte = __pa(sp->spt)
1791 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1792 | PT_WRITABLE_MASK | PT_USER_MASK;
1793 mmu_spte_set(sptep, spte);
1796 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1798 if (is_large_pte(*sptep)) {
1799 drop_spte(vcpu->kvm, sptep);
1800 --vcpu->kvm->stat.lpages;
1801 kvm_flush_remote_tlbs(vcpu->kvm);
1805 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1806 unsigned direct_access)
1808 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1809 struct kvm_mmu_page *child;
1812 * For the direct sp, if the guest pte's dirty bit
1813 * changed form clean to dirty, it will corrupt the
1814 * sp's access: allow writable in the read-only sp,
1815 * so we should update the spte at this point to get
1816 * a new sp with the correct access.
1818 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1819 if (child->role.access == direct_access)
1822 drop_parent_pte(child, sptep);
1823 kvm_flush_remote_tlbs(vcpu->kvm);
1827 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1831 struct kvm_mmu_page *child;
1834 if (is_shadow_present_pte(pte)) {
1835 if (is_last_spte(pte, sp->role.level)) {
1836 drop_spte(kvm, spte);
1837 if (is_large_pte(pte))
1840 child = page_header(pte & PT64_BASE_ADDR_MASK);
1841 drop_parent_pte(child, spte);
1846 if (is_mmio_spte(pte))
1847 mmu_spte_clear_no_track(spte);
1852 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1853 struct kvm_mmu_page *sp)
1857 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1858 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1861 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1863 mmu_page_remove_parent_pte(sp, parent_pte);
1866 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1870 while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1871 drop_parent_pte(sp, parent_pte);
1874 static int mmu_zap_unsync_children(struct kvm *kvm,
1875 struct kvm_mmu_page *parent,
1876 struct list_head *invalid_list)
1879 struct mmu_page_path parents;
1880 struct kvm_mmu_pages pages;
1882 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1885 kvm_mmu_pages_init(parent, &parents, &pages);
1886 while (mmu_unsync_walk(parent, &pages)) {
1887 struct kvm_mmu_page *sp;
1889 for_each_sp(pages, sp, parents, i) {
1890 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1891 mmu_pages_clear_parents(&parents);
1894 kvm_mmu_pages_init(parent, &parents, &pages);
1900 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1901 struct list_head *invalid_list)
1905 trace_kvm_mmu_prepare_zap_page(sp);
1906 ++kvm->stat.mmu_shadow_zapped;
1907 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1908 kvm_mmu_page_unlink_children(kvm, sp);
1909 kvm_mmu_unlink_parents(kvm, sp);
1910 if (!sp->role.invalid && !sp->role.direct)
1911 unaccount_shadowed(kvm, sp->gfn);
1913 kvm_unlink_unsync_page(kvm, sp);
1914 if (!sp->root_count) {
1917 list_move(&sp->link, invalid_list);
1918 kvm_mod_used_mmu_pages(kvm, -1);
1920 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1921 kvm_reload_remote_mmus(kvm);
1924 sp->role.invalid = 1;
1928 static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
1930 struct kvm_mmu_page *sp;
1932 list_for_each_entry(sp, invalid_list, link)
1933 kvm_mmu_isolate_page(sp);
1936 static void free_pages_rcu(struct rcu_head *head)
1938 struct kvm_mmu_page *next, *sp;
1940 sp = container_of(head, struct kvm_mmu_page, rcu);
1942 if (!list_empty(&sp->link))
1943 next = list_first_entry(&sp->link,
1944 struct kvm_mmu_page, link);
1947 kvm_mmu_free_page(sp);
1952 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1953 struct list_head *invalid_list)
1955 struct kvm_mmu_page *sp;
1957 if (list_empty(invalid_list))
1960 kvm_flush_remote_tlbs(kvm);
1962 if (atomic_read(&kvm->arch.reader_counter)) {
1963 kvm_mmu_isolate_pages(invalid_list);
1964 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1965 list_del_init(invalid_list);
1967 trace_kvm_mmu_delay_free_pages(sp);
1968 call_rcu(&sp->rcu, free_pages_rcu);
1973 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1974 WARN_ON(!sp->role.invalid || sp->root_count);
1975 kvm_mmu_isolate_page(sp);
1976 kvm_mmu_free_page(sp);
1977 } while (!list_empty(invalid_list));
1982 * Changing the number of mmu pages allocated to the vm
1983 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1985 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1987 LIST_HEAD(invalid_list);
1989 * If we set the number of mmu pages to be smaller be than the
1990 * number of actived pages , we must to free some mmu pages before we
1994 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1995 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1996 !list_empty(&kvm->arch.active_mmu_pages)) {
1997 struct kvm_mmu_page *page;
1999 page = container_of(kvm->arch.active_mmu_pages.prev,
2000 struct kvm_mmu_page, link);
2001 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2003 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2004 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2007 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2010 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2012 struct kvm_mmu_page *sp;
2013 struct hlist_node *node;
2014 LIST_HEAD(invalid_list);
2017 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2019 spin_lock(&kvm->mmu_lock);
2020 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2021 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2024 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2026 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2027 spin_unlock(&kvm->mmu_lock);
2031 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2033 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2035 int slot = memslot_id(kvm, gfn);
2036 struct kvm_mmu_page *sp = page_header(__pa(pte));
2038 __set_bit(slot, sp->slot_bitmap);
2042 * The function is based on mtrr_type_lookup() in
2043 * arch/x86/kernel/cpu/mtrr/generic.c
2045 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2050 u8 prev_match, curr_match;
2051 int num_var_ranges = KVM_NR_VAR_MTRR;
