4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
43 * FIXME: remove all knowledge of the buffer layer from the core VM
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * Shared mappings now work. 15.8.1995 Bruno.
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
64 * ->i_mmap_mutex (truncate_pagecache)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
70 * ->i_mmap_mutex (truncate->unmap_mapping_range)
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 * ->lock_page (access_process_vm)
80 * ->i_mutex (generic_file_buffered_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 * sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
88 * ->anon_vma.lock (vma_adjust)
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
104 * ->inode->i_lock (zap_pte_range->set_page_dirty)
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 static void page_cache_tree_delete(struct address_space *mapping,
112 struct page *page, void *shadow)
114 struct radix_tree_node *node;
120 VM_BUG_ON(!PageLocked(page));
122 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125 mapping->nrshadows++;
127 * Make sure the nrshadows update is committed before
128 * the nrpages update so that final truncate racing
129 * with reclaim does not see both counters 0 at the
130 * same time and miss a shadow entry.
137 /* Clear direct pointer tags in root node */
138 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139 radix_tree_replace_slot(slot, shadow);
143 /* Clear tree tags for the removed page */
145 offset = index & RADIX_TREE_MAP_MASK;
146 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147 if (test_bit(offset, node->tags[tag]))
148 radix_tree_tag_clear(&mapping->page_tree, index, tag);
151 /* Delete page, swap shadow entry */
152 radix_tree_replace_slot(slot, shadow);
153 workingset_node_pages_dec(node);
155 workingset_node_shadows_inc(node);
157 if (__radix_tree_delete_node(&mapping->page_tree, node))
161 * Track node that only contains shadow entries.
163 * Avoid acquiring the list_lru lock if already tracked. The
164 * list_empty() test is safe as node->private_list is
165 * protected by mapping->tree_lock.
167 if (!workingset_node_pages(node) &&
168 list_empty(&node->private_list)) {
169 node->private_data = mapping;
170 list_lru_add(&workingset_shadow_nodes, &node->private_list);
175 * Delete a page from the page cache and free it. Caller has to make
176 * sure the page is locked and that nobody else uses it - or that usage
177 * is safe. The caller must hold the mapping's tree_lock.
179 void __delete_from_page_cache(struct page *page, void *shadow)
181 struct address_space *mapping = page->mapping;
183 trace_mm_filemap_delete_from_page_cache(page);
185 * if we're uptodate, flush out into the cleancache, otherwise
186 * invalidate any existing cleancache entries. We can't leave
187 * stale data around in the cleancache once our page is gone
189 if (PageUptodate(page) && PageMappedToDisk(page))
190 cleancache_put_page(page);
192 cleancache_invalidate_page(mapping, page);
194 page_cache_tree_delete(mapping, page, shadow);
196 page->mapping = NULL;
197 /* Leave page->index set: truncation lookup relies upon it */
199 __dec_zone_page_state(page, NR_FILE_PAGES);
200 if (PageSwapBacked(page))
201 __dec_zone_page_state(page, NR_SHMEM);
202 BUG_ON(page_mapped(page));
205 * Some filesystems seem to re-dirty the page even after
206 * the VM has canceled the dirty bit (eg ext3 journaling).
208 * Fix it up by doing a final dirty accounting check after
209 * having removed the page entirely.
211 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212 dec_zone_page_state(page, NR_FILE_DIRTY);
213 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
218 * delete_from_page_cache - delete page from page cache
219 * @page: the page which the kernel is trying to remove from page cache
221 * This must be called only on pages that have been verified to be in the page
222 * cache and locked. It will never put the page into the free list, the caller
223 * has a reference on the page.
225 void delete_from_page_cache(struct page *page)
227 struct address_space *mapping = page->mapping;
228 void (*freepage)(struct page *);
230 BUG_ON(!PageLocked(page));
232 freepage = mapping->a_ops->freepage;
233 spin_lock_irq(&mapping->tree_lock);
234 __delete_from_page_cache(page, NULL);
235 spin_unlock_irq(&mapping->tree_lock);
236 mem_cgroup_uncharge_cache_page(page);
240 page_cache_release(page);
242 EXPORT_SYMBOL(delete_from_page_cache);
244 static int sleep_on_page(void *word)
250 static int sleep_on_page_killable(void *word)
253 return fatal_signal_pending(current) ? -EINTR : 0;
256 static int filemap_check_errors(struct address_space *mapping)
259 /* Check for outstanding write errors */
260 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
262 if (test_and_clear_bit(AS_EIO, &mapping->flags))
268 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
269 * @mapping: address space structure to write
270 * @start: offset in bytes where the range starts
271 * @end: offset in bytes where the range ends (inclusive)
272 * @sync_mode: enable synchronous operation
274 * Start writeback against all of a mapping's dirty pages that lie
275 * within the byte offsets <start, end> inclusive.
277 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
278 * opposed to a regular memory cleansing writeback. The difference between
279 * these two operations is that if a dirty page/buffer is encountered, it must
280 * be waited upon, and not just skipped over.
282 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
283 loff_t end, int sync_mode)
286 struct writeback_control wbc = {
287 .sync_mode = sync_mode,
288 .nr_to_write = LONG_MAX,
289 .range_start = start,
293 if (!mapping_cap_writeback_dirty(mapping))
296 ret = do_writepages(mapping, &wbc);
300 static inline int __filemap_fdatawrite(struct address_space *mapping,
303 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
306 int filemap_fdatawrite(struct address_space *mapping)
308 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
310 EXPORT_SYMBOL(filemap_fdatawrite);
312 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
315 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
317 EXPORT_SYMBOL(filemap_fdatawrite_range);
320 * filemap_flush - mostly a non-blocking flush
321 * @mapping: target address_space
323 * This is a mostly non-blocking flush. Not suitable for data-integrity
324 * purposes - I/O may not be started against all dirty pages.
326 int filemap_flush(struct address_space *mapping)
328 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
330 EXPORT_SYMBOL(filemap_flush);
333 * filemap_fdatawait_range - wait for writeback to complete
334 * @mapping: address space structure to wait for
335 * @start_byte: offset in bytes where the range starts
336 * @end_byte: offset in bytes where the range ends (inclusive)
338 * Walk the list of under-writeback pages of the given address space
339 * in the given range and wait for all of them.
341 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
344 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
345 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
350 if (end_byte < start_byte)
353 pagevec_init(&pvec, 0);
354 while ((index <= end) &&
355 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
356 PAGECACHE_TAG_WRITEBACK,
357 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
360 for (i = 0; i < nr_pages; i++) {
361 struct page *page = pvec.pages[i];
363 /* until radix tree lookup accepts end_index */
364 if (page->index > end)
367 wait_on_page_writeback(page);
368 if (TestClearPageError(page))
371 pagevec_release(&pvec);
375 ret2 = filemap_check_errors(mapping);
381 EXPORT_SYMBOL(filemap_fdatawait_range);
384 * filemap_fdatawait - wait for all under-writeback pages to complete
385 * @mapping: address space structure to wait for
387 * Walk the list of under-writeback pages of the given address space
388 * and wait for all of them.
390 int filemap_fdatawait(struct address_space *mapping)
392 loff_t i_size = i_size_read(mapping->host);
397 return filemap_fdatawait_range(mapping, 0, i_size - 1);
399 EXPORT_SYMBOL(filemap_fdatawait);
401 int filemap_write_and_wait(struct address_space *mapping)
405 if (mapping->nrpages) {
406 err = filemap_fdatawrite(mapping);
408 * Even if the above returned error, the pages may be
409 * written partially (e.g. -ENOSPC), so we wait for it.
410 * But the -EIO is special case, it may indicate the worst
411 * thing (e.g. bug) happened, so we avoid waiting for it.
414 int err2 = filemap_fdatawait(mapping);
419 err = filemap_check_errors(mapping);
423 EXPORT_SYMBOL(filemap_write_and_wait);
426 * filemap_write_and_wait_range - write out & wait on a file range
427 * @mapping: the address_space for the pages
428 * @lstart: offset in bytes where the range starts
429 * @lend: offset in bytes where the range ends (inclusive)
431 * Write out and wait upon file offsets lstart->lend, inclusive.
