2 * POSIX message queues filesystem for Linux.
8 * Lockless receive & send, fd based notify:
13 * This file is released under the GPL.
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/netlink.h>
29 #include <linux/syscalls.h>
30 #include <linux/audit.h>
31 #include <linux/signal.h>
32 #include <linux/mutex.h>
33 #include <linux/nsproxy.h>
34 #include <linux/pid.h>
35 #include <linux/ipc_namespace.h>
36 #include <linux/user_namespace.h>
37 #include <linux/slab.h>
42 #define MQUEUE_MAGIC 0x19800202
43 #define DIRENT_SIZE 20
44 #define FILENT_SIZE 80
50 #define STATE_PENDING 1
53 struct posix_msg_tree_node {
54 struct rb_node rb_node;
55 struct list_head msg_list;
59 struct ext_wait_queue { /* queue of sleeping tasks */
60 struct task_struct *task;
61 struct list_head list;
62 struct msg_msg *msg; /* ptr of loaded message */
63 int state; /* one of STATE_* values */
66 struct mqueue_inode_info {
68 struct inode vfs_inode;
69 wait_queue_head_t wait_q;
71 struct rb_root msg_tree;
72 struct posix_msg_tree_node *node_cache;
75 struct sigevent notify;
76 struct pid* notify_owner;
77 struct user_namespace *notify_user_ns;
78 struct user_struct *user; /* user who created, for accounting */
79 struct sock *notify_sock;
80 struct sk_buff *notify_cookie;
82 /* for tasks waiting for free space and messages, respectively */
83 struct ext_wait_queue e_wait_q[2];
85 unsigned long qsize; /* size of queue in memory (sum of all msgs) */
88 static const struct inode_operations mqueue_dir_inode_operations;
89 static const struct file_operations mqueue_file_operations;
90 static const struct super_operations mqueue_super_ops;
91 static void remove_notification(struct mqueue_inode_info *info);
93 static struct kmem_cache *mqueue_inode_cachep;
95 static struct ctl_table_header * mq_sysctl_table;
97 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
99 return container_of(inode, struct mqueue_inode_info, vfs_inode);
103 * This routine should be called with the mq_lock held.
105 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
107 return get_ipc_ns(inode->i_sb->s_fs_info);
110 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
112 struct ipc_namespace *ns;
115 ns = __get_ns_from_inode(inode);
116 spin_unlock(&mq_lock);
120 /* Auxiliary functions to manipulate messages' list */
121 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
123 struct rb_node **p, *parent = NULL;
124 struct posix_msg_tree_node *leaf;
126 p = &info->msg_tree.rb_node;
129 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
131 if (likely(leaf->priority == msg->m_type))
133 else if (msg->m_type < leaf->priority)
138 if (info->node_cache) {
139 leaf = info->node_cache;
140 info->node_cache = NULL;
142 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
145 rb_init_node(&leaf->rb_node);
146 INIT_LIST_HEAD(&leaf->msg_list);
147 info->qsize += sizeof(*leaf);
149 leaf->priority = msg->m_type;
150 rb_link_node(&leaf->rb_node, parent, p);
151 rb_insert_color(&leaf->rb_node, &info->msg_tree);
153 info->attr.mq_curmsgs++;
154 info->qsize += msg->m_ts;
155 list_add_tail(&msg->m_list, &leaf->msg_list);
159 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
161 struct rb_node **p, *parent = NULL;
162 struct posix_msg_tree_node *leaf;
166 p = &info->msg_tree.rb_node;
170 * During insert, low priorities go to the left and high to the
171 * right. On receive, we want the highest priorities first, so
172 * walk all the way to the right.