2053 if (!mtrr_state->enabled)
2056 /* Make end inclusive end, instead of exclusive */
2059 /* Look in fixed ranges. Just return the type as per start */
2060 if (mtrr_state->have_fixed && (start < 0x100000)) {
2063 if (start < 0x80000) {
2065 idx += (start >> 16);
2066 return mtrr_state->fixed_ranges[idx];
2067 } else if (start < 0xC0000) {
2069 idx += ((start - 0x80000) >> 14);
2070 return mtrr_state->fixed_ranges[idx];
2071 } else if (start < 0x1000000) {
2073 idx += ((start - 0xC0000) >> 12);
2074 return mtrr_state->fixed_ranges[idx];
2079 * Look in variable ranges
2080 * Look of multiple ranges matching this address and pick type
2081 * as per MTRR precedence
2083 if (!(mtrr_state->enabled & 2))
2084 return mtrr_state->def_type;
2087 for (i = 0; i < num_var_ranges; ++i) {
2088 unsigned short start_state, end_state;
2090 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2093 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2094 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2095 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2096 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2098 start_state = ((start & mask) == (base & mask));
2099 end_state = ((end & mask) == (base & mask));
2100 if (start_state != end_state)
2103 if ((start & mask) != (base & mask))
2106 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2107 if (prev_match == 0xFF) {
2108 prev_match = curr_match;
2112 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2113 curr_match == MTRR_TYPE_UNCACHABLE)
2114 return MTRR_TYPE_UNCACHABLE;
2116 if ((prev_match == MTRR_TYPE_WRBACK &&
2117 curr_match == MTRR_TYPE_WRTHROUGH) ||
2118 (prev_match == MTRR_TYPE_WRTHROUGH &&
2119 curr_match == MTRR_TYPE_WRBACK)) {
2120 prev_match = MTRR_TYPE_WRTHROUGH;
2121 curr_match = MTRR_TYPE_WRTHROUGH;
2124 if (prev_match != curr_match)
2125 return MTRR_TYPE_UNCACHABLE;
2128 if (prev_match != 0xFF)
2131 return mtrr_state->def_type;
2134 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2138 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2139 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2140 if (mtrr == 0xfe || mtrr == 0xff)
2141 mtrr = MTRR_TYPE_WRBACK;
2144 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2146 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2148 trace_kvm_mmu_unsync_page(sp);
2149 ++vcpu->kvm->stat.mmu_unsync;
2152 kvm_mmu_mark_parents_unsync(sp);
2155 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2157 struct kvm_mmu_page *s;
2158 struct hlist_node *node;
2160 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2163 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2164 __kvm_unsync_page(vcpu, s);
2168 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2171 struct kvm_mmu_page *s;
2172 struct hlist_node *node;
2173 bool need_unsync = false;
2175 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2179 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2182 if (!need_unsync && !s->unsync) {
2187 kvm_unsync_pages(vcpu, gfn);
2191 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2192 unsigned pte_access, int user_fault,
2193 int write_fault, int level,
2194 gfn_t gfn, pfn_t pfn, bool speculative,
2195 bool can_unsync, bool host_writable)
2197 u64 spte, entry = *sptep;
2200 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2203 spte = PT_PRESENT_MASK;
2205 spte |= shadow_accessed_mask;
2207 if (pte_access & ACC_EXEC_MASK)
2208 spte |= shadow_x_mask;
2210 spte |= shadow_nx_mask;
2211 if (pte_access & ACC_USER_MASK)
2212 spte |= shadow_user_mask;
2213 if (level > PT_PAGE_TABLE_LEVEL)
2214 spte |= PT_PAGE_SIZE_MASK;
2216 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2217 kvm_is_mmio_pfn(pfn));
2220 spte |= SPTE_HOST_WRITEABLE;
2222 pte_access &= ~ACC_WRITE_MASK;
2224 spte |= (u64)pfn << PAGE_SHIFT;
2226 if ((pte_access & ACC_WRITE_MASK)
2227 || (!vcpu->arch.mmu.direct_map && write_fault
2228 && !is_write_protection(vcpu) && !user_fault)) {
2230 if (level > PT_PAGE_TABLE_LEVEL &&
2231 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2233 drop_spte(vcpu->kvm, sptep);
2237 spte |= PT_WRITABLE_MASK;
2239 if (!vcpu->arch.mmu.direct_map
2240 && !(pte_access & ACC_WRITE_MASK)) {
2241 spte &= ~PT_USER_MASK;
2243 * If we converted a user page to a kernel page,
2244 * so that the kernel can write to it when cr0.wp=0,
2245 * then we should prevent the kernel from executing it
2246 * if SMEP is enabled.
2248 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2249 spte |= PT64_NX_MASK;
2253 * Optimization: for pte sync, if spte was writable the hash
2254 * lookup is unnecessary (and expensive). Write protection
2255 * is responsibility of mmu_get_page / kvm_sync_page.
2256 * Same reasoning can be applied to dirty page accounting.
2258 if (!can_unsync && is_writable_pte(*sptep))
2261 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2262 pgprintk("%s: found shadow page for %llx, marking ro\n",
2265 pte_access &= ~ACC_WRITE_MASK;
2266 if (is_writable_pte(spte))
2267 spte &= ~PT_WRITABLE_MASK;
2271 if (pte_access & ACC_WRITE_MASK)
2272 mark_page_dirty(vcpu->kvm, gfn);
2275 mmu_spte_update(sptep, spte);
2277 * If we overwrite a writable spte with a read-only one we
2278 * should flush remote TLBs. Otherwise rmap_write_protect
2279 * will find a read-only spte, even though the writable spte
2280 * might be cached on a CPU's TLB.
2282 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2283 kvm_flush_remote_tlbs(vcpu->kvm);
2288 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2289 unsigned pt_access, unsigned pte_access,
2290 int user_fault, int write_fault,
2291 int *emulate, int level, gfn_t gfn,
2292 pfn_t pfn, bool speculative,
2295 int was_rmapped = 0;
2298 pgprintk("%s: spte %llx access %x write_fault %d"
2299 " user_fault %d gfn %llx\n",
2300 __func__, *sptep, pt_access,
2301 write_fault, user_fault, gfn);
2303 if (is_rmap_spte(*sptep)) {
2305 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2306 * the parent of the now unreachable PTE.