433 * Note that `lend' is inclusive (describes the last byte to be written) so
434 * that this function can be used to write to the very end-of-file (end = -1).
436 int filemap_write_and_wait_range(struct address_space *mapping,
437 loff_t lstart, loff_t lend)
441 if (mapping->nrpages) {
442 err = __filemap_fdatawrite_range(mapping, lstart, lend,
444 /* See comment of filemap_write_and_wait() */
446 int err2 = filemap_fdatawait_range(mapping,
452 err = filemap_check_errors(mapping);
456 EXPORT_SYMBOL(filemap_write_and_wait_range);
459 * replace_page_cache_page - replace a pagecache page with a new one
460 * @old: page to be replaced
461 * @new: page to replace with
462 * @gfp_mask: allocation mode
464 * This function replaces a page in the pagecache with a new one. On
465 * success it acquires the pagecache reference for the new page and
466 * drops it for the old page. Both the old and new pages must be
467 * locked. This function does not add the new page to the LRU, the
468 * caller must do that.
470 * The remove + add is atomic. The only way this function can fail is
471 * memory allocation failure.
473 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
477 VM_BUG_ON_PAGE(!PageLocked(old), old);
478 VM_BUG_ON_PAGE(!PageLocked(new), new);
479 VM_BUG_ON_PAGE(new->mapping, new);
481 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
483 struct address_space *mapping = old->mapping;
484 void (*freepage)(struct page *);
486 pgoff_t offset = old->index;
487 freepage = mapping->a_ops->freepage;
490 new->mapping = mapping;
493 spin_lock_irq(&mapping->tree_lock);
494 __delete_from_page_cache(old, NULL);
495 error = radix_tree_insert(&mapping->page_tree, offset, new);
498 __inc_zone_page_state(new, NR_FILE_PAGES);
499 if (PageSwapBacked(new))
500 __inc_zone_page_state(new, NR_SHMEM);
501 spin_unlock_irq(&mapping->tree_lock);
502 /* mem_cgroup codes must not be called under tree_lock */
503 mem_cgroup_replace_page_cache(old, new);
504 radix_tree_preload_end();
507 page_cache_release(old);
512 EXPORT_SYMBOL_GPL(replace_page_cache_page);
514 static int page_cache_tree_insert(struct address_space *mapping,
515 struct page *page, void **shadowp)
517 struct radix_tree_node *node;
521 error = __radix_tree_create(&mapping->page_tree, page->index,
528 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
529 if (!radix_tree_exceptional_entry(p))
533 mapping->nrshadows--;
535 workingset_node_shadows_dec(node);
537 radix_tree_replace_slot(slot, page);
540 workingset_node_pages_inc(node);
542 * Don't track node that contains actual pages.
544 * Avoid acquiring the list_lru lock if already
545 * untracked. The list_empty() test is safe as
546 * node->private_list is protected by
547 * mapping->tree_lock.
549 if (!list_empty(&node->private_list))
550 list_lru_del(&workingset_shadow_nodes,
551 &node->private_list);
556 static int __add_to_page_cache_locked(struct page *page,
557 struct address_space *mapping,
558 pgoff_t offset, gfp_t gfp_mask,
563 VM_BUG_ON_PAGE(!PageLocked(page), page);
564 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
566 error = mem_cgroup_charge_file(page, current->mm,
567 gfp_mask & GFP_RECLAIM_MASK);
571 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
573 mem_cgroup_uncharge_cache_page(page);
577 page_cache_get(page);
578 page->mapping = mapping;
579 page->index = offset;
581 spin_lock_irq(&mapping->tree_lock);
582 error = page_cache_tree_insert(mapping, page, shadowp);
583 radix_tree_preload_end();
586 __inc_zone_page_state(page, NR_FILE_PAGES);
587 spin_unlock_irq(&mapping->tree_lock);
588 trace_mm_filemap_add_to_page_cache(page);
591 page->mapping = NULL;
592 /* Leave page->index set: truncation relies upon it */
593 spin_unlock_irq(&mapping->tree_lock);
594 mem_cgroup_uncharge_cache_page(page);
595 page_cache_release(page);
600 * add_to_page_cache_locked - add a locked page to the pagecache
602 * @mapping: the page's address_space
603 * @offset: page index
604 * @gfp_mask: page allocation mode
606 * This function is used to add a page to the pagecache. It must be locked.
607 * This function does not add the page to the LRU. The caller must do that.
609 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
610 pgoff_t offset, gfp_t gfp_mask)
612 return __add_to_page_cache_locked(page, mapping, offset,
615 EXPORT_SYMBOL(add_to_page_cache_locked);
617 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
618 pgoff_t offset, gfp_t gfp_mask)
623 __set_page_locked(page);
624 ret = __add_to_page_cache_locked(page, mapping, offset,
627 __clear_page_locked(page);
630 * The page might have been evicted from cache only
631 * recently, in which case it should be activated like
632 * any other repeatedly accessed page.
634 if (shadow && workingset_refault(shadow)) {
636 workingset_activation(page);
638 ClearPageActive(page);
643 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
646 struct page *__page_cache_alloc(gfp_t gfp)
651 if (cpuset_do_page_mem_spread()) {
652 unsigned int cpuset_mems_cookie;
654 cpuset_mems_cookie = read_mems_allowed_begin();
655 n = cpuset_mem_spread_node();
656 page = alloc_pages_exact_node(n, gfp, 0);
657 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
661 return alloc_pages(gfp, 0);
663 EXPORT_SYMBOL(__page_cache_alloc);
667 * In order to wait for pages to become available there must be
668 * waitqueues associated with pages. By using a hash table of
669 * waitqueues where the bucket discipline is to maintain all
670 * waiters on the same queue and wake all when any of the pages
671 * become available, and for the woken contexts to check to be
672 * sure the appropriate page became available, this saves space
673 * at a cost of "thundering herd" phenomena during rare hash
676 static wait_queue_head_t *page_waitqueue(struct page *page)
678 const struct zone *zone = page_zone(page);
680 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
683 static inline void wake_up_page(struct page *page, int bit)
685 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
688 void wait_on_page_bit(struct page *page, int bit_nr)
690 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
692 if (test_bit(bit_nr, &page->flags))
693 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
694 TASK_UNINTERRUPTIBLE);
696 EXPORT_SYMBOL(wait_on_page_bit);
698 int wait_on_page_bit_killable(struct page *page, int bit_nr)
700 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
702 if (!test_bit(bit_nr, &page->flags))
705 return __wait_on_bit(page_waitqueue(page), &wait,
706 sleep_on_page_killable, TASK_KILLABLE);
710 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
711 * @page: Page defining the wait queue of interest
712 * @waiter: Waiter to add to the queue
714 * Add an arbitrary @waiter to the wait queue for the nominated @page.
716 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
718 wait_queue_head_t *q = page_waitqueue(page);
721 spin_lock_irqsave(&q->lock, flags);
722 __add_wait_queue(q, waiter);
723 spin_unlock_irqrestore(&q->lock, flags);
725 EXPORT_SYMBOL_GPL(add_page_wait_queue);
728 * unlock_page - unlock a locked page
731 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
732 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
733 * mechananism between PageLocked pages and PageWriteback pages is shared.
734 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
736 * The mb is necessary to enforce ordering between the clear_bit and the read
737 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
739 void unlock_page(struct page *page)
741 VM_BUG_ON_PAGE(!PageLocked(page), page);
742 clear_bit_unlock(PG_locked, &page->flags);
743 smp_mb__after_clear_bit();
744 wake_up_page(page, PG_locked);
746 EXPORT_SYMBOL(unlock_page);
749 * end_page_writeback - end writeback against a page
752 void end_page_writeback(struct page *page)
754 if (TestClearPageReclaim(page))
755 rotate_reclaimable_page(page);
757 if (!test_clear_page_writeback(page))
760 smp_mb__after_clear_bit();
761 wake_up_page(page, PG_writeback);
763 EXPORT_SYMBOL(end_page_writeback);
766 * __lock_page - get a lock on the page, assuming we need to sleep to get it
767 * @page: the page to lock
769 void __lock_page(struct page *page)
771 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
773 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
774 TASK_UNINTERRUPTIBLE);
776 EXPORT_SYMBOL(__lock_page);
778 int __lock_page_killable(struct page *page)
780 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
782 return __wait_on_bit_lock(page_waitqueue(page), &wait,
783 sleep_on_page_killable, TASK_KILLABLE);
785 EXPORT_SYMBOL_GPL(__lock_page_killable);
787 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
790 if (flags & FAULT_FLAG_ALLOW_RETRY) {
792 * CAUTION! In this case, mmap_sem is not released
793 * even though return 0.