177 if (info->attr.mq_curmsgs) {
178 pr_warn_once("Inconsistency in POSIX message queue, "
179 "no tree element, but supposedly messages "
181 info->attr.mq_curmsgs = 0;
185 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
186 if (unlikely(list_empty(&leaf->msg_list))) {
187 pr_warn_once("Inconsistency in POSIX message queue, "
188 "empty leaf node but we haven't implemented "
189 "lazy leaf delete!\n");
190 rb_erase(&leaf->rb_node, &info->msg_tree);
191 if (info->node_cache) {
192 info->qsize -= sizeof(*leaf);
195 info->node_cache = leaf;
199 msg = list_first_entry(&leaf->msg_list,
200 struct msg_msg, m_list);
201 list_del(&msg->m_list);
202 if (list_empty(&leaf->msg_list)) {
203 rb_erase(&leaf->rb_node, &info->msg_tree);
204 if (info->node_cache) {
205 info->qsize -= sizeof(*leaf);
208 info->node_cache = leaf;
212 info->attr.mq_curmsgs--;
213 info->qsize -= msg->m_ts;
217 static struct inode *mqueue_get_inode(struct super_block *sb,
218 struct ipc_namespace *ipc_ns, umode_t mode,
219 struct mq_attr *attr)
221 struct user_struct *u = current_user();
225 inode = new_inode(sb);
229 inode->i_ino = get_next_ino();
230 inode->i_mode = mode;
231 inode->i_uid = current_fsuid();
232 inode->i_gid = current_fsgid();
233 inode->i_mtime = inode->i_ctime = inode->i_atime = CURRENT_TIME;
236 struct mqueue_inode_info *info;
237 unsigned long mq_bytes, mq_treesize;
239 inode->i_fop = &mqueue_file_operations;
240 inode->i_size = FILENT_SIZE;
241 /* mqueue specific info */
242 info = MQUEUE_I(inode);
243 spin_lock_init(&info->lock);
244 init_waitqueue_head(&info->wait_q);
245 INIT_LIST_HEAD(&info->e_wait_q[0].list);
246 INIT_LIST_HEAD(&info->e_wait_q[1].list);
247 info->notify_owner = NULL;
248 info->notify_user_ns = NULL;
250 info->user = NULL; /* set when all is ok */
251 info->msg_tree = RB_ROOT;
252 info->node_cache = NULL;
253 memset(&info->attr, 0, sizeof(info->attr));
254 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
255 ipc_ns->mq_msg_default);
256 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
257 ipc_ns->mq_msgsize_default);
259 info->attr.mq_maxmsg = attr->mq_maxmsg;
260 info->attr.mq_msgsize = attr->mq_msgsize;
263 * We used to allocate a static array of pointers and account
264 * the size of that array as well as one msg_msg struct per
265 * possible message into the queue size. That's no longer
266 * accurate as the queue is now an rbtree and will grow and
267 * shrink depending on usage patterns. We can, however, still
268 * account one msg_msg struct per message, but the nodes are
269 * allocated depending on priority usage, and most programs
270 * only use one, or a handful, of priorities. However, since
271 * this is pinned memory, we need to assume worst case, so
272 * that means the min(mq_maxmsg, max_priorities) * struct
273 * posix_msg_tree_node.
275 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
276 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
277 sizeof(struct posix_msg_tree_node);
279 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
280 info->attr.mq_msgsize);
283 if (u->mq_bytes + mq_bytes < u->mq_bytes ||
284 u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
285 spin_unlock(&mq_lock);
286 /* mqueue_evict_inode() releases info->messages */
290 u->mq_bytes += mq_bytes;
291 spin_unlock(&mq_lock);
294 info->user = get_uid(u);
295 } else if (S_ISDIR(mode)) {
297 /* Some things misbehave if size == 0 on a directory */
298 inode->i_size = 2 * DIRENT_SIZE;
299 inode->i_op = &mqueue_dir_inode_operations;
300 inode->i_fop = &simple_dir_operations;
310 static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
313 struct ipc_namespace *ns = data;
315 sb->s_blocksize = PAGE_CACHE_SIZE;
