1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
47 * Rudi Cilibrasi : Pass the right thing to
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/pkt_cls.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140 #include <linux/crash_dump.h>
141 #include <linux/sctp.h>
142 #include <net/udp_tunnel.h>
143 #include <linux/net_namespace.h>
144 #include <linux/indirect_call_wrapper.h>
145 #include <net/devlink.h>
146 #include <linux/pm_runtime.h>
148 #include "net-sysfs.h"
150 #define MAX_GRO_SKBS 8
152 /* This should be increased if a protocol with a bigger head is added. */
153 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155 static DEFINE_SPINLOCK(ptype_lock);
156 static DEFINE_SPINLOCK(offload_lock);
157 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
158 struct list_head ptype_all __read_mostly; /* Taps */
159 static struct list_head offload_base __read_mostly;
161 static int netif_rx_internal(struct sk_buff *skb);
162 static int call_netdevice_notifiers_info(unsigned long val,
163 struct netdev_notifier_info *info);
164 static int call_netdevice_notifiers_extack(unsigned long val,
165 struct net_device *dev,
166 struct netlink_ext_ack *extack);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
191 static DEFINE_MUTEX(ifalias_mutex);
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 static DECLARE_RWSEM(devnet_rename_sem);
201 static inline void dev_base_seq_inc(struct net *net)
203 while (++net->dev_base_seq == 0)
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 static inline void rps_lock(struct softnet_data *sd)
222 spin_lock(&sd->input_pkt_queue.lock);
226 static inline void rps_unlock(struct softnet_data *sd)
229 spin_unlock(&sd->input_pkt_queue.lock);
233 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236 struct netdev_name_node *name_node;
238 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241 INIT_HLIST_NODE(&name_node->hlist);
242 name_node->dev = dev;
243 name_node->name = name;
247 static struct netdev_name_node *
248 netdev_name_node_head_alloc(struct net_device *dev)
250 struct netdev_name_node *name_node;
252 name_node = netdev_name_node_alloc(dev, dev->name);
255 INIT_LIST_HEAD(&name_node->list);
259 static void netdev_name_node_free(struct netdev_name_node *name_node)
264 static void netdev_name_node_add(struct net *net,
265 struct netdev_name_node *name_node)
267 hlist_add_head_rcu(&name_node->hlist,
268 dev_name_hash(net, name_node->name));
271 static void netdev_name_node_del(struct netdev_name_node *name_node)
273 hlist_del_rcu(&name_node->hlist);
276 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279 struct hlist_head *head = dev_name_hash(net, name);
280 struct netdev_name_node *name_node;
282 hlist_for_each_entry(name_node, head, hlist)
283 if (!strcmp(name_node->name, name))
288 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291 struct hlist_head *head = dev_name_hash(net, name);
292 struct netdev_name_node *name_node;
294 hlist_for_each_entry_rcu(name_node, head, hlist)
295 if (!strcmp(name_node->name, name))
300 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
302 struct netdev_name_node *name_node;
303 struct net *net = dev_net(dev);
305 name_node = netdev_name_node_lookup(net, name);
308 name_node = netdev_name_node_alloc(dev, name);
311 netdev_name_node_add(net, name_node);
312 /* The node that holds dev->name acts as a head of per-device list. */
313 list_add_tail(&name_node->list, &dev->name_node->list);
317 EXPORT_SYMBOL(netdev_name_node_alt_create);
319 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
321 list_del(&name_node->list);
322 netdev_name_node_del(name_node);
323 kfree(name_node->name);
324 netdev_name_node_free(name_node);
327 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
332 name_node = netdev_name_node_lookup(net, name);
335 /* lookup might have found our primary name or a name belonging
338 if (name_node == dev->name_node || name_node->dev != dev)
341 __netdev_name_node_alt_destroy(name_node);
345 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
347 static void netdev_name_node_alt_flush(struct net_device *dev)
349 struct netdev_name_node *name_node, *tmp;
351 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
352 __netdev_name_node_alt_destroy(name_node);
355 /* Device list insertion */
356 static void list_netdevice(struct net_device *dev)
358 struct net *net = dev_net(dev);
362 write_lock_bh(&dev_base_lock);
363 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
364 netdev_name_node_add(net, dev->name_node);
365 hlist_add_head_rcu(&dev->index_hlist,
366 dev_index_hash(net, dev->ifindex));
367 write_unlock_bh(&dev_base_lock);
369 dev_base_seq_inc(net);
372 /* Device list removal
373 * caller must respect a RCU grace period before freeing/reusing dev
375 static void unlist_netdevice(struct net_device *dev)
379 /* Unlink dev from the device chain */
380 write_lock_bh(&dev_base_lock);
381 list_del_rcu(&dev->dev_list);
382 netdev_name_node_del(dev->name_node);
383 hlist_del_rcu(&dev->index_hlist);
384 write_unlock_bh(&dev_base_lock);
386 dev_base_seq_inc(dev_net(dev));
393 static RAW_NOTIFIER_HEAD(netdev_chain);
396 * Device drivers call our routines to queue packets here. We empty the
397 * queue in the local softnet handler.
400 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
401 EXPORT_PER_CPU_SYMBOL(softnet_data);
403 #ifdef CONFIG_LOCKDEP
405 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
406 * according to dev->type
408 static const unsigned short netdev_lock_type[] = {
409 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
410 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
411 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
412 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
413 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
414 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
415 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
416 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
417 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
418 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
419 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
420 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
421 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
422 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
423 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
425 static const char *const netdev_lock_name[] = {
426 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
427 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
428 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
429 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
430 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
431 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
432 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
433 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
434 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
435 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
436 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
437 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
438 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
439 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
440 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
442 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
443 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
445 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
449 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
450 if (netdev_lock_type[i] == dev_type)
452 /* the last key is used by default */
453 return ARRAY_SIZE(netdev_lock_type) - 1;
456 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
457 unsigned short dev_type)
461 i = netdev_lock_pos(dev_type);
462 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
463 netdev_lock_name[i]);
466 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
470 i = netdev_lock_pos(dev->type);
471 lockdep_set_class_and_name(&dev->addr_list_lock,
472 &netdev_addr_lock_key[i],
473 netdev_lock_name[i]);
476 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
477 unsigned short dev_type)
481 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486 /*******************************************************************************
488 * Protocol management and registration routines
490 *******************************************************************************/
494 * Add a protocol ID to the list. Now that the input handler is
495 * smarter we can dispense with all the messy stuff that used to be
498 * BEWARE!!! Protocol handlers, mangling input packets,
499 * MUST BE last in hash buckets and checking protocol handlers
500 * MUST start from promiscuous ptype_all chain in net_bh.
501 * It is true now, do not change it.
502 * Explanation follows: if protocol handler, mangling packet, will
503 * be the first on list, it is not able to sense, that packet
504 * is cloned and should be copied-on-write, so that it will
505 * change it and subsequent readers will get broken packet.
509 static inline struct list_head *ptype_head(const struct packet_type *pt)
511 if (pt->type == htons(ETH_P_ALL))
512 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
514 return pt->dev ? &pt->dev->ptype_specific :
515 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
519 * dev_add_pack - add packet handler
520 * @pt: packet type declaration
522 * Add a protocol handler to the networking stack. The passed &packet_type
523 * is linked into kernel lists and may not be freed until it has been
524 * removed from the kernel lists.
526 * This call does not sleep therefore it can not
527 * guarantee all CPU's that are in middle of receiving packets
528 * will see the new packet type (until the next received packet).
531 void dev_add_pack(struct packet_type *pt)
533 struct list_head *head = ptype_head(pt);
535 spin_lock(&ptype_lock);
536 list_add_rcu(&pt->list, head);
537 spin_unlock(&ptype_lock);
539 EXPORT_SYMBOL(dev_add_pack);
542 * __dev_remove_pack - remove packet handler
543 * @pt: packet type declaration
545 * Remove a protocol handler that was previously added to the kernel
546 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
547 * from the kernel lists and can be freed or reused once this function
550 * The packet type might still be in use by receivers
551 * and must not be freed until after all the CPU's have gone
552 * through a quiescent state.
554 void __dev_remove_pack(struct packet_type *pt)
556 struct list_head *head = ptype_head(pt);
557 struct packet_type *pt1;
559 spin_lock(&ptype_lock);
561 list_for_each_entry(pt1, head, list) {
563 list_del_rcu(&pt->list);
568 pr_warn("dev_remove_pack: %p not found\n", pt);
570 spin_unlock(&ptype_lock);
572 EXPORT_SYMBOL(__dev_remove_pack);
575 * dev_remove_pack - remove packet handler
576 * @pt: packet type declaration
578 * Remove a protocol handler that was previously added to the kernel
579 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
580 * from the kernel lists and can be freed or reused once this function
583 * This call sleeps to guarantee that no CPU is looking at the packet
586 void dev_remove_pack(struct packet_type *pt)
588 __dev_remove_pack(pt);
592 EXPORT_SYMBOL(dev_remove_pack);
596 * dev_add_offload - register offload handlers
597 * @po: protocol offload declaration
599 * Add protocol offload handlers to the networking stack. The passed
600 * &proto_offload is linked into kernel lists and may not be freed until
601 * it has been removed from the kernel lists.
603 * This call does not sleep therefore it can not
604 * guarantee all CPU's that are in middle of receiving packets
605 * will see the new offload handlers (until the next received packet).
607 void dev_add_offload(struct packet_offload *po)
609 struct packet_offload *elem;
611 spin_lock(&offload_lock);
612 list_for_each_entry(elem, &offload_base, list) {
613 if (po->priority < elem->priority)
616 list_add_rcu(&po->list, elem->list.prev);
617 spin_unlock(&offload_lock);
619 EXPORT_SYMBOL(dev_add_offload);
622 * __dev_remove_offload - remove offload handler
623 * @po: packet offload declaration
625 * Remove a protocol offload handler that was previously added to the
626 * kernel offload handlers by dev_add_offload(). The passed &offload_type
627 * is removed from the kernel lists and can be freed or reused once this
630 * The packet type might still be in use by receivers
631 * and must not be freed until after all the CPU's have gone
632 * through a quiescent state.
634 static void __dev_remove_offload(struct packet_offload *po)
636 struct list_head *head = &offload_base;
637 struct packet_offload *po1;
639 spin_lock(&offload_lock);
641 list_for_each_entry(po1, head, list) {
643 list_del_rcu(&po->list);
648 pr_warn("dev_remove_offload: %p not found\n", po);
650 spin_unlock(&offload_lock);
654 * dev_remove_offload - remove packet offload handler
655 * @po: packet offload declaration
657 * Remove a packet offload handler that was previously added to the kernel
658 * offload handlers by dev_add_offload(). The passed &offload_type is
659 * removed from the kernel lists and can be freed or reused once this
662 * This call sleeps to guarantee that no CPU is looking at the packet
665 void dev_remove_offload(struct packet_offload *po)
667 __dev_remove_offload(po);
671 EXPORT_SYMBOL(dev_remove_offload);
673 /******************************************************************************
675 * Device Boot-time Settings Routines
677 ******************************************************************************/
679 /* Boot time configuration table */
680 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683 * netdev_boot_setup_add - add new setup entry
684 * @name: name of the device
685 * @map: configured settings for the device
687 * Adds new setup entry to the dev_boot_setup list. The function
688 * returns 0 on error and 1 on success. This is a generic routine to
691 static int netdev_boot_setup_add(char *name, struct ifmap *map)
693 struct netdev_boot_setup *s;
697 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
698 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
699 memset(s[i].name, 0, sizeof(s[i].name));
700 strlcpy(s[i].name, name, IFNAMSIZ);
701 memcpy(&s[i].map, map, sizeof(s[i].map));
706 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
710 * netdev_boot_setup_check - check boot time settings
711 * @dev: the netdevice
713 * Check boot time settings for the device.
714 * The found settings are set for the device to be used
715 * later in the device probing.
716 * Returns 0 if no settings found, 1 if they are.
718 int netdev_boot_setup_check(struct net_device *dev)
720 struct netdev_boot_setup *s = dev_boot_setup;
723 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
724 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
725 !strcmp(dev->name, s[i].name)) {
726 dev->irq = s[i].map.irq;
727 dev->base_addr = s[i].map.base_addr;
728 dev->mem_start = s[i].map.mem_start;
729 dev->mem_end = s[i].map.mem_end;
735 EXPORT_SYMBOL(netdev_boot_setup_check);
739 * netdev_boot_base - get address from boot time settings
740 * @prefix: prefix for network device
741 * @unit: id for network device
743 * Check boot time settings for the base address of device.
744 * The found settings are set for the device to be used
745 * later in the device probing.
746 * Returns 0 if no settings found.
748 unsigned long netdev_boot_base(const char *prefix, int unit)
750 const struct netdev_boot_setup *s = dev_boot_setup;
754 sprintf(name, "%s%d", prefix, unit);
757 * If device already registered then return base of 1
758 * to indicate not to probe for this interface
760 if (__dev_get_by_name(&init_net, name))
763 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
764 if (!strcmp(name, s[i].name))
765 return s[i].map.base_addr;
770 * Saves at boot time configured settings for any netdevice.
772 int __init netdev_boot_setup(char *str)
777 str = get_options(str, ARRAY_SIZE(ints), ints);
782 memset(&map, 0, sizeof(map));
786 map.base_addr = ints[2];
788 map.mem_start = ints[3];
790 map.mem_end = ints[4];
792 /* Add new entry to the list */
793 return netdev_boot_setup_add(str, &map);
796 __setup("netdev=", netdev_boot_setup);
798 /*******************************************************************************
800 * Device Interface Subroutines
802 *******************************************************************************/
805 * dev_get_iflink - get 'iflink' value of a interface
806 * @dev: targeted interface
808 * Indicates the ifindex the interface is linked to.
809 * Physical interfaces have the same 'ifindex' and 'iflink' values.
812 int dev_get_iflink(const struct net_device *dev)
814 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
815 return dev->netdev_ops->ndo_get_iflink(dev);
819 EXPORT_SYMBOL(dev_get_iflink);
822 * dev_fill_metadata_dst - Retrieve tunnel egress information.
823 * @dev: targeted interface
826 * For better visibility of tunnel traffic OVS needs to retrieve
827 * egress tunnel information for a packet. Following API allows
828 * user to get this info.
830 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
832 struct ip_tunnel_info *info;
834 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
837 info = skb_tunnel_info_unclone(skb);
840 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
845 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848 * __dev_get_by_name - find a device by its name
849 * @net: the applicable net namespace
850 * @name: name to find
852 * Find an interface by name. Must be called under RTNL semaphore
853 * or @dev_base_lock. If the name is found a pointer to the device
854 * is returned. If the name is not found then %NULL is returned. The
855 * reference counters are not incremented so the caller must be
856 * careful with locks.
859 struct net_device *__dev_get_by_name(struct net *net, const char *name)
861 struct netdev_name_node *node_name;
863 node_name = netdev_name_node_lookup(net, name);
864 return node_name ? node_name->dev : NULL;
866 EXPORT_SYMBOL(__dev_get_by_name);
869 * dev_get_by_name_rcu - find a device by its name
870 * @net: the applicable net namespace
871 * @name: name to find
873 * Find an interface by name.
874 * If the name is found a pointer to the device is returned.
875 * If the name is not found then %NULL is returned.
876 * The reference counters are not incremented so the caller must be
877 * careful with locks. The caller must hold RCU lock.
880 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882 struct netdev_name_node *node_name;
884 node_name = netdev_name_node_lookup_rcu(net, name);
885 return node_name ? node_name->dev : NULL;
887 EXPORT_SYMBOL(dev_get_by_name_rcu);
890 * dev_get_by_name - find a device by its name
891 * @net: the applicable net namespace
892 * @name: name to find
894 * Find an interface by name. This can be called from any
895 * context and does its own locking. The returned handle has
896 * the usage count incremented and the caller must use dev_put() to
897 * release it when it is no longer needed. %NULL is returned if no
898 * matching device is found.
901 struct net_device *dev_get_by_name(struct net *net, const char *name)
903 struct net_device *dev;
906 dev = dev_get_by_name_rcu(net, name);
912 EXPORT_SYMBOL(dev_get_by_name);
915 * __dev_get_by_index - find a device by its ifindex
916 * @net: the applicable net namespace
917 * @ifindex: index of device
919 * Search for an interface by index. Returns %NULL if the device
920 * is not found or a pointer to the device. The device has not
921 * had its reference counter increased so the caller must be careful
922 * about locking. The caller must hold either the RTNL semaphore
926 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
928 struct net_device *dev;
929 struct hlist_head *head = dev_index_hash(net, ifindex);
931 hlist_for_each_entry(dev, head, index_hlist)
932 if (dev->ifindex == ifindex)
937 EXPORT_SYMBOL(__dev_get_by_index);
940 * dev_get_by_index_rcu - find a device by its ifindex
941 * @net: the applicable net namespace
942 * @ifindex: index of device
944 * Search for an interface by index. Returns %NULL if the device
945 * is not found or a pointer to the device. The device has not
946 * had its reference counter increased so the caller must be careful
947 * about locking. The caller must hold RCU lock.
950 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
952 struct net_device *dev;
953 struct hlist_head *head = dev_index_hash(net, ifindex);
955 hlist_for_each_entry_rcu(dev, head, index_hlist)
956 if (dev->ifindex == ifindex)
961 EXPORT_SYMBOL(dev_get_by_index_rcu);
965 * dev_get_by_index - find a device by its ifindex
966 * @net: the applicable net namespace
967 * @ifindex: index of device
969 * Search for an interface by index. Returns NULL if the device
970 * is not found or a pointer to the device. The device returned has
971 * had a reference added and the pointer is safe until the user calls
972 * dev_put to indicate they have finished with it.
975 struct net_device *dev_get_by_index(struct net *net, int ifindex)
977 struct net_device *dev;
980 dev = dev_get_by_index_rcu(net, ifindex);
986 EXPORT_SYMBOL(dev_get_by_index);
989 * dev_get_by_napi_id - find a device by napi_id
990 * @napi_id: ID of the NAPI struct
992 * Search for an interface by NAPI ID. Returns %NULL if the device
993 * is not found or a pointer to the device. The device has not had
994 * its reference counter increased so the caller must be careful
995 * about locking. The caller must hold RCU lock.
998 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1000 struct napi_struct *napi;
1002 WARN_ON_ONCE(!rcu_read_lock_held());
1004 if (napi_id < MIN_NAPI_ID)
1007 napi = napi_by_id(napi_id);
1009 return napi ? napi->dev : NULL;
1011 EXPORT_SYMBOL(dev_get_by_napi_id);
1014 * netdev_get_name - get a netdevice name, knowing its ifindex.
1015 * @net: network namespace
1016 * @name: a pointer to the buffer where the name will be stored.
1017 * @ifindex: the ifindex of the interface to get the name from.
1019 int netdev_get_name(struct net *net, char *name, int ifindex)
1021 struct net_device *dev;
1024 down_read(&devnet_rename_sem);
1027 dev = dev_get_by_index_rcu(net, ifindex);
1033 strcpy(name, dev->name);
1038 up_read(&devnet_rename_sem);
1043 * dev_getbyhwaddr_rcu - find a device by its hardware address
1044 * @net: the applicable net namespace
1045 * @type: media type of device
1046 * @ha: hardware address
1048 * Search for an interface by MAC address. Returns NULL if the device
1049 * is not found or a pointer to the device.
1050 * The caller must hold RCU or RTNL.
1051 * The returned device has not had its ref count increased
1052 * and the caller must therefore be careful about locking
1056 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059 struct net_device *dev;
1061 for_each_netdev_rcu(net, dev)
1062 if (dev->type == type &&
1063 !memcmp(dev->dev_addr, ha, dev->addr_len))
1068 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1070 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1072 struct net_device *dev;
1075 for_each_netdev(net, dev)
1076 if (dev->type == type)
1081 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1083 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1085 struct net_device *dev, *ret = NULL;
1088 for_each_netdev_rcu(net, dev)
1089 if (dev->type == type) {
1097 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1100 * __dev_get_by_flags - find any device with given flags
1101 * @net: the applicable net namespace
1102 * @if_flags: IFF_* values
1103 * @mask: bitmask of bits in if_flags to check
1105 * Search for any interface with the given flags. Returns NULL if a device
1106 * is not found or a pointer to the device. Must be called inside
1107 * rtnl_lock(), and result refcount is unchanged.
1110 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1111 unsigned short mask)
1113 struct net_device *dev, *ret;
1118 for_each_netdev(net, dev) {
1119 if (((dev->flags ^ if_flags) & mask) == 0) {
1126 EXPORT_SYMBOL(__dev_get_by_flags);
1129 * dev_valid_name - check if name is okay for network device
1130 * @name: name string
1132 * Network device names need to be valid file names to
1133 * to allow sysfs to work. We also disallow any kind of
1136 bool dev_valid_name(const char *name)
1140 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1142 if (!strcmp(name, ".") || !strcmp(name, ".."))
1146 if (*name == '/' || *name == ':' || isspace(*name))
1152 EXPORT_SYMBOL(dev_valid_name);
1155 * __dev_alloc_name - allocate a name for a device
1156 * @net: network namespace to allocate the device name in
1157 * @name: name format string
1158 * @buf: scratch buffer and result name string
1160 * Passed a format string - eg "lt%d" it will try and find a suitable
1161 * id. It scans list of devices to build up a free map, then chooses
1162 * the first empty slot. The caller must hold the dev_base or rtnl lock
1163 * while allocating the name and adding the device in order to avoid
1165 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1166 * Returns the number of the unit assigned or a negative errno code.