795 if (flags & FAULT_FLAG_RETRY_NOWAIT)
798 up_read(&mm->mmap_sem);
799 if (flags & FAULT_FLAG_KILLABLE)
800 wait_on_page_locked_killable(page);
802 wait_on_page_locked(page);
805 if (flags & FAULT_FLAG_KILLABLE) {
808 ret = __lock_page_killable(page);
810 up_read(&mm->mmap_sem);
820 * page_cache_next_hole - find the next hole (not-present entry)
823 * @max_scan: maximum range to search
825 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
826 * lowest indexed hole.
828 * Returns: the index of the hole if found, otherwise returns an index
829 * outside of the set specified (in which case 'return - index >=
830 * max_scan' will be true). In rare cases of index wrap-around, 0 will
833 * page_cache_next_hole may be called under rcu_read_lock. However,
834 * like radix_tree_gang_lookup, this will not atomically search a
835 * snapshot of the tree at a single point in time. For example, if a
836 * hole is created at index 5, then subsequently a hole is created at
837 * index 10, page_cache_next_hole covering both indexes may return 10
838 * if called under rcu_read_lock.
840 pgoff_t page_cache_next_hole(struct address_space *mapping,
841 pgoff_t index, unsigned long max_scan)
845 for (i = 0; i < max_scan; i++) {
848 page = radix_tree_lookup(&mapping->page_tree, index);
849 if (!page || radix_tree_exceptional_entry(page))
858 EXPORT_SYMBOL(page_cache_next_hole);
861 * page_cache_prev_hole - find the prev hole (not-present entry)
864 * @max_scan: maximum range to search
866 * Search backwards in the range [max(index-max_scan+1, 0), index] for
869 * Returns: the index of the hole if found, otherwise returns an index
870 * outside of the set specified (in which case 'index - return >=
871 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
874 * page_cache_prev_hole may be called under rcu_read_lock. However,
875 * like radix_tree_gang_lookup, this will not atomically search a
876 * snapshot of the tree at a single point in time. For example, if a
877 * hole is created at index 10, then subsequently a hole is created at
878 * index 5, page_cache_prev_hole covering both indexes may return 5 if
879 * called under rcu_read_lock.
881 pgoff_t page_cache_prev_hole(struct address_space *mapping,
882 pgoff_t index, unsigned long max_scan)
886 for (i = 0; i < max_scan; i++) {
889 page = radix_tree_lookup(&mapping->page_tree, index);
890 if (!page || radix_tree_exceptional_entry(page))
893 if (index == ULONG_MAX)
899 EXPORT_SYMBOL(page_cache_prev_hole);
902 * find_get_entry - find and get a page cache entry
903 * @mapping: the address_space to search
904 * @offset: the page cache index
906 * Looks up the page cache slot at @mapping & @offset. If there is a
907 * page cache page, it is returned with an increased refcount.
909 * If the slot holds a shadow entry of a previously evicted page, it
912 * Otherwise, %NULL is returned.
914 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
922 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
924 page = radix_tree_deref_slot(pagep);
927 if (radix_tree_exception(page)) {
928 if (radix_tree_deref_retry(page))
931 * Otherwise, shmem/tmpfs must be storing a swap entry
932 * here as an exceptional entry: so return it without
933 * attempting to raise page count.
937 if (!page_cache_get_speculative(page))
941 * Has the page moved?
942 * This is part of the lockless pagecache protocol. See
943 * include/linux/pagemap.h for details.
945 if (unlikely(page != *pagep)) {
946 page_cache_release(page);
955 EXPORT_SYMBOL(find_get_entry);
958 * find_get_page - find and get a page reference
959 * @mapping: the address_space to search
960 * @offset: the page index
962 * Looks up the page cache slot at @mapping & @offset. If there is a
963 * page cache page, it is returned with an increased refcount.
965 * Otherwise, %NULL is returned.
967 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
969 struct page *page = find_get_entry(mapping, offset);
971 if (radix_tree_exceptional_entry(page))
975 EXPORT_SYMBOL(find_get_page);
978 * find_lock_entry - locate, pin and lock a page cache entry
979 * @mapping: the address_space to search
980 * @offset: the page cache index
982 * Looks up the page cache slot at @mapping & @offset. If there is a
983 * page cache page, it is returned locked and with an increased
986 * If the slot holds a shadow entry of a previously evicted page, it
989 * Otherwise, %NULL is returned.
991 * find_lock_entry() may sleep.
993 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
998 page = find_get_entry(mapping, offset);
999 if (page && !radix_tree_exception(page)) {
1001 /* Has the page been truncated? */
1002 if (unlikely(page->mapping != mapping)) {
1004 page_cache_release(page);
1007 VM_BUG_ON_PAGE(page->index != offset, page);
1011 EXPORT_SYMBOL(find_lock_entry);
1014 * find_lock_page - locate, pin and lock a pagecache page
1015 * @mapping: the address_space to search
1016 * @offset: the page index
1018 * Looks up the page cache slot at @mapping & @offset. If there is a
1019 * page cache page, it is returned locked and with an increased
1022 * Otherwise, %NULL is returned.
1024 * find_lock_page() may sleep.
1026 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1028 struct page *page = find_lock_entry(mapping, offset);
1030 if (radix_tree_exceptional_entry(page))
1034 EXPORT_SYMBOL(find_lock_page);
1037 * find_or_create_page - locate or add a pagecache page
1038 * @mapping: the page's address_space
1039 * @index: the page's index into the mapping
1040 * @gfp_mask: page allocation mode
1042 * Looks up the page cache slot at @mapping & @offset. If there is a
1043 * page cache page, it is returned locked and with an increased
1046 * If the page is not present, a new page is allocated using @gfp_mask
1047 * and added to the page cache and the VM's LRU list. The page is
1048 * returned locked and with an increased refcount.
1050 * On memory exhaustion, %NULL is returned.
1052 * find_or_create_page() may sleep, even if @gfp_flags specifies an
1053 * atomic allocation!
1055 struct page *find_or_create_page(struct address_space *mapping,
1056 pgoff_t index, gfp_t gfp_mask)
1061 page = find_lock_page(mapping, index);
1063 page = __page_cache_alloc(gfp_mask);
1067 * We want a regular kernel memory (not highmem or DMA etc)
1068 * allocation for the radix tree nodes, but we need to honour
1069 * the context-specific requirements the caller has asked for.
1070 * GFP_RECLAIM_MASK collects those requirements.
1072 err = add_to_page_cache_lru(page, mapping, index,
1073 (gfp_mask & GFP_RECLAIM_MASK));
1074 if (unlikely(err)) {
1075 page_cache_release(page);
1083 EXPORT_SYMBOL(find_or_create_page);
1086 * find_get_entries - gang pagecache lookup
1087 * @mapping: The address_space to search
1088 * @start: The starting page cache index
1089 * @nr_entries: The maximum number of entries
1090 * @entries: Where the resulting entries are placed
1091 * @indices: The cache indices corresponding to the entries in @entries
1093 * find_get_entries() will search for and return a group of up to
1094 * @nr_entries entries in the mapping. The entries are placed at
1095 * @entries. find_get_entries() takes a reference against any actual
1098 * The search returns a group of mapping-contiguous page cache entries
1099 * with ascending indexes. There may be holes in the indices due to
1100 * not-present pages.
1102 * Any shadow entries of evicted pages are included in the returned
1105 * find_get_entries() returns the number of pages and shadow entries
1108 unsigned find_get_entries(struct address_space *mapping,
1109 pgoff_t start, unsigned int nr_entries,
1110 struct page **entries, pgoff_t *indices)
1113 unsigned int ret = 0;
1114 struct radix_tree_iter iter;
1121 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1124 page = radix_tree_deref_slot(slot);
1125 if (unlikely(!page))
1127 if (radix_tree_exception(page)) {
1128 if (radix_tree_deref_retry(page))
1131 * Otherwise, we must be storing a swap entry
1132 * here as an exceptional entry: so return it
1133 * without attempting to raise page count.