316 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
317 sb->s_magic = MQUEUE_MAGIC;
318 sb->s_op = &mqueue_super_ops;
320 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
322 return PTR_ERR(inode);
324 sb->s_root = d_make_root(inode);
330 static struct dentry *mqueue_mount(struct file_system_type *fs_type,
331 int flags, const char *dev_name,
334 if (!(flags & MS_KERNMOUNT))
335 data = current->nsproxy->ipc_ns;
336 return mount_ns(fs_type, flags, data, mqueue_fill_super);
339 static void init_once(void *foo)
341 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
343 inode_init_once(&p->vfs_inode);
346 static struct inode *mqueue_alloc_inode(struct super_block *sb)
348 struct mqueue_inode_info *ei;
350 ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
353 return &ei->vfs_inode;
356 static void mqueue_i_callback(struct rcu_head *head)
358 struct inode *inode = container_of(head, struct inode, i_rcu);
359 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
362 static void mqueue_destroy_inode(struct inode *inode)
364 call_rcu(&inode->i_rcu, mqueue_i_callback);
367 static void mqueue_evict_inode(struct inode *inode)
369 struct mqueue_inode_info *info;
370 struct user_struct *user;
371 unsigned long mq_bytes, mq_treesize;
372 struct ipc_namespace *ipc_ns;
377 if (S_ISDIR(inode->i_mode))
380 ipc_ns = get_ns_from_inode(inode);
381 info = MQUEUE_I(inode);
382 spin_lock(&info->lock);
383 while ((msg = msg_get(info)) != NULL)
385 kfree(info->node_cache);
386 spin_unlock(&info->lock);
388 /* Total amount of bytes accounted for the mqueue */
389 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
390 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
391 sizeof(struct posix_msg_tree_node);
393 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
394 info->attr.mq_msgsize);
399 user->mq_bytes -= mq_bytes;
401 * get_ns_from_inode() ensures that the
402 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
403 * to which we now hold a reference, or it is NULL.
404 * We can't put it here under mq_lock, though.
407 ipc_ns->mq_queues_count--;
408 spin_unlock(&mq_lock);
415 static int mqueue_create(struct inode *dir, struct dentry *dentry,
416 umode_t mode, bool excl)
419 struct mq_attr *attr = dentry->d_fsdata;
421 struct ipc_namespace *ipc_ns;
424 ipc_ns = __get_ns_from_inode(dir);
429 if (ipc_ns->mq_queues_count >= HARD_QUEUESMAX ||
430 (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
431 !capable(CAP_SYS_RESOURCE))) {
435 ipc_ns->mq_queues_count++;
436 spin_unlock(&mq_lock);
438 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
440 error = PTR_ERR(inode);
442 ipc_ns->mq_queues_count--;
447 dir->i_size += DIRENT_SIZE;
448 dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
450 d_instantiate(dentry, inode);
454 spin_unlock(&mq_lock);
460 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
462 struct inode *inode = dentry->d_inode;
464 dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
465 dir->i_size -= DIRENT_SIZE;
472 * This is routine for system read from queue file.
473 * To avoid mess with doing here some sort of mq_receive we allow
474 * to read only queue size & notification info (the only values
475 * that are interesting from user point of view and aren't accessible
476 * through std routines)
478 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
479 size_t count, loff_t *off)
481 struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
482 char buffer[FILENT_SIZE];
485 spin_lock(&info->lock);
486 snprintf(buffer, sizeof(buffer),
487 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
489 info->notify_owner ? info->notify.sigev_notify : 0,
490 (info->notify_owner &&
491 info->notify.sigev_notify == SIGEV_SIGNAL) ?