1169 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1173 const int max_netdevices = 8*PAGE_SIZE;
1174 unsigned long *inuse;
1175 struct net_device *d;
1177 if (!dev_valid_name(name))
1180 p = strchr(name, '%');
1183 * Verify the string as this thing may have come from
1184 * the user. There must be either one "%d" and no other "%"
1187 if (p[1] != 'd' || strchr(p + 2, '%'))
1190 /* Use one page as a bit array of possible slots */
1191 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1195 for_each_netdev(net, d) {
1196 if (!sscanf(d->name, name, &i))
1198 if (i < 0 || i >= max_netdevices)
1201 /* avoid cases where sscanf is not exact inverse of printf */
1202 snprintf(buf, IFNAMSIZ, name, i);
1203 if (!strncmp(buf, d->name, IFNAMSIZ))
1207 i = find_first_zero_bit(inuse, max_netdevices);
1208 free_page((unsigned long) inuse);
1211 snprintf(buf, IFNAMSIZ, name, i);
1212 if (!__dev_get_by_name(net, buf))
1215 /* It is possible to run out of possible slots
1216 * when the name is long and there isn't enough space left
1217 * for the digits, or if all bits are used.
1222 static int dev_alloc_name_ns(struct net *net,
1223 struct net_device *dev,
1230 ret = __dev_alloc_name(net, name, buf);
1232 strlcpy(dev->name, buf, IFNAMSIZ);
1237 * dev_alloc_name - allocate a name for a device
1239 * @name: name format string
1241 * Passed a format string - eg "lt%d" it will try and find a suitable
1242 * id. It scans list of devices to build up a free map, then chooses
1243 * the first empty slot. The caller must hold the dev_base or rtnl lock
1244 * while allocating the name and adding the device in order to avoid
1246 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1247 * Returns the number of the unit assigned or a negative errno code.
1250 int dev_alloc_name(struct net_device *dev, const char *name)
1252 return dev_alloc_name_ns(dev_net(dev), dev, name);
1254 EXPORT_SYMBOL(dev_alloc_name);
1256 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1261 if (!dev_valid_name(name))
1264 if (strchr(name, '%'))
1265 return dev_alloc_name_ns(net, dev, name);
1266 else if (__dev_get_by_name(net, name))
1268 else if (dev->name != name)
1269 strlcpy(dev->name, name, IFNAMSIZ);
1275 * dev_change_name - change name of a device
1277 * @newname: name (or format string) must be at least IFNAMSIZ
1279 * Change name of a device, can pass format strings "eth%d".
1282 int dev_change_name(struct net_device *dev, const char *newname)
1284 unsigned char old_assign_type;
1285 char oldname[IFNAMSIZ];
1291 BUG_ON(!dev_net(dev));
1295 /* Some auto-enslaved devices e.g. failover slaves are
1296 * special, as userspace might rename the device after
1297 * the interface had been brought up and running since
1298 * the point kernel initiated auto-enslavement. Allow
1299 * live name change even when these slave devices are
1302 * Typically, users of these auto-enslaving devices
1303 * don't actually care about slave name change, as
1304 * they are supposed to operate on master interface
1307 if (dev->flags & IFF_UP &&
1308 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1311 down_write(&devnet_rename_sem);
1313 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1314 up_write(&devnet_rename_sem);
1318 memcpy(oldname, dev->name, IFNAMSIZ);
1320 err = dev_get_valid_name(net, dev, newname);
1322 up_write(&devnet_rename_sem);
1326 if (oldname[0] && !strchr(oldname, '%'))
1327 netdev_info(dev, "renamed from %s\n", oldname);
1329 old_assign_type = dev->name_assign_type;
1330 dev->name_assign_type = NET_NAME_RENAMED;
1333 ret = device_rename(&dev->dev, dev->name);
1335 memcpy(dev->name, oldname, IFNAMSIZ);
1336 dev->name_assign_type = old_assign_type;
1337 up_write(&devnet_rename_sem);
1341 up_write(&devnet_rename_sem);
1343 netdev_adjacent_rename_links(dev, oldname);
1345 write_lock_bh(&dev_base_lock);
1346 netdev_name_node_del(dev->name_node);
1347 write_unlock_bh(&dev_base_lock);
1351 write_lock_bh(&dev_base_lock);
1352 netdev_name_node_add(net, dev->name_node);
1353 write_unlock_bh(&dev_base_lock);
1355 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1356 ret = notifier_to_errno(ret);
1359 /* err >= 0 after dev_alloc_name() or stores the first errno */
1362 down_write(&devnet_rename_sem);
1363 memcpy(dev->name, oldname, IFNAMSIZ);
1364 memcpy(oldname, newname, IFNAMSIZ);
1365 dev->name_assign_type = old_assign_type;
1366 old_assign_type = NET_NAME_RENAMED;
1369 pr_err("%s: name change rollback failed: %d\n",
1378 * dev_set_alias - change ifalias of a device
1380 * @alias: name up to IFALIASZ
1381 * @len: limit of bytes to copy from info
1383 * Set ifalias for a device,
1385 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1387 struct dev_ifalias *new_alias = NULL;
1389 if (len >= IFALIASZ)
1393 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1397 memcpy(new_alias->ifalias, alias, len);
1398 new_alias->ifalias[len] = 0;
1401 mutex_lock(&ifalias_mutex);
1402 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1403 mutex_is_locked(&ifalias_mutex));
1404 mutex_unlock(&ifalias_mutex);
1407 kfree_rcu(new_alias, rcuhead);
1411 EXPORT_SYMBOL(dev_set_alias);
1414 * dev_get_alias - get ifalias of a device
1416 * @name: buffer to store name of ifalias
1417 * @len: size of buffer
1419 * get ifalias for a device. Caller must make sure dev cannot go
1420 * away, e.g. rcu read lock or own a reference count to device.
1422 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1424 const struct dev_ifalias *alias;
1428 alias = rcu_dereference(dev->ifalias);
1430 ret = snprintf(name, len, "%s", alias->ifalias);
1437 * netdev_features_change - device changes features
1438 * @dev: device to cause notification
1440 * Called to indicate a device has changed features.
1442 void netdev_features_change(struct net_device *dev)
1444 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1446 EXPORT_SYMBOL(netdev_features_change);
1449 * netdev_state_change - device changes state
1450 * @dev: device to cause notification
1452 * Called to indicate a device has changed state. This function calls
1453 * the notifier chains for netdev_chain and sends a NEWLINK message
1454 * to the routing socket.
1456 void netdev_state_change(struct net_device *dev)
1458 if (dev->flags & IFF_UP) {
1459 struct netdev_notifier_change_info change_info = {
1463 call_netdevice_notifiers_info(NETDEV_CHANGE,
1465 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1468 EXPORT_SYMBOL(netdev_state_change);
1471 * netdev_notify_peers - notify network peers about existence of @dev
1472 * @dev: network device
1474 * Generate traffic such that interested network peers are aware of
1475 * @dev, such as by generating a gratuitous ARP. This may be used when
1476 * a device wants to inform the rest of the network about some sort of
1477 * reconfiguration such as a failover event or virtual machine
1480 void netdev_notify_peers(struct net_device *dev)
1483 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1484 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1487 EXPORT_SYMBOL(netdev_notify_peers);
1489 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1491 const struct net_device_ops *ops = dev->netdev_ops;
1496 if (!netif_device_present(dev)) {
1497 /* may be detached because parent is runtime-suspended */
1498 if (dev->dev.parent)
1499 pm_runtime_resume(dev->dev.parent);
1500 if (!netif_device_present(dev))
1504 /* Block netpoll from trying to do any rx path servicing.
1505 * If we don't do this there is a chance ndo_poll_controller
1506 * or ndo_poll may be running while we open the device
1508 netpoll_poll_disable(dev);
1510 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1511 ret = notifier_to_errno(ret);
1515 set_bit(__LINK_STATE_START, &dev->state);
1517 if (ops->ndo_validate_addr)
1518 ret = ops->ndo_validate_addr(dev);
1520 if (!ret && ops->ndo_open)
1521 ret = ops->ndo_open(dev);
1523 netpoll_poll_enable(dev);
1526 clear_bit(__LINK_STATE_START, &dev->state);
1528 dev->flags |= IFF_UP;
1529 dev_set_rx_mode(dev);
1531 add_device_randomness(dev->dev_addr, dev->addr_len);
1538 * dev_open - prepare an interface for use.
1539 * @dev: device to open
1540 * @extack: netlink extended ack
1542 * Takes a device from down to up state. The device's private open
1543 * function is invoked and then the multicast lists are loaded. Finally
1544 * the device is moved into the up state and a %NETDEV_UP message is
1545 * sent to the netdev notifier chain.
1547 * Calling this function on an active interface is a nop. On a failure
1548 * a negative errno code is returned.
1550 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1554 if (dev->flags & IFF_UP)
1557 ret = __dev_open(dev, extack);
1561 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1562 call_netdevice_notifiers(NETDEV_UP, dev);
1566 EXPORT_SYMBOL(dev_open);
1568 static void __dev_close_many(struct list_head *head)
1570 struct net_device *dev;
1575 list_for_each_entry(dev, head, close_list) {
1576 /* Temporarily disable netpoll until the interface is down */
1577 netpoll_poll_disable(dev);
1579 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1581 clear_bit(__LINK_STATE_START, &dev->state);
1583 /* Synchronize to scheduled poll. We cannot touch poll list, it
1584 * can be even on different cpu. So just clear netif_running().
1586 * dev->stop() will invoke napi_disable() on all of it's
1587 * napi_struct instances on this device.
1589 smp_mb__after_atomic(); /* Commit netif_running(). */
1592 dev_deactivate_many(head);
1594 list_for_each_entry(dev, head, close_list) {
1595 const struct net_device_ops *ops = dev->netdev_ops;
1598 * Call the device specific close. This cannot fail.
1599 * Only if device is UP
1601 * We allow it to be called even after a DETACH hot-plug
1607 dev->flags &= ~IFF_UP;
1608 netpoll_poll_enable(dev);
1612 static void __dev_close(struct net_device *dev)
1616 list_add(&dev->close_list, &single);
1617 __dev_close_many(&single);
1621 void dev_close_many(struct list_head *head, bool unlink)
1623 struct net_device *dev, *tmp;
1625 /* Remove the devices that don't need to be closed */
1626 list_for_each_entry_safe(dev, tmp, head, close_list)
1627 if (!(dev->flags & IFF_UP))
1628 list_del_init(&dev->close_list);
1630 __dev_close_many(head);
1632 list_for_each_entry_safe(dev, tmp, head, close_list) {
1633 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1634 call_netdevice_notifiers(NETDEV_DOWN, dev);
1636 list_del_init(&dev->close_list);
1639 EXPORT_SYMBOL(dev_close_many);
1642 * dev_close - shutdown an interface.
1643 * @dev: device to shutdown
1645 * This function moves an active device into down state. A
1646 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1647 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1650 void dev_close(struct net_device *dev)
1652 if (dev->flags & IFF_UP) {
1655 list_add(&dev->close_list, &single);
1656 dev_close_many(&single, true);
1660 EXPORT_SYMBOL(dev_close);
1664 * dev_disable_lro - disable Large Receive Offload on a device
1667 * Disable Large Receive Offload (LRO) on a net device. Must be
1668 * called under RTNL. This is needed if received packets may be
1669 * forwarded to another interface.
1671 void dev_disable_lro(struct net_device *dev)
1673 struct net_device *lower_dev;
1674 struct list_head *iter;
1676 dev->wanted_features &= ~NETIF_F_LRO;
1677 netdev_update_features(dev);
1679 if (unlikely(dev->features & NETIF_F_LRO))
1680 netdev_WARN(dev, "failed to disable LRO!\n");
1682 netdev_for_each_lower_dev(dev, lower_dev, iter)
1683 dev_disable_lro(lower_dev);
1685 EXPORT_SYMBOL(dev_disable_lro);
1688 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1691 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1692 * called under RTNL. This is needed if Generic XDP is installed on
1695 static void dev_disable_gro_hw(struct net_device *dev)
1697 dev->wanted_features &= ~NETIF_F_GRO_HW;
1698 netdev_update_features(dev);
1700 if (unlikely(dev->features & NETIF_F_GRO_HW))
1701 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1704 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1707 case NETDEV_##val: \
1708 return "NETDEV_" __stringify(val);
1710 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1711 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1712 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1713 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1714 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1715 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1716 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1717 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1718 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1722 return "UNKNOWN_NETDEV_EVENT";
1724 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1726 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1727 struct net_device *dev)
1729 struct netdev_notifier_info info = {
1733 return nb->notifier_call(nb, val, &info);
1736 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1737 struct net_device *dev)
1741 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1742 err = notifier_to_errno(err);
1746 if (!(dev->flags & IFF_UP))
1749 call_netdevice_notifier(nb, NETDEV_UP, dev);
1753 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1754 struct net_device *dev)
1756 if (dev->flags & IFF_UP) {
1757 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1759 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1761 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1764 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1767 struct net_device *dev;
1770 for_each_netdev(net, dev) {
1771 err = call_netdevice_register_notifiers(nb, dev);
1778 for_each_netdev_continue_reverse(net, dev)
1779 call_netdevice_unregister_notifiers(nb, dev);
1783 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1786 struct net_device *dev;
1788 for_each_netdev(net, dev)
1789 call_netdevice_unregister_notifiers(nb, dev);
1792 static int dev_boot_phase = 1;
1795 * register_netdevice_notifier - register a network notifier block
1798 * Register a notifier to be called when network device events occur.
1799 * The notifier passed is linked into the kernel structures and must
1800 * not be reused until it has been unregistered. A negative errno code
1801 * is returned on a failure.
1803 * When registered all registration and up events are replayed
1804 * to the new notifier to allow device to have a race free
1805 * view of the network device list.
1808 int register_netdevice_notifier(struct notifier_block *nb)
1813 /* Close race with setup_net() and cleanup_net() */
1814 down_write(&pernet_ops_rwsem);
1816 err = raw_notifier_chain_register(&netdev_chain, nb);
1822 err = call_netdevice_register_net_notifiers(nb, net);
1829 up_write(&pernet_ops_rwsem);
1833 for_each_net_continue_reverse(net)
1834 call_netdevice_unregister_net_notifiers(nb, net);
1836 raw_notifier_chain_unregister(&netdev_chain, nb);
1839 EXPORT_SYMBOL(register_netdevice_notifier);
1842 * unregister_netdevice_notifier - unregister a network notifier block
1845 * Unregister a notifier previously registered by
1846 * register_netdevice_notifier(). The notifier is unlinked into the
1847 * kernel structures and may then be reused. A negative errno code
1848 * is returned on a failure.
1850 * After unregistering unregister and down device events are synthesized
1851 * for all devices on the device list to the removed notifier to remove
1852 * the need for special case cleanup code.
1855 int unregister_netdevice_notifier(struct notifier_block *nb)
1860 /* Close race with setup_net() and cleanup_net() */
1861 down_write(&pernet_ops_rwsem);
1863 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1868 call_netdevice_unregister_net_notifiers(nb, net);
1872 up_write(&pernet_ops_rwsem);
1875 EXPORT_SYMBOL(unregister_netdevice_notifier);
1877 static int __register_netdevice_notifier_net(struct net *net,
1878 struct notifier_block *nb,
1879 bool ignore_call_fail)
1883 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1889 err = call_netdevice_register_net_notifiers(nb, net);
1890 if (err && !ignore_call_fail)
1891 goto chain_unregister;
1896 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1900 static int __unregister_netdevice_notifier_net(struct net *net,
1901 struct notifier_block *nb)
1905 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1909 call_netdevice_unregister_net_notifiers(nb, net);
1914 * register_netdevice_notifier_net - register a per-netns network notifier block
1915 * @net: network namespace
1918 * Register a notifier to be called when network device events occur.
1919 * The notifier passed is linked into the kernel structures and must
1920 * not be reused until it has been unregistered. A negative errno code
1921 * is returned on a failure.
1923 * When registered all registration and up events are replayed
1924 * to the new notifier to allow device to have a race free
1925 * view of the network device list.
1928 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1933 err = __register_netdevice_notifier_net(net, nb, false);
1937 EXPORT_SYMBOL(register_netdevice_notifier_net);
1940 * unregister_netdevice_notifier_net - unregister a per-netns
1941 * network notifier block
1942 * @net: network namespace
1945 * Unregister a notifier previously registered by
1946 * register_netdevice_notifier(). The notifier is unlinked into the
1947 * kernel structures and may then be reused. A negative errno code
1948 * is returned on a failure.
1950 * After unregistering unregister and down device events are synthesized
1951 * for all devices on the device list to the removed notifier to remove
1952 * the need for special case cleanup code.
1955 int unregister_netdevice_notifier_net(struct net *net,
1956 struct notifier_block *nb)
1961 err = __unregister_netdevice_notifier_net(net, nb);
1965 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1967 int register_netdevice_notifier_dev_net(struct net_device *dev,
1968 struct notifier_block *nb,
1969 struct netdev_net_notifier *nn)
1974 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1977 list_add(&nn->list, &dev->net_notifier_list);
1982 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1984 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1985 struct notifier_block *nb,
1986 struct netdev_net_notifier *nn)
1991 list_del(&nn->list);
1992 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1996 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1998 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2001 struct netdev_net_notifier *nn;
2003 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2004 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2005 __register_netdevice_notifier_net(net, nn->nb, true);
2010 * call_netdevice_notifiers_info - call all network notifier blocks
2011 * @val: value passed unmodified to notifier function
2012 * @info: notifier information data
2014 * Call all network notifier blocks. Parameters and return value
2015 * are as for raw_notifier_call_chain().
2018 static int call_netdevice_notifiers_info(unsigned long val,
2019 struct netdev_notifier_info *info)
2021 struct net *net = dev_net(info->dev);
2026 /* Run per-netns notifier block chain first, then run the global one.
2027 * Hopefully, one day, the global one is going to be removed after
2028 * all notifier block registrators get converted to be per-netns.
2030 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2031 if (ret & NOTIFY_STOP_MASK)
2033 return raw_notifier_call_chain(&netdev_chain, val, info);
2036 static int call_netdevice_notifiers_extack(unsigned long val,
2037 struct net_device *dev,
2038 struct netlink_ext_ack *extack)
2040 struct netdev_notifier_info info = {
2045 return call_netdevice_notifiers_info(val, &info);
2049 * call_netdevice_notifiers - call all network notifier blocks
2050 * @val: value passed unmodified to notifier function
2051 * @dev: net_device pointer passed unmodified to notifier function
2053 * Call all network notifier blocks. Parameters and return value
2054 * are as for raw_notifier_call_chain().
2057 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2059 return call_netdevice_notifiers_extack(val, dev, NULL);
2061 EXPORT_SYMBOL(call_netdevice_notifiers);
2064 * call_netdevice_notifiers_mtu - call all network notifier blocks
2065 * @val: value passed unmodified to notifier function
2066 * @dev: net_device pointer passed unmodified to notifier function
2067 * @arg: additional u32 argument passed to the notifier function
2069 * Call all network notifier blocks. Parameters and return value
2070 * are as for raw_notifier_call_chain().
2072 static int call_netdevice_notifiers_mtu(unsigned long val,
2073 struct net_device *dev, u32 arg)
2075 struct netdev_notifier_info_ext info = {
2080 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2082 return call_netdevice_notifiers_info(val, &info.info);
2085 #ifdef CONFIG_NET_INGRESS
2086 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2088 void net_inc_ingress_queue(void)
2090 static_branch_inc(&ingress_needed_key);
2092 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2094 void net_dec_ingress_queue(void)
2096 static_branch_dec(&ingress_needed_key);
2098 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2101 #ifdef CONFIG_NET_EGRESS
2102 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2104 void net_inc_egress_queue(void)
2106 static_branch_inc(&egress_needed_key);
2108 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2110 void net_dec_egress_queue(void)
2112 static_branch_dec(&egress_needed_key);
2114 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2117 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2118 #ifdef CONFIG_JUMP_LABEL
2119 static atomic_t netstamp_needed_deferred;
2120 static atomic_t netstamp_wanted;
2121 static void netstamp_clear(struct work_struct *work)
2123 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2126 wanted = atomic_add_return(deferred, &netstamp_wanted);
2128 static_branch_enable(&netstamp_needed_key);
2130 static_branch_disable(&netstamp_needed_key);
2132 static DECLARE_WORK(netstamp_work, netstamp_clear);
2135 void net_enable_timestamp(void)
2137 #ifdef CONFIG_JUMP_LABEL
2141 wanted = atomic_read(&netstamp_wanted);
2144 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2147 atomic_inc(&netstamp_needed_deferred);
2148 schedule_work(&netstamp_work);
2150 static_branch_inc(&netstamp_needed_key);
2153 EXPORT_SYMBOL(net_enable_timestamp);
2155 void net_disable_timestamp(void)
2157 #ifdef CONFIG_JUMP_LABEL
2161 wanted = atomic_read(&netstamp_wanted);
2164 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2167 atomic_dec(&netstamp_needed_deferred);
2168 schedule_work(&netstamp_work);
2170 static_branch_dec(&netstamp_needed_key);
2173 EXPORT_SYMBOL(net_disable_timestamp);
2175 static inline void net_timestamp_set(struct sk_buff *skb)
2178 if (static_branch_unlikely(&netstamp_needed_key))
2179 __net_timestamp(skb);
2182 #define net_timestamp_check(COND, SKB) \
2183 if (static_branch_unlikely(&netstamp_needed_key)) { \
2184 if ((COND) && !(SKB)->tstamp) \
2185 __net_timestamp(SKB); \
2188 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2192 if (!(dev->flags & IFF_UP))
2195 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2196 if (skb->len <= len)
2199 /* if TSO is enabled, we don't care about the length as the packet
2200 * could be forwarded without being segmented before
2202 if (skb_is_gso(skb))
2207 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2209 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2211 int ret = ____dev_forward_skb(dev, skb);
2214 skb->protocol = eth_type_trans(skb, dev);
2215 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2220 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2223 * dev_forward_skb - loopback an skb to another netif
2225 * @dev: destination network device
2226 * @skb: buffer to forward
2229 * NET_RX_SUCCESS (no congestion)
2230 * NET_RX_DROP (packet was dropped, but freed)
2232 * dev_forward_skb can be used for injecting an skb from the
2233 * start_xmit function of one device into the receive queue
2234 * of another device.
2236 * The receiving device may be in another namespace, so
2237 * we have to clear all information in the skb that could
2238 * impact namespace isolation.