1137 if (!page_cache_get_speculative(page))
1140 /* Has the page moved? */
1141 if (unlikely(page != *slot)) {
1142 page_cache_release(page);
1146 indices[ret] = iter.index;
1147 entries[ret] = page;
1148 if (++ret == nr_entries)
1156 * find_get_pages - gang pagecache lookup
1157 * @mapping: The address_space to search
1158 * @start: The starting page index
1159 * @nr_pages: The maximum number of pages
1160 * @pages: Where the resulting pages are placed
1162 * find_get_pages() will search for and return a group of up to
1163 * @nr_pages pages in the mapping. The pages are placed at @pages.
1164 * find_get_pages() takes a reference against the returned pages.
1166 * The search returns a group of mapping-contiguous pages with ascending
1167 * indexes. There may be holes in the indices due to not-present pages.
1169 * find_get_pages() returns the number of pages which were found.
1171 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1172 unsigned int nr_pages, struct page **pages)
1174 struct radix_tree_iter iter;
1178 if (unlikely(!nr_pages))
1183 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1186 page = radix_tree_deref_slot(slot);
1187 if (unlikely(!page))
1190 if (radix_tree_exception(page)) {
1191 if (radix_tree_deref_retry(page)) {
1193 * Transient condition which can only trigger
1194 * when entry at index 0 moves out of or back
1195 * to root: none yet gotten, safe to restart.
1197 WARN_ON(iter.index);
1201 * Otherwise, shmem/tmpfs must be storing a swap entry
1202 * here as an exceptional entry: so skip over it -
1203 * we only reach this from invalidate_mapping_pages().
1208 if (!page_cache_get_speculative(page))
1211 /* Has the page moved? */
1212 if (unlikely(page != *slot)) {
1213 page_cache_release(page);
1218 if (++ret == nr_pages)
1227 * find_get_pages_contig - gang contiguous pagecache lookup
1228 * @mapping: The address_space to search
1229 * @index: The starting page index
1230 * @nr_pages: The maximum number of pages
1231 * @pages: Where the resulting pages are placed
1233 * find_get_pages_contig() works exactly like find_get_pages(), except
1234 * that the returned number of pages are guaranteed to be contiguous.
1236 * find_get_pages_contig() returns the number of pages which were found.
1238 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1239 unsigned int nr_pages, struct page **pages)
1241 struct radix_tree_iter iter;
1243 unsigned int ret = 0;
1245 if (unlikely(!nr_pages))
1250 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1253 page = radix_tree_deref_slot(slot);
1254 /* The hole, there no reason to continue */
1255 if (unlikely(!page))
1258 if (radix_tree_exception(page)) {
1259 if (radix_tree_deref_retry(page)) {
1261 * Transient condition which can only trigger
1262 * when entry at index 0 moves out of or back
1263 * to root: none yet gotten, safe to restart.
1268 * Otherwise, shmem/tmpfs must be storing a swap entry
1269 * here as an exceptional entry: so stop looking for
1275 if (!page_cache_get_speculative(page))
1278 /* Has the page moved? */
1279 if (unlikely(page != *slot)) {
1280 page_cache_release(page);
1285 * must check mapping and index after taking the ref.
1286 * otherwise we can get both false positives and false
1287 * negatives, which is just confusing to the caller.
1289 if (page->mapping == NULL || page->index != iter.index) {
1290 page_cache_release(page);
1295 if (++ret == nr_pages)
1301 EXPORT_SYMBOL(find_get_pages_contig);
1304 * find_get_pages_tag - find and return pages that match @tag
1305 * @mapping: the address_space to search
1306 * @index: the starting page index
1307 * @tag: the tag index
1308 * @nr_pages: the maximum number of pages
1309 * @pages: where the resulting pages are placed
1311 * Like find_get_pages, except we only return pages which are tagged with
1312 * @tag. We update @index to index the next page for the traversal.
1314 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1315 int tag, unsigned int nr_pages, struct page **pages)
1317 struct radix_tree_iter iter;
1321 if (unlikely(!nr_pages))
1326 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1327 &iter, *index, tag) {
1330 page = radix_tree_deref_slot(slot);
1331 if (unlikely(!page))
1334 if (radix_tree_exception(page)) {
1335 if (radix_tree_deref_retry(page)) {
1337 * Transient condition which can only trigger
1338 * when entry at index 0 moves out of or back
1339 * to root: none yet gotten, safe to restart.
1344 * This function is never used on a shmem/tmpfs
1345 * mapping, so a swap entry won't be found here.
1350 if (!page_cache_get_speculative(page))
1353 /* Has the page moved? */
1354 if (unlikely(page != *slot)) {
1355 page_cache_release(page);
1360 if (++ret == nr_pages)
1367 *index = pages[ret - 1]->index + 1;
1371 EXPORT_SYMBOL(find_get_pages_tag);
1374 * grab_cache_page_nowait - returns locked page at given index in given cache
1375 * @mapping: target address_space
1376 * @index: the page index
1378 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1379 * This is intended for speculative data generators, where the data can
1380 * be regenerated if the page couldn't be grabbed. This routine should
1381 * be safe to call while holding the lock for another page.
1383 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1384 * and deadlock against the caller's locked page.
1387 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1389 struct page *page = find_get_page(mapping, index);
1392 if (trylock_page(page))
1394 page_cache_release(page);
1397 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1398 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1399 page_cache_release(page);
1404 EXPORT_SYMBOL(grab_cache_page_nowait);
1407 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1408 * a _large_ part of the i/o request. Imagine the worst scenario:
1410 * ---R__________________________________________B__________
1411 * ^ reading here ^ bad block(assume 4k)
1413 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1414 * => failing the whole request => read(R) => read(R+1) =>
1415 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1416 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1417 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1419 * It is going insane. Fix it by quickly scaling down the readahead size.
1421 static void shrink_readahead_size_eio(struct file *filp,
1422 struct file_ra_state *ra)
1428 * do_generic_file_read - generic file read routine
1429 * @filp: the file to read
1430 * @ppos: current file position
1431 * @desc: read_descriptor
1433 * This is a generic file read routine, and uses the
1434 * mapping->a_ops->readpage() function for the actual low-level stuff.
1436 * This is really ugly. But the goto's actually try to clarify some
1437 * of the logic when it comes to error handling etc.
1439 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1440 read_descriptor_t *desc)
1442 struct address_space *mapping = filp->f_mapping;
1443 struct inode *inode = mapping->host;
1444 struct file_ra_state *ra = &filp->f_ra;
1448 unsigned long offset; /* offset into pagecache page */
1449 unsigned int prev_offset;
1452 index = *ppos >> PAGE_CACHE_SHIFT;
1453 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1454 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1455 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1456 offset = *ppos & ~PAGE_CACHE_MASK;
1462 unsigned long nr, ret;
1466 page = find_get_page(mapping, index);
1468 page_cache_sync_readahead(mapping,
1470 index, last_index - index);
1471 page = find_get_page(mapping, index);
1472 if (unlikely(page == NULL))
1473 goto no_cached_page;
1475 if (PageReadahead(page)) {
1476 page_cache_async_readahead(mapping,
1478 index, last_index - index);
1480 if (!PageUptodate(page)) {
1481 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1482 !mapping->a_ops->is_partially_uptodate)
1483 goto page_not_up_to_date;
1484 if (!trylock_page(page))
1485 goto page_not_up_to_date;
1486 /* Did it get truncated before we got the lock? */
1488 goto page_not_up_to_date_locked;
1489 if (!mapping->a_ops->is_partially_uptodate(page,
1491 goto page_not_up_to_date_locked;
1496 * i_size must be checked after we know the page is Uptodate.
1498 * Checking i_size after the check allows us to calculate
1499 * the correct value for "nr", which means the zero-filled
1500 * part of the page is not copied back to userspace (unless
1501 * another truncate extends the file - this is desired though).