492 info->notify.sigev_signo : 0,
493 pid_vnr(info->notify_owner));
494 spin_unlock(&info->lock);
495 buffer[sizeof(buffer)-1] = '\0';
497 ret = simple_read_from_buffer(u_data, count, off, buffer,
502 filp->f_path.dentry->d_inode->i_atime = filp->f_path.dentry->d_inode->i_ctime = CURRENT_TIME;
506 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
508 struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
510 spin_lock(&info->lock);
511 if (task_tgid(current) == info->notify_owner)
512 remove_notification(info);
514 spin_unlock(&info->lock);
518 static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
520 struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
523 poll_wait(filp, &info->wait_q, poll_tab);
525 spin_lock(&info->lock);
526 if (info->attr.mq_curmsgs)
527 retval = POLLIN | POLLRDNORM;
529 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
530 retval |= POLLOUT | POLLWRNORM;
531 spin_unlock(&info->lock);
536 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
537 static void wq_add(struct mqueue_inode_info *info, int sr,
538 struct ext_wait_queue *ewp)
540 struct ext_wait_queue *walk;
544 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
545 if (walk->task->static_prio <= current->static_prio) {
546 list_add_tail(&ewp->list, &walk->list);
550 list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
554 * Puts current task to sleep. Caller must hold queue lock. After return
558 static int wq_sleep(struct mqueue_inode_info *info, int sr,
559 ktime_t *timeout, struct ext_wait_queue *ewp)
564 wq_add(info, sr, ewp);
567 set_current_state(TASK_INTERRUPTIBLE);
569 spin_unlock(&info->lock);
570 time = schedule_hrtimeout_range_clock(timeout, 0,
571 HRTIMER_MODE_ABS, CLOCK_REALTIME);
573 while (ewp->state == STATE_PENDING)
576 if (ewp->state == STATE_READY) {
580 spin_lock(&info->lock);
581 if (ewp->state == STATE_READY) {
585 if (signal_pending(current)) {
586 retval = -ERESTARTSYS;
594 list_del(&ewp->list);
596 spin_unlock(&info->lock);
602 * Returns waiting task that should be serviced first or NULL if none exists
604 static struct ext_wait_queue *wq_get_first_waiter(
605 struct mqueue_inode_info *info, int sr)
607 struct list_head *ptr;
609 ptr = info->e_wait_q[sr].list.prev;
610 if (ptr == &info->e_wait_q[sr].list)
612 return list_entry(ptr, struct ext_wait_queue, list);
616 static inline void set_cookie(struct sk_buff *skb, char code)
618 ((char*)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
622 * The next function is only to split too long sys_mq_timedsend
624 static void __do_notify(struct mqueue_inode_info *info)
627 * invoked when there is registered process and there isn't process
628 * waiting synchronously for message AND state of queue changed from
629 * empty to not empty. Here we are sure that no one is waiting
631 if (info->notify_owner &&
632 info->attr.mq_curmsgs == 1) {
633 struct siginfo sig_i;
634 switch (info->notify.sigev_notify) {
640 sig_i.si_signo = info->notify.sigev_signo;
642 sig_i.si_code = SI_MESGQ;
643 sig_i.si_value = info->notify.sigev_value;
644 /* map current pid/uid into info->owner's namespaces */
646 sig_i.si_pid = task_tgid_nr_ns(current,
647 ns_of_pid(info->notify_owner));
648 sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
651 kill_pid_info(info->notify.sigev_signo,
652 &sig_i, info->notify_owner);
655 set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
656 netlink_sendskb(info->notify_sock, info->notify_cookie);
659 /* after notification unregisters process */
660 put_pid(info->notify_owner);
661 put_user_ns(info->notify_user_ns);
662 info->notify_owner = NULL;
663 info->notify_user_ns = NULL;
665 wake_up(&info->wait_q);
668 static int prepare_timeout(const struct timespec __user *u_abs_timeout,
669 ktime_t *expires, struct timespec *ts)
671 if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
673 if (!timespec_valid(ts))
676 *expires = timespec_to_ktime(*ts);
680 static void remove_notification(struct mqueue_inode_info *info)
682 if (info->notify_owner != NULL &&
683 info->notify.sigev_notify == SIGEV_THREAD) {
684 set_cookie(info->notify_cookie, NOTIFY_REMOVED);
685 netlink_sendskb(info->notify_sock, info->notify_cookie);
687 put_pid(info->notify_owner);
688 put_user_ns(info->notify_user_ns);
689 info->notify_owner = NULL;
690 info->notify_user_ns = NULL;
693 static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
696 unsigned long total_size;
698 if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
700 if (capable(CAP_SYS_RESOURCE)) {
701 if (attr->mq_maxmsg > HARD_MSGMAX ||
702 attr->mq_msgsize > HARD_MSGSIZEMAX)
705 if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
706 attr->mq_msgsize > ipc_ns->mq_msgsize_max)
709 /* check for overflow */
710 if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
712 mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
713 min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
714 sizeof(struct posix_msg_tree_node);
715 total_size = attr->mq_maxmsg * attr->mq_msgsize;
716 if (total_size + mq_treesize < total_size)
722 * Invoked when creating a new queue via sys_mq_open
724 static struct file *do_create(struct ipc_namespace *ipc_ns, struct dentry *dir,
725 struct dentry *dentry, int oflag, umode_t mode,
726 struct mq_attr *attr)
728 const struct cred *cred = current_cred();
733 ret = mq_attr_ok(ipc_ns, attr);
736 /* store for use during create */
737 dentry->d_fsdata = attr;
739 struct mq_attr def_attr;
741 def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
742 ipc_ns->mq_msg_default);
743 def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
744 ipc_ns->mq_msgsize_default);
745 ret = mq_attr_ok(ipc_ns, &def_attr);
750 mode &= ~current_umask();
751 ret = mnt_want_write(ipc_ns->mq_mnt);
754 ret = vfs_create(dir->d_inode, dentry, mode, true);
755 dentry->d_fsdata = NULL;
759 result = dentry_open(dentry, ipc_ns->mq_mnt, oflag, cred);
761 * dentry_open() took a persistent mnt_want_write(),
762 * so we can now drop this one.