2240 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2242 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2244 EXPORT_SYMBOL_GPL(dev_forward_skb);
2246 static inline int deliver_skb(struct sk_buff *skb,
2247 struct packet_type *pt_prev,
2248 struct net_device *orig_dev)
2250 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2252 refcount_inc(&skb->users);
2253 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2256 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2257 struct packet_type **pt,
2258 struct net_device *orig_dev,
2260 struct list_head *ptype_list)
2262 struct packet_type *ptype, *pt_prev = *pt;
2264 list_for_each_entry_rcu(ptype, ptype_list, list) {
2265 if (ptype->type != type)
2268 deliver_skb(skb, pt_prev, orig_dev);
2274 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2276 if (!ptype->af_packet_priv || !skb->sk)
2279 if (ptype->id_match)
2280 return ptype->id_match(ptype, skb->sk);
2281 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2288 * dev_nit_active - return true if any network interface taps are in use
2290 * @dev: network device to check for the presence of taps
2292 bool dev_nit_active(struct net_device *dev)
2294 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2296 EXPORT_SYMBOL_GPL(dev_nit_active);
2299 * Support routine. Sends outgoing frames to any network
2300 * taps currently in use.
2303 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2305 struct packet_type *ptype;
2306 struct sk_buff *skb2 = NULL;
2307 struct packet_type *pt_prev = NULL;
2308 struct list_head *ptype_list = &ptype_all;
2312 list_for_each_entry_rcu(ptype, ptype_list, list) {
2313 if (ptype->ignore_outgoing)
2316 /* Never send packets back to the socket
2319 if (skb_loop_sk(ptype, skb))
2323 deliver_skb(skb2, pt_prev, skb->dev);
2328 /* need to clone skb, done only once */
2329 skb2 = skb_clone(skb, GFP_ATOMIC);
2333 net_timestamp_set(skb2);
2335 /* skb->nh should be correctly
2336 * set by sender, so that the second statement is
2337 * just protection against buggy protocols.
2339 skb_reset_mac_header(skb2);
2341 if (skb_network_header(skb2) < skb2->data ||
2342 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2343 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2344 ntohs(skb2->protocol),
2346 skb_reset_network_header(skb2);
2349 skb2->transport_header = skb2->network_header;
2350 skb2->pkt_type = PACKET_OUTGOING;
2354 if (ptype_list == &ptype_all) {
2355 ptype_list = &dev->ptype_all;
2360 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2361 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2367 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2370 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2371 * @dev: Network device
2372 * @txq: number of queues available
2374 * If real_num_tx_queues is changed the tc mappings may no longer be
2375 * valid. To resolve this verify the tc mapping remains valid and if
2376 * not NULL the mapping. With no priorities mapping to this
2377 * offset/count pair it will no longer be used. In the worst case TC0
2378 * is invalid nothing can be done so disable priority mappings. If is
2379 * expected that drivers will fix this mapping if they can before
2380 * calling netif_set_real_num_tx_queues.
2382 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2385 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2387 /* If TC0 is invalidated disable TC mapping */
2388 if (tc->offset + tc->count > txq) {
2389 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2394 /* Invalidated prio to tc mappings set to TC0 */
2395 for (i = 1; i < TC_BITMASK + 1; i++) {
2396 int q = netdev_get_prio_tc_map(dev, i);
2398 tc = &dev->tc_to_txq[q];
2399 if (tc->offset + tc->count > txq) {
2400 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2402 netdev_set_prio_tc_map(dev, i, 0);
2407 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2410 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2413 /* walk through the TCs and see if it falls into any of them */
2414 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2415 if ((txq - tc->offset) < tc->count)
2419 /* didn't find it, just return -1 to indicate no match */
2425 EXPORT_SYMBOL(netdev_txq_to_tc);
2428 struct static_key xps_needed __read_mostly;
2429 EXPORT_SYMBOL(xps_needed);
2430 struct static_key xps_rxqs_needed __read_mostly;
2431 EXPORT_SYMBOL(xps_rxqs_needed);
2432 static DEFINE_MUTEX(xps_map_mutex);
2433 #define xmap_dereference(P) \
2434 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2436 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2439 struct xps_map *map = NULL;
2443 map = xmap_dereference(dev_maps->attr_map[tci]);
2447 for (pos = map->len; pos--;) {
2448 if (map->queues[pos] != index)
2452 map->queues[pos] = map->queues[--map->len];
2456 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2457 kfree_rcu(map, rcu);
2464 static bool remove_xps_queue_cpu(struct net_device *dev,
2465 struct xps_dev_maps *dev_maps,
2466 int cpu, u16 offset, u16 count)
2468 int num_tc = dev->num_tc ? : 1;
2469 bool active = false;
2472 for (tci = cpu * num_tc; num_tc--; tci++) {
2475 for (i = count, j = offset; i--; j++) {
2476 if (!remove_xps_queue(dev_maps, tci, j))
2486 static void reset_xps_maps(struct net_device *dev,
2487 struct xps_dev_maps *dev_maps,
2491 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2492 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2494 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2496 static_key_slow_dec_cpuslocked(&xps_needed);
2497 kfree_rcu(dev_maps, rcu);
2500 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2501 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2502 u16 offset, u16 count, bool is_rxqs_map)
2504 bool active = false;
2507 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2509 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2512 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2515 for (i = offset + (count - 1); count--; i--) {
2516 netdev_queue_numa_node_write(
2517 netdev_get_tx_queue(dev, i),
2523 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2526 const unsigned long *possible_mask = NULL;
2527 struct xps_dev_maps *dev_maps;
2528 unsigned int nr_ids;
2530 if (!static_key_false(&xps_needed))
2534 mutex_lock(&xps_map_mutex);
2536 if (static_key_false(&xps_rxqs_needed)) {
2537 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2539 nr_ids = dev->num_rx_queues;
2540 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2541 offset, count, true);
2545 dev_maps = xmap_dereference(dev->xps_cpus_map);
2549 if (num_possible_cpus() > 1)
2550 possible_mask = cpumask_bits(cpu_possible_mask);
2551 nr_ids = nr_cpu_ids;
2552 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2556 mutex_unlock(&xps_map_mutex);
2560 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2562 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2565 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2566 u16 index, bool is_rxqs_map)
2568 struct xps_map *new_map;
2569 int alloc_len = XPS_MIN_MAP_ALLOC;
2572 for (pos = 0; map && pos < map->len; pos++) {
2573 if (map->queues[pos] != index)
2578 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2580 if (pos < map->alloc_len)
2583 alloc_len = map->alloc_len * 2;
2586 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2590 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2592 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2593 cpu_to_node(attr_index));
2597 for (i = 0; i < pos; i++)
2598 new_map->queues[i] = map->queues[i];
2599 new_map->alloc_len = alloc_len;
2605 /* Must be called under cpus_read_lock */
2606 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2607 u16 index, bool is_rxqs_map)
2609 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2610 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2611 int i, j, tci, numa_node_id = -2;
2612 int maps_sz, num_tc = 1, tc = 0;
2613 struct xps_map *map, *new_map;
2614 bool active = false;
2615 unsigned int nr_ids;
2618 /* Do not allow XPS on subordinate device directly */
2619 num_tc = dev->num_tc;
2623 /* If queue belongs to subordinate dev use its map */
2624 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2626 tc = netdev_txq_to_tc(dev, index);
2631 mutex_lock(&xps_map_mutex);
2633 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2634 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2635 nr_ids = dev->num_rx_queues;
2637 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2638 if (num_possible_cpus() > 1) {
2639 online_mask = cpumask_bits(cpu_online_mask);
2640 possible_mask = cpumask_bits(cpu_possible_mask);
2642 dev_maps = xmap_dereference(dev->xps_cpus_map);
2643 nr_ids = nr_cpu_ids;
2646 if (maps_sz < L1_CACHE_BYTES)
2647 maps_sz = L1_CACHE_BYTES;
2649 /* allocate memory for queue storage */
2650 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2653 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2654 if (!new_dev_maps) {
2655 mutex_unlock(&xps_map_mutex);
2659 tci = j * num_tc + tc;
2660 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2663 map = expand_xps_map(map, j, index, is_rxqs_map);
2667 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2671 goto out_no_new_maps;
2674 /* Increment static keys at most once per type */
2675 static_key_slow_inc_cpuslocked(&xps_needed);
2677 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2680 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2682 /* copy maps belonging to foreign traffic classes */
2683 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2684 /* fill in the new device map from the old device map */
2685 map = xmap_dereference(dev_maps->attr_map[tci]);
2686 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2689 /* We need to explicitly update tci as prevous loop
2690 * could break out early if dev_maps is NULL.
2692 tci = j * num_tc + tc;
2694 if (netif_attr_test_mask(j, mask, nr_ids) &&
2695 netif_attr_test_online(j, online_mask, nr_ids)) {
2696 /* add tx-queue to CPU/rx-queue maps */
2699 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2700 while ((pos < map->len) && (map->queues[pos] != index))
2703 if (pos == map->len)
2704 map->queues[map->len++] = index;
2707 if (numa_node_id == -2)
2708 numa_node_id = cpu_to_node(j);
2709 else if (numa_node_id != cpu_to_node(j))
2713 } else if (dev_maps) {
2714 /* fill in the new device map from the old device map */
2715 map = xmap_dereference(dev_maps->attr_map[tci]);
2716 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2719 /* copy maps belonging to foreign traffic classes */
2720 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2721 /* fill in the new device map from the old device map */
2722 map = xmap_dereference(dev_maps->attr_map[tci]);
2723 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2728 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2730 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2732 /* Cleanup old maps */
2734 goto out_no_old_maps;
2736 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2738 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2739 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2740 map = xmap_dereference(dev_maps->attr_map[tci]);
2741 if (map && map != new_map)
2742 kfree_rcu(map, rcu);
2746 kfree_rcu(dev_maps, rcu);
2749 dev_maps = new_dev_maps;
2754 /* update Tx queue numa node */
2755 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2756 (numa_node_id >= 0) ?
2757 numa_node_id : NUMA_NO_NODE);
2763 /* removes tx-queue from unused CPUs/rx-queues */
2764 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2766 for (i = tc, tci = j * num_tc; i--; tci++)
2767 active |= remove_xps_queue(dev_maps, tci, index);
2768 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2769 !netif_attr_test_online(j, online_mask, nr_ids))
2770 active |= remove_xps_queue(dev_maps, tci, index);
2771 for (i = num_tc - tc, tci++; --i; tci++)
2772 active |= remove_xps_queue(dev_maps, tci, index);
2775 /* free map if not active */
2777 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2780 mutex_unlock(&xps_map_mutex);
2784 /* remove any maps that we added */
2785 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2787 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2788 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2790 xmap_dereference(dev_maps->attr_map[tci]) :
2792 if (new_map && new_map != map)
2797 mutex_unlock(&xps_map_mutex);
2799 kfree(new_dev_maps);
2802 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2804 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2810 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2815 EXPORT_SYMBOL(netif_set_xps_queue);
2818 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2820 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2822 /* Unbind any subordinate channels */
2823 while (txq-- != &dev->_tx[0]) {
2825 netdev_unbind_sb_channel(dev, txq->sb_dev);
2829 void netdev_reset_tc(struct net_device *dev)
2832 netif_reset_xps_queues_gt(dev, 0);
2834 netdev_unbind_all_sb_channels(dev);
2836 /* Reset TC configuration of device */
2838 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2839 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2841 EXPORT_SYMBOL(netdev_reset_tc);
2843 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2845 if (tc >= dev->num_tc)
2849 netif_reset_xps_queues(dev, offset, count);
2851 dev->tc_to_txq[tc].count = count;
2852 dev->tc_to_txq[tc].offset = offset;
2855 EXPORT_SYMBOL(netdev_set_tc_queue);
2857 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2859 if (num_tc > TC_MAX_QUEUE)
2863 netif_reset_xps_queues_gt(dev, 0);
2865 netdev_unbind_all_sb_channels(dev);
2867 dev->num_tc = num_tc;
2870 EXPORT_SYMBOL(netdev_set_num_tc);
2872 void netdev_unbind_sb_channel(struct net_device *dev,
2873 struct net_device *sb_dev)
2875 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2878 netif_reset_xps_queues_gt(sb_dev, 0);
2880 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2881 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2883 while (txq-- != &dev->_tx[0]) {
2884 if (txq->sb_dev == sb_dev)
2888 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2890 int netdev_bind_sb_channel_queue(struct net_device *dev,
2891 struct net_device *sb_dev,
2892 u8 tc, u16 count, u16 offset)
2894 /* Make certain the sb_dev and dev are already configured */
2895 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2898 /* We cannot hand out queues we don't have */
2899 if ((offset + count) > dev->real_num_tx_queues)
2902 /* Record the mapping */
2903 sb_dev->tc_to_txq[tc].count = count;
2904 sb_dev->tc_to_txq[tc].offset = offset;
2906 /* Provide a way for Tx queue to find the tc_to_txq map or
2907 * XPS map for itself.
2910 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2914 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2916 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2918 /* Do not use a multiqueue device to represent a subordinate channel */
2919 if (netif_is_multiqueue(dev))
2922 /* We allow channels 1 - 32767 to be used for subordinate channels.
2923 * Channel 0 is meant to be "native" mode and used only to represent
2924 * the main root device. We allow writing 0 to reset the device back
2925 * to normal mode after being used as a subordinate channel.
2927 if (channel > S16_MAX)
2930 dev->num_tc = -channel;
2934 EXPORT_SYMBOL(netdev_set_sb_channel);
2937 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2938 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2940 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2945 disabling = txq < dev->real_num_tx_queues;
2947 if (txq < 1 || txq > dev->num_tx_queues)
2950 if (dev->reg_state == NETREG_REGISTERED ||
2951 dev->reg_state == NETREG_UNREGISTERING) {
2954 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2960 netif_setup_tc(dev, txq);
2962 dev->real_num_tx_queues = txq;
2966 qdisc_reset_all_tx_gt(dev, txq);
2968 netif_reset_xps_queues_gt(dev, txq);
2972 dev->real_num_tx_queues = txq;
2977 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2981 * netif_set_real_num_rx_queues - set actual number of RX queues used
2982 * @dev: Network device
2983 * @rxq: Actual number of RX queues
2985 * This must be called either with the rtnl_lock held or before
2986 * registration of the net device. Returns 0 on success, or a
2987 * negative error code. If called before registration, it always
2990 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2994 if (rxq < 1 || rxq > dev->num_rx_queues)
2997 if (dev->reg_state == NETREG_REGISTERED) {
3000 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3006 dev->real_num_rx_queues = rxq;
3009 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3013 * netif_get_num_default_rss_queues - default number of RSS queues
3015 * This routine should set an upper limit on the number of RSS queues
3016 * used by default by multiqueue devices.
3018 int netif_get_num_default_rss_queues(void)
3020 return is_kdump_kernel() ?
3021 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3023 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3025 static void __netif_reschedule(struct Qdisc *q)
3027 struct softnet_data *sd;
3028 unsigned long flags;
3030 local_irq_save(flags);
3031 sd = this_cpu_ptr(&softnet_data);
3032 q->next_sched = NULL;
3033 *sd->output_queue_tailp = q;
3034 sd->output_queue_tailp = &q->next_sched;
3035 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3036 local_irq_restore(flags);
3039 void __netif_schedule(struct Qdisc *q)
3041 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3042 __netif_reschedule(q);
3044 EXPORT_SYMBOL(__netif_schedule);
3046 struct dev_kfree_skb_cb {
3047 enum skb_free_reason reason;
3050 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3052 return (struct dev_kfree_skb_cb *)skb->cb;
3055 void netif_schedule_queue(struct netdev_queue *txq)
3058 if (!netif_xmit_stopped(txq)) {
3059 struct Qdisc *q = rcu_dereference(txq->qdisc);
3061 __netif_schedule(q);
3065 EXPORT_SYMBOL(netif_schedule_queue);
3067 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3069 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3073 q = rcu_dereference(dev_queue->qdisc);
3074 __netif_schedule(q);
3078 EXPORT_SYMBOL(netif_tx_wake_queue);
3080 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3082 unsigned long flags;
3087 if (likely(refcount_read(&skb->users) == 1)) {
3089 refcount_set(&skb->users, 0);
3090 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3093 get_kfree_skb_cb(skb)->reason = reason;
3094 local_irq_save(flags);
3095 skb->next = __this_cpu_read(softnet_data.completion_queue);
3096 __this_cpu_write(softnet_data.completion_queue, skb);
3097 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3098 local_irq_restore(flags);
3100 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3102 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3104 if (in_irq() || irqs_disabled())
3105 __dev_kfree_skb_irq(skb, reason);
3109 EXPORT_SYMBOL(__dev_kfree_skb_any);
3113 * netif_device_detach - mark device as removed
3114 * @dev: network device
3116 * Mark device as removed from system and therefore no longer available.
3118 void netif_device_detach(struct net_device *dev)
3120 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3121 netif_running(dev)) {
3122 netif_tx_stop_all_queues(dev);
3125 EXPORT_SYMBOL(netif_device_detach);
3128 * netif_device_attach - mark device as attached
3129 * @dev: network device
3131 * Mark device as attached from system and restart if needed.
3133 void netif_device_attach(struct net_device *dev)
3135 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3136 netif_running(dev)) {
3137 netif_tx_wake_all_queues(dev);
3138 __netdev_watchdog_up(dev);
3141 EXPORT_SYMBOL(netif_device_attach);
3144 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3145 * to be used as a distribution range.
3147 static u16 skb_tx_hash(const struct net_device *dev,
3148 const struct net_device *sb_dev,
3149 struct sk_buff *skb)
3153 u16 qcount = dev->real_num_tx_queues;
3156 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3158 qoffset = sb_dev->tc_to_txq[tc].offset;
3159 qcount = sb_dev->tc_to_txq[tc].count;
3162 if (skb_rx_queue_recorded(skb)) {
3163 hash = skb_get_rx_queue(skb);
3164 if (hash >= qoffset)
3166 while (unlikely(hash >= qcount))
3168 return hash + qoffset;
3171 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3174 static void skb_warn_bad_offload(const struct sk_buff *skb)
3176 static const netdev_features_t null_features;
3177 struct net_device *dev = skb->dev;
3178 const char *name = "";
3180 if (!net_ratelimit())
3184 if (dev->dev.parent)
3185 name = dev_driver_string(dev->dev.parent);
3187 name = netdev_name(dev);
3189 skb_dump(KERN_WARNING, skb, false);
3190 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3191 name, dev ? &dev->features : &null_features,
3192 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3196 * Invalidate hardware checksum when packet is to be mangled, and
3197 * complete checksum manually on outgoing path.
3199 int skb_checksum_help(struct sk_buff *skb)
3202 int ret = 0, offset;
3204 if (skb->ip_summed == CHECKSUM_COMPLETE)
3205 goto out_set_summed;
3207 if (unlikely(skb_shinfo(skb)->gso_size)) {
3208 skb_warn_bad_offload(skb);
3212 /* Before computing a checksum, we should make sure no frag could
3213 * be modified by an external entity : checksum could be wrong.
3215 if (skb_has_shared_frag(skb)) {
3216 ret = __skb_linearize(skb);
3221 offset = skb_checksum_start_offset(skb);
3222 BUG_ON(offset >= skb_headlen(skb));
3223 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3225 offset += skb->csum_offset;
3226 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3228 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3232 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3234 skb->ip_summed = CHECKSUM_NONE;
3238 EXPORT_SYMBOL(skb_checksum_help);
3240 int skb_crc32c_csum_help(struct sk_buff *skb)
3243 int ret = 0, offset, start;
3245 if (skb->ip_summed != CHECKSUM_PARTIAL)
3248 if (unlikely(skb_is_gso(skb)))
3251 /* Before computing a checksum, we should make sure no frag could
3252 * be modified by an external entity : checksum could be wrong.
3254 if (unlikely(skb_has_shared_frag(skb))) {
3255 ret = __skb_linearize(skb);
3259 start = skb_checksum_start_offset(skb);
3260 offset = start + offsetof(struct sctphdr, checksum);
3261 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3266 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3270 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3271 skb->len - start, ~(__u32)0,
3273 *(__le32 *)(skb->data + offset) = crc32c_csum;
3274 skb->ip_summed = CHECKSUM_NONE;
3275 skb->csum_not_inet = 0;
3280 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3282 __be16 type = skb->protocol;
3284 /* Tunnel gso handlers can set protocol to ethernet. */
3285 if (type == htons(ETH_P_TEB)) {
3288 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3291 eth = (struct ethhdr *)skb->data;
3292 type = eth->h_proto;
3295 return __vlan_get_protocol(skb, type, depth);
3299 * skb_mac_gso_segment - mac layer segmentation handler.
3300 * @skb: buffer to segment
3301 * @features: features for the output path (see dev->features)
3303 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3304 netdev_features_t features)
3306 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3307 struct packet_offload *ptype;
3308 int vlan_depth = skb->mac_len;
3309 __be16 type = skb_network_protocol(skb, &vlan_depth);
3311 if (unlikely(!type))
3312 return ERR_PTR(-EINVAL);
3314 __skb_pull(skb, vlan_depth);
3317 list_for_each_entry_rcu(ptype, &offload_base, list) {
3318 if (ptype->type == type && ptype->callbacks.gso_segment) {
3319 segs = ptype->callbacks.gso_segment(skb, features);
3325 __skb_push(skb, skb->data - skb_mac_header(skb));
3329 EXPORT_SYMBOL(skb_mac_gso_segment);
3332 /* openvswitch calls this on rx path, so we need a different check.
3334 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3337 return skb->ip_summed != CHECKSUM_PARTIAL &&
3338 skb->ip_summed != CHECKSUM_UNNECESSARY;
3340 return skb->ip_summed == CHECKSUM_NONE;
3344 * __skb_gso_segment - Perform segmentation on skb.
3345 * @skb: buffer to segment
3346 * @features: features for the output path (see dev->features)
3347 * @tx_path: whether it is called in TX path
3349 * This function segments the given skb and returns a list of segments.
3351 * It may return NULL if the skb requires no segmentation. This is
3352 * only possible when GSO is used for verifying header integrity.