2308 if (level > PT_PAGE_TABLE_LEVEL &&
2309 !is_large_pte(*sptep)) {
2310 struct kvm_mmu_page *child;
2313 child = page_header(pte & PT64_BASE_ADDR_MASK);
2314 drop_parent_pte(child, sptep);
2315 kvm_flush_remote_tlbs(vcpu->kvm);
2316 } else if (pfn != spte_to_pfn(*sptep)) {
2317 pgprintk("hfn old %llx new %llx\n",
2318 spte_to_pfn(*sptep), pfn);
2319 drop_spte(vcpu->kvm, sptep);
2320 kvm_flush_remote_tlbs(vcpu->kvm);
2325 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2326 level, gfn, pfn, speculative, true,
2330 kvm_mmu_flush_tlb(vcpu);
2333 if (unlikely(is_mmio_spte(*sptep) && emulate))
2336 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2337 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2338 is_large_pte(*sptep)? "2MB" : "4kB",
2339 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2341 if (!was_rmapped && is_large_pte(*sptep))
2342 ++vcpu->kvm->stat.lpages;
2344 if (is_shadow_present_pte(*sptep)) {
2345 page_header_update_slot(vcpu->kvm, sptep, gfn);
2347 rmap_count = rmap_add(vcpu, sptep, gfn);
2348 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2349 rmap_recycle(vcpu, sptep, gfn);
2352 kvm_release_pfn_clean(pfn);
2355 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2359 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2362 struct kvm_memory_slot *slot;
2365 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2367 get_page(fault_page);
2368 return page_to_pfn(fault_page);
2371 hva = gfn_to_hva_memslot(slot, gfn);
2373 return hva_to_pfn_atomic(vcpu->kvm, hva);
2376 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2377 struct kvm_mmu_page *sp,
2378 u64 *start, u64 *end)
2380 struct page *pages[PTE_PREFETCH_NUM];
2381 unsigned access = sp->role.access;
2385 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2386 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2389 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2393 for (i = 0; i < ret; i++, gfn++, start++)
2394 mmu_set_spte(vcpu, start, ACC_ALL,
2396 sp->role.level, gfn,
2397 page_to_pfn(pages[i]), true, true);
2402 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2403 struct kvm_mmu_page *sp, u64 *sptep)
2405 u64 *spte, *start = NULL;
2408 WARN_ON(!sp->role.direct);
2410 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2413 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2414 if (is_shadow_present_pte(*spte) || spte == sptep) {
2417 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2425 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2427 struct kvm_mmu_page *sp;
2430 * Since it's no accessed bit on EPT, it's no way to
2431 * distinguish between actually accessed translations
2432 * and prefetched, so disable pte prefetch if EPT is
2435 if (!shadow_accessed_mask)
2438 sp = page_header(__pa(sptep));
2439 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2442 __direct_pte_prefetch(vcpu, sp, sptep);
2445 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2446 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2449 struct kvm_shadow_walk_iterator iterator;
2450 struct kvm_mmu_page *sp;
2454 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2455 if (iterator.level == level) {
2456 unsigned pte_access = ACC_ALL;
2458 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2460 level, gfn, pfn, prefault, map_writable);
2461 direct_pte_prefetch(vcpu, iterator.sptep);
2462 ++vcpu->stat.pf_fixed;
2466 if (!is_shadow_present_pte(*iterator.sptep)) {
2467 u64 base_addr = iterator.addr;
2469 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2470 pseudo_gfn = base_addr >> PAGE_SHIFT;
2471 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2473 1, ACC_ALL, iterator.sptep);
2475 pgprintk("nonpaging_map: ENOMEM\n");
2476 kvm_release_pfn_clean(pfn);
2480 mmu_spte_set(iterator.sptep,
2482 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2483 | shadow_user_mask | shadow_x_mask
2484 | shadow_accessed_mask);
2490 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2494 info.si_signo = SIGBUS;
2496 info.si_code = BUS_MCEERR_AR;
2497 info.si_addr = (void __user *)address;
2498 info.si_addr_lsb = PAGE_SHIFT;
2500 send_sig_info(SIGBUS, &info, tsk);
2503 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2505 kvm_release_pfn_clean(pfn);
2506 if (is_hwpoison_pfn(pfn)) {
2507 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2514 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2515 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2519 int level = *levelp;
2522 * Check if it's a transparent hugepage. If this would be an
2523 * hugetlbfs page, level wouldn't be set to
2524 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2527 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2528 level == PT_PAGE_TABLE_LEVEL &&
2529 PageTransCompound(pfn_to_page(pfn)) &&
2530 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2533 * mmu_notifier_retry was successful and we hold the
2534 * mmu_lock here, so the pmd can't become splitting
2535 * from under us, and in turn
2536 * __split_huge_page_refcount() can't run from under
2537 * us and we can safely transfer the refcount from
2538 * PG_tail to PG_head as we switch the pfn to tail to
2541 *levelp = level = PT_DIRECTORY_LEVEL;
2542 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2543 VM_BUG_ON((gfn & mask) != (pfn & mask));
2547 kvm_release_pfn_clean(pfn);
2549 if (!get_page_unless_zero(pfn_to_page(pfn)))
2556 static bool mmu_invalid_pfn(pfn_t pfn)
2558 return unlikely(is_invalid_pfn(pfn));
2561 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2562 pfn_t pfn, unsigned access, int *ret_val)
2566 /* The pfn is invalid, report the error! */
2567 if (unlikely(is_invalid_pfn(pfn))) {
2568 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2572 if (unlikely(is_noslot_pfn(pfn)))
2573 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2580 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2581 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2583 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2590 unsigned long mmu_seq;
2593 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2594 if (likely(!force_pt_level)) {
2595 level = mapping_level(vcpu, gfn);
2597 * This path builds a PAE pagetable - so we can map
2598 * 2mb pages at maximum. Therefore check if the level
2599 * is larger than that.