764 mnt_drop_write(ipc_ns->mq_mnt);
768 mnt_drop_write(ipc_ns->mq_mnt);
771 mntput(ipc_ns->mq_mnt);
775 /* Opens existing queue */
776 static struct file *do_open(struct ipc_namespace *ipc_ns,
777 struct dentry *dentry, int oflag)
780 const struct cred *cred = current_cred();
782 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
783 MAY_READ | MAY_WRITE };
785 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY)) {
790 if (inode_permission(dentry->d_inode, oflag2acc[oflag & O_ACCMODE])) {
795 return dentry_open(dentry, ipc_ns->mq_mnt, oflag, cred);
799 mntput(ipc_ns->mq_mnt);
803 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
804 struct mq_attr __user *, u_attr)
806 struct dentry *dentry;
811 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
813 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
816 audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
818 if (IS_ERR(name = getname(u_name)))
819 return PTR_ERR(name);
821 fd = get_unused_fd_flags(O_CLOEXEC);
825 mutex_lock(&ipc_ns->mq_mnt->mnt_root->d_inode->i_mutex);
826 dentry = lookup_one_len(name, ipc_ns->mq_mnt->mnt_root, strlen(name));
827 if (IS_ERR(dentry)) {
828 error = PTR_ERR(dentry);
831 mntget(ipc_ns->mq_mnt);
833 if (oflag & O_CREAT) {
834 if (dentry->d_inode) { /* entry already exists */
835 audit_inode(name, dentry);
836 if (oflag & O_EXCL) {
840 filp = do_open(ipc_ns, dentry, oflag);
842 filp = do_create(ipc_ns, ipc_ns->mq_mnt->mnt_root,
844 u_attr ? &attr : NULL);
847 if (!dentry->d_inode) {
851 audit_inode(name, dentry);
852 filp = do_open(ipc_ns, dentry, oflag);
856 error = PTR_ERR(filp);
860 fd_install(fd, filp);
865 mntput(ipc_ns->mq_mnt);
870 mutex_unlock(&ipc_ns->mq_mnt->mnt_root->d_inode->i_mutex);
876 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
880 struct dentry *dentry;
881 struct inode *inode = NULL;
882 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
884 name = getname(u_name);
886 return PTR_ERR(name);
888 mutex_lock_nested(&ipc_ns->mq_mnt->mnt_root->d_inode->i_mutex,
890 dentry = lookup_one_len(name, ipc_ns->mq_mnt->mnt_root, strlen(name));
891 if (IS_ERR(dentry)) {
892 err = PTR_ERR(dentry);
896 if (!dentry->d_inode) {
901 inode = dentry->d_inode;
904 err = mnt_want_write(ipc_ns->mq_mnt);
907 err = vfs_unlink(dentry->d_parent->d_inode, dentry);
908 mnt_drop_write(ipc_ns->mq_mnt);
913 mutex_unlock(&ipc_ns->mq_mnt->mnt_root->d_inode->i_mutex);
921 /* Pipelined send and receive functions.