3354 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3356 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3357 netdev_features_t features, bool tx_path)
3359 struct sk_buff *segs;
3361 if (unlikely(skb_needs_check(skb, tx_path))) {
3364 /* We're going to init ->check field in TCP or UDP header */
3365 err = skb_cow_head(skb, 0);
3367 return ERR_PTR(err);
3370 /* Only report GSO partial support if it will enable us to
3371 * support segmentation on this frame without needing additional
3374 if (features & NETIF_F_GSO_PARTIAL) {
3375 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3376 struct net_device *dev = skb->dev;
3378 partial_features |= dev->features & dev->gso_partial_features;
3379 if (!skb_gso_ok(skb, features | partial_features))
3380 features &= ~NETIF_F_GSO_PARTIAL;
3383 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3384 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3386 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3387 SKB_GSO_CB(skb)->encap_level = 0;
3389 skb_reset_mac_header(skb);
3390 skb_reset_mac_len(skb);
3392 segs = skb_mac_gso_segment(skb, features);
3394 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3395 skb_warn_bad_offload(skb);
3399 EXPORT_SYMBOL(__skb_gso_segment);
3401 /* Take action when hardware reception checksum errors are detected. */
3403 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3405 if (net_ratelimit()) {
3406 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3407 skb_dump(KERN_ERR, skb, true);
3411 EXPORT_SYMBOL(netdev_rx_csum_fault);
3414 /* XXX: check that highmem exists at all on the given machine. */
3415 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3417 #ifdef CONFIG_HIGHMEM
3420 if (!(dev->features & NETIF_F_HIGHDMA)) {
3421 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3422 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3424 if (PageHighMem(skb_frag_page(frag)))
3432 /* If MPLS offload request, verify we are testing hardware MPLS features
3433 * instead of standard features for the netdev.
3435 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3436 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3437 netdev_features_t features,
3440 if (eth_p_mpls(type))
3441 features &= skb->dev->mpls_features;
3446 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3447 netdev_features_t features,
3454 static netdev_features_t harmonize_features(struct sk_buff *skb,
3455 netdev_features_t features)
3459 type = skb_network_protocol(skb, NULL);
3460 features = net_mpls_features(skb, features, type);
3462 if (skb->ip_summed != CHECKSUM_NONE &&
3463 !can_checksum_protocol(features, type)) {
3464 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3466 if (illegal_highdma(skb->dev, skb))
3467 features &= ~NETIF_F_SG;
3472 netdev_features_t passthru_features_check(struct sk_buff *skb,
3473 struct net_device *dev,
3474 netdev_features_t features)
3478 EXPORT_SYMBOL(passthru_features_check);
3480 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3481 struct net_device *dev,
3482 netdev_features_t features)
3484 return vlan_features_check(skb, features);
3487 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3488 struct net_device *dev,
3489 netdev_features_t features)
3491 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3493 if (gso_segs > dev->gso_max_segs)
3494 return features & ~NETIF_F_GSO_MASK;
3496 /* Support for GSO partial features requires software
3497 * intervention before we can actually process the packets
3498 * so we need to strip support for any partial features now
3499 * and we can pull them back in after we have partially
3500 * segmented the frame.
3502 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3503 features &= ~dev->gso_partial_features;
3505 /* Make sure to clear the IPv4 ID mangling feature if the
3506 * IPv4 header has the potential to be fragmented.
3508 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3509 struct iphdr *iph = skb->encapsulation ?
3510 inner_ip_hdr(skb) : ip_hdr(skb);
3512 if (!(iph->frag_off & htons(IP_DF)))
3513 features &= ~NETIF_F_TSO_MANGLEID;
3519 netdev_features_t netif_skb_features(struct sk_buff *skb)
3521 struct net_device *dev = skb->dev;
3522 netdev_features_t features = dev->features;
3524 if (skb_is_gso(skb))
3525 features = gso_features_check(skb, dev, features);
3527 /* If encapsulation offload request, verify we are testing
3528 * hardware encapsulation features instead of standard
3529 * features for the netdev
3531 if (skb->encapsulation)
3532 features &= dev->hw_enc_features;
3534 if (skb_vlan_tagged(skb))
3535 features = netdev_intersect_features(features,
3536 dev->vlan_features |
3537 NETIF_F_HW_VLAN_CTAG_TX |
3538 NETIF_F_HW_VLAN_STAG_TX);
3540 if (dev->netdev_ops->ndo_features_check)
3541 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3544 features &= dflt_features_check(skb, dev, features);
3546 return harmonize_features(skb, features);
3548 EXPORT_SYMBOL(netif_skb_features);
3550 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3551 struct netdev_queue *txq, bool more)
3556 if (dev_nit_active(dev))
3557 dev_queue_xmit_nit(skb, dev);
3560 trace_net_dev_start_xmit(skb, dev);
3561 rc = netdev_start_xmit(skb, dev, txq, more);
3562 trace_net_dev_xmit(skb, rc, dev, len);
3567 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3568 struct netdev_queue *txq, int *ret)
3570 struct sk_buff *skb = first;
3571 int rc = NETDEV_TX_OK;
3574 struct sk_buff *next = skb->next;
3576 skb_mark_not_on_list(skb);
3577 rc = xmit_one(skb, dev, txq, next != NULL);
3578 if (unlikely(!dev_xmit_complete(rc))) {
3584 if (netif_tx_queue_stopped(txq) && skb) {
3585 rc = NETDEV_TX_BUSY;
3595 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3596 netdev_features_t features)
3598 if (skb_vlan_tag_present(skb) &&
3599 !vlan_hw_offload_capable(features, skb->vlan_proto))
3600 skb = __vlan_hwaccel_push_inside(skb);
3604 int skb_csum_hwoffload_help(struct sk_buff *skb,
3605 const netdev_features_t features)
3607 if (unlikely(skb->csum_not_inet))
3608 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3609 skb_crc32c_csum_help(skb);
3611 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3613 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3615 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3617 netdev_features_t features;
3619 features = netif_skb_features(skb);
3620 skb = validate_xmit_vlan(skb, features);
3624 skb = sk_validate_xmit_skb(skb, dev);
3628 if (netif_needs_gso(skb, features)) {
3629 struct sk_buff *segs;
3631 segs = skb_gso_segment(skb, features);
3639 if (skb_needs_linearize(skb, features) &&
3640 __skb_linearize(skb))
3643 /* If packet is not checksummed and device does not
3644 * support checksumming for this protocol, complete
3645 * checksumming here.
3647 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3648 if (skb->encapsulation)
3649 skb_set_inner_transport_header(skb,
3650 skb_checksum_start_offset(skb));
3652 skb_set_transport_header(skb,
3653 skb_checksum_start_offset(skb));
3654 if (skb_csum_hwoffload_help(skb, features))
3659 skb = validate_xmit_xfrm(skb, features, again);
3666 atomic_long_inc(&dev->tx_dropped);
3670 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3672 struct sk_buff *next, *head = NULL, *tail;
3674 for (; skb != NULL; skb = next) {
3676 skb_mark_not_on_list(skb);
3678 /* in case skb wont be segmented, point to itself */
3681 skb = validate_xmit_skb(skb, dev, again);
3689 /* If skb was segmented, skb->prev points to
3690 * the last segment. If not, it still contains skb.
3696 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3698 static void qdisc_pkt_len_init(struct sk_buff *skb)
3700 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3702 qdisc_skb_cb(skb)->pkt_len = skb->len;
3704 /* To get more precise estimation of bytes sent on wire,
3705 * we add to pkt_len the headers size of all segments
3707 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3708 unsigned int hdr_len;
3709 u16 gso_segs = shinfo->gso_segs;
3711 /* mac layer + network layer */
3712 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3714 /* + transport layer */
3715 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3716 const struct tcphdr *th;
3717 struct tcphdr _tcphdr;
3719 th = skb_header_pointer(skb, skb_transport_offset(skb),
3720 sizeof(_tcphdr), &_tcphdr);
3722 hdr_len += __tcp_hdrlen(th);
3724 struct udphdr _udphdr;
3726 if (skb_header_pointer(skb, skb_transport_offset(skb),
3727 sizeof(_udphdr), &_udphdr))
3728 hdr_len += sizeof(struct udphdr);
3731 if (shinfo->gso_type & SKB_GSO_DODGY)
3732 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3735 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3739 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3740 struct net_device *dev,
3741 struct netdev_queue *txq)
3743 spinlock_t *root_lock = qdisc_lock(q);
3744 struct sk_buff *to_free = NULL;
3748 qdisc_calculate_pkt_len(skb, q);
3750 if (q->flags & TCQ_F_NOLOCK) {
3751 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3754 if (unlikely(to_free))
3755 kfree_skb_list(to_free);
3760 * Heuristic to force contended enqueues to serialize on a
3761 * separate lock before trying to get qdisc main lock.
3762 * This permits qdisc->running owner to get the lock more
3763 * often and dequeue packets faster.
3765 contended = qdisc_is_running(q);
3766 if (unlikely(contended))
3767 spin_lock(&q->busylock);
3769 spin_lock(root_lock);
3770 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3771 __qdisc_drop(skb, &to_free);
3773 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3774 qdisc_run_begin(q)) {
3776 * This is a work-conserving queue; there are no old skbs
3777 * waiting to be sent out; and the qdisc is not running -
3778 * xmit the skb directly.
3781 qdisc_bstats_update(q, skb);
3783 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3784 if (unlikely(contended)) {
3785 spin_unlock(&q->busylock);
3792 rc = NET_XMIT_SUCCESS;
3794 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3795 if (qdisc_run_begin(q)) {
3796 if (unlikely(contended)) {
3797 spin_unlock(&q->busylock);
3804 spin_unlock(root_lock);
3805 if (unlikely(to_free))
3806 kfree_skb_list(to_free);
3807 if (unlikely(contended))
3808 spin_unlock(&q->busylock);
3812 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3813 static void skb_update_prio(struct sk_buff *skb)
3815 const struct netprio_map *map;
3816 const struct sock *sk;
3817 unsigned int prioidx;
3821 map = rcu_dereference_bh(skb->dev->priomap);
3824 sk = skb_to_full_sk(skb);
3828 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3830 if (prioidx < map->priomap_len)
3831 skb->priority = map->priomap[prioidx];
3834 #define skb_update_prio(skb)
3838 * dev_loopback_xmit - loop back @skb
3839 * @net: network namespace this loopback is happening in
3840 * @sk: sk needed to be a netfilter okfn
3841 * @skb: buffer to transmit
3843 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3845 skb_reset_mac_header(skb);
3846 __skb_pull(skb, skb_network_offset(skb));
3847 skb->pkt_type = PACKET_LOOPBACK;
3848 skb->ip_summed = CHECKSUM_UNNECESSARY;
3849 WARN_ON(!skb_dst(skb));
3854 EXPORT_SYMBOL(dev_loopback_xmit);
3856 #ifdef CONFIG_NET_EGRESS
3857 static struct sk_buff *
3858 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3860 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3861 struct tcf_result cl_res;
3866 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3867 mini_qdisc_bstats_cpu_update(miniq, skb);
3869 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3871 case TC_ACT_RECLASSIFY:
3872 skb->tc_index = TC_H_MIN(cl_res.classid);
3875 mini_qdisc_qstats_cpu_drop(miniq);
3876 *ret = NET_XMIT_DROP;
3882 *ret = NET_XMIT_SUCCESS;
3885 case TC_ACT_REDIRECT:
3886 /* No need to push/pop skb's mac_header here on egress! */
3887 skb_do_redirect(skb);
3888 *ret = NET_XMIT_SUCCESS;
3896 #endif /* CONFIG_NET_EGRESS */
3899 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3900 struct xps_dev_maps *dev_maps, unsigned int tci)
3902 struct xps_map *map;
3903 int queue_index = -1;
3907 tci += netdev_get_prio_tc_map(dev, skb->priority);
3910 map = rcu_dereference(dev_maps->attr_map[tci]);
3913 queue_index = map->queues[0];
3915 queue_index = map->queues[reciprocal_scale(
3916 skb_get_hash(skb), map->len)];
3917 if (unlikely(queue_index >= dev->real_num_tx_queues))
3924 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3925 struct sk_buff *skb)
3928 struct xps_dev_maps *dev_maps;
3929 struct sock *sk = skb->sk;
3930 int queue_index = -1;
3932 if (!static_key_false(&xps_needed))
3936 if (!static_key_false(&xps_rxqs_needed))
3939 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3941 int tci = sk_rx_queue_get(sk);
3943 if (tci >= 0 && tci < dev->num_rx_queues)
3944 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3949 if (queue_index < 0) {
3950 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3952 unsigned int tci = skb->sender_cpu - 1;
3954 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3966 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3967 struct net_device *sb_dev)
3971 EXPORT_SYMBOL(dev_pick_tx_zero);
3973 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3974 struct net_device *sb_dev)
3976 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3978 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3980 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3981 struct net_device *sb_dev)
3983 struct sock *sk = skb->sk;
3984 int queue_index = sk_tx_queue_get(sk);
3986 sb_dev = sb_dev ? : dev;
3988 if (queue_index < 0 || skb->ooo_okay ||
3989 queue_index >= dev->real_num_tx_queues) {
3990 int new_index = get_xps_queue(dev, sb_dev, skb);
3993 new_index = skb_tx_hash(dev, sb_dev, skb);
3995 if (queue_index != new_index && sk &&
3997 rcu_access_pointer(sk->sk_dst_cache))
3998 sk_tx_queue_set(sk, new_index);
4000 queue_index = new_index;
4005 EXPORT_SYMBOL(netdev_pick_tx);
4007 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4008 struct sk_buff *skb,
4009 struct net_device *sb_dev)
4011 int queue_index = 0;
4014 u32 sender_cpu = skb->sender_cpu - 1;
4016 if (sender_cpu >= (u32)NR_CPUS)
4017 skb->sender_cpu = raw_smp_processor_id() + 1;
4020 if (dev->real_num_tx_queues != 1) {
4021 const struct net_device_ops *ops = dev->netdev_ops;
4023 if (ops->ndo_select_queue)
4024 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4026 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4028 queue_index = netdev_cap_txqueue(dev, queue_index);
4031 skb_set_queue_mapping(skb, queue_index);
4032 return netdev_get_tx_queue(dev, queue_index);
4036 * __dev_queue_xmit - transmit a buffer
4037 * @skb: buffer to transmit
4038 * @sb_dev: suboordinate device used for L2 forwarding offload
4040 * Queue a buffer for transmission to a network device. The caller must
4041 * have set the device and priority and built the buffer before calling
4042 * this function. The function can be called from an interrupt.
4044 * A negative errno code is returned on a failure. A success does not
4045 * guarantee the frame will be transmitted as it may be dropped due
4046 * to congestion or traffic shaping.
4048 * -----------------------------------------------------------------------------------
4049 * I notice this method can also return errors from the queue disciplines,
4050 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4053 * Regardless of the return value, the skb is consumed, so it is currently
4054 * difficult to retry a send to this method. (You can bump the ref count
4055 * before sending to hold a reference for retry if you are careful.)
4057 * When calling this method, interrupts MUST be enabled. This is because
4058 * the BH enable code must have IRQs enabled so that it will not deadlock.
4061 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4063 struct net_device *dev = skb->dev;
4064 struct netdev_queue *txq;
4069 skb_reset_mac_header(skb);
4071 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4072 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4074 /* Disable soft irqs for various locks below. Also
4075 * stops preemption for RCU.
4079 skb_update_prio(skb);
4081 qdisc_pkt_len_init(skb);
4082 #ifdef CONFIG_NET_CLS_ACT
4083 skb->tc_at_ingress = 0;
4084 # ifdef CONFIG_NET_EGRESS
4085 if (static_branch_unlikely(&egress_needed_key)) {
4086 skb = sch_handle_egress(skb, &rc, dev);
4092 /* If device/qdisc don't need skb->dst, release it right now while
4093 * its hot in this cpu cache.
4095 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4100 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4101 q = rcu_dereference_bh(txq->qdisc);
4103 trace_net_dev_queue(skb);
4105 rc = __dev_xmit_skb(skb, q, dev, txq);
4109 /* The device has no queue. Common case for software devices:
4110 * loopback, all the sorts of tunnels...
4112 * Really, it is unlikely that netif_tx_lock protection is necessary
4113 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4115 * However, it is possible, that they rely on protection
4118 * Check this and shot the lock. It is not prone from deadlocks.
4119 *Either shot noqueue qdisc, it is even simpler 8)
4121 if (dev->flags & IFF_UP) {
4122 int cpu = smp_processor_id(); /* ok because BHs are off */
4124 if (txq->xmit_lock_owner != cpu) {
4125 if (dev_xmit_recursion())
4126 goto recursion_alert;
4128 skb = validate_xmit_skb(skb, dev, &again);
4132 HARD_TX_LOCK(dev, txq, cpu);
4134 if (!netif_xmit_stopped(txq)) {
4135 dev_xmit_recursion_inc();
4136 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4137 dev_xmit_recursion_dec();
4138 if (dev_xmit_complete(rc)) {
4139 HARD_TX_UNLOCK(dev, txq);
4143 HARD_TX_UNLOCK(dev, txq);
4144 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4147 /* Recursion is detected! It is possible,
4151 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4157 rcu_read_unlock_bh();
4159 atomic_long_inc(&dev->tx_dropped);
4160 kfree_skb_list(skb);
4163 rcu_read_unlock_bh();
4167 int dev_queue_xmit(struct sk_buff *skb)
4169 return __dev_queue_xmit(skb, NULL);
4171 EXPORT_SYMBOL(dev_queue_xmit);
4173 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4175 return __dev_queue_xmit(skb, sb_dev);
4177 EXPORT_SYMBOL(dev_queue_xmit_accel);
4179 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4181 struct net_device *dev = skb->dev;
4182 struct sk_buff *orig_skb = skb;
4183 struct netdev_queue *txq;
4184 int ret = NETDEV_TX_BUSY;
4187 if (unlikely(!netif_running(dev) ||
4188 !netif_carrier_ok(dev)))
4191 skb = validate_xmit_skb_list(skb, dev, &again);
4192 if (skb != orig_skb)
4195 skb_set_queue_mapping(skb, queue_id);
4196 txq = skb_get_tx_queue(dev, skb);
4200 dev_xmit_recursion_inc();
4201 HARD_TX_LOCK(dev, txq, smp_processor_id());
4202 if (!netif_xmit_frozen_or_drv_stopped(txq))
4203 ret = netdev_start_xmit(skb, dev, txq, false);
4204 HARD_TX_UNLOCK(dev, txq);
4205 dev_xmit_recursion_dec();
4209 if (!dev_xmit_complete(ret))
4214 atomic_long_inc(&dev->tx_dropped);
4215 kfree_skb_list(skb);
4216 return NET_XMIT_DROP;
4218 EXPORT_SYMBOL(dev_direct_xmit);
4220 /*************************************************************************
4222 *************************************************************************/
4224 int netdev_max_backlog __read_mostly = 1000;
4225 EXPORT_SYMBOL(netdev_max_backlog);
4227 int netdev_tstamp_prequeue __read_mostly = 1;
4228 int netdev_budget __read_mostly = 300;
4229 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4230 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4231 int weight_p __read_mostly = 64; /* old backlog weight */
4232 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4233 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4234 int dev_rx_weight __read_mostly = 64;
4235 int dev_tx_weight __read_mostly = 64;
4236 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4237 int gro_normal_batch __read_mostly = 8;
4239 /* Called with irq disabled */
4240 static inline void ____napi_schedule(struct softnet_data *sd,
4241 struct napi_struct *napi)
4243 list_add_tail(&napi->poll_list, &sd->poll_list);
4244 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4249 /* One global table that all flow-based protocols share. */
4250 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4251 EXPORT_SYMBOL(rps_sock_flow_table);
4252 u32 rps_cpu_mask __read_mostly;
4253 EXPORT_SYMBOL(rps_cpu_mask);
4255 struct static_key_false rps_needed __read_mostly;
4256 EXPORT_SYMBOL(rps_needed);
4257 struct static_key_false rfs_needed __read_mostly;
4258 EXPORT_SYMBOL(rfs_needed);
4260 static struct rps_dev_flow *
4261 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4262 struct rps_dev_flow *rflow, u16 next_cpu)
4264 if (next_cpu < nr_cpu_ids) {
4265 #ifdef CONFIG_RFS_ACCEL
4266 struct netdev_rx_queue *rxqueue;
4267 struct rps_dev_flow_table *flow_table;
4268 struct rps_dev_flow *old_rflow;
4273 /* Should we steer this flow to a different hardware queue? */
4274 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4275 !(dev->features & NETIF_F_NTUPLE))
4277 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4278 if (rxq_index == skb_get_rx_queue(skb))
4281 rxqueue = dev->_rx + rxq_index;
4282 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4285 flow_id = skb_get_hash(skb) & flow_table->mask;
4286 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4287 rxq_index, flow_id);
4291 rflow = &flow_table->flows[flow_id];
4293 if (old_rflow->filter == rflow->filter)
4294 old_rflow->filter = RPS_NO_FILTER;
4298 per_cpu(softnet_data, next_cpu).input_queue_head;
4301 rflow->cpu = next_cpu;
4306 * get_rps_cpu is called from netif_receive_skb and returns the target
4307 * CPU from the RPS map of the receiving queue for a given skb.
4308 * rcu_read_lock must be held on entry.
4310 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4311 struct rps_dev_flow **rflowp)
4313 const struct rps_sock_flow_table *sock_flow_table;
4314 struct netdev_rx_queue *rxqueue = dev->_rx;
4315 struct rps_dev_flow_table *flow_table;
4316 struct rps_map *map;
4321 if (skb_rx_queue_recorded(skb)) {
4322 u16 index = skb_get_rx_queue(skb);
4324 if (unlikely(index >= dev->real_num_rx_queues)) {
4325 WARN_ONCE(dev->real_num_rx_queues > 1,
4326 "%s received packet on queue %u, but number "
4327 "of RX queues is %u\n",
4328 dev->name, index, dev->real_num_rx_queues);
4334 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4336 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4337 map = rcu_dereference(rxqueue->rps_map);
4338 if (!flow_table && !map)
4341 skb_reset_network_header(skb);
4342 hash = skb_get_hash(skb);
4346 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4347 if (flow_table && sock_flow_table) {
4348 struct rps_dev_flow *rflow;
4352 /* First check into global flow table if there is a match */
4353 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4354 if ((ident ^ hash) & ~rps_cpu_mask)
4357 next_cpu = ident & rps_cpu_mask;
4359 /* OK, now we know there is a match,
4360 * we can look at the local (per receive queue) flow table
4362 rflow = &flow_table->flows[hash & flow_table->mask];
4366 * If the desired CPU (where last recvmsg was done) is
4367 * different from current CPU (one in the rx-queue flow
4368 * table entry), switch if one of the following holds:
4369 * - Current CPU is unset (>= nr_cpu_ids).