2601 if (level > PT_DIRECTORY_LEVEL)
2602 level = PT_DIRECTORY_LEVEL;
2604 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2606 level = PT_PAGE_TABLE_LEVEL;
2608 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2611 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2614 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2617 spin_lock(&vcpu->kvm->mmu_lock);
2618 if (mmu_notifier_retry(vcpu, mmu_seq))
2620 kvm_mmu_free_some_pages(vcpu);
2621 if (likely(!force_pt_level))
2622 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2623 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2625 spin_unlock(&vcpu->kvm->mmu_lock);
2631 spin_unlock(&vcpu->kvm->mmu_lock);
2632 kvm_release_pfn_clean(pfn);
2637 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2640 struct kvm_mmu_page *sp;
2641 LIST_HEAD(invalid_list);
2643 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2645 spin_lock(&vcpu->kvm->mmu_lock);
2646 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2647 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2648 vcpu->arch.mmu.direct_map)) {
2649 hpa_t root = vcpu->arch.mmu.root_hpa;
2651 sp = page_header(root);
2653 if (!sp->root_count && sp->role.invalid) {
2654 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2655 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2657 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2658 spin_unlock(&vcpu->kvm->mmu_lock);
2661 for (i = 0; i < 4; ++i) {
2662 hpa_t root = vcpu->arch.mmu.pae_root[i];
2665 root &= PT64_BASE_ADDR_MASK;
2666 sp = page_header(root);
2668 if (!sp->root_count && sp->role.invalid)
2669 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2672 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2674 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2675 spin_unlock(&vcpu->kvm->mmu_lock);
2676 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2679 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2683 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2684 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2691 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2693 struct kvm_mmu_page *sp;
2696 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2697 spin_lock(&vcpu->kvm->mmu_lock);
2698 kvm_mmu_free_some_pages(vcpu);
2699 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2702 spin_unlock(&vcpu->kvm->mmu_lock);
2703 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2704 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2705 for (i = 0; i < 4; ++i) {
2706 hpa_t root = vcpu->arch.mmu.pae_root[i];
2708 ASSERT(!VALID_PAGE(root));
2709 spin_lock(&vcpu->kvm->mmu_lock);
2710 kvm_mmu_free_some_pages(vcpu);
2711 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2713 PT32_ROOT_LEVEL, 1, ACC_ALL,
2715 root = __pa(sp->spt);
2717 spin_unlock(&vcpu->kvm->mmu_lock);
2718 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2720 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2727 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2729 struct kvm_mmu_page *sp;
2734 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2736 if (mmu_check_root(vcpu, root_gfn))
2740 * Do we shadow a long mode page table? If so we need to
2741 * write-protect the guests page table root.
2743 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2744 hpa_t root = vcpu->arch.mmu.root_hpa;
2746 ASSERT(!VALID_PAGE(root));
2748 spin_lock(&vcpu->kvm->mmu_lock);
2749 kvm_mmu_free_some_pages(vcpu);
2750 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2752 root = __pa(sp->spt);
2754 spin_unlock(&vcpu->kvm->mmu_lock);
2755 vcpu->arch.mmu.root_hpa = root;
2760 * We shadow a 32 bit page table. This may be a legacy 2-level
2761 * or a PAE 3-level page table. In either case we need to be aware that
2762 * the shadow page table may be a PAE or a long mode page table.
2764 pm_mask = PT_PRESENT_MASK;
2765 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2766 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2768 for (i = 0; i < 4; ++i) {
2769 hpa_t root = vcpu->arch.mmu.pae_root[i];
2771 ASSERT(!VALID_PAGE(root));
2772 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2773 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2774 if (!is_present_gpte(pdptr)) {
2775 vcpu->arch.mmu.pae_root[i] = 0;
2778 root_gfn = pdptr >> PAGE_SHIFT;
2779 if (mmu_check_root(vcpu, root_gfn))
2782 spin_lock(&vcpu->kvm->mmu_lock);
2783 kvm_mmu_free_some_pages(vcpu);
2784 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2787 root = __pa(sp->spt);
2789 spin_unlock(&vcpu->kvm->mmu_lock);
2791 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2793 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2796 * If we shadow a 32 bit page table with a long mode page
2797 * table we enter this path.
2799 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2800 if (vcpu->arch.mmu.lm_root == NULL) {
2802 * The additional page necessary for this is only
2803 * allocated on demand.
2808 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2809 if (lm_root == NULL)
2812 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2814 vcpu->arch.mmu.lm_root = lm_root;
2817 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2823 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2825 if (vcpu->arch.mmu.direct_map)
2826 return mmu_alloc_direct_roots(vcpu);
2828 return mmu_alloc_shadow_roots(vcpu);
2831 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2834 struct kvm_mmu_page *sp;
2836 if (vcpu->arch.mmu.direct_map)
2839 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2842 vcpu_clear_mmio_info(vcpu, ~0ul);
2843 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2844 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2845 hpa_t root = vcpu->arch.mmu.root_hpa;
2846 sp = page_header(root);
2847 mmu_sync_children(vcpu, sp);
2848 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2851 for (i = 0; i < 4; ++i) {
2852 hpa_t root = vcpu->arch.mmu.pae_root[i];
2854 if (root && VALID_PAGE(root)) {
2855 root &= PT64_BASE_ADDR_MASK;
2856 sp = page_header(root);
2857 mmu_sync_children(vcpu, sp);
2860 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2863 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2865 spin_lock(&vcpu->kvm->mmu_lock);
2866 mmu_sync_roots(vcpu);
2867 spin_unlock(&vcpu->kvm->mmu_lock);
2870 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2871 u32 access, struct x86_exception *exception)
2874 exception->error_code = 0;
2878 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2880 struct x86_exception *exception)
2883 exception->error_code = 0;
2884 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2887 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2890 return vcpu_match_mmio_gpa(vcpu, addr);
2892 return vcpu_match_mmio_gva(vcpu, addr);
2897 * On direct hosts, the last spte is only allows two states
2898 * for mmio page fault:
2899 * - It is the mmio spte
2900 * - It is zapped or it is being zapped.