923 * If a receiver finds no waiting message, then it registers itself in the
924 * list of waiting receivers. A sender checks that list before adding the new
925 * message into the message array. If there is a waiting receiver, then it
926 * bypasses the message array and directly hands the message over to the
928 * The receiver accepts the message and returns without grabbing the queue
929 * spinlock. Therefore an intermediate STATE_PENDING state and memory barriers
930 * are necessary. The same algorithm is used for sysv semaphores, see
931 * ipc/sem.c for more details.
933 * The same algorithm is used for senders.
936 /* pipelined_send() - send a message directly to the task waiting in
937 * sys_mq_timedreceive() (without inserting message into a queue).
939 static inline void pipelined_send(struct mqueue_inode_info *info,
940 struct msg_msg *message,
941 struct ext_wait_queue *receiver)
943 receiver->msg = message;
944 list_del(&receiver->list);
945 receiver->state = STATE_PENDING;
946 wake_up_process(receiver->task);
948 receiver->state = STATE_READY;
951 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
952 * gets its message and put to the queue (we have one free place for sure). */
953 static inline void pipelined_receive(struct mqueue_inode_info *info)
955 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
959 wake_up_interruptible(&info->wait_q);
962 if (msg_insert(sender->msg, info))
964 list_del(&sender->list);
965 sender->state = STATE_PENDING;
966 wake_up_process(sender->task);
968 sender->state = STATE_READY;
971 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
972 size_t, msg_len, unsigned int, msg_prio,
973 const struct timespec __user *, u_abs_timeout)
977 struct ext_wait_queue wait;
978 struct ext_wait_queue *receiver;
979 struct msg_msg *msg_ptr;
980 struct mqueue_inode_info *info;
981 ktime_t expires, *timeout = NULL;
983 struct posix_msg_tree_node *new_leaf = NULL;
987 int res = prepare_timeout(u_abs_timeout, &expires, &ts);
993 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
996 audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
999 if (unlikely(!filp)) {
1004 inode = filp->f_path.dentry->d_inode;
1005 if (unlikely(filp->f_op != &mqueue_file_operations)) {
1009 info = MQUEUE_I(inode);
1010 audit_inode(NULL, filp->f_path.dentry);
1012 if (unlikely(!(filp->f_mode & FMODE_WRITE))) {
1017 if (unlikely(msg_len > info->attr.mq_msgsize)) {
1022 /* First try to allocate memory, before doing anything with
1023 * existing queues. */
1024 msg_ptr = load_msg(u_msg_ptr, msg_len);
1025 if (IS_ERR(msg_ptr)) {
1026 ret = PTR_ERR(msg_ptr);
1029 msg_ptr->m_ts = msg_len;
1030 msg_ptr->m_type = msg_prio;
1033 * msg_insert really wants us to have a valid, spare node struct so
1034 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1035 * fall back to that if necessary.
1037 if (!info->node_cache)
1038 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1040 spin_lock(&info->lock);
1042 if (!info->node_cache && new_leaf) {
1043 /* Save our speculative allocation into the cache */
1044 rb_init_node(&new_leaf->rb_node);
1045 INIT_LIST_HEAD(&new_leaf->msg_list);
1046 info->node_cache = new_leaf;
1047 info->qsize += sizeof(*new_leaf);
1053 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1054 if (filp->f_flags & O_NONBLOCK) {
1057 wait.task = current;
1058 wait.msg = (void *) msg_ptr;
1059 wait.state = STATE_NONE;
1060 ret = wq_sleep(info, SEND, timeout, &wait);
1062 * wq_sleep must be called with info->lock held, and
1063 * returns with the lock released
1068 receiver = wq_get_first_waiter(info, RECV);
1070 pipelined_send(info, msg_ptr, receiver);
1072 /* adds message to the queue */
1073 ret = msg_insert(msg_ptr, info);
1078 inode->i_atime = inode->i_mtime = inode->i_ctime =
1082 spin_unlock(&info->lock);
1092 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1093 size_t, msg_len, unsigned int __user *, u_msg_prio,
1094 const struct timespec __user *, u_abs_timeout)
1097 struct msg_msg *msg_ptr;
1099 struct inode *inode;
1100 struct mqueue_inode_info *info;
1101 struct ext_wait_queue wait;
1102 ktime_t expires, *timeout = NULL;
1104 struct posix_msg_tree_node *new_leaf = NULL;
1106 if (u_abs_timeout) {
1107 int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1113 audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1116 if (unlikely(!filp)) {
1121 inode = filp->f_path.dentry->d_inode;
1122 if (unlikely(filp->f_op != &mqueue_file_operations)) {
1126 info = MQUEUE_I(inode);
1127 audit_inode(NULL, filp->f_path.dentry);
1129 if (unlikely(!(filp->f_mode & FMODE_READ))) {
1134 /* checks if buffer is big enough */
1135 if (unlikely(msg_len < info->attr.mq_msgsize)) {
1141 * msg_insert really wants us to have a valid, spare node struct so
1142 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1143 * fall back to that if necessary.