4370 * - Current CPU is offline.
4371 * - The current CPU's queue tail has advanced beyond the
4372 * last packet that was enqueued using this table entry.
4373 * This guarantees that all previous packets for the flow
4374 * have been dequeued, thus preserving in order delivery.
4376 if (unlikely(tcpu != next_cpu) &&
4377 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4378 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4379 rflow->last_qtail)) >= 0)) {
4381 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4384 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4394 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4395 if (cpu_online(tcpu)) {
4405 #ifdef CONFIG_RFS_ACCEL
4408 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4409 * @dev: Device on which the filter was set
4410 * @rxq_index: RX queue index
4411 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4412 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4414 * Drivers that implement ndo_rx_flow_steer() should periodically call
4415 * this function for each installed filter and remove the filters for
4416 * which it returns %true.
4418 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4419 u32 flow_id, u16 filter_id)
4421 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4422 struct rps_dev_flow_table *flow_table;
4423 struct rps_dev_flow *rflow;
4428 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4429 if (flow_table && flow_id <= flow_table->mask) {
4430 rflow = &flow_table->flows[flow_id];
4431 cpu = READ_ONCE(rflow->cpu);
4432 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4433 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4434 rflow->last_qtail) <
4435 (int)(10 * flow_table->mask)))
4441 EXPORT_SYMBOL(rps_may_expire_flow);
4443 #endif /* CONFIG_RFS_ACCEL */
4445 /* Called from hardirq (IPI) context */
4446 static void rps_trigger_softirq(void *data)
4448 struct softnet_data *sd = data;
4450 ____napi_schedule(sd, &sd->backlog);
4454 #endif /* CONFIG_RPS */
4457 * Check if this softnet_data structure is another cpu one
4458 * If yes, queue it to our IPI list and return 1
4461 static int rps_ipi_queued(struct softnet_data *sd)
4464 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4467 sd->rps_ipi_next = mysd->rps_ipi_list;
4468 mysd->rps_ipi_list = sd;
4470 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4473 #endif /* CONFIG_RPS */
4477 #ifdef CONFIG_NET_FLOW_LIMIT
4478 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4481 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4483 #ifdef CONFIG_NET_FLOW_LIMIT
4484 struct sd_flow_limit *fl;
4485 struct softnet_data *sd;
4486 unsigned int old_flow, new_flow;
4488 if (qlen < (netdev_max_backlog >> 1))
4491 sd = this_cpu_ptr(&softnet_data);
4494 fl = rcu_dereference(sd->flow_limit);
4496 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4497 old_flow = fl->history[fl->history_head];
4498 fl->history[fl->history_head] = new_flow;
4501 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4503 if (likely(fl->buckets[old_flow]))
4504 fl->buckets[old_flow]--;
4506 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4518 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4519 * queue (may be a remote CPU queue).
4521 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4522 unsigned int *qtail)
4524 struct softnet_data *sd;
4525 unsigned long flags;
4528 sd = &per_cpu(softnet_data, cpu);
4530 local_irq_save(flags);
4533 if (!netif_running(skb->dev))
4535 qlen = skb_queue_len(&sd->input_pkt_queue);
4536 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4539 __skb_queue_tail(&sd->input_pkt_queue, skb);
4540 input_queue_tail_incr_save(sd, qtail);
4542 local_irq_restore(flags);
4543 return NET_RX_SUCCESS;
4546 /* Schedule NAPI for backlog device
4547 * We can use non atomic operation since we own the queue lock
4549 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4550 if (!rps_ipi_queued(sd))
4551 ____napi_schedule(sd, &sd->backlog);
4560 local_irq_restore(flags);
4562 atomic_long_inc(&skb->dev->rx_dropped);
4567 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4569 struct net_device *dev = skb->dev;
4570 struct netdev_rx_queue *rxqueue;
4574 if (skb_rx_queue_recorded(skb)) {
4575 u16 index = skb_get_rx_queue(skb);
4577 if (unlikely(index >= dev->real_num_rx_queues)) {
4578 WARN_ONCE(dev->real_num_rx_queues > 1,
4579 "%s received packet on queue %u, but number "
4580 "of RX queues is %u\n",
4581 dev->name, index, dev->real_num_rx_queues);
4583 return rxqueue; /* Return first rxqueue */
4590 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4591 struct xdp_buff *xdp,
4592 struct bpf_prog *xdp_prog)
4594 struct netdev_rx_queue *rxqueue;
4595 void *orig_data, *orig_data_end;
4596 u32 metalen, act = XDP_DROP;
4597 __be16 orig_eth_type;
4603 /* Reinjected packets coming from act_mirred or similar should
4604 * not get XDP generic processing.
4606 if (skb_is_redirected(skb))
4609 /* XDP packets must be linear and must have sufficient headroom
4610 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4611 * native XDP provides, thus we need to do it here as well.
4613 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4614 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4615 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4616 int troom = skb->tail + skb->data_len - skb->end;
4618 /* In case we have to go down the path and also linearize,
4619 * then lets do the pskb_expand_head() work just once here.
4621 if (pskb_expand_head(skb,
4622 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4623 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4625 if (skb_linearize(skb))
4629 /* The XDP program wants to see the packet starting at the MAC
4632 mac_len = skb->data - skb_mac_header(skb);
4633 hlen = skb_headlen(skb) + mac_len;
4634 xdp->data = skb->data - mac_len;
4635 xdp->data_meta = xdp->data;
4636 xdp->data_end = xdp->data + hlen;
4637 xdp->data_hard_start = skb->data - skb_headroom(skb);
4639 /* SKB "head" area always have tailroom for skb_shared_info */
4640 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4641 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4643 orig_data_end = xdp->data_end;
4644 orig_data = xdp->data;
4645 eth = (struct ethhdr *)xdp->data;
4646 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4647 orig_eth_type = eth->h_proto;
4649 rxqueue = netif_get_rxqueue(skb);
4650 xdp->rxq = &rxqueue->xdp_rxq;
4652 act = bpf_prog_run_xdp(xdp_prog, xdp);
4654 /* check if bpf_xdp_adjust_head was used */
4655 off = xdp->data - orig_data;
4658 __skb_pull(skb, off);
4660 __skb_push(skb, -off);
4662 skb->mac_header += off;
4663 skb_reset_network_header(skb);
4666 /* check if bpf_xdp_adjust_tail was used */
4667 off = xdp->data_end - orig_data_end;
4669 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4670 skb->len += off; /* positive on grow, negative on shrink */
4673 /* check if XDP changed eth hdr such SKB needs update */
4674 eth = (struct ethhdr *)xdp->data;
4675 if ((orig_eth_type != eth->h_proto) ||
4676 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4677 __skb_push(skb, ETH_HLEN);
4678 skb->protocol = eth_type_trans(skb, skb->dev);
4684 __skb_push(skb, mac_len);
4687 metalen = xdp->data - xdp->data_meta;
4689 skb_metadata_set(skb, metalen);
4692 bpf_warn_invalid_xdp_action(act);
4695 trace_xdp_exception(skb->dev, xdp_prog, act);
4706 /* When doing generic XDP we have to bypass the qdisc layer and the
4707 * network taps in order to match in-driver-XDP behavior.
4709 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4711 struct net_device *dev = skb->dev;
4712 struct netdev_queue *txq;
4713 bool free_skb = true;
4716 txq = netdev_core_pick_tx(dev, skb, NULL);
4717 cpu = smp_processor_id();
4718 HARD_TX_LOCK(dev, txq, cpu);
4719 if (!netif_xmit_stopped(txq)) {
4720 rc = netdev_start_xmit(skb, dev, txq, 0);
4721 if (dev_xmit_complete(rc))
4724 HARD_TX_UNLOCK(dev, txq);
4726 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4731 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4733 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4736 struct xdp_buff xdp;
4740 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4741 if (act != XDP_PASS) {
4744 err = xdp_do_generic_redirect(skb->dev, skb,
4750 generic_xdp_tx(skb, xdp_prog);
4761 EXPORT_SYMBOL_GPL(do_xdp_generic);
4763 static int netif_rx_internal(struct sk_buff *skb)
4767 net_timestamp_check(netdev_tstamp_prequeue, skb);
4769 trace_netif_rx(skb);
4772 if (static_branch_unlikely(&rps_needed)) {
4773 struct rps_dev_flow voidflow, *rflow = &voidflow;
4779 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4781 cpu = smp_processor_id();
4783 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4792 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4799 * netif_rx - post buffer to the network code
4800 * @skb: buffer to post
4802 * This function receives a packet from a device driver and queues it for
4803 * the upper (protocol) levels to process. It always succeeds. The buffer
4804 * may be dropped during processing for congestion control or by the
4808 * NET_RX_SUCCESS (no congestion)
4809 * NET_RX_DROP (packet was dropped)
4813 int netif_rx(struct sk_buff *skb)
4817 trace_netif_rx_entry(skb);
4819 ret = netif_rx_internal(skb);
4820 trace_netif_rx_exit(ret);
4824 EXPORT_SYMBOL(netif_rx);
4826 int netif_rx_ni(struct sk_buff *skb)
4830 trace_netif_rx_ni_entry(skb);
4833 err = netif_rx_internal(skb);
4834 if (local_softirq_pending())
4837 trace_netif_rx_ni_exit(err);
4841 EXPORT_SYMBOL(netif_rx_ni);
4843 static __latent_entropy void net_tx_action(struct softirq_action *h)
4845 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4847 if (sd->completion_queue) {
4848 struct sk_buff *clist;
4850 local_irq_disable();
4851 clist = sd->completion_queue;
4852 sd->completion_queue = NULL;
4856 struct sk_buff *skb = clist;
4858 clist = clist->next;
4860 WARN_ON(refcount_read(&skb->users));
4861 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4862 trace_consume_skb(skb);
4864 trace_kfree_skb(skb, net_tx_action);
4866 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4869 __kfree_skb_defer(skb);
4872 __kfree_skb_flush();
4875 if (sd->output_queue) {
4878 local_irq_disable();
4879 head = sd->output_queue;
4880 sd->output_queue = NULL;
4881 sd->output_queue_tailp = &sd->output_queue;
4885 struct Qdisc *q = head;
4886 spinlock_t *root_lock = NULL;
4888 head = head->next_sched;
4890 if (!(q->flags & TCQ_F_NOLOCK)) {
4891 root_lock = qdisc_lock(q);
4892 spin_lock(root_lock);
4894 /* We need to make sure head->next_sched is read
4895 * before clearing __QDISC_STATE_SCHED
4897 smp_mb__before_atomic();
4898 clear_bit(__QDISC_STATE_SCHED, &q->state);
4901 spin_unlock(root_lock);
4905 xfrm_dev_backlog(sd);
4908 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4909 /* This hook is defined here for ATM LANE */
4910 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4911 unsigned char *addr) __read_mostly;
4912 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4915 static inline struct sk_buff *
4916 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4917 struct net_device *orig_dev)
4919 #ifdef CONFIG_NET_CLS_ACT
4920 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4921 struct tcf_result cl_res;
4923 /* If there's at least one ingress present somewhere (so
4924 * we get here via enabled static key), remaining devices
4925 * that are not configured with an ingress qdisc will bail
4932 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4936 qdisc_skb_cb(skb)->pkt_len = skb->len;
4937 skb->tc_at_ingress = 1;
4938 mini_qdisc_bstats_cpu_update(miniq, skb);
4940 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4943 case TC_ACT_RECLASSIFY:
4944 skb->tc_index = TC_H_MIN(cl_res.classid);
4947 mini_qdisc_qstats_cpu_drop(miniq);
4955 case TC_ACT_REDIRECT:
4956 /* skb_mac_header check was done by cls/act_bpf, so
4957 * we can safely push the L2 header back before
4958 * redirecting to another netdev
4960 __skb_push(skb, skb->mac_len);
4961 skb_do_redirect(skb);
4963 case TC_ACT_CONSUMED:
4968 #endif /* CONFIG_NET_CLS_ACT */
4973 * netdev_is_rx_handler_busy - check if receive handler is registered
4974 * @dev: device to check
4976 * Check if a receive handler is already registered for a given device.
4977 * Return true if there one.
4979 * The caller must hold the rtnl_mutex.
4981 bool netdev_is_rx_handler_busy(struct net_device *dev)
4984 return dev && rtnl_dereference(dev->rx_handler);
4986 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4989 * netdev_rx_handler_register - register receive handler
4990 * @dev: device to register a handler for
4991 * @rx_handler: receive handler to register
4992 * @rx_handler_data: data pointer that is used by rx handler
4994 * Register a receive handler for a device. This handler will then be
4995 * called from __netif_receive_skb. A negative errno code is returned
4998 * The caller must hold the rtnl_mutex.
5000 * For a general description of rx_handler, see enum rx_handler_result.
5002 int netdev_rx_handler_register(struct net_device *dev,
5003 rx_handler_func_t *rx_handler,
5004 void *rx_handler_data)
5006 if (netdev_is_rx_handler_busy(dev))
5009 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5012 /* Note: rx_handler_data must be set before rx_handler */
5013 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5014 rcu_assign_pointer(dev->rx_handler, rx_handler);
5018 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5021 * netdev_rx_handler_unregister - unregister receive handler
5022 * @dev: device to unregister a handler from
5024 * Unregister a receive handler from a device.
5026 * The caller must hold the rtnl_mutex.
5028 void netdev_rx_handler_unregister(struct net_device *dev)
5032 RCU_INIT_POINTER(dev->rx_handler, NULL);
5033 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5034 * section has a guarantee to see a non NULL rx_handler_data
5038 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5040 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5043 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5044 * the special handling of PFMEMALLOC skbs.
5046 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5048 switch (skb->protocol) {
5049 case htons(ETH_P_ARP):
5050 case htons(ETH_P_IP):
5051 case htons(ETH_P_IPV6):
5052 case htons(ETH_P_8021Q):
5053 case htons(ETH_P_8021AD):
5060 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5061 int *ret, struct net_device *orig_dev)
5063 if (nf_hook_ingress_active(skb)) {
5067 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5072 ingress_retval = nf_hook_ingress(skb);
5074 return ingress_retval;
5079 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5080 struct packet_type **ppt_prev)
5082 struct packet_type *ptype, *pt_prev;
5083 rx_handler_func_t *rx_handler;
5084 struct sk_buff *skb = *pskb;
5085 struct net_device *orig_dev;
5086 bool deliver_exact = false;
5087 int ret = NET_RX_DROP;
5090 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5092 trace_netif_receive_skb(skb);
5094 orig_dev = skb->dev;
5096 skb_reset_network_header(skb);
5097 if (!skb_transport_header_was_set(skb))
5098 skb_reset_transport_header(skb);
5099 skb_reset_mac_len(skb);
5104 skb->skb_iif = skb->dev->ifindex;
5106 __this_cpu_inc(softnet_data.processed);
5108 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5112 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5115 if (ret2 != XDP_PASS) {
5119 skb_reset_mac_len(skb);
5122 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5123 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5124 skb = skb_vlan_untag(skb);
5129 if (skb_skip_tc_classify(skb))
5135 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5137 ret = deliver_skb(skb, pt_prev, orig_dev);
5141 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5143 ret = deliver_skb(skb, pt_prev, orig_dev);
5148 #ifdef CONFIG_NET_INGRESS
5149 if (static_branch_unlikely(&ingress_needed_key)) {
5150 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5154 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5158 skb_reset_redirect(skb);
5160 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5163 if (skb_vlan_tag_present(skb)) {
5165 ret = deliver_skb(skb, pt_prev, orig_dev);
5168 if (vlan_do_receive(&skb))
5170 else if (unlikely(!skb))
5174 rx_handler = rcu_dereference(skb->dev->rx_handler);
5177 ret = deliver_skb(skb, pt_prev, orig_dev);
5180 switch (rx_handler(&skb)) {
5181 case RX_HANDLER_CONSUMED:
5182 ret = NET_RX_SUCCESS;
5184 case RX_HANDLER_ANOTHER:
5186 case RX_HANDLER_EXACT:
5187 deliver_exact = true;
5188 case RX_HANDLER_PASS:
5195 if (unlikely(skb_vlan_tag_present(skb))) {
5197 if (skb_vlan_tag_get_id(skb)) {
5198 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5201 skb->pkt_type = PACKET_OTHERHOST;
5202 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5203 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5204 /* Outer header is 802.1P with vlan 0, inner header is
5205 * 802.1Q or 802.1AD and vlan_do_receive() above could
5206 * not find vlan dev for vlan id 0.
5208 __vlan_hwaccel_clear_tag(skb);
5209 skb = skb_vlan_untag(skb);
5212 if (vlan_do_receive(&skb))
5213 /* After stripping off 802.1P header with vlan 0
5214 * vlan dev is found for inner header.
5217 else if (unlikely(!skb))
5220 /* We have stripped outer 802.1P vlan 0 header.
5221 * But could not find vlan dev.
5222 * check again for vlan id to set OTHERHOST.
5226 /* Note: we might in the future use prio bits
5227 * and set skb->priority like in vlan_do_receive()
5228 * For the time being, just ignore Priority Code Point
5230 __vlan_hwaccel_clear_tag(skb);
5233 type = skb->protocol;
5235 /* deliver only exact match when indicated */
5236 if (likely(!deliver_exact)) {
5237 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5238 &ptype_base[ntohs(type) &
5242 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5243 &orig_dev->ptype_specific);
5245 if (unlikely(skb->dev != orig_dev)) {
5246 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5247 &skb->dev->ptype_specific);
5251 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5253 *ppt_prev = pt_prev;
5257 atomic_long_inc(&skb->dev->rx_dropped);
5259 atomic_long_inc(&skb->dev->rx_nohandler);
5261 /* Jamal, now you will not able to escape explaining
5262 * me how you were going to use this. :-)
5268 /* The invariant here is that if *ppt_prev is not NULL
5269 * then skb should also be non-NULL.
5271 * Apparently *ppt_prev assignment above holds this invariant due to
5272 * skb dereferencing near it.
5278 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5280 struct net_device *orig_dev = skb->dev;
5281 struct packet_type *pt_prev = NULL;
5284 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5286 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5287 skb->dev, pt_prev, orig_dev);
5292 * netif_receive_skb_core - special purpose version of netif_receive_skb
5293 * @skb: buffer to process
5295 * More direct receive version of netif_receive_skb(). It should
5296 * only be used by callers that have a need to skip RPS and Generic XDP.
5297 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5299 * This function may only be called from softirq context and interrupts
5300 * should be enabled.
5302 * Return values (usually ignored):
5303 * NET_RX_SUCCESS: no congestion
5304 * NET_RX_DROP: packet was dropped
5306 int netif_receive_skb_core(struct sk_buff *skb)
5311 ret = __netif_receive_skb_one_core(skb, false);
5316 EXPORT_SYMBOL(netif_receive_skb_core);
5318 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5319 struct packet_type *pt_prev,
5320 struct net_device *orig_dev)
5322 struct sk_buff *skb, *next;
5326 if (list_empty(head))
5328 if (pt_prev->list_func != NULL)
5329 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5330 ip_list_rcv, head, pt_prev, orig_dev);
5332 list_for_each_entry_safe(skb, next, head, list) {
5333 skb_list_del_init(skb);
5334 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5338 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5340 /* Fast-path assumptions:
5341 * - There is no RX handler.
5342 * - Only one packet_type matches.
5343 * If either of these fails, we will end up doing some per-packet
5344 * processing in-line, then handling the 'last ptype' for the whole
5345 * sublist. This can't cause out-of-order delivery to any single ptype,
5346 * because the 'last ptype' must be constant across the sublist, and all
5347 * other ptypes are handled per-packet.
5349 /* Current (common) ptype of sublist */
5350 struct packet_type *pt_curr = NULL;
5351 /* Current (common) orig_dev of sublist */
5352 struct net_device *od_curr = NULL;
5353 struct list_head sublist;
5354 struct sk_buff *skb, *next;
5356 INIT_LIST_HEAD(&sublist);
5357 list_for_each_entry_safe(skb, next, head, list) {
5358 struct net_device *orig_dev = skb->dev;
5359 struct packet_type *pt_prev = NULL;
5361 skb_list_del_init(skb);
5362 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5365 if (pt_curr != pt_prev || od_curr != orig_dev) {
5366 /* dispatch old sublist */
5367 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5368 /* start new sublist */
5369 INIT_LIST_HEAD(&sublist);
5373 list_add_tail(&skb->list, &sublist);
5376 /* dispatch final sublist */
5377 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5380 static int __netif_receive_skb(struct sk_buff *skb)
5384 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5385 unsigned int noreclaim_flag;
5388 * PFMEMALLOC skbs are special, they should
5389 * - be delivered to SOCK_MEMALLOC sockets only
5390 * - stay away from userspace
5391 * - have bounded memory usage
5393 * Use PF_MEMALLOC as this saves us from propagating the allocation
5394 * context down to all allocation sites.