2902 * This function completely checks the spte when the last spte
2903 * is not the mmio spte.
2905 static bool check_direct_spte_mmio_pf(u64 spte)
2907 return __check_direct_spte_mmio_pf(spte);
2910 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2912 struct kvm_shadow_walk_iterator iterator;
2915 walk_shadow_page_lockless_begin(vcpu);
2916 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2917 if (!is_shadow_present_pte(spte))
2919 walk_shadow_page_lockless_end(vcpu);
2925 * If it is a real mmio page fault, return 1 and emulat the instruction
2926 * directly, return 0 to let CPU fault again on the address, -1 is
2927 * returned if bug is detected.
2929 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2933 if (quickly_check_mmio_pf(vcpu, addr, direct))
2936 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2938 if (is_mmio_spte(spte)) {
2939 gfn_t gfn = get_mmio_spte_gfn(spte);
2940 unsigned access = get_mmio_spte_access(spte);
2945 trace_handle_mmio_page_fault(addr, gfn, access);
2946 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2951 * It's ok if the gva is remapped by other cpus on shadow guest,
2952 * it's a BUG if the gfn is not a mmio page.
2954 if (direct && !check_direct_spte_mmio_pf(spte))
2958 * If the page table is zapped by other cpus, let CPU fault again on
2963 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
2965 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
2966 u32 error_code, bool direct)
2970 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
2975 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2976 u32 error_code, bool prefault)
2981 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2983 if (unlikely(error_code & PFERR_RSVD_MASK))
2984 return handle_mmio_page_fault(vcpu, gva, error_code, true);
2986 r = mmu_topup_memory_caches(vcpu);
2991 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2993 gfn = gva >> PAGE_SHIFT;
2995 return nonpaging_map(vcpu, gva & PAGE_MASK,
2996 error_code & PFERR_WRITE_MASK, gfn, prefault);
2999 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3001 struct kvm_arch_async_pf arch;
3003 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3005 arch.direct_map = vcpu->arch.mmu.direct_map;
3006 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3008 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3011 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3013 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3014 kvm_event_needs_reinjection(vcpu)))
3017 return kvm_x86_ops->interrupt_allowed(vcpu);
3020 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3021 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3025 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3028 return false; /* *pfn has correct page already */
3030 put_page(pfn_to_page(*pfn));
3032 if (!prefault && can_do_async_pf(vcpu)) {
3033 trace_kvm_try_async_get_page(gva, gfn);
3034 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3035 trace_kvm_async_pf_doublefault(gva, gfn);
3036 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3038 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3042 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3047 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3054 gfn_t gfn = gpa >> PAGE_SHIFT;
3055 unsigned long mmu_seq;
3056 int write = error_code & PFERR_WRITE_MASK;
3060 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3062 if (unlikely(error_code & PFERR_RSVD_MASK))
3063 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3065 r = mmu_topup_memory_caches(vcpu);
3069 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3070 if (likely(!force_pt_level)) {
3071 level = mapping_level(vcpu, gfn);
3072 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3074 level = PT_PAGE_TABLE_LEVEL;
3076 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3079 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3082 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3085 spin_lock(&vcpu->kvm->mmu_lock);
3086 if (mmu_notifier_retry(vcpu, mmu_seq))
3088 kvm_mmu_free_some_pages(vcpu);
3089 if (likely(!force_pt_level))
3090 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3091 r = __direct_map(vcpu, gpa, write, map_writable,
3092 level, gfn, pfn, prefault);
3093 spin_unlock(&vcpu->kvm->mmu_lock);
3098 spin_unlock(&vcpu->kvm->mmu_lock);
3099 kvm_release_pfn_clean(pfn);
3103 static void nonpaging_free(struct kvm_vcpu *vcpu)
3105 mmu_free_roots(vcpu);
3108 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3109 struct kvm_mmu *context)
3111 context->new_cr3 = nonpaging_new_cr3;
3112 context->page_fault = nonpaging_page_fault;
3113 context->gva_to_gpa = nonpaging_gva_to_gpa;
3114 context->free = nonpaging_free;
3115 context->sync_page = nonpaging_sync_page;
3116 context->invlpg = nonpaging_invlpg;
3117 context->update_pte = nonpaging_update_pte;
3118 context->root_level = 0;
3119 context->shadow_root_level = PT32E_ROOT_LEVEL;
3120 context->root_hpa = INVALID_PAGE;
3121 context->direct_map = true;
3122 context->nx = false;
3126 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3128 ++vcpu->stat.tlb_flush;
3129 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3132 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3134 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3135 mmu_free_roots(vcpu);
3138 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3140 return kvm_read_cr3(vcpu);
3143 static void inject_page_fault(struct kvm_vcpu *vcpu,
3144 struct x86_exception *fault)
3146 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3149 static void paging_free(struct kvm_vcpu *vcpu)
3151 nonpaging_free(vcpu);
3154 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3158 bit7 = (gpte >> 7) & 1;
3159 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3162 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3165 if (unlikely(is_mmio_spte(*sptep))) {
3166 if (gfn != get_mmio_spte_gfn(*sptep)) {
3167 mmu_spte_clear_no_track(sptep);
3172 mark_mmio_spte(sptep, gfn, access);
3180 #include "paging_tmpl.h"
3184 #include "paging_tmpl.h"
3187 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3188 struct kvm_mmu *context)
3190 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3191 u64 exb_bit_rsvd = 0;
3194 exb_bit_rsvd = rsvd_bits(63, 63);
3195 switch (context->root_level) {
3196 case PT32_ROOT_LEVEL:
3197 /* no rsvd bits for 2 level 4K page table entries */
3198 context->rsvd_bits_mask[0][1] = 0;
3199 context->rsvd_bits_mask[0][0] = 0;
3200 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3202 if (!is_pse(vcpu)) {
3203 context->rsvd_bits_mask[1][1] = 0;
3207 if (is_cpuid_PSE36())
3208 /* 36bits PSE 4MB page */
3209 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3211 /* 32 bits PSE 4MB page */
3212 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3214 case PT32E_ROOT_LEVEL:
3215 context->rsvd_bits_mask[0][2] =
3216 rsvd_bits(maxphyaddr, 63) |
3217 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3218 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3219 rsvd_bits(maxphyaddr, 62); /* PDE */
3220 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3221 rsvd_bits(maxphyaddr, 62); /* PTE */
3222 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3223 rsvd_bits(maxphyaddr, 62) |
3224 rsvd_bits(13, 20); /* large page */
3225 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3227 case PT64_ROOT_LEVEL:
3228 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3229 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3230 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3231 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3232 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3233 rsvd_bits(maxphyaddr, 51);
3234 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3235 rsvd_bits(maxphyaddr, 51);
3236 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3237 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3238 rsvd_bits(maxphyaddr, 51) |
3240 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3241 rsvd_bits(maxphyaddr, 51) |
3242 rsvd_bits(13, 20); /* large page */
3243 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3248 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3249 struct kvm_mmu *context,
3252 context->nx = is_nx(vcpu);
3253 context->root_level = level;
3255 reset_rsvds_bits_mask(vcpu, context);
3257 ASSERT(is_pae(vcpu));
3258 context->new_cr3 = paging_new_cr3;
3259 context->page_fault = paging64_page_fault;
3260 context->gva_to_gpa = paging64_gva_to_gpa;
3261 context->sync_page = paging64_sync_page;
3262 context->invlpg = paging64_invlpg;
3263 context->update_pte = paging64_update_pte;
3264 context->free = paging_free;
3265 context->shadow_root_level = level;
3266 context->root_hpa = INVALID_PAGE;
3267 context->direct_map = false;
3271 static int paging64_init_context(struct kvm_vcpu *vcpu,
3272 struct kvm_mmu *context)
3274 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3277 static int paging32_init_context(struct kvm_vcpu *vcpu,
3278 struct kvm_mmu *context)
3280 context->nx = false;
3281 context->root_level = PT32_ROOT_LEVEL;
3283 reset_rsvds_bits_mask(vcpu, context);
3285 context->new_cr3 = paging_new_cr3;
3286 context->page_fault = paging32_page_fault;
3287 context->gva_to_gpa = paging32_gva_to_gpa;
3288 context->free = paging_free;
3289 context->sync_page = paging32_sync_page;
3290 context->invlpg = paging32_invlpg;
3291 context->update_pte = paging32_update_pte;
3292 context->shadow_root_level = PT32E_ROOT_LEVEL;
3293 context->root_hpa = INVALID_PAGE;
3294 context->direct_map = false;
3298 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3299 struct kvm_mmu *context)
3301 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3304 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3306 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3308 context->base_role.word = 0;
3309 context->new_cr3 = nonpaging_new_cr3;
3310 context->page_fault = tdp_page_fault;
3311 context->free = nonpaging_free;
3312 context->sync_page = nonpaging_sync_page;
3313 context->invlpg = nonpaging_invlpg;
3314 context->update_pte = nonpaging_update_pte;
3315 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3316 context->root_hpa = INVALID_PAGE;
3317 context->direct_map = true;
3318 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3319 context->get_cr3 = get_cr3;
3320 context->get_pdptr = kvm_pdptr_read;
3321 context->inject_page_fault = kvm_inject_page_fault;
3323 if (!is_paging(vcpu)) {
3324 context->nx = false;
3325 context->gva_to_gpa = nonpaging_gva_to_gpa;
3326 context->root_level = 0;
3327 } else if (is_long_mode(vcpu)) {
3328 context->nx = is_nx(vcpu);
3329 context->root_level = PT64_ROOT_LEVEL;
3330 reset_rsvds_bits_mask(vcpu, context);
3331 context->gva_to_gpa = paging64_gva_to_gpa;
3332 } else if (is_pae(vcpu)) {
3333 context->nx = is_nx(vcpu);
3334 context->root_level = PT32E_ROOT_LEVEL;
3335 reset_rsvds_bits_mask(vcpu, context);
3336 context->gva_to_gpa = paging64_gva_to_gpa;
3338 context->nx = false;
3339 context->root_level = PT32_ROOT_LEVEL;
3340 reset_rsvds_bits_mask(vcpu, context);
3341 context->gva_to_gpa = paging32_gva_to_gpa;
3347 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3350 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3352 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3354 if (!is_paging(vcpu))
3355 r = nonpaging_init_context(vcpu, context);
3356 else if (is_long_mode(vcpu))
3357 r = paging64_init_context(vcpu, context);
3358 else if (is_pae(vcpu))
3359 r = paging32E_init_context(vcpu, context);
3361 r = paging32_init_context(vcpu, context);
3363 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3364 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3365 vcpu->arch.mmu.base_role.smep_andnot_wp
3366 = smep && !is_write_protection(vcpu);
3370 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3372 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3374 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3376 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3377 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3378 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3379 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3384 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3386 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3388 g_context->get_cr3 = get_cr3;
3389 g_context->get_pdptr = kvm_pdptr_read;
3390 g_context->inject_page_fault = kvm_inject_page_fault;
3393 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3394 * translation of l2_gpa to l1_gpa addresses is done using the
3395 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3396 * functions between mmu and nested_mmu are swapped.