1145 if (!info->node_cache)
1146 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1148 spin_lock(&info->lock);
1150 if (!info->node_cache && new_leaf) {
1151 /* Save our speculative allocation into the cache */
1152 rb_init_node(&new_leaf->rb_node);
1153 INIT_LIST_HEAD(&new_leaf->msg_list);
1154 info->node_cache = new_leaf;
1155 info->qsize += sizeof(*new_leaf);
1160 if (info->attr.mq_curmsgs == 0) {
1161 if (filp->f_flags & O_NONBLOCK) {
1162 spin_unlock(&info->lock);
1165 wait.task = current;
1166 wait.state = STATE_NONE;
1167 ret = wq_sleep(info, RECV, timeout, &wait);
1171 msg_ptr = msg_get(info);
1173 inode->i_atime = inode->i_mtime = inode->i_ctime =
1176 /* There is now free space in queue. */
1177 pipelined_receive(info);
1178 spin_unlock(&info->lock);
1182 ret = msg_ptr->m_ts;
1184 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1185 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1197 * Notes: the case when user wants us to deregister (with NULL as pointer)
1198 * and he isn't currently owner of notification, will be silently discarded.
1199 * It isn't explicitly defined in the POSIX.
1201 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1202 const struct sigevent __user *, u_notification)
1207 struct inode *inode;
1208 struct sigevent notification;
1209 struct mqueue_inode_info *info;
1212 if (u_notification) {
1213 if (copy_from_user(¬ification, u_notification,
1214 sizeof(struct sigevent)))
1218 audit_mq_notify(mqdes, u_notification ? ¬ification : NULL);
1222 if (u_notification != NULL) {
1223 if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1224 notification.sigev_notify != SIGEV_SIGNAL &&
1225 notification.sigev_notify != SIGEV_THREAD))
1227 if (notification.sigev_notify == SIGEV_SIGNAL &&
1228 !valid_signal(notification.sigev_signo)) {
1231 if (notification.sigev_notify == SIGEV_THREAD) {
1234 /* create the notify skb */
1235 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1240 if (copy_from_user(nc->data,
1241 notification.sigev_value.sival_ptr,
1242 NOTIFY_COOKIE_LEN)) {
1247 /* TODO: add a header? */
1248 skb_put(nc, NOTIFY_COOKIE_LEN);
1249 /* and attach it to the socket */
1251 filp = fget(notification.sigev_signo);
1256 sock = netlink_getsockbyfilp(filp);
1259 ret = PTR_ERR(sock);
1264 timeo = MAX_SCHEDULE_TIMEOUT;
1265 ret = netlink_attachskb(sock, nc, &timeo, NULL);
1282 inode = filp->f_path.dentry->d_inode;
1283 if (unlikely(filp->f_op != &mqueue_file_operations)) {
1287 info = MQUEUE_I(inode);
1290 spin_lock(&info->lock);
1291 if (u_notification == NULL) {
1292 if (info->notify_owner == task_tgid(current)) {
1293 remove_notification(info);
1294 inode->i_atime = inode->i_ctime = CURRENT_TIME;
1296 } else if (info->notify_owner != NULL) {
1299 switch (notification.sigev_notify) {
1301 info->notify.sigev_notify = SIGEV_NONE;
1304 info->notify_sock = sock;
1305 info->notify_cookie = nc;
1308 info->notify.sigev_notify = SIGEV_THREAD;
1311 info->notify.sigev_signo = notification.sigev_signo;
1312 info->notify.sigev_value = notification.sigev_value;
1313 info->notify.sigev_notify = SIGEV_SIGNAL;
1317 info->notify_owner = get_pid(task_tgid(current));