5396 noreclaim_flag = memalloc_noreclaim_save();
5397 ret = __netif_receive_skb_one_core(skb, true);
5398 memalloc_noreclaim_restore(noreclaim_flag);
5400 ret = __netif_receive_skb_one_core(skb, false);
5405 static void __netif_receive_skb_list(struct list_head *head)
5407 unsigned long noreclaim_flag = 0;
5408 struct sk_buff *skb, *next;
5409 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5411 list_for_each_entry_safe(skb, next, head, list) {
5412 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5413 struct list_head sublist;
5415 /* Handle the previous sublist */
5416 list_cut_before(&sublist, head, &skb->list);
5417 if (!list_empty(&sublist))
5418 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5419 pfmemalloc = !pfmemalloc;
5420 /* See comments in __netif_receive_skb */
5422 noreclaim_flag = memalloc_noreclaim_save();
5424 memalloc_noreclaim_restore(noreclaim_flag);
5427 /* Handle the remaining sublist */
5428 if (!list_empty(head))
5429 __netif_receive_skb_list_core(head, pfmemalloc);
5430 /* Restore pflags */
5432 memalloc_noreclaim_restore(noreclaim_flag);
5435 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5437 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5438 struct bpf_prog *new = xdp->prog;
5444 /* generic XDP does not work with DEVMAPs that can
5445 * have a bpf_prog installed on an entry
5447 for (i = 0; i < new->aux->used_map_cnt; i++) {
5448 if (dev_map_can_have_prog(new->aux->used_maps[i]))
5450 if (cpu_map_prog_allowed(new->aux->used_maps[i]))
5455 switch (xdp->command) {
5456 case XDP_SETUP_PROG:
5457 rcu_assign_pointer(dev->xdp_prog, new);
5462 static_branch_dec(&generic_xdp_needed_key);
5463 } else if (new && !old) {
5464 static_branch_inc(&generic_xdp_needed_key);
5465 dev_disable_lro(dev);
5466 dev_disable_gro_hw(dev);
5478 static int netif_receive_skb_internal(struct sk_buff *skb)
5482 net_timestamp_check(netdev_tstamp_prequeue, skb);
5484 if (skb_defer_rx_timestamp(skb))
5485 return NET_RX_SUCCESS;
5489 if (static_branch_unlikely(&rps_needed)) {
5490 struct rps_dev_flow voidflow, *rflow = &voidflow;
5491 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5494 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5500 ret = __netif_receive_skb(skb);
5505 static void netif_receive_skb_list_internal(struct list_head *head)
5507 struct sk_buff *skb, *next;
5508 struct list_head sublist;
5510 INIT_LIST_HEAD(&sublist);
5511 list_for_each_entry_safe(skb, next, head, list) {
5512 net_timestamp_check(netdev_tstamp_prequeue, skb);
5513 skb_list_del_init(skb);
5514 if (!skb_defer_rx_timestamp(skb))
5515 list_add_tail(&skb->list, &sublist);
5517 list_splice_init(&sublist, head);
5521 if (static_branch_unlikely(&rps_needed)) {
5522 list_for_each_entry_safe(skb, next, head, list) {
5523 struct rps_dev_flow voidflow, *rflow = &voidflow;
5524 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5527 /* Will be handled, remove from list */
5528 skb_list_del_init(skb);
5529 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5534 __netif_receive_skb_list(head);
5539 * netif_receive_skb - process receive buffer from network
5540 * @skb: buffer to process
5542 * netif_receive_skb() is the main receive data processing function.
5543 * It always succeeds. The buffer may be dropped during processing
5544 * for congestion control or by the protocol layers.
5546 * This function may only be called from softirq context and interrupts
5547 * should be enabled.
5549 * Return values (usually ignored):
5550 * NET_RX_SUCCESS: no congestion
5551 * NET_RX_DROP: packet was dropped
5553 int netif_receive_skb(struct sk_buff *skb)
5557 trace_netif_receive_skb_entry(skb);
5559 ret = netif_receive_skb_internal(skb);
5560 trace_netif_receive_skb_exit(ret);
5564 EXPORT_SYMBOL(netif_receive_skb);
5567 * netif_receive_skb_list - process many receive buffers from network
5568 * @head: list of skbs to process.
5570 * Since return value of netif_receive_skb() is normally ignored, and
5571 * wouldn't be meaningful for a list, this function returns void.
5573 * This function may only be called from softirq context and interrupts
5574 * should be enabled.
5576 void netif_receive_skb_list(struct list_head *head)
5578 struct sk_buff *skb;
5580 if (list_empty(head))
5582 if (trace_netif_receive_skb_list_entry_enabled()) {
5583 list_for_each_entry(skb, head, list)
5584 trace_netif_receive_skb_list_entry(skb);
5586 netif_receive_skb_list_internal(head);
5587 trace_netif_receive_skb_list_exit(0);
5589 EXPORT_SYMBOL(netif_receive_skb_list);
5591 static DEFINE_PER_CPU(struct work_struct, flush_works);
5593 /* Network device is going away, flush any packets still pending */
5594 static void flush_backlog(struct work_struct *work)
5596 struct sk_buff *skb, *tmp;
5597 struct softnet_data *sd;
5600 sd = this_cpu_ptr(&softnet_data);
5602 local_irq_disable();
5604 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5605 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5606 __skb_unlink(skb, &sd->input_pkt_queue);
5607 dev_kfree_skb_irq(skb);
5608 input_queue_head_incr(sd);
5614 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5615 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5616 __skb_unlink(skb, &sd->process_queue);
5618 input_queue_head_incr(sd);
5624 static void flush_all_backlogs(void)
5630 for_each_online_cpu(cpu)
5631 queue_work_on(cpu, system_highpri_wq,
5632 per_cpu_ptr(&flush_works, cpu));
5634 for_each_online_cpu(cpu)
5635 flush_work(per_cpu_ptr(&flush_works, cpu));
5640 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5641 static void gro_normal_list(struct napi_struct *napi)
5643 if (!napi->rx_count)
5645 netif_receive_skb_list_internal(&napi->rx_list);
5646 INIT_LIST_HEAD(&napi->rx_list);
5650 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5651 * pass the whole batch up to the stack.
5653 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5655 list_add_tail(&skb->list, &napi->rx_list);
5656 if (++napi->rx_count >= gro_normal_batch)
5657 gro_normal_list(napi);
5660 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5661 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5662 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5664 struct packet_offload *ptype;
5665 __be16 type = skb->protocol;
5666 struct list_head *head = &offload_base;
5669 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5671 if (NAPI_GRO_CB(skb)->count == 1) {
5672 skb_shinfo(skb)->gso_size = 0;
5677 list_for_each_entry_rcu(ptype, head, list) {
5678 if (ptype->type != type || !ptype->callbacks.gro_complete)
5681 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5682 ipv6_gro_complete, inet_gro_complete,
5689 WARN_ON(&ptype->list == head);
5691 return NET_RX_SUCCESS;
5695 gro_normal_one(napi, skb);
5696 return NET_RX_SUCCESS;
5699 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5702 struct list_head *head = &napi->gro_hash[index].list;
5703 struct sk_buff *skb, *p;
5705 list_for_each_entry_safe_reverse(skb, p, head, list) {
5706 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5708 skb_list_del_init(skb);
5709 napi_gro_complete(napi, skb);
5710 napi->gro_hash[index].count--;
5713 if (!napi->gro_hash[index].count)
5714 __clear_bit(index, &napi->gro_bitmask);
5717 /* napi->gro_hash[].list contains packets ordered by age.
5718 * youngest packets at the head of it.
5719 * Complete skbs in reverse order to reduce latencies.
5721 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5723 unsigned long bitmask = napi->gro_bitmask;
5724 unsigned int i, base = ~0U;
5726 while ((i = ffs(bitmask)) != 0) {
5729 __napi_gro_flush_chain(napi, base, flush_old);
5732 EXPORT_SYMBOL(napi_gro_flush);
5734 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5735 struct sk_buff *skb)
5737 unsigned int maclen = skb->dev->hard_header_len;
5738 u32 hash = skb_get_hash_raw(skb);
5739 struct list_head *head;
5742 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5743 list_for_each_entry(p, head, list) {
5744 unsigned long diffs;
5746 NAPI_GRO_CB(p)->flush = 0;
5748 if (hash != skb_get_hash_raw(p)) {
5749 NAPI_GRO_CB(p)->same_flow = 0;
5753 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5754 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5755 if (skb_vlan_tag_present(p))
5756 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5757 diffs |= skb_metadata_dst_cmp(p, skb);
5758 diffs |= skb_metadata_differs(p, skb);
5759 if (maclen == ETH_HLEN)
5760 diffs |= compare_ether_header(skb_mac_header(p),
5761 skb_mac_header(skb));
5763 diffs = memcmp(skb_mac_header(p),
5764 skb_mac_header(skb),
5766 NAPI_GRO_CB(p)->same_flow = !diffs;
5772 static void skb_gro_reset_offset(struct sk_buff *skb)
5774 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5775 const skb_frag_t *frag0 = &pinfo->frags[0];
5777 NAPI_GRO_CB(skb)->data_offset = 0;
5778 NAPI_GRO_CB(skb)->frag0 = NULL;
5779 NAPI_GRO_CB(skb)->frag0_len = 0;
5781 if (!skb_headlen(skb) && pinfo->nr_frags &&
5782 !PageHighMem(skb_frag_page(frag0))) {
5783 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5784 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5785 skb_frag_size(frag0),
5786 skb->end - skb->tail);
5790 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5792 struct skb_shared_info *pinfo = skb_shinfo(skb);
5794 BUG_ON(skb->end - skb->tail < grow);
5796 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5798 skb->data_len -= grow;
5801 skb_frag_off_add(&pinfo->frags[0], grow);
5802 skb_frag_size_sub(&pinfo->frags[0], grow);
5804 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5805 skb_frag_unref(skb, 0);
5806 memmove(pinfo->frags, pinfo->frags + 1,
5807 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5811 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5813 struct sk_buff *oldest;
5815 oldest = list_last_entry(head, struct sk_buff, list);
5817 /* We are called with head length >= MAX_GRO_SKBS, so this is
5820 if (WARN_ON_ONCE(!oldest))
5823 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5826 skb_list_del_init(oldest);
5827 napi_gro_complete(napi, oldest);
5830 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5832 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5834 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5836 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5837 struct list_head *head = &offload_base;
5838 struct packet_offload *ptype;
5839 __be16 type = skb->protocol;
5840 struct list_head *gro_head;
5841 struct sk_buff *pp = NULL;
5842 enum gro_result ret;
5846 if (netif_elide_gro(skb->dev))
5849 gro_head = gro_list_prepare(napi, skb);
5852 list_for_each_entry_rcu(ptype, head, list) {
5853 if (ptype->type != type || !ptype->callbacks.gro_receive)
5856 skb_set_network_header(skb, skb_gro_offset(skb));
5857 skb_reset_mac_len(skb);
5858 NAPI_GRO_CB(skb)->same_flow = 0;
5859 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5860 NAPI_GRO_CB(skb)->free = 0;
5861 NAPI_GRO_CB(skb)->encap_mark = 0;
5862 NAPI_GRO_CB(skb)->recursion_counter = 0;
5863 NAPI_GRO_CB(skb)->is_fou = 0;
5864 NAPI_GRO_CB(skb)->is_atomic = 1;
5865 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5867 /* Setup for GRO checksum validation */
5868 switch (skb->ip_summed) {
5869 case CHECKSUM_COMPLETE:
5870 NAPI_GRO_CB(skb)->csum = skb->csum;
5871 NAPI_GRO_CB(skb)->csum_valid = 1;
5872 NAPI_GRO_CB(skb)->csum_cnt = 0;
5874 case CHECKSUM_UNNECESSARY:
5875 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5876 NAPI_GRO_CB(skb)->csum_valid = 0;
5879 NAPI_GRO_CB(skb)->csum_cnt = 0;
5880 NAPI_GRO_CB(skb)->csum_valid = 0;
5883 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5884 ipv6_gro_receive, inet_gro_receive,
5890 if (&ptype->list == head)
5893 if (PTR_ERR(pp) == -EINPROGRESS) {
5898 same_flow = NAPI_GRO_CB(skb)->same_flow;
5899 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5902 skb_list_del_init(pp);
5903 napi_gro_complete(napi, pp);
5904 napi->gro_hash[hash].count--;
5910 if (NAPI_GRO_CB(skb)->flush)
5913 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5914 gro_flush_oldest(napi, gro_head);
5916 napi->gro_hash[hash].count++;
5918 NAPI_GRO_CB(skb)->count = 1;
5919 NAPI_GRO_CB(skb)->age = jiffies;
5920 NAPI_GRO_CB(skb)->last = skb;
5921 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5922 list_add(&skb->list, gro_head);
5926 grow = skb_gro_offset(skb) - skb_headlen(skb);
5928 gro_pull_from_frag0(skb, grow);
5930 if (napi->gro_hash[hash].count) {
5931 if (!test_bit(hash, &napi->gro_bitmask))
5932 __set_bit(hash, &napi->gro_bitmask);
5933 } else if (test_bit(hash, &napi->gro_bitmask)) {
5934 __clear_bit(hash, &napi->gro_bitmask);
5944 struct packet_offload *gro_find_receive_by_type(__be16 type)
5946 struct list_head *offload_head = &offload_base;
5947 struct packet_offload *ptype;
5949 list_for_each_entry_rcu(ptype, offload_head, list) {
5950 if (ptype->type != type || !ptype->callbacks.gro_receive)
5956 EXPORT_SYMBOL(gro_find_receive_by_type);
5958 struct packet_offload *gro_find_complete_by_type(__be16 type)
5960 struct list_head *offload_head = &offload_base;
5961 struct packet_offload *ptype;
5963 list_for_each_entry_rcu(ptype, offload_head, list) {
5964 if (ptype->type != type || !ptype->callbacks.gro_complete)
5970 EXPORT_SYMBOL(gro_find_complete_by_type);
5972 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5976 kmem_cache_free(skbuff_head_cache, skb);
5979 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5980 struct sk_buff *skb,
5985 gro_normal_one(napi, skb);
5992 case GRO_MERGED_FREE:
5993 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5994 napi_skb_free_stolen_head(skb);
6008 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6012 skb_mark_napi_id(skb, napi);
6013 trace_napi_gro_receive_entry(skb);
6015 skb_gro_reset_offset(skb);
6017 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6018 trace_napi_gro_receive_exit(ret);
6022 EXPORT_SYMBOL(napi_gro_receive);
6024 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6026 if (unlikely(skb->pfmemalloc)) {
6030 __skb_pull(skb, skb_headlen(skb));
6031 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6032 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6033 __vlan_hwaccel_clear_tag(skb);
6034 skb->dev = napi->dev;
6037 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6038 skb->pkt_type = PACKET_HOST;
6040 skb->encapsulation = 0;
6041 skb_shinfo(skb)->gso_type = 0;
6042 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6048 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6050 struct sk_buff *skb = napi->skb;
6053 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6056 skb_mark_napi_id(skb, napi);
6061 EXPORT_SYMBOL(napi_get_frags);
6063 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6064 struct sk_buff *skb,
6070 __skb_push(skb, ETH_HLEN);
6071 skb->protocol = eth_type_trans(skb, skb->dev);
6072 if (ret == GRO_NORMAL)
6073 gro_normal_one(napi, skb);
6077 napi_reuse_skb(napi, skb);
6080 case GRO_MERGED_FREE:
6081 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6082 napi_skb_free_stolen_head(skb);
6084 napi_reuse_skb(napi, skb);
6095 /* Upper GRO stack assumes network header starts at gro_offset=0
6096 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6097 * We copy ethernet header into skb->data to have a common layout.
6099 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6101 struct sk_buff *skb = napi->skb;
6102 const struct ethhdr *eth;
6103 unsigned int hlen = sizeof(*eth);
6107 skb_reset_mac_header(skb);
6108 skb_gro_reset_offset(skb);
6110 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6111 eth = skb_gro_header_slow(skb, hlen, 0);
6112 if (unlikely(!eth)) {
6113 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6114 __func__, napi->dev->name);
6115 napi_reuse_skb(napi, skb);
6119 eth = (const struct ethhdr *)skb->data;
6120 gro_pull_from_frag0(skb, hlen);
6121 NAPI_GRO_CB(skb)->frag0 += hlen;
6122 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6124 __skb_pull(skb, hlen);
6127 * This works because the only protocols we care about don't require
6129 * We'll fix it up properly in napi_frags_finish()
6131 skb->protocol = eth->h_proto;
6136 gro_result_t napi_gro_frags(struct napi_struct *napi)
6139 struct sk_buff *skb = napi_frags_skb(napi);
6144 trace_napi_gro_frags_entry(skb);
6146 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6147 trace_napi_gro_frags_exit(ret);
6151 EXPORT_SYMBOL(napi_gro_frags);
6153 /* Compute the checksum from gro_offset and return the folded value
6154 * after adding in any pseudo checksum.
6156 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6161 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6163 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6164 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6165 /* See comments in __skb_checksum_complete(). */
6167 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6168 !skb->csum_complete_sw)
6169 netdev_rx_csum_fault(skb->dev, skb);
6172 NAPI_GRO_CB(skb)->csum = wsum;
6173 NAPI_GRO_CB(skb)->csum_valid = 1;
6177 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6179 static void net_rps_send_ipi(struct softnet_data *remsd)
6183 struct softnet_data *next = remsd->rps_ipi_next;
6185 if (cpu_online(remsd->cpu))
6186 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6193 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6194 * Note: called with local irq disabled, but exits with local irq enabled.
6196 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6199 struct softnet_data *remsd = sd->rps_ipi_list;
6202 sd->rps_ipi_list = NULL;
6206 /* Send pending IPI's to kick RPS processing on remote cpus. */
6207 net_rps_send_ipi(remsd);
6213 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6216 return sd->rps_ipi_list != NULL;
6222 static int process_backlog(struct napi_struct *napi, int quota)
6224 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6228 /* Check if we have pending ipi, its better to send them now,
6229 * not waiting net_rx_action() end.
6231 if (sd_has_rps_ipi_waiting(sd)) {
6232 local_irq_disable();
6233 net_rps_action_and_irq_enable(sd);
6236 napi->weight = dev_rx_weight;
6238 struct sk_buff *skb;
6240 while ((skb = __skb_dequeue(&sd->process_queue))) {
6242 __netif_receive_skb(skb);
6244 input_queue_head_incr(sd);
6245 if (++work >= quota)
6250 local_irq_disable();
6252 if (skb_queue_empty(&sd->input_pkt_queue)) {
6254 * Inline a custom version of __napi_complete().
6255 * only current cpu owns and manipulates this napi,
6256 * and NAPI_STATE_SCHED is the only possible flag set
6258 * We can use a plain write instead of clear_bit(),
6259 * and we dont need an smp_mb() memory barrier.
6264 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6265 &sd->process_queue);
6275 * __napi_schedule - schedule for receive
6276 * @n: entry to schedule
6278 * The entry's receive function will be scheduled to run.
6279 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6281 void __napi_schedule(struct napi_struct *n)
6283 unsigned long flags;
6285 local_irq_save(flags);
6286 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6287 local_irq_restore(flags);
6289 EXPORT_SYMBOL(__napi_schedule);
6292 * napi_schedule_prep - check if napi can be scheduled
6295 * Test if NAPI routine is already running, and if not mark
6296 * it as running. This is used as a condition variable
6297 * insure only one NAPI poll instance runs. We also make
6298 * sure there is no pending NAPI disable.
6300 bool napi_schedule_prep(struct napi_struct *n)
6302 unsigned long val, new;
6305 val = READ_ONCE(n->state);
6306 if (unlikely(val & NAPIF_STATE_DISABLE))
6308 new = val | NAPIF_STATE_SCHED;
6310 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6311 * This was suggested by Alexander Duyck, as compiler
6312 * emits better code than :
6313 * if (val & NAPIF_STATE_SCHED)
6314 * new |= NAPIF_STATE_MISSED;
6316 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6318 } while (cmpxchg(&n->state, val, new) != val);
6320 return !(val & NAPIF_STATE_SCHED);
6322 EXPORT_SYMBOL(napi_schedule_prep);
6325 * __napi_schedule_irqoff - schedule for receive
6326 * @n: entry to schedule
6328 * Variant of __napi_schedule() assuming hard irqs are masked
6330 void __napi_schedule_irqoff(struct napi_struct *n)
6332 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6334 EXPORT_SYMBOL(__napi_schedule_irqoff);
6336 bool napi_complete_done(struct napi_struct *n, int work_done)
6338 unsigned long flags, val, new, timeout = 0;
6342 * 1) Don't let napi dequeue from the cpu poll list
6343 * just in case its running on a different cpu.
6344 * 2) If we are busy polling, do nothing here, we have
6345 * the guarantee we will be called later.
6347 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6348 NAPIF_STATE_IN_BUSY_POLL)))
6353 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6354 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6356 if (n->defer_hard_irqs_count > 0) {
6357 n->defer_hard_irqs_count--;
6358 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6362 if (n->gro_bitmask) {
6363 /* When the NAPI instance uses a timeout and keeps postponing
6364 * it, we need to bound somehow the time packets are kept in
6367 napi_gro_flush(n, !!timeout);
6372 if (unlikely(!list_empty(&n->poll_list))) {
6373 /* If n->poll_list is not empty, we need to mask irqs */
6374 local_irq_save(flags);
6375 list_del_init(&n->poll_list);
6376 local_irq_restore(flags);
6380 val = READ_ONCE(n->state);
6382 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6384 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6386 /* If STATE_MISSED was set, leave STATE_SCHED set,
6387 * because we will call napi->poll() one more time.
6388 * This C code was suggested by Alexander Duyck to help gcc.
6390 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6392 } while (cmpxchg(&n->state, val, new) != val);
6394 if (unlikely(val & NAPIF_STATE_MISSED)) {
6400 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6401 HRTIMER_MODE_REL_PINNED);
6404 EXPORT_SYMBOL(napi_complete_done);
6406 /* must be called under rcu_read_lock(), as we dont take a reference */
6407 static struct napi_struct *napi_by_id(unsigned int napi_id)
6409 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6410 struct napi_struct *napi;
6412 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6413 if (napi->napi_id == napi_id)
6419 #if defined(CONFIG_NET_RX_BUSY_POLL)
6421 #define BUSY_POLL_BUDGET 8
6423 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6427 /* Busy polling means there is a high chance device driver hard irq
6428 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6429 * set in napi_schedule_prep().
6430 * Since we are about to call napi->poll() once more, we can safely
6431 * clear NAPI_STATE_MISSED.