1504 isize = i_size_read(inode);
1505 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1506 if (unlikely(!isize || index > end_index)) {
1507 page_cache_release(page);
1511 /* nr is the maximum number of bytes to copy from this page */
1512 nr = PAGE_CACHE_SIZE;
1513 if (index == end_index) {
1514 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1516 page_cache_release(page);
1522 /* If users can be writing to this page using arbitrary
1523 * virtual addresses, take care about potential aliasing
1524 * before reading the page on the kernel side.
1526 if (mapping_writably_mapped(mapping))
1527 flush_dcache_page(page);
1530 * When a sequential read accesses a page several times,
1531 * only mark it as accessed the first time.
1533 if (prev_index != index || offset != prev_offset)
1534 mark_page_accessed(page);
1538 * Ok, we have the page, and it's up-to-date, so
1539 * now we can copy it to user space...
1541 * The file_read_actor routine returns how many bytes were
1543 * NOTE! This may not be the same as how much of a user buffer
1544 * we filled up (we may be padding etc), so we can only update
1545 * "pos" here (the actor routine has to update the user buffer
1546 * pointers and the remaining count).
1548 ret = file_read_actor(desc, page, offset, nr);
1550 index += offset >> PAGE_CACHE_SHIFT;
1551 offset &= ~PAGE_CACHE_MASK;
1552 prev_offset = offset;
1554 page_cache_release(page);
1555 if (ret == nr && desc->count)
1559 page_not_up_to_date:
1560 /* Get exclusive access to the page ... */
1561 error = lock_page_killable(page);
1562 if (unlikely(error))
1563 goto readpage_error;
1565 page_not_up_to_date_locked:
1566 /* Did it get truncated before we got the lock? */
1567 if (!page->mapping) {
1569 page_cache_release(page);
1573 /* Did somebody else fill it already? */
1574 if (PageUptodate(page)) {
1581 * A previous I/O error may have been due to temporary
1582 * failures, eg. multipath errors.
1583 * PG_error will be set again if readpage fails.
1585 ClearPageError(page);
1586 /* Start the actual read. The read will unlock the page. */
1587 error = mapping->a_ops->readpage(filp, page);
1589 if (unlikely(error)) {
1590 if (error == AOP_TRUNCATED_PAGE) {
1591 page_cache_release(page);
1594 goto readpage_error;
1597 if (!PageUptodate(page)) {
1598 error = lock_page_killable(page);
1599 if (unlikely(error))
1600 goto readpage_error;
1601 if (!PageUptodate(page)) {
1602 if (page->mapping == NULL) {
1604 * invalidate_mapping_pages got it
1607 page_cache_release(page);
1611 shrink_readahead_size_eio(filp, ra);
1613 goto readpage_error;
1621 /* UHHUH! A synchronous read error occurred. Report it */
1622 desc->error = error;
1623 page_cache_release(page);
1628 * Ok, it wasn't cached, so we need to create a new
1631 page = page_cache_alloc_cold(mapping);
1633 desc->error = -ENOMEM;
1636 error = add_to_page_cache_lru(page, mapping,
1639 page_cache_release(page);
1640 if (error == -EEXIST)
1642 desc->error = error;
1649 ra->prev_pos = prev_index;
1650 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1651 ra->prev_pos |= prev_offset;
1653 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1654 file_accessed(filp);
1657 int file_read_actor(read_descriptor_t *desc, struct page *page,
1658 unsigned long offset, unsigned long size)
1661 unsigned long left, count = desc->count;
1667 * Faults on the destination of a read are common, so do it before
1670 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1671 kaddr = kmap_atomic(page);
1672 left = __copy_to_user_inatomic(desc->arg.buf,
1673 kaddr + offset, size);
1674 kunmap_atomic(kaddr);
1679 /* Do it the slow way */
1681 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1686 desc->error = -EFAULT;
1689 desc->count = count - size;
1690 desc->written += size;
1691 desc->arg.buf += size;
1696 * Performs necessary checks before doing a write
1697 * @iov: io vector request
1698 * @nr_segs: number of segments in the iovec
1699 * @count: number of bytes to write
1700 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1702 * Adjust number of segments and amount of bytes to write (nr_segs should be
1703 * properly initialized first). Returns appropriate error code that caller
1704 * should return or zero in case that write should be allowed.
1706 int generic_segment_checks(const struct iovec *iov,
1707 unsigned long *nr_segs, size_t *count, int access_flags)
1711 for (seg = 0; seg < *nr_segs; seg++) {
1712 const struct iovec *iv = &iov[seg];
1715 * If any segment has a negative length, or the cumulative
1716 * length ever wraps negative then return -EINVAL.
1719 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1721 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1726 cnt -= iv->iov_len; /* This segment is no good */
1732 EXPORT_SYMBOL(generic_segment_checks);
1735 * generic_file_aio_read - generic filesystem read routine
1736 * @iocb: kernel I/O control block
1737 * @iov: io vector request
1738 * @nr_segs: number of segments in the iovec
1739 * @pos: current file position
1741 * This is the "read()" routine for all filesystems
1742 * that can use the page cache directly.
1745 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1746 unsigned long nr_segs, loff_t pos)
1748 struct file *filp = iocb->ki_filp;
1750 unsigned long seg = 0;
1752 loff_t *ppos = &iocb->ki_pos;
1755 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1759 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1760 if (filp->f_flags & O_DIRECT) {
1762 struct address_space *mapping;
1763 struct inode *inode;
1765 mapping = filp->f_mapping;
1766 inode = mapping->host;
1768 goto out; /* skip atime */
1769 size = i_size_read(inode);
1770 retval = filemap_write_and_wait_range(mapping, pos,
1771 pos + iov_length(iov, nr_segs) - 1);
1773 retval = mapping->a_ops->direct_IO(READ, iocb,
1777 *ppos = pos + retval;
1782 * Btrfs can have a short DIO read if we encounter
1783 * compressed extents, so if there was an error, or if
1784 * we've already read everything we wanted to, or if
1785 * there was a short read because we hit EOF, go ahead
1786 * and return. Otherwise fallthrough to buffered io for
1787 * the rest of the read.
1789 if (retval < 0 || !count || *ppos >= size) {
1790 file_accessed(filp);
1796 for (seg = 0; seg < nr_segs; seg++) {
1797 read_descriptor_t desc;
1801 * If we did a short DIO read we need to skip the section of the
1802 * iov that we've already read data into.
1805 if (count > iov[seg].iov_len) {
1806 count -= iov[seg].iov_len;
1814 desc.arg.buf = iov[seg].iov_base + offset;
1815 desc.count = iov[seg].iov_len - offset;
1816 if (desc.count == 0)
1819 do_generic_file_read(filp, ppos, &desc);
1820 retval += desc.written;
1822 retval = retval ?: desc.error;
1831 EXPORT_SYMBOL(generic_file_aio_read);
1835 * page_cache_read - adds requested page to the page cache if not already there
1836 * @file: file to read
1837 * @offset: page index
1839 * This adds the requested page to the page cache if it isn't already there,
1840 * and schedules an I/O to read in its contents from disk.
1842 static int page_cache_read(struct file *file, pgoff_t offset)
1844 struct address_space *mapping = file->f_mapping;
1849 page = page_cache_alloc_cold(mapping);
1853 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1855 ret = mapping->a_ops->readpage(file, page);
1856 else if (ret == -EEXIST)
1857 ret = 0; /* losing race to add is OK */
1859 page_cache_release(page);
1861 } while (ret == AOP_TRUNCATED_PAGE);
1866 #define MMAP_LOTSAMISS (100)
1869 * Synchronous readahead happens when we don't even find
1870 * a page in the page cache at all.
1872 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1873 struct file_ra_state *ra,
1877 unsigned long ra_pages;
1878 struct address_space *mapping = file->f_mapping;
1880 /* If we don't want any read-ahead, don't bother */
1881 if (vma->vm_flags & VM_RAND_READ)
1886 if (vma->vm_flags & VM_SEQ_READ) {
1887 page_cache_sync_readahead(mapping, ra, file, offset,
1892 /* Avoid banging the cache line if not needed */
1893 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1897 * Do we miss much more than hit in this file? If so,
1898 * stop bothering with read-ahead. It will only hurt.