1318 info->notify_user_ns = get_user_ns(current_user_ns());
1319 inode->i_atime = inode->i_ctime = CURRENT_TIME;
1321 spin_unlock(&info->lock);
1326 netlink_detachskb(sock, nc);
1333 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1334 const struct mq_attr __user *, u_mqstat,
1335 struct mq_attr __user *, u_omqstat)
1338 struct mq_attr mqstat, omqstat;
1340 struct inode *inode;
1341 struct mqueue_inode_info *info;
1343 if (u_mqstat != NULL) {
1344 if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1346 if (mqstat.mq_flags & (~O_NONBLOCK))
1356 inode = filp->f_path.dentry->d_inode;
1357 if (unlikely(filp->f_op != &mqueue_file_operations)) {
1361 info = MQUEUE_I(inode);
1363 spin_lock(&info->lock);
1365 omqstat = info->attr;
1366 omqstat.mq_flags = filp->f_flags & O_NONBLOCK;
1368 audit_mq_getsetattr(mqdes, &mqstat);
1369 spin_lock(&filp->f_lock);
1370 if (mqstat.mq_flags & O_NONBLOCK)
1371 filp->f_flags |= O_NONBLOCK;
1373 filp->f_flags &= ~O_NONBLOCK;
1374 spin_unlock(&filp->f_lock);
1376 inode->i_atime = inode->i_ctime = CURRENT_TIME;
1379 spin_unlock(&info->lock);
1382 if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1383 sizeof(struct mq_attr)))
1392 static const struct inode_operations mqueue_dir_inode_operations = {
1393 .lookup = simple_lookup,
1394 .create = mqueue_create,
1395 .unlink = mqueue_unlink,
1398 static const struct file_operations mqueue_file_operations = {
1399 .flush = mqueue_flush_file,
1400 .poll = mqueue_poll_file,
1401 .read = mqueue_read_file,
1402 .llseek = default_llseek,
1405 static const struct super_operations mqueue_super_ops = {
1406 .alloc_inode = mqueue_alloc_inode,
1407 .destroy_inode = mqueue_destroy_inode,
1408 .evict_inode = mqueue_evict_inode,
1409 .statfs = simple_statfs,
1412 static struct file_system_type mqueue_fs_type = {
1414 .mount = mqueue_mount,
1415 .kill_sb = kill_litter_super,
1418 int mq_init_ns(struct ipc_namespace *ns)
1420 ns->mq_queues_count = 0;
1421 ns->mq_queues_max = DFLT_QUEUESMAX;
1422 ns->mq_msg_max = DFLT_MSGMAX;
1423 ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
1424 ns->mq_msg_default = DFLT_MSG;
1425 ns->mq_msgsize_default = DFLT_MSGSIZE;
1427 ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1428 if (IS_ERR(ns->mq_mnt)) {
1429 int err = PTR_ERR(ns->mq_mnt);
1436 void mq_clear_sbinfo(struct ipc_namespace *ns)
1438 ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1441 void mq_put_mnt(struct ipc_namespace *ns)
1443 kern_unmount(ns->mq_mnt);
1446 static int __init init_mqueue_fs(void)
1450 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1451 sizeof(struct mqueue_inode_info), 0,
1452 SLAB_HWCACHE_ALIGN, init_once);
1453 if (mqueue_inode_cachep == NULL)
1456 /* ignore failures - they are not fatal */
1457 mq_sysctl_table = mq_register_sysctl_table();
1459 error = register_filesystem(&mqueue_fs_type);
1463 spin_lock_init(&mq_lock);
1465 error = mq_init_ns(&init_ipc_ns);
1467 goto out_filesystem;
1472 unregister_filesystem(&mqueue_fs_type);
1474 if (mq_sysctl_table)
1475 unregister_sysctl_table(mq_sysctl_table);
1476 kmem_cache_destroy(mqueue_inode_cachep);
1480 __initcall(init_mqueue_fs);