6433 * Note: x86 could use a single "lock and ..." instruction
6434 * to perform these two clear_bit()
6436 clear_bit(NAPI_STATE_MISSED, &napi->state);
6437 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6441 /* All we really want here is to re-enable device interrupts.
6442 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6444 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6445 /* We can't gro_normal_list() here, because napi->poll() might have
6446 * rearmed the napi (napi_complete_done()) in which case it could
6447 * already be running on another CPU.
6449 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6450 netpoll_poll_unlock(have_poll_lock);
6451 if (rc == BUSY_POLL_BUDGET) {
6452 /* As the whole budget was spent, we still own the napi so can
6453 * safely handle the rx_list.
6455 gro_normal_list(napi);
6456 __napi_schedule(napi);
6461 void napi_busy_loop(unsigned int napi_id,
6462 bool (*loop_end)(void *, unsigned long),
6465 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6466 int (*napi_poll)(struct napi_struct *napi, int budget);
6467 void *have_poll_lock = NULL;
6468 struct napi_struct *napi;
6475 napi = napi_by_id(napi_id);
6485 unsigned long val = READ_ONCE(napi->state);
6487 /* If multiple threads are competing for this napi,
6488 * we avoid dirtying napi->state as much as we can.
6490 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6491 NAPIF_STATE_IN_BUSY_POLL))
6493 if (cmpxchg(&napi->state, val,
6494 val | NAPIF_STATE_IN_BUSY_POLL |
6495 NAPIF_STATE_SCHED) != val)
6497 have_poll_lock = netpoll_poll_lock(napi);
6498 napi_poll = napi->poll;
6500 work = napi_poll(napi, BUSY_POLL_BUDGET);
6501 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6502 gro_normal_list(napi);
6505 __NET_ADD_STATS(dev_net(napi->dev),
6506 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6509 if (!loop_end || loop_end(loop_end_arg, start_time))
6512 if (unlikely(need_resched())) {
6514 busy_poll_stop(napi, have_poll_lock);
6518 if (loop_end(loop_end_arg, start_time))
6525 busy_poll_stop(napi, have_poll_lock);
6530 EXPORT_SYMBOL(napi_busy_loop);
6532 #endif /* CONFIG_NET_RX_BUSY_POLL */
6534 static void napi_hash_add(struct napi_struct *napi)
6536 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6537 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6540 spin_lock(&napi_hash_lock);
6542 /* 0..NR_CPUS range is reserved for sender_cpu use */
6544 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6545 napi_gen_id = MIN_NAPI_ID;
6546 } while (napi_by_id(napi_gen_id));
6547 napi->napi_id = napi_gen_id;
6549 hlist_add_head_rcu(&napi->napi_hash_node,
6550 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6552 spin_unlock(&napi_hash_lock);
6555 /* Warning : caller is responsible to make sure rcu grace period
6556 * is respected before freeing memory containing @napi
6558 bool napi_hash_del(struct napi_struct *napi)
6560 bool rcu_sync_needed = false;
6562 spin_lock(&napi_hash_lock);
6564 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6565 rcu_sync_needed = true;
6566 hlist_del_rcu(&napi->napi_hash_node);
6568 spin_unlock(&napi_hash_lock);
6569 return rcu_sync_needed;
6571 EXPORT_SYMBOL_GPL(napi_hash_del);
6573 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6575 struct napi_struct *napi;
6577 napi = container_of(timer, struct napi_struct, timer);
6579 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6580 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6582 if (!napi_disable_pending(napi) &&
6583 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6584 __napi_schedule_irqoff(napi);
6586 return HRTIMER_NORESTART;
6589 static void init_gro_hash(struct napi_struct *napi)
6593 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6594 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6595 napi->gro_hash[i].count = 0;
6597 napi->gro_bitmask = 0;
6600 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6601 int (*poll)(struct napi_struct *, int), int weight)
6603 INIT_LIST_HEAD(&napi->poll_list);
6604 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6605 napi->timer.function = napi_watchdog;
6606 init_gro_hash(napi);
6608 INIT_LIST_HEAD(&napi->rx_list);
6611 if (weight > NAPI_POLL_WEIGHT)
6612 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6614 napi->weight = weight;
6616 #ifdef CONFIG_NETPOLL
6617 napi->poll_owner = -1;
6619 set_bit(NAPI_STATE_SCHED, &napi->state);
6620 set_bit(NAPI_STATE_NPSVC, &napi->state);
6621 list_add_rcu(&napi->dev_list, &dev->napi_list);
6622 napi_hash_add(napi);
6624 EXPORT_SYMBOL(netif_napi_add);
6626 void napi_disable(struct napi_struct *n)
6629 set_bit(NAPI_STATE_DISABLE, &n->state);
6631 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6633 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6636 hrtimer_cancel(&n->timer);
6638 clear_bit(NAPI_STATE_DISABLE, &n->state);
6640 EXPORT_SYMBOL(napi_disable);
6642 static void flush_gro_hash(struct napi_struct *napi)
6646 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6647 struct sk_buff *skb, *n;
6649 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6651 napi->gro_hash[i].count = 0;
6655 /* Must be called in process context */
6656 void netif_napi_del(struct napi_struct *napi)
6659 if (napi_hash_del(napi))
6661 list_del_init(&napi->dev_list);
6662 napi_free_frags(napi);
6664 flush_gro_hash(napi);
6665 napi->gro_bitmask = 0;
6667 EXPORT_SYMBOL(netif_napi_del);
6669 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6674 list_del_init(&n->poll_list);
6676 have = netpoll_poll_lock(n);
6680 /* This NAPI_STATE_SCHED test is for avoiding a race
6681 * with netpoll's poll_napi(). Only the entity which
6682 * obtains the lock and sees NAPI_STATE_SCHED set will
6683 * actually make the ->poll() call. Therefore we avoid
6684 * accidentally calling ->poll() when NAPI is not scheduled.
6687 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6688 work = n->poll(n, weight);
6689 trace_napi_poll(n, work, weight);
6692 if (unlikely(work > weight))
6693 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6694 n->poll, work, weight);
6696 if (likely(work < weight))
6699 /* Drivers must not modify the NAPI state if they
6700 * consume the entire weight. In such cases this code
6701 * still "owns" the NAPI instance and therefore can
6702 * move the instance around on the list at-will.
6704 if (unlikely(napi_disable_pending(n))) {
6709 if (n->gro_bitmask) {
6710 /* flush too old packets
6711 * If HZ < 1000, flush all packets.
6713 napi_gro_flush(n, HZ >= 1000);
6718 /* Some drivers may have called napi_schedule
6719 * prior to exhausting their budget.
6721 if (unlikely(!list_empty(&n->poll_list))) {
6722 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6723 n->dev ? n->dev->name : "backlog");
6727 list_add_tail(&n->poll_list, repoll);
6730 netpoll_poll_unlock(have);
6735 static __latent_entropy void net_rx_action(struct softirq_action *h)
6737 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6738 unsigned long time_limit = jiffies +
6739 usecs_to_jiffies(netdev_budget_usecs);
6740 int budget = netdev_budget;
6744 local_irq_disable();
6745 list_splice_init(&sd->poll_list, &list);
6749 struct napi_struct *n;
6751 if (list_empty(&list)) {
6752 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6757 n = list_first_entry(&list, struct napi_struct, poll_list);
6758 budget -= napi_poll(n, &repoll);
6760 /* If softirq window is exhausted then punt.
6761 * Allow this to run for 2 jiffies since which will allow
6762 * an average latency of 1.5/HZ.
6764 if (unlikely(budget <= 0 ||
6765 time_after_eq(jiffies, time_limit))) {
6771 local_irq_disable();
6773 list_splice_tail_init(&sd->poll_list, &list);
6774 list_splice_tail(&repoll, &list);
6775 list_splice(&list, &sd->poll_list);
6776 if (!list_empty(&sd->poll_list))
6777 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6779 net_rps_action_and_irq_enable(sd);
6781 __kfree_skb_flush();
6784 struct netdev_adjacent {
6785 struct net_device *dev;
6787 /* upper master flag, there can only be one master device per list */
6790 /* lookup ignore flag */
6793 /* counter for the number of times this device was added to us */
6796 /* private field for the users */
6799 struct list_head list;
6800 struct rcu_head rcu;
6803 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6804 struct list_head *adj_list)
6806 struct netdev_adjacent *adj;
6808 list_for_each_entry(adj, adj_list, list) {
6809 if (adj->dev == adj_dev)
6815 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6816 struct netdev_nested_priv *priv)
6818 struct net_device *dev = (struct net_device *)priv->data;
6820 return upper_dev == dev;
6824 * netdev_has_upper_dev - Check if device is linked to an upper device
6826 * @upper_dev: upper device to check
6828 * Find out if a device is linked to specified upper device and return true
6829 * in case it is. Note that this checks only immediate upper device,
6830 * not through a complete stack of devices. The caller must hold the RTNL lock.
6832 bool netdev_has_upper_dev(struct net_device *dev,
6833 struct net_device *upper_dev)
6835 struct netdev_nested_priv priv = {
6836 .data = (void *)upper_dev,
6841 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6844 EXPORT_SYMBOL(netdev_has_upper_dev);
6847 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6849 * @upper_dev: upper device to check
6851 * Find out if a device is linked to specified upper device and return true
6852 * in case it is. Note that this checks the entire upper device chain.
6853 * The caller must hold rcu lock.
6856 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6857 struct net_device *upper_dev)
6859 struct netdev_nested_priv priv = {
6860 .data = (void *)upper_dev,
6863 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6866 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6869 * netdev_has_any_upper_dev - Check if device is linked to some device
6872 * Find out if a device is linked to an upper device and return true in case
6873 * it is. The caller must hold the RTNL lock.
6875 bool netdev_has_any_upper_dev(struct net_device *dev)
6879 return !list_empty(&dev->adj_list.upper);
6881 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6884 * netdev_master_upper_dev_get - Get master upper device
6887 * Find a master upper device and return pointer to it or NULL in case
6888 * it's not there. The caller must hold the RTNL lock.
6890 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6892 struct netdev_adjacent *upper;
6896 if (list_empty(&dev->adj_list.upper))
6899 upper = list_first_entry(&dev->adj_list.upper,
6900 struct netdev_adjacent, list);
6901 if (likely(upper->master))
6905 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6907 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6909 struct netdev_adjacent *upper;
6913 if (list_empty(&dev->adj_list.upper))
6916 upper = list_first_entry(&dev->adj_list.upper,
6917 struct netdev_adjacent, list);
6918 if (likely(upper->master) && !upper->ignore)
6924 * netdev_has_any_lower_dev - Check if device is linked to some device
6927 * Find out if a device is linked to a lower device and return true in case
6928 * it is. The caller must hold the RTNL lock.
6930 static bool netdev_has_any_lower_dev(struct net_device *dev)
6934 return !list_empty(&dev->adj_list.lower);
6937 void *netdev_adjacent_get_private(struct list_head *adj_list)
6939 struct netdev_adjacent *adj;
6941 adj = list_entry(adj_list, struct netdev_adjacent, list);
6943 return adj->private;
6945 EXPORT_SYMBOL(netdev_adjacent_get_private);
6948 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6950 * @iter: list_head ** of the current position
6952 * Gets the next device from the dev's upper list, starting from iter
6953 * position. The caller must hold RCU read lock.
6955 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6956 struct list_head **iter)
6958 struct netdev_adjacent *upper;
6960 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6962 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6964 if (&upper->list == &dev->adj_list.upper)
6967 *iter = &upper->list;
6971 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6973 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6974 struct list_head **iter,
6977 struct netdev_adjacent *upper;
6979 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6981 if (&upper->list == &dev->adj_list.upper)
6984 *iter = &upper->list;
6985 *ignore = upper->ignore;
6990 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6991 struct list_head **iter)
6993 struct netdev_adjacent *upper;
6995 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6997 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6999 if (&upper->list == &dev->adj_list.upper)
7002 *iter = &upper->list;
7007 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7008 int (*fn)(struct net_device *dev,
7009 struct netdev_nested_priv *priv),
7010 struct netdev_nested_priv *priv)
7012 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7013 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7018 iter = &dev->adj_list.upper;
7022 ret = fn(now, priv);
7029 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7036 niter = &udev->adj_list.upper;
7037 dev_stack[cur] = now;
7038 iter_stack[cur++] = iter;
7045 next = dev_stack[--cur];
7046 niter = iter_stack[cur];
7056 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7057 int (*fn)(struct net_device *dev,
7058 struct netdev_nested_priv *priv),
7059 struct netdev_nested_priv *priv)
7061 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7062 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7066 iter = &dev->adj_list.upper;
7070 ret = fn(now, priv);
7077 udev = netdev_next_upper_dev_rcu(now, &iter);
7082 niter = &udev->adj_list.upper;
7083 dev_stack[cur] = now;
7084 iter_stack[cur++] = iter;
7091 next = dev_stack[--cur];
7092 niter = iter_stack[cur];
7101 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7103 static bool __netdev_has_upper_dev(struct net_device *dev,
7104 struct net_device *upper_dev)
7106 struct netdev_nested_priv priv = {
7108 .data = (void *)upper_dev,
7113 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7118 * netdev_lower_get_next_private - Get the next ->private from the
7119 * lower neighbour list
7121 * @iter: list_head ** of the current position
7123 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7124 * list, starting from iter position. The caller must hold either hold the
7125 * RTNL lock or its own locking that guarantees that the neighbour lower
7126 * list will remain unchanged.
7128 void *netdev_lower_get_next_private(struct net_device *dev,
7129 struct list_head **iter)
7131 struct netdev_adjacent *lower;
7133 lower = list_entry(*iter, struct netdev_adjacent, list);
7135 if (&lower->list == &dev->adj_list.lower)
7138 *iter = lower->list.next;
7140 return lower->private;
7142 EXPORT_SYMBOL(netdev_lower_get_next_private);
7145 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7146 * lower neighbour list, RCU
7149 * @iter: list_head ** of the current position
7151 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7152 * list, starting from iter position. The caller must hold RCU read lock.
7154 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7155 struct list_head **iter)
7157 struct netdev_adjacent *lower;
7159 WARN_ON_ONCE(!rcu_read_lock_held());
7161 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7163 if (&lower->list == &dev->adj_list.lower)
7166 *iter = &lower->list;
7168 return lower->private;
7170 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7173 * netdev_lower_get_next - Get the next device from the lower neighbour
7176 * @iter: list_head ** of the current position
7178 * Gets the next netdev_adjacent from the dev's lower neighbour
7179 * list, starting from iter position. The caller must hold RTNL lock or
7180 * its own locking that guarantees that the neighbour lower
7181 * list will remain unchanged.
7183 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7185 struct netdev_adjacent *lower;
7187 lower = list_entry(*iter, struct netdev_adjacent, list);
7189 if (&lower->list == &dev->adj_list.lower)
7192 *iter = lower->list.next;
7196 EXPORT_SYMBOL(netdev_lower_get_next);
7198 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7199 struct list_head **iter)
7201 struct netdev_adjacent *lower;
7203 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7205 if (&lower->list == &dev->adj_list.lower)
7208 *iter = &lower->list;
7213 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7214 struct list_head **iter,
7217 struct netdev_adjacent *lower;
7219 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7221 if (&lower->list == &dev->adj_list.lower)
7224 *iter = &lower->list;
7225 *ignore = lower->ignore;
7230 int netdev_walk_all_lower_dev(struct net_device *dev,
7231 int (*fn)(struct net_device *dev,
7232 struct netdev_nested_priv *priv),
7233 struct netdev_nested_priv *priv)
7235 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7236 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7240 iter = &dev->adj_list.lower;
7244 ret = fn(now, priv);
7251 ldev = netdev_next_lower_dev(now, &iter);
7256 niter = &ldev->adj_list.lower;
7257 dev_stack[cur] = now;
7258 iter_stack[cur++] = iter;
7265 next = dev_stack[--cur];
7266 niter = iter_stack[cur];
7275 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7277 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7278 int (*fn)(struct net_device *dev,
7279 struct netdev_nested_priv *priv),
7280 struct netdev_nested_priv *priv)
7282 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7283 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7288 iter = &dev->adj_list.lower;
7292 ret = fn(now, priv);
7299 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7306 niter = &ldev->adj_list.lower;
7307 dev_stack[cur] = now;
7308 iter_stack[cur++] = iter;
7315 next = dev_stack[--cur];
7316 niter = iter_stack[cur];
7326 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7327 struct list_head **iter)
7329 struct netdev_adjacent *lower;
7331 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7332 if (&lower->list == &dev->adj_list.lower)
7335 *iter = &lower->list;
7339 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7341 static u8 __netdev_upper_depth(struct net_device *dev)
7343 struct net_device *udev;
7344 struct list_head *iter;
7348 for (iter = &dev->adj_list.upper,
7349 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7351 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7354 if (max_depth < udev->upper_level)
7355 max_depth = udev->upper_level;
7361 static u8 __netdev_lower_depth(struct net_device *dev)
7363 struct net_device *ldev;
7364 struct list_head *iter;
7368 for (iter = &dev->adj_list.lower,
7369 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7371 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7374 if (max_depth < ldev->lower_level)
7375 max_depth = ldev->lower_level;
7381 static int __netdev_update_upper_level(struct net_device *dev,
7382 struct netdev_nested_priv *__unused)
7384 dev->upper_level = __netdev_upper_depth(dev) + 1;
7388 static int __netdev_update_lower_level(struct net_device *dev,
7389 struct netdev_nested_priv *priv)
7391 dev->lower_level = __netdev_lower_depth(dev) + 1;
7393 #ifdef CONFIG_LOCKDEP
7397 if (priv->flags & NESTED_SYNC_IMM)
7398 dev->nested_level = dev->lower_level - 1;
7399 if (priv->flags & NESTED_SYNC_TODO)
7400 net_unlink_todo(dev);
7405 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7406 int (*fn)(struct net_device *dev,
7407 struct netdev_nested_priv *priv),
7408 struct netdev_nested_priv *priv)
7410 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7411 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7415 iter = &dev->adj_list.lower;
7419 ret = fn(now, priv);
7426 ldev = netdev_next_lower_dev_rcu(now, &iter);
7431 niter = &ldev->adj_list.lower;
7432 dev_stack[cur] = now;
7433 iter_stack[cur++] = iter;
7440 next = dev_stack[--cur];
7441 niter = iter_stack[cur];
7450 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7453 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7454 * lower neighbour list, RCU
7458 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7459 * list. The caller must hold RCU read lock.
7461 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7463 struct netdev_adjacent *lower;
7465 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7466 struct netdev_adjacent, list);
7468 return lower->private;
7471 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7474 * netdev_master_upper_dev_get_rcu - Get master upper device
7477 * Find a master upper device and return pointer to it or NULL in case
7478 * it's not there. The caller must hold the RCU read lock.
7480 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7482 struct netdev_adjacent *upper;
7484 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7485 struct netdev_adjacent, list);
7486 if (upper && likely(upper->master))
7490 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7492 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7493 struct net_device *adj_dev,
7494 struct list_head *dev_list)
7496 char linkname[IFNAMSIZ+7];
7498 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7499 "upper_%s" : "lower_%s", adj_dev->name);
7500 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7503 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7505 struct list_head *dev_list)
7507 char linkname[IFNAMSIZ+7];
7509 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7510 "upper_%s" : "lower_%s", name);
7511 sysfs_remove_link(&(dev->dev.kobj), linkname);
7514 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7515 struct net_device *adj_dev,
7516 struct list_head *dev_list)
7518 return (dev_list == &dev->adj_list.upper ||
7519 dev_list == &dev->adj_list.lower) &&
7520 net_eq(dev_net(dev), dev_net(adj_dev));
7523 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7524 struct net_device *adj_dev,
7525 struct list_head *dev_list,
7526 void *private, bool master)
7528 struct netdev_adjacent *adj;
7531 adj = __netdev_find_adj(adj_dev, dev_list);
7535 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7536 dev->name, adj_dev->name, adj->ref_nr);
7541 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7546 adj->master = master;
7548 adj->private = private;
7549 adj->ignore = false;
7552 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7553 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7555 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7556 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7561 /* Ensure that master link is always the first item in list. */
7563 ret = sysfs_create_link(&(dev->dev.kobj),
7564 &(adj_dev->dev.kobj), "master");
7566 goto remove_symlinks;
7568 list_add_rcu(&adj->list, dev_list);
7570 list_add_tail_rcu(&adj->list, dev_list);
7576 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7577 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7585 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7586 struct net_device *adj_dev,
7588 struct list_head *dev_list)
7590 struct netdev_adjacent *adj;
7592 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7593 dev->name, adj_dev->name, ref_nr);
7595 adj = __netdev_find_adj(adj_dev, dev_list);
7598 pr_err("Adjacency does not exist for device %s from %s\n",
7599 dev->name, adj_dev->name);
7604 if (adj->ref_nr > ref_nr) {
7605 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7606 dev->name, adj_dev->name, ref_nr,
7607 adj->ref_nr - ref_nr);
7608 adj->ref_nr -= ref_nr;
7613 sysfs_remove_link(&(dev->dev.kobj), "master");
7615 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7616 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7618 list_del_rcu(&adj->list);
7619 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7620 adj_dev->name, dev->name, adj_dev->name);
7622 kfree_rcu(adj, rcu);
7625 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7626 struct net_device *upper_dev,
7627 struct list_head *up_list,
7628 struct list_head *down_list,
7629 void *private, bool master)
7633 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7638 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7641 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7648 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7649 struct net_device *upper_dev,
7651 struct list_head *up_list,
7652 struct list_head *down_list)
7654 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7655 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7658 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7659 struct net_device *upper_dev,
7660 void *private, bool master)
7662 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7663 &dev->adj_list.upper,
7664 &upper_dev->adj_list.lower,
7668 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7669 struct net_device *upper_dev)
7671 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7672 &dev->adj_list.upper,
7673 &upper_dev->adj_list.lower);
7676 static int __netdev_upper_dev_link(struct net_device *dev,
7677 struct net_device *upper_dev, bool master,
7678 void *upper_priv, void *upper_info,
7679 struct netdev_nested_priv *priv,
7680 struct netlink_ext_ack *extack)
7682 struct netdev_notifier_changeupper_info changeupper_info = {
7687 .upper_dev = upper_dev,
7690 .upper_info = upper_info,
7692 struct net_device *master_dev;
7697 if (dev == upper_dev)
7700 /* To prevent loops, check if dev is not upper device to upper_dev. */
7701 if (__netdev_has_upper_dev(upper_dev, dev))
7704 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7708 if (__netdev_has_upper_dev(dev, upper_dev))
7711 master_dev = __netdev_master_upper_dev_get(dev);
7713 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7716 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7717 &changeupper_info.info);
7718 ret = notifier_to_errno(ret);
7722 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7727 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7728 &changeupper_info.info);
7729 ret = notifier_to_errno(ret);
7733 __netdev_update_upper_level(dev, NULL);
7734 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7736 __netdev_update_lower_level(upper_dev, priv);
7737 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7743 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7749 * netdev_upper_dev_link - Add a link to the upper device
7751 * @upper_dev: new upper device
7752 * @extack: netlink extended ack
7754 * Adds a link to device which is upper to this one. The caller must hold
7755 * the RTNL lock. On a failure a negative errno code is returned.