1900 if (ra->mmap_miss > MMAP_LOTSAMISS)
1906 ra_pages = max_sane_readahead(ra->ra_pages);
1907 ra->start = max_t(long, 0, offset - ra_pages / 2);
1908 ra->size = ra_pages;
1909 ra->async_size = ra_pages / 4;
1910 ra_submit(ra, mapping, file);
1914 * Asynchronous readahead happens when we find the page and PG_readahead,
1915 * so we want to possibly extend the readahead further..
1917 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1918 struct file_ra_state *ra,
1923 struct address_space *mapping = file->f_mapping;
1925 /* If we don't want any read-ahead, don't bother */
1926 if (vma->vm_flags & VM_RAND_READ)
1928 if (ra->mmap_miss > 0)
1930 if (PageReadahead(page))
1931 page_cache_async_readahead(mapping, ra, file,
1932 page, offset, ra->ra_pages);
1936 * filemap_fault - read in file data for page fault handling
1937 * @vma: vma in which the fault was taken
1938 * @vmf: struct vm_fault containing details of the fault
1940 * filemap_fault() is invoked via the vma operations vector for a
1941 * mapped memory region to read in file data during a page fault.
1943 * The goto's are kind of ugly, but this streamlines the normal case of having
1944 * it in the page cache, and handles the special cases reasonably without
1945 * having a lot of duplicated code.
1947 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1950 struct file *file = vma->vm_file;
1951 struct address_space *mapping = file->f_mapping;
1952 struct file_ra_state *ra = &file->f_ra;
1953 struct inode *inode = mapping->host;
1954 pgoff_t offset = vmf->pgoff;
1959 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1960 if (offset >= size >> PAGE_CACHE_SHIFT)
1961 return VM_FAULT_SIGBUS;
1964 * Do we have something in the page cache already?
1966 page = find_get_page(mapping, offset);
1967 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1969 * We found the page, so try async readahead before
1970 * waiting for the lock.
1972 do_async_mmap_readahead(vma, ra, file, page, offset);
1974 /* No page in the page cache at all */
1975 do_sync_mmap_readahead(vma, ra, file, offset);
1976 count_vm_event(PGMAJFAULT);
1977 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1978 ret = VM_FAULT_MAJOR;
1980 page = find_get_page(mapping, offset);
1982 goto no_cached_page;
1985 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1986 page_cache_release(page);
1987 return ret | VM_FAULT_RETRY;
1990 /* Did it get truncated? */
1991 if (unlikely(page->mapping != mapping)) {
1996 VM_BUG_ON_PAGE(page->index != offset, page);
1999 * We have a locked page in the page cache, now we need to check
2000 * that it's up-to-date. If not, it is going to be due to an error.
2002 if (unlikely(!PageUptodate(page)))
2003 goto page_not_uptodate;
2006 * Found the page and have a reference on it.
2007 * We must recheck i_size under page lock.
2009 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2010 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2012 page_cache_release(page);
2013 return VM_FAULT_SIGBUS;
2017 return ret | VM_FAULT_LOCKED;
2021 * We're only likely to ever get here if MADV_RANDOM is in
2024 error = page_cache_read(file, offset);
2027 * The page we want has now been added to the page cache.
2028 * In the unlikely event that someone removed it in the
2029 * meantime, we'll just come back here and read it again.
2035 * An error return from page_cache_read can result if the
2036 * system is low on memory, or a problem occurs while trying
2039 if (error == -ENOMEM)
2040 return VM_FAULT_OOM;
2041 return VM_FAULT_SIGBUS;
2045 * Umm, take care of errors if the page isn't up-to-date.
2046 * Try to re-read it _once_. We do this synchronously,
2047 * because there really aren't any performance issues here
2048 * and we need to check for errors.
2050 ClearPageError(page);
2051 error = mapping->a_ops->readpage(file, page);
2053 wait_on_page_locked(page);
2054 if (!PageUptodate(page))
2057 page_cache_release(page);
2059 if (!error || error == AOP_TRUNCATED_PAGE)
2062 /* Things didn't work out. Return zero to tell the mm layer so. */
2063 shrink_readahead_size_eio(file, ra);
2064 return VM_FAULT_SIGBUS;
2066 EXPORT_SYMBOL(filemap_fault);
2068 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2070 struct radix_tree_iter iter;
2072 struct file *file = vma->vm_file;
2073 struct address_space *mapping = file->f_mapping;
2076 unsigned long address = (unsigned long) vmf->virtual_address;
2081 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2082 if (iter.index > vmf->max_pgoff)
2085 page = radix_tree_deref_slot(slot);
2086 if (unlikely(!page))
2088 if (radix_tree_exception(page)) {
2089 if (radix_tree_deref_retry(page))
2095 if (!page_cache_get_speculative(page))
2098 /* Has the page moved? */
2099 if (unlikely(page != *slot)) {
2100 page_cache_release(page);
2104 if (!PageUptodate(page) ||
2105 PageReadahead(page) ||
2108 if (!trylock_page(page))
2111 if (page->mapping != mapping || !PageUptodate(page))
2114 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2115 if (page->index >= size >> PAGE_CACHE_SHIFT)
2118 pte = vmf->pte + page->index - vmf->pgoff;
2119 if (!pte_none(*pte))
2122 if (file->f_ra.mmap_miss > 0)
2123 file->f_ra.mmap_miss--;
2124 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2125 do_set_pte(vma, addr, page, pte, false, false);
2131 page_cache_release(page);
2133 if (iter.index == vmf->max_pgoff)
2138 EXPORT_SYMBOL(filemap_map_pages);
2140 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2142 struct page *page = vmf->page;
2143 struct inode *inode = file_inode(vma->vm_file);
2144 int ret = VM_FAULT_LOCKED;
2146 sb_start_pagefault(inode->i_sb);
2147 file_update_time(vma->vm_file);
2149 if (page->mapping != inode->i_mapping) {
2151 ret = VM_FAULT_NOPAGE;
2155 * We mark the page dirty already here so that when freeze is in
2156 * progress, we are guaranteed that writeback during freezing will
2157 * see the dirty page and writeprotect it again.
2159 set_page_dirty(page);
2160 wait_for_stable_page(page);
2162 sb_end_pagefault(inode->i_sb);
2165 EXPORT_SYMBOL(filemap_page_mkwrite);
2167 const struct vm_operations_struct generic_file_vm_ops = {
2168 .fault = filemap_fault,
2169 .map_pages = filemap_map_pages,
2170 .page_mkwrite = filemap_page_mkwrite,
2171 .remap_pages = generic_file_remap_pages,
2174 /* This is used for a general mmap of a disk file */
2176 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2178 struct address_space *mapping = file->f_mapping;
2180 if (!mapping->a_ops->readpage)
2182 file_accessed(file);
2183 vma->vm_ops = &generic_file_vm_ops;
2188 * This is for filesystems which do not implement ->writepage.
2190 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2192 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2194 return generic_file_mmap(file, vma);
2197 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2201 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2205 #endif /* CONFIG_MMU */
2207 EXPORT_SYMBOL(generic_file_mmap);
2208 EXPORT_SYMBOL(generic_file_readonly_mmap);
2210 static struct page *wait_on_page_read(struct page *page)
2212 if (!IS_ERR(page)) {
2213 wait_on_page_locked(page);
2214 if (!PageUptodate(page)) {
2215 page_cache_release(page);
2216 page = ERR_PTR(-EIO);
2222 static struct page *__read_cache_page(struct address_space *mapping,
2224 int (*filler)(void *, struct page *),
2231 page = find_get_page(mapping, index);
2233 page = __page_cache_alloc(gfp | __GFP_COLD);
2235 return ERR_PTR(-ENOMEM);
2236 err = add_to_page_cache_lru(page, mapping, index, gfp);
2237 if (unlikely(err)) {
2238 page_cache_release(page);
2241 /* Presumably ENOMEM for radix tree node */
2242 return ERR_PTR(err);
2244 err = filler(data, page);
2246 page_cache_release(page);
2247 page = ERR_PTR(err);
2249 page = wait_on_page_read(page);
2255 static struct page *do_read_cache_page(struct address_space *mapping,
2257 int (*filler)(void *, struct page *),
2266 page = __read_cache_page(mapping, index, filler, data, gfp);
2269 if (PageUptodate(page))
2273 if (!page->mapping) {
2275 page_cache_release(page);
2278 if (PageUptodate(page)) {
2282 err = filler(data, page);
2284 page_cache_release(page);
2285 return ERR_PTR(err);
2287 page = wait_on_page_read(page);
2292 mark_page_accessed(page);
2297 * read_cache_page - read into page cache, fill it if needed
2298 * @mapping: the page's address_space
2299 * @index: the page index
2300 * @filler: function to perform the read
2301 * @data: first arg to filler(data, page) function, often left as NULL
2303 * Read into the page cache. If a page already exists, and PageUptodate() is
2304 * not set, try to fill the page and wait for it to become unlocked.