3398 if (!is_paging(vcpu)) {
3399 g_context->nx = false;
3400 g_context->root_level = 0;
3401 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3402 } else if (is_long_mode(vcpu)) {
3403 g_context->nx = is_nx(vcpu);
3404 g_context->root_level = PT64_ROOT_LEVEL;
3405 reset_rsvds_bits_mask(vcpu, g_context);
3406 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3407 } else if (is_pae(vcpu)) {
3408 g_context->nx = is_nx(vcpu);
3409 g_context->root_level = PT32E_ROOT_LEVEL;
3410 reset_rsvds_bits_mask(vcpu, g_context);
3411 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3413 g_context->nx = false;
3414 g_context->root_level = PT32_ROOT_LEVEL;
3415 reset_rsvds_bits_mask(vcpu, g_context);
3416 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3422 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3424 if (mmu_is_nested(vcpu))
3425 return init_kvm_nested_mmu(vcpu);
3426 else if (tdp_enabled)
3427 return init_kvm_tdp_mmu(vcpu);
3429 return init_kvm_softmmu(vcpu);
3432 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3435 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3436 /* mmu.free() should set root_hpa = INVALID_PAGE */
3437 vcpu->arch.mmu.free(vcpu);
3440 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3442 destroy_kvm_mmu(vcpu);
3443 return init_kvm_mmu(vcpu);
3445 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3447 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3451 r = mmu_topup_memory_caches(vcpu);
3454 r = mmu_alloc_roots(vcpu);
3455 spin_lock(&vcpu->kvm->mmu_lock);
3456 mmu_sync_roots(vcpu);
3457 spin_unlock(&vcpu->kvm->mmu_lock);
3460 /* set_cr3() should ensure TLB has been flushed */
3461 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3465 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3467 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3469 mmu_free_roots(vcpu);
3471 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3473 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3474 struct kvm_mmu_page *sp, u64 *spte,
3477 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3478 ++vcpu->kvm->stat.mmu_pde_zapped;
3482 ++vcpu->kvm->stat.mmu_pte_updated;
3483 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3486 static bool need_remote_flush(u64 old, u64 new)
3488 if (!is_shadow_present_pte(old))
3490 if (!is_shadow_present_pte(new))
3492 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3494 old ^= PT64_NX_MASK;
3495 new ^= PT64_NX_MASK;
3496 return (old & ~new & PT64_PERM_MASK) != 0;
3499 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3500 bool remote_flush, bool local_flush)
3506 kvm_flush_remote_tlbs(vcpu->kvm);
3507 else if (local_flush)
3508 kvm_mmu_flush_tlb(vcpu);
3511 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3512 const u8 *new, int *bytes)
3518 * Assume that the pte write on a page table of the same type
3519 * as the current vcpu paging mode since we update the sptes only
3520 * when they have the same mode.
3522 if (is_pae(vcpu) && *bytes == 4) {
3523 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3526 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3529 new = (const u8 *)&gentry;
3534 gentry = *(const u32 *)new;
3537 gentry = *(const u64 *)new;
3548 * If we're seeing too many writes to a page, it may no longer be a page table,
3549 * or we may be forking, in which case it is better to unmap the page.
3551 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3554 * Skip write-flooding detected for the sp whose level is 1, because
3555 * it can become unsync, then the guest page is not write-protected.
3557 if (sp->role.level == 1)
3560 return ++sp->write_flooding_count >= 3;
3564 * Misaligned accesses are too much trouble to fix up; also, they usually
3565 * indicate a page is not used as a page table.
3567 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3570 unsigned offset, pte_size, misaligned;
3572 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3573 gpa, bytes, sp->role.word);
3575 offset = offset_in_page(gpa);
3576 pte_size = sp->role.cr4_pae ? 8 : 4;
3579 * Sometimes, the OS only writes the last one bytes to update status
3580 * bits, for example, in linux, andb instruction is used in clear_bit().
3582 if (!(offset & (pte_size - 1)) && bytes == 1)
3585 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3586 misaligned |= bytes < 4;
3591 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3593 unsigned page_offset, quadrant;
3597 page_offset = offset_in_page(gpa);
3598 level = sp->role.level;
3600 if (!sp->role.cr4_pae) {
3601 page_offset <<= 1; /* 32->64 */
3603 * A 32-bit pde maps 4MB while the shadow pdes map
3604 * only 2MB. So we need to double the offset again
3605 * and zap two pdes instead of one.
3607 if (level == PT32_ROOT_LEVEL) {
3608 page_offset &= ~7; /* kill rounding error */
3612 quadrant = page_offset >> PAGE_SHIFT;
3613 page_offset &= ~PAGE_MASK;
3614 if (quadrant != sp->role.quadrant)
3618 spte = &sp->spt[page_offset / sizeof(*spte)];
3622 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3623 const u8 *new, int bytes)
3625 gfn_t gfn = gpa >> PAGE_SHIFT;
3626 union kvm_mmu_page_role mask = { .word = 0 };
3627 struct kvm_mmu_page *sp;
3628 struct hlist_node *node;
3629 LIST_HEAD(invalid_list);
3630 u64 entry, gentry, *spte;
3632 bool remote_flush, local_flush, zap_page;
3635 * If we don't have indirect shadow pages, it means no page is
3636 * write-protected, so we can exit simply.
3638 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3641 zap_page = remote_flush = local_flush = false;
3643 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3645 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3648 * No need to care whether allocation memory is successful
3649 * or not since pte prefetch is skiped if it does not have
3650 * enough objects in the cache.