2306 * If the page does not get brought uptodate, return -EIO.
2308 struct page *read_cache_page(struct address_space *mapping,
2310 int (*filler)(void *, struct page *),
2313 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2315 EXPORT_SYMBOL(read_cache_page);
2318 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2319 * @mapping: the page's address_space
2320 * @index: the page index
2321 * @gfp: the page allocator flags to use if allocating
2323 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2324 * any new page allocations done using the specified allocation flags.
2326 * If the page does not get brought uptodate, return -EIO.
2328 struct page *read_cache_page_gfp(struct address_space *mapping,
2332 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2334 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2336 EXPORT_SYMBOL(read_cache_page_gfp);
2338 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2339 const struct iovec *iov, size_t base, size_t bytes)
2341 size_t copied = 0, left = 0;
2344 char __user *buf = iov->iov_base + base;
2345 int copy = min(bytes, iov->iov_len - base);
2348 left = __copy_from_user_inatomic(vaddr, buf, copy);
2357 return copied - left;
2361 * Copy as much as we can into the page and return the number of bytes which
2362 * were successfully copied. If a fault is encountered then return the number of
2363 * bytes which were copied.
2365 size_t iov_iter_copy_from_user_atomic(struct page *page,
2366 struct iov_iter *i, unsigned long offset, size_t bytes)
2371 BUG_ON(!in_atomic());
2372 kaddr = kmap_atomic(page);
2373 if (likely(i->nr_segs == 1)) {
2375 char __user *buf = i->iov->iov_base + i->iov_offset;
2376 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2377 copied = bytes - left;
2379 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2380 i->iov, i->iov_offset, bytes);
2382 kunmap_atomic(kaddr);
2386 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2389 * This has the same sideeffects and return value as
2390 * iov_iter_copy_from_user_atomic().
2391 * The difference is that it attempts to resolve faults.
2392 * Page must not be locked.
2394 size_t iov_iter_copy_from_user(struct page *page,
2395 struct iov_iter *i, unsigned long offset, size_t bytes)
2401 if (likely(i->nr_segs == 1)) {
2403 char __user *buf = i->iov->iov_base + i->iov_offset;
2404 left = __copy_from_user(kaddr + offset, buf, bytes);
2405 copied = bytes - left;
2407 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2408 i->iov, i->iov_offset, bytes);
2413 EXPORT_SYMBOL(iov_iter_copy_from_user);
2415 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2417 BUG_ON(i->count < bytes);
2419 if (likely(i->nr_segs == 1)) {
2420 i->iov_offset += bytes;
2423 const struct iovec *iov = i->iov;
2424 size_t base = i->iov_offset;
2425 unsigned long nr_segs = i->nr_segs;
2428 * The !iov->iov_len check ensures we skip over unlikely
2429 * zero-length segments (without overruning the iovec).
2431 while (bytes || unlikely(i->count && !iov->iov_len)) {
2434 copy = min(bytes, iov->iov_len - base);
2435 BUG_ON(!i->count || i->count < copy);
2439 if (iov->iov_len == base) {
2446 i->iov_offset = base;
2447 i->nr_segs = nr_segs;
2450 EXPORT_SYMBOL(iov_iter_advance);
2453 * Fault in the first iovec of the given iov_iter, to a maximum length
2454 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2455 * accessed (ie. because it is an invalid address).
2457 * writev-intensive code may want this to prefault several iovecs -- that
2458 * would be possible (callers must not rely on the fact that _only_ the
2459 * first iovec will be faulted with the current implementation).
2461 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2463 char __user *buf = i->iov->iov_base + i->iov_offset;
2464 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2465 return fault_in_pages_readable(buf, bytes);
2467 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2470 * Return the count of just the current iov_iter segment.
2472 size_t iov_iter_single_seg_count(const struct iov_iter *i)
2474 const struct iovec *iov = i->iov;
2475 if (i->nr_segs == 1)
2478 return min(i->count, iov->iov_len - i->iov_offset);
2480 EXPORT_SYMBOL(iov_iter_single_seg_count);
2483 * Performs necessary checks before doing a write
2485 * Can adjust writing position or amount of bytes to write.
2486 * Returns appropriate error code that caller should return or
2487 * zero in case that write should be allowed.
2489 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2491 struct inode *inode = file->f_mapping->host;
2492 unsigned long limit = rlimit(RLIMIT_FSIZE);
2494 if (unlikely(*pos < 0))
2498 /* FIXME: this is for backwards compatibility with 2.4 */
2499 if (file->f_flags & O_APPEND)
2500 *pos = i_size_read(inode);
2502 if (limit != RLIM_INFINITY) {
2503 if (*pos >= limit) {
2504 send_sig(SIGXFSZ, current, 0);
2507 if (*count > limit - (typeof(limit))*pos) {
2508 *count = limit - (typeof(limit))*pos;
2516 if (unlikely(*pos + *count > MAX_NON_LFS &&
2517 !(file->f_flags & O_LARGEFILE))) {
2518 if (*pos >= MAX_NON_LFS) {
2521 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2522 *count = MAX_NON_LFS - (unsigned long)*pos;
2527 * Are we about to exceed the fs block limit ?
2529 * If we have written data it becomes a short write. If we have
2530 * exceeded without writing data we send a signal and return EFBIG.
2531 * Linus frestrict idea will clean these up nicely..
2533 if (likely(!isblk)) {
2534 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2535 if (*count || *pos > inode->i_sb->s_maxbytes) {
2538 /* zero-length writes at ->s_maxbytes are OK */
2541 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2542 *count = inode->i_sb->s_maxbytes - *pos;
2546 if (bdev_read_only(I_BDEV(inode)))
2548 isize = i_size_read(inode);
2549 if (*pos >= isize) {
2550 if (*count || *pos > isize)
2554 if (*pos + *count > isize)
2555 *count = isize - *pos;
2562 EXPORT_SYMBOL(generic_write_checks);
2564 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2565 loff_t pos, unsigned len, unsigned flags,
2566 struct page **pagep, void **fsdata)
2568 const struct address_space_operations *aops = mapping->a_ops;
2570 return aops->write_begin(file, mapping, pos, len, flags,
2573 EXPORT_SYMBOL(pagecache_write_begin);
2575 int pagecache_write_end(struct file *file, struct address_space *mapping,
2576 loff_t pos, unsigned len, unsigned copied,
2577 struct page *page, void *fsdata)
2579 const struct address_space_operations *aops = mapping->a_ops;
2581 mark_page_accessed(page);
2582 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2584 EXPORT_SYMBOL(pagecache_write_end);
2587 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2588 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2589 size_t count, size_t ocount)
2591 struct file *file = iocb->ki_filp;
2592 struct address_space *mapping = file->f_mapping;
2593 struct inode *inode = mapping->host;
2598 if (count != ocount)
2599 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2601 write_len = iov_length(iov, *nr_segs);
2602 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2604 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2609 * After a write we want buffered reads to be sure to go to disk to get
2610 * the new data. We invalidate clean cached page from the region we're
2611 * about to write. We do this *before* the write so that we can return
2612 * without clobbering -EIOCBQUEUED from ->direct_IO().
2614 if (mapping->nrpages) {
2615 written = invalidate_inode_pages2_range(mapping,
2616 pos >> PAGE_CACHE_SHIFT, end);
2618 * If a page can not be invalidated, return 0 to fall back
2619 * to buffered write.
2622 if (written == -EBUSY)
2628 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2631 * Finally, try again to invalidate clean pages which might have been
2632 * cached by non-direct readahead, or faulted in by get_user_pages()
2633 * if the source of the write was an mmap'ed region of the file
2634 * we're writing. Either one is a pretty crazy thing to do,
2635 * so we don't support it 100%. If this invalidation
2636 * fails, tough, the write still worked...
2638 if (mapping->nrpages) {
2639 invalidate_inode_pages2_range(mapping,
2640 pos >> PAGE_CACHE_SHIFT, end);
2645 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2646 i_size_write(inode, pos);
2647 mark_inode_dirty(inode);
2654 EXPORT_SYMBOL(generic_file_direct_write);
2657 * Find or create a page at the given pagecache position. Return the locked
2658 * page. This function is specifically for buffered writes.
2660 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2661 pgoff_t index, unsigned flags)
2666 gfp_t gfp_notmask = 0;
2668 gfp_mask = mapping_gfp_mask(mapping);
2669 if (mapping_cap_account_dirty(mapping))
2670 gfp_mask |= __GFP_WRITE;
2671 if (flags & AOP_FLAG_NOFS)
2672 gfp_notmask = __GFP_FS;
2674 page = find_lock_page(mapping, index);
2678 page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2681 status = add_to_page_cache_lru(page, mapping, index,
2682 GFP_KERNEL & ~gfp_notmask);
2683 if (unlikely(status)) {
2684 page_cache_release(page);
2685 if (status == -EEXIST)
2690 wait_for_stable_page(page);
2693 EXPORT_SYMBOL(grab_cache_page_write_begin);
2695 static ssize_t generic_perform_write(struct file *file,
2696 struct iov_iter *i, loff_t pos)
2698 struct address_space *mapping = file->f_mapping;
2699 const struct address_space_operations *a_ops = mapping->a_ops;
2701 ssize_t written = 0;
2702 unsigned int flags = 0;
2705 * Copies from kernel address space cannot fail (NFSD is a big user).
2707 if (segment_eq(get_fs(), KERNEL_DS))
2708 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2712 unsigned long offset; /* Offset into pagecache page */
2713 unsigned long bytes; /* Bytes to write to page */
2714 size_t copied; /* Bytes copied from user */
2717 offset = (pos & (PAGE_CACHE_SIZE - 1));
2718 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2723 * Bring in the user page that we will copy from _first_.
2724 * Otherwise there's a nasty deadlock on copying from the
2725 * same page as we're writing to, without it being marked
2728 * Not only is this an optimisation, but it is also required
2729 * to check that the address is actually valid, when atomic
2730 * usercopies are used, below.
2732 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2737 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2739 if (unlikely(status))
2742 if (mapping_writably_mapped(mapping))
2743 flush_dcache_page(page);
2745 pagefault_disable();
2746 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2748 flush_dcache_page(page);
2750 mark_page_accessed(page);
2751 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2753 if (unlikely(status < 0))
2759 iov_iter_advance(i, copied);
2760 if (unlikely(copied == 0)) {
2762 * If we were unable to copy any data at all, we must
2763 * fall back to a single segment length write.
2765 * If we didn't fallback here, we could livelock
2766 * because not all segments in the iov can be copied at
2767 * once without a pagefault.
2769 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2770 iov_iter_single_seg_count(i));
2776 balance_dirty_pages_ratelimited(mapping);
2777 if (fatal_signal_pending(current)) {
2781 } while (iov_iter_count(i));
2783 return written ? written : status;
2787 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2788 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2789 size_t count, ssize_t written)
2791 struct file *file = iocb->ki_filp;
2795 iov_iter_init(&i, iov, nr_segs, count, written);
2796 status = generic_perform_write(file, &i, pos);
2798 if (likely(status >= 0)) {
2800 *ppos = pos + status;
2803 return written ? written : status;
2805 EXPORT_SYMBOL(generic_file_buffered_write);
2808 * __generic_file_aio_write - write data to a file
2809 * @iocb: IO state structure (file, offset, etc.)
2810 * @iov: vector with data to write
2811 * @nr_segs: number of segments in the vector
2812 * @ppos: position where to write
2814 * This function does all the work needed for actually writing data to a
2815 * file. It does all basic checks, removes SUID from the file, updates
2816 * modification times and calls proper subroutines depending on whether we
2817 * do direct IO or a standard buffered write.
2819 * It expects i_mutex to be grabbed unless we work on a block device or similar
2820 * object which does not need locking at all.
2822 * This function does *not* take care of syncing data in case of O_SYNC write.
2823 * A caller has to handle it. This is mainly due to the fact that we want to
2824 * avoid syncing under i_mutex.
2826 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2827 unsigned long nr_segs, loff_t *ppos)
2829 struct file *file = iocb->ki_filp;
2830 struct address_space * mapping = file->f_mapping;
2831 size_t ocount; /* original count */
2832 size_t count; /* after file limit checks */
2833 struct inode *inode = mapping->host;
2839 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2846 /* We can write back this queue in page reclaim */
2847 current->backing_dev_info = mapping->backing_dev_info;
2850 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2857 err = file_remove_suid(file);
2861 err = file_update_time(file);
2865 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2866 if (unlikely(file->f_flags & O_DIRECT)) {
2868 ssize_t written_buffered;
2870 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2871 ppos, count, ocount);
2872 if (written < 0 || written == count)
2875 * direct-io write to a hole: fall through to buffered I/O
2876 * for completing the rest of the request.
2880 written_buffered = generic_file_buffered_write(iocb, iov,
2881 nr_segs, pos, ppos, count,
2884 * If generic_file_buffered_write() retuned a synchronous error
2885 * then we want to return the number of bytes which were
2886 * direct-written, or the error code if that was zero. Note
2887 * that this differs from normal direct-io semantics, which
2888 * will return -EFOO even if some bytes were written.
2890 if (written_buffered < 0) {
2891 err = written_buffered;
2896 * We need to ensure that the page cache pages are written to
2897 * disk and invalidated to preserve the expected O_DIRECT
2900 endbyte = pos + written_buffered - written - 1;
2901 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2903 written = written_buffered;
2904 invalidate_mapping_pages(mapping,
2905 pos >> PAGE_CACHE_SHIFT,
2906 endbyte >> PAGE_CACHE_SHIFT);
2909 * We don't know how much we wrote, so just return
2910 * the number of bytes which were direct-written
2914 written = generic_file_buffered_write(iocb, iov, nr_segs,
2915 pos, ppos, count, written);
2918 current->backing_dev_info = NULL;
2919 return written ? written : err;
2921 EXPORT_SYMBOL(__generic_file_aio_write);
2924 * generic_file_aio_write - write data to a file
2925 * @iocb: IO state structure
2926 * @iov: vector with data to write
2927 * @nr_segs: number of segments in the vector
2928 * @pos: position in file where to write
2930 * This is a wrapper around __generic_file_aio_write() to be used by most
2931 * filesystems. It takes care of syncing the file in case of O_SYNC file
2932 * and acquires i_mutex as needed.
2934 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2935 unsigned long nr_segs, loff_t pos)
2937 struct file *file = iocb->ki_filp;
2938 struct inode *inode = file->f_mapping->host;
2941 BUG_ON(iocb->ki_pos != pos);
2943 mutex_lock(&inode->i_mutex);
2944 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2945 mutex_unlock(&inode->i_mutex);
2950 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2956 EXPORT_SYMBOL(generic_file_aio_write);
2959 * try_to_release_page() - release old fs-specific metadata on a page
2961 * @page: the page which the kernel is trying to free
2962 * @gfp_mask: memory allocation flags (and I/O mode)
2964 * The address_space is to try to release any data against the page
2965 * (presumably at page->private). If the release was successful, return `1'.
2966 * Otherwise return zero.
2968 * This may also be called if PG_fscache is set on a page, indicating that the
2969 * page is known to the local caching routines.
2971 * The @gfp_mask argument specifies whether I/O may be performed to release
2972 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2975 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2977 struct address_space * const mapping = page->mapping;
2979 BUG_ON(!PageLocked(page));
2980 if (PageWriteback(page))
2983 if (mapping && mapping->a_ops->releasepage)
2984 return mapping->a_ops->releasepage(page, gfp_mask);
2985 return try_to_free_buffers(page);
2988 EXPORT_SYMBOL(try_to_release_page);