3652 mmu_topup_memory_caches(vcpu);
3654 spin_lock(&vcpu->kvm->mmu_lock);
3655 ++vcpu->kvm->stat.mmu_pte_write;
3656 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3658 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3659 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3660 if (detect_write_misaligned(sp, gpa, bytes) ||
3661 detect_write_flooding(sp)) {
3662 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3664 ++vcpu->kvm->stat.mmu_flooded;
3668 spte = get_written_sptes(sp, gpa, &npte);
3675 mmu_page_zap_pte(vcpu->kvm, sp, spte);
3677 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3678 & mask.word) && rmap_can_add(vcpu))
3679 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3680 if (!remote_flush && need_remote_flush(entry, *spte))
3681 remote_flush = true;
3685 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3686 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3687 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3688 spin_unlock(&vcpu->kvm->mmu_lock);
3691 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3696 if (vcpu->arch.mmu.direct_map)
3699 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3701 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3705 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3707 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3709 LIST_HEAD(invalid_list);
3711 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3712 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3713 struct kvm_mmu_page *sp;
3715 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3716 struct kvm_mmu_page, link);
3717 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3718 ++vcpu->kvm->stat.mmu_recycled;
3720 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3723 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3725 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3726 return vcpu_match_mmio_gpa(vcpu, addr);
3728 return vcpu_match_mmio_gva(vcpu, addr);
3731 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3732 void *insn, int insn_len)
3734 int r, emulation_type = EMULTYPE_RETRY;
3735 enum emulation_result er;
3737 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3746 if (is_mmio_page_fault(vcpu, cr2))
3749 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3754 case EMULATE_DO_MMIO:
3755 ++vcpu->stat.mmio_exits;
3765 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3767 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3769 vcpu->arch.mmu.invlpg(vcpu, gva);
3770 kvm_mmu_flush_tlb(vcpu);
3771 ++vcpu->stat.invlpg;
3773 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3775 void kvm_enable_tdp(void)
3779 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3781 void kvm_disable_tdp(void)
3783 tdp_enabled = false;
3785 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3787 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3789 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3790 if (vcpu->arch.mmu.lm_root != NULL)
3791 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3794 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3802 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3803 * Therefore we need to allocate shadow page tables in the first
3804 * 4GB of memory, which happens to fit the DMA32 zone.
3806 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3810 vcpu->arch.mmu.pae_root = page_address(page);
3811 for (i = 0; i < 4; ++i)
3812 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3817 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3821 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3822 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3823 vcpu->arch.mmu.translate_gpa = translate_gpa;
3824 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
3826 return alloc_mmu_pages(vcpu);
3829 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3832 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3834 return init_kvm_mmu(vcpu);
3837 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3839 struct kvm_mmu_page *sp;
3841 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3845 if (!test_bit(slot, sp->slot_bitmap))
3849 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3850 if (!is_shadow_present_pte(pt[i]) ||
3851 !is_last_spte(pt[i], sp->role.level))
3854 if (is_large_pte(pt[i])) {
3855 drop_spte(kvm, &pt[i]);
3861 if (is_writable_pte(pt[i]))
3862 mmu_spte_update(&pt[i],
3863 pt[i] & ~PT_WRITABLE_MASK);
3866 kvm_flush_remote_tlbs(kvm);
3869 void kvm_mmu_zap_all(struct kvm *kvm)
3871 struct kvm_mmu_page *sp, *node;
3872 LIST_HEAD(invalid_list);
3874 spin_lock(&kvm->mmu_lock);
3876 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3877 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3880 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3881 spin_unlock(&kvm->mmu_lock);
3884 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3885 struct list_head *invalid_list)
3887 struct kvm_mmu_page *page;
3889 page = container_of(kvm->arch.active_mmu_pages.prev,
3890 struct kvm_mmu_page, link);
3891 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3894 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3897 struct kvm *kvm_freed = NULL;
3898 int nr_to_scan = sc->nr_to_scan;
3900 if (nr_to_scan == 0)
3903 raw_spin_lock(&kvm_lock);
3905 list_for_each_entry(kvm, &vm_list, vm_list) {
3907 LIST_HEAD(invalid_list);
3909 idx = srcu_read_lock(&kvm->srcu);
3910 spin_lock(&kvm->mmu_lock);
3911 if (!kvm_freed && nr_to_scan > 0 &&
3912 kvm->arch.n_used_mmu_pages > 0) {
3913 kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3919 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3920 spin_unlock(&kvm->mmu_lock);
3921 srcu_read_unlock(&kvm->srcu, idx);
3924 list_move_tail(&kvm_freed->vm_list, &vm_list);
3926 raw_spin_unlock(&kvm_lock);
3929 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3932 static struct shrinker mmu_shrinker = {
3933 .shrink = mmu_shrink,
3934 .seeks = DEFAULT_SEEKS * 10,
3937 static void mmu_destroy_caches(void)
3939 if (pte_list_desc_cache)
3940 kmem_cache_destroy(pte_list_desc_cache);
3941 if (mmu_page_header_cache)
3942 kmem_cache_destroy(mmu_page_header_cache);
3945 int kvm_mmu_module_init(void)
3947 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3948 sizeof(struct pte_list_desc),
3950 if (!pte_list_desc_cache)
3953 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3954 sizeof(struct kvm_mmu_page),
3956 if (!mmu_page_header_cache)
3959 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3962 register_shrinker(&mmu_shrinker);
3967 mmu_destroy_caches();
3972 * Caculate mmu pages needed for kvm.
3974 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3976 unsigned int nr_mmu_pages;
3977 unsigned int nr_pages = 0;
3978 struct kvm_memslots *slots;
3979 struct kvm_memory_slot *memslot;
3981 slots = kvm_memslots(kvm);
3983 kvm_for_each_memslot(memslot, slots)
3984 nr_pages += memslot->npages;
3986 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3987 nr_mmu_pages = max(nr_mmu_pages,
3988 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3990 return nr_mmu_pages;
3993 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3995 struct kvm_shadow_walk_iterator iterator;
3999 walk_shadow_page_lockless_begin(vcpu);
4000 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4001 sptes[iterator.level-1] = spte;
4003 if (!is_shadow_present_pte(spte))
4006 walk_shadow_page_lockless_end(vcpu);
4010 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4012 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4016 destroy_kvm_mmu(vcpu);
4017 free_mmu_pages(vcpu);
4018 mmu_free_memory_caches(vcpu);
4021 void kvm_mmu_module_exit(void)
4023 mmu_destroy_caches();
4024 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4025 unregister_shrinker(&mmu_shrinker);
4026 mmu_audit_disable();