7756 * On success the reference counts are adjusted and the function
7759 int netdev_upper_dev_link(struct net_device *dev,
7760 struct net_device *upper_dev,
7761 struct netlink_ext_ack *extack)
7763 struct netdev_nested_priv priv = {
7764 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7768 return __netdev_upper_dev_link(dev, upper_dev, false,
7769 NULL, NULL, &priv, extack);
7771 EXPORT_SYMBOL(netdev_upper_dev_link);
7774 * netdev_master_upper_dev_link - Add a master link to the upper device
7776 * @upper_dev: new upper device
7777 * @upper_priv: upper device private
7778 * @upper_info: upper info to be passed down via notifier
7779 * @extack: netlink extended ack
7781 * Adds a link to device which is upper to this one. In this case, only
7782 * one master upper device can be linked, although other non-master devices
7783 * might be linked as well. The caller must hold the RTNL lock.
7784 * On a failure a negative errno code is returned. On success the reference
7785 * counts are adjusted and the function returns zero.
7787 int netdev_master_upper_dev_link(struct net_device *dev,
7788 struct net_device *upper_dev,
7789 void *upper_priv, void *upper_info,
7790 struct netlink_ext_ack *extack)
7792 struct netdev_nested_priv priv = {
7793 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7797 return __netdev_upper_dev_link(dev, upper_dev, true,
7798 upper_priv, upper_info, &priv, extack);
7800 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7802 static void __netdev_upper_dev_unlink(struct net_device *dev,
7803 struct net_device *upper_dev,
7804 struct netdev_nested_priv *priv)
7806 struct netdev_notifier_changeupper_info changeupper_info = {
7810 .upper_dev = upper_dev,
7816 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7818 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7819 &changeupper_info.info);
7821 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7823 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7824 &changeupper_info.info);
7826 __netdev_update_upper_level(dev, NULL);
7827 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7829 __netdev_update_lower_level(upper_dev, priv);
7830 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7835 * netdev_upper_dev_unlink - Removes a link to upper device
7837 * @upper_dev: new upper device
7839 * Removes a link to device which is upper to this one. The caller must hold
7842 void netdev_upper_dev_unlink(struct net_device *dev,
7843 struct net_device *upper_dev)
7845 struct netdev_nested_priv priv = {
7846 .flags = NESTED_SYNC_TODO,
7850 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7852 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7854 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7855 struct net_device *lower_dev,
7858 struct netdev_adjacent *adj;
7860 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7864 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7869 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7870 struct net_device *lower_dev)
7872 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7875 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7876 struct net_device *lower_dev)
7878 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7881 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7882 struct net_device *new_dev,
7883 struct net_device *dev,
7884 struct netlink_ext_ack *extack)
7886 struct netdev_nested_priv priv = {
7895 if (old_dev && new_dev != old_dev)
7896 netdev_adjacent_dev_disable(dev, old_dev);
7897 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7900 if (old_dev && new_dev != old_dev)
7901 netdev_adjacent_dev_enable(dev, old_dev);
7907 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7909 void netdev_adjacent_change_commit(struct net_device *old_dev,
7910 struct net_device *new_dev,
7911 struct net_device *dev)
7913 struct netdev_nested_priv priv = {
7914 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7918 if (!new_dev || !old_dev)
7921 if (new_dev == old_dev)
7924 netdev_adjacent_dev_enable(dev, old_dev);
7925 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7927 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7929 void netdev_adjacent_change_abort(struct net_device *old_dev,
7930 struct net_device *new_dev,
7931 struct net_device *dev)
7933 struct netdev_nested_priv priv = {
7941 if (old_dev && new_dev != old_dev)
7942 netdev_adjacent_dev_enable(dev, old_dev);
7944 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7946 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7949 * netdev_bonding_info_change - Dispatch event about slave change
7951 * @bonding_info: info to dispatch
7953 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7954 * The caller must hold the RTNL lock.
7956 void netdev_bonding_info_change(struct net_device *dev,
7957 struct netdev_bonding_info *bonding_info)
7959 struct netdev_notifier_bonding_info info = {
7963 memcpy(&info.bonding_info, bonding_info,
7964 sizeof(struct netdev_bonding_info));
7965 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7968 EXPORT_SYMBOL(netdev_bonding_info_change);
7971 * netdev_get_xmit_slave - Get the xmit slave of master device
7974 * @all_slaves: assume all the slaves are active
7976 * The reference counters are not incremented so the caller must be
7977 * careful with locks. The caller must hold RCU lock.
7978 * %NULL is returned if no slave is found.
7981 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7982 struct sk_buff *skb,
7985 const struct net_device_ops *ops = dev->netdev_ops;
7987 if (!ops->ndo_get_xmit_slave)
7989 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7991 EXPORT_SYMBOL(netdev_get_xmit_slave);
7993 static void netdev_adjacent_add_links(struct net_device *dev)
7995 struct netdev_adjacent *iter;
7997 struct net *net = dev_net(dev);
7999 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8000 if (!net_eq(net, dev_net(iter->dev)))
8002 netdev_adjacent_sysfs_add(iter->dev, dev,
8003 &iter->dev->adj_list.lower);
8004 netdev_adjacent_sysfs_add(dev, iter->dev,
8005 &dev->adj_list.upper);
8008 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8009 if (!net_eq(net, dev_net(iter->dev)))
8011 netdev_adjacent_sysfs_add(iter->dev, dev,
8012 &iter->dev->adj_list.upper);
8013 netdev_adjacent_sysfs_add(dev, iter->dev,
8014 &dev->adj_list.lower);
8018 static void netdev_adjacent_del_links(struct net_device *dev)
8020 struct netdev_adjacent *iter;
8022 struct net *net = dev_net(dev);
8024 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8025 if (!net_eq(net, dev_net(iter->dev)))
8027 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8028 &iter->dev->adj_list.lower);
8029 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8030 &dev->adj_list.upper);
8033 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8034 if (!net_eq(net, dev_net(iter->dev)))
8036 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8037 &iter->dev->adj_list.upper);
8038 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8039 &dev->adj_list.lower);
8043 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8045 struct netdev_adjacent *iter;
8047 struct net *net = dev_net(dev);
8049 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8050 if (!net_eq(net, dev_net(iter->dev)))
8052 netdev_adjacent_sysfs_del(iter->dev, oldname,
8053 &iter->dev->adj_list.lower);
8054 netdev_adjacent_sysfs_add(iter->dev, dev,
8055 &iter->dev->adj_list.lower);
8058 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8059 if (!net_eq(net, dev_net(iter->dev)))
8061 netdev_adjacent_sysfs_del(iter->dev, oldname,
8062 &iter->dev->adj_list.upper);
8063 netdev_adjacent_sysfs_add(iter->dev, dev,
8064 &iter->dev->adj_list.upper);
8068 void *netdev_lower_dev_get_private(struct net_device *dev,
8069 struct net_device *lower_dev)
8071 struct netdev_adjacent *lower;
8075 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8079 return lower->private;
8081 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8085 * netdev_lower_change - Dispatch event about lower device state change
8086 * @lower_dev: device
8087 * @lower_state_info: state to dispatch
8089 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8090 * The caller must hold the RTNL lock.
8092 void netdev_lower_state_changed(struct net_device *lower_dev,
8093 void *lower_state_info)
8095 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8096 .info.dev = lower_dev,
8100 changelowerstate_info.lower_state_info = lower_state_info;
8101 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8102 &changelowerstate_info.info);
8104 EXPORT_SYMBOL(netdev_lower_state_changed);
8106 static void dev_change_rx_flags(struct net_device *dev, int flags)
8108 const struct net_device_ops *ops = dev->netdev_ops;
8110 if (ops->ndo_change_rx_flags)
8111 ops->ndo_change_rx_flags(dev, flags);
8114 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8116 unsigned int old_flags = dev->flags;
8122 dev->flags |= IFF_PROMISC;
8123 dev->promiscuity += inc;
8124 if (dev->promiscuity == 0) {
8127 * If inc causes overflow, untouch promisc and return error.
8130 dev->flags &= ~IFF_PROMISC;
8132 dev->promiscuity -= inc;
8133 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8138 if (dev->flags != old_flags) {
8139 pr_info("device %s %s promiscuous mode\n",
8141 dev->flags & IFF_PROMISC ? "entered" : "left");
8142 if (audit_enabled) {
8143 current_uid_gid(&uid, &gid);
8144 audit_log(audit_context(), GFP_ATOMIC,
8145 AUDIT_ANOM_PROMISCUOUS,
8146 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8147 dev->name, (dev->flags & IFF_PROMISC),
8148 (old_flags & IFF_PROMISC),
8149 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8150 from_kuid(&init_user_ns, uid),
8151 from_kgid(&init_user_ns, gid),
8152 audit_get_sessionid(current));
8155 dev_change_rx_flags(dev, IFF_PROMISC);
8158 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8163 * dev_set_promiscuity - update promiscuity count on a device
8167 * Add or remove promiscuity from a device. While the count in the device
8168 * remains above zero the interface remains promiscuous. Once it hits zero
8169 * the device reverts back to normal filtering operation. A negative inc
8170 * value is used to drop promiscuity on the device.
8171 * Return 0 if successful or a negative errno code on error.
8173 int dev_set_promiscuity(struct net_device *dev, int inc)
8175 unsigned int old_flags = dev->flags;
8178 err = __dev_set_promiscuity(dev, inc, true);
8181 if (dev->flags != old_flags)
8182 dev_set_rx_mode(dev);
8185 EXPORT_SYMBOL(dev_set_promiscuity);
8187 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8189 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8193 dev->flags |= IFF_ALLMULTI;
8194 dev->allmulti += inc;
8195 if (dev->allmulti == 0) {
8198 * If inc causes overflow, untouch allmulti and return error.
8201 dev->flags &= ~IFF_ALLMULTI;
8203 dev->allmulti -= inc;
8204 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8209 if (dev->flags ^ old_flags) {
8210 dev_change_rx_flags(dev, IFF_ALLMULTI);
8211 dev_set_rx_mode(dev);
8213 __dev_notify_flags(dev, old_flags,
8214 dev->gflags ^ old_gflags);
8220 * dev_set_allmulti - update allmulti count on a device
8224 * Add or remove reception of all multicast frames to a device. While the
8225 * count in the device remains above zero the interface remains listening
8226 * to all interfaces. Once it hits zero the device reverts back to normal
8227 * filtering operation. A negative @inc value is used to drop the counter
8228 * when releasing a resource needing all multicasts.
8229 * Return 0 if successful or a negative errno code on error.
8232 int dev_set_allmulti(struct net_device *dev, int inc)
8234 return __dev_set_allmulti(dev, inc, true);
8236 EXPORT_SYMBOL(dev_set_allmulti);
8239 * Upload unicast and multicast address lists to device and
8240 * configure RX filtering. When the device doesn't support unicast
8241 * filtering it is put in promiscuous mode while unicast addresses
8244 void __dev_set_rx_mode(struct net_device *dev)
8246 const struct net_device_ops *ops = dev->netdev_ops;
8248 /* dev_open will call this function so the list will stay sane. */
8249 if (!(dev->flags&IFF_UP))
8252 if (!netif_device_present(dev))
8255 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8256 /* Unicast addresses changes may only happen under the rtnl,
8257 * therefore calling __dev_set_promiscuity here is safe.
8259 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8260 __dev_set_promiscuity(dev, 1, false);
8261 dev->uc_promisc = true;
8262 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8263 __dev_set_promiscuity(dev, -1, false);
8264 dev->uc_promisc = false;
8268 if (ops->ndo_set_rx_mode)
8269 ops->ndo_set_rx_mode(dev);
8272 void dev_set_rx_mode(struct net_device *dev)
8274 netif_addr_lock_bh(dev);
8275 __dev_set_rx_mode(dev);
8276 netif_addr_unlock_bh(dev);
8280 * dev_get_flags - get flags reported to userspace
8283 * Get the combination of flag bits exported through APIs to userspace.
8285 unsigned int dev_get_flags(const struct net_device *dev)
8289 flags = (dev->flags & ~(IFF_PROMISC |
8294 (dev->gflags & (IFF_PROMISC |
8297 if (netif_running(dev)) {
8298 if (netif_oper_up(dev))
8299 flags |= IFF_RUNNING;
8300 if (netif_carrier_ok(dev))
8301 flags |= IFF_LOWER_UP;
8302 if (netif_dormant(dev))
8303 flags |= IFF_DORMANT;
8308 EXPORT_SYMBOL(dev_get_flags);
8310 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8311 struct netlink_ext_ack *extack)
8313 unsigned int old_flags = dev->flags;
8319 * Set the flags on our device.
8322 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8323 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8325 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8329 * Load in the correct multicast list now the flags have changed.
8332 if ((old_flags ^ flags) & IFF_MULTICAST)
8333 dev_change_rx_flags(dev, IFF_MULTICAST);
8335 dev_set_rx_mode(dev);
8338 * Have we downed the interface. We handle IFF_UP ourselves
8339 * according to user attempts to set it, rather than blindly
8344 if ((old_flags ^ flags) & IFF_UP) {
8345 if (old_flags & IFF_UP)
8348 ret = __dev_open(dev, extack);
8351 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8352 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8353 unsigned int old_flags = dev->flags;
8355 dev->gflags ^= IFF_PROMISC;
8357 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8358 if (dev->flags != old_flags)
8359 dev_set_rx_mode(dev);
8362 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8363 * is important. Some (broken) drivers set IFF_PROMISC, when
8364 * IFF_ALLMULTI is requested not asking us and not reporting.
8366 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8367 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8369 dev->gflags ^= IFF_ALLMULTI;
8370 __dev_set_allmulti(dev, inc, false);
8376 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8377 unsigned int gchanges)
8379 unsigned int changes = dev->flags ^ old_flags;
8382 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8384 if (changes & IFF_UP) {
8385 if (dev->flags & IFF_UP)
8386 call_netdevice_notifiers(NETDEV_UP, dev);
8388 call_netdevice_notifiers(NETDEV_DOWN, dev);
8391 if (dev->flags & IFF_UP &&
8392 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8393 struct netdev_notifier_change_info change_info = {
8397 .flags_changed = changes,
8400 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8405 * dev_change_flags - change device settings
8407 * @flags: device state flags
8408 * @extack: netlink extended ack
8410 * Change settings on device based state flags. The flags are
8411 * in the userspace exported format.
8413 int dev_change_flags(struct net_device *dev, unsigned int flags,
8414 struct netlink_ext_ack *extack)
8417 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8419 ret = __dev_change_flags(dev, flags, extack);
8423 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8424 __dev_notify_flags(dev, old_flags, changes);
8427 EXPORT_SYMBOL(dev_change_flags);
8429 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8431 const struct net_device_ops *ops = dev->netdev_ops;
8433 if (ops->ndo_change_mtu)
8434 return ops->ndo_change_mtu(dev, new_mtu);
8436 /* Pairs with all the lockless reads of dev->mtu in the stack */
8437 WRITE_ONCE(dev->mtu, new_mtu);
8440 EXPORT_SYMBOL(__dev_set_mtu);
8442 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8443 struct netlink_ext_ack *extack)
8445 /* MTU must be positive, and in range */
8446 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8447 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8451 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8452 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8459 * dev_set_mtu_ext - Change maximum transfer unit
8461 * @new_mtu: new transfer unit
8462 * @extack: netlink extended ack
8464 * Change the maximum transfer size of the network device.
8466 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8467 struct netlink_ext_ack *extack)
8471 if (new_mtu == dev->mtu)
8474 err = dev_validate_mtu(dev, new_mtu, extack);
8478 if (!netif_device_present(dev))
8481 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8482 err = notifier_to_errno(err);
8486 orig_mtu = dev->mtu;
8487 err = __dev_set_mtu(dev, new_mtu);
8490 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8492 err = notifier_to_errno(err);
8494 /* setting mtu back and notifying everyone again,
8495 * so that they have a chance to revert changes.
8497 __dev_set_mtu(dev, orig_mtu);
8498 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8505 int dev_set_mtu(struct net_device *dev, int new_mtu)
8507 struct netlink_ext_ack extack;
8510 memset(&extack, 0, sizeof(extack));
8511 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8512 if (err && extack._msg)
8513 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8516 EXPORT_SYMBOL(dev_set_mtu);
8519 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8521 * @new_len: new tx queue length
8523 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8525 unsigned int orig_len = dev->tx_queue_len;
8528 if (new_len != (unsigned int)new_len)
8531 if (new_len != orig_len) {
8532 dev->tx_queue_len = new_len;
8533 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8534 res = notifier_to_errno(res);
8537 res = dev_qdisc_change_tx_queue_len(dev);
8545 netdev_err(dev, "refused to change device tx_queue_len\n");
8546 dev->tx_queue_len = orig_len;
8551 * dev_set_group - Change group this device belongs to
8553 * @new_group: group this device should belong to
8555 void dev_set_group(struct net_device *dev, int new_group)
8557 dev->group = new_group;
8559 EXPORT_SYMBOL(dev_set_group);
8562 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8564 * @addr: new address
8565 * @extack: netlink extended ack
8567 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8568 struct netlink_ext_ack *extack)
8570 struct netdev_notifier_pre_changeaddr_info info = {
8572 .info.extack = extack,
8577 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8578 return notifier_to_errno(rc);
8580 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8583 * dev_set_mac_address - Change Media Access Control Address
8586 * @extack: netlink extended ack
8588 * Change the hardware (MAC) address of the device
8590 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8591 struct netlink_ext_ack *extack)
8593 const struct net_device_ops *ops = dev->netdev_ops;
8596 if (!ops->ndo_set_mac_address)
8598 if (sa->sa_family != dev->type)
8600 if (!netif_device_present(dev))
8602 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8605 err = ops->ndo_set_mac_address(dev, sa);
8608 dev->addr_assign_type = NET_ADDR_SET;
8609 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8610 add_device_randomness(dev->dev_addr, dev->addr_len);
8613 EXPORT_SYMBOL(dev_set_mac_address);
8616 * dev_change_carrier - Change device carrier
8618 * @new_carrier: new value
8620 * Change device carrier
8622 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8624 const struct net_device_ops *ops = dev->netdev_ops;
8626 if (!ops->ndo_change_carrier)
8628 if (!netif_device_present(dev))
8630 return ops->ndo_change_carrier(dev, new_carrier);
8632 EXPORT_SYMBOL(dev_change_carrier);
8635 * dev_get_phys_port_id - Get device physical port ID
8639 * Get device physical port ID
8641 int dev_get_phys_port_id(struct net_device *dev,
8642 struct netdev_phys_item_id *ppid)
8644 const struct net_device_ops *ops = dev->netdev_ops;
8646 if (!ops->ndo_get_phys_port_id)
8648 return ops->ndo_get_phys_port_id(dev, ppid);
8650 EXPORT_SYMBOL(dev_get_phys_port_id);
8653 * dev_get_phys_port_name - Get device physical port name
8656 * @len: limit of bytes to copy to name
8658 * Get device physical port name
8660 int dev_get_phys_port_name(struct net_device *dev,
8661 char *name, size_t len)
8663 const struct net_device_ops *ops = dev->netdev_ops;
8666 if (ops->ndo_get_phys_port_name) {
8667 err = ops->ndo_get_phys_port_name(dev, name, len);
8668 if (err != -EOPNOTSUPP)
8671 return devlink_compat_phys_port_name_get(dev, name, len);
8673 EXPORT_SYMBOL(dev_get_phys_port_name);
8676 * dev_get_port_parent_id - Get the device's port parent identifier
8677 * @dev: network device
8678 * @ppid: pointer to a storage for the port's parent identifier
8679 * @recurse: allow/disallow recursion to lower devices
8681 * Get the devices's port parent identifier
8683 int dev_get_port_parent_id(struct net_device *dev,
8684 struct netdev_phys_item_id *ppid,
8687 const struct net_device_ops *ops = dev->netdev_ops;
8688 struct netdev_phys_item_id first = { };
8689 struct net_device *lower_dev;
8690 struct list_head *iter;
8693 if (ops->ndo_get_port_parent_id) {
8694 err = ops->ndo_get_port_parent_id(dev, ppid);
8695 if (err != -EOPNOTSUPP)
8699 err = devlink_compat_switch_id_get(dev, ppid);
8700 if (!err || err != -EOPNOTSUPP)
8706 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8707 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8712 else if (memcmp(&first, ppid, sizeof(*ppid)))
8718 EXPORT_SYMBOL(dev_get_port_parent_id);
8721 * netdev_port_same_parent_id - Indicate if two network devices have
8722 * the same port parent identifier
8723 * @a: first network device
8724 * @b: second network device
8726 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8728 struct netdev_phys_item_id a_id = { };
8729 struct netdev_phys_item_id b_id = { };
8731 if (dev_get_port_parent_id(a, &a_id, true) ||
8732 dev_get_port_parent_id(b, &b_id, true))
8735 return netdev_phys_item_id_same(&a_id, &b_id);
8737 EXPORT_SYMBOL(netdev_port_same_parent_id);
8740 * dev_change_proto_down - update protocol port state information
8742 * @proto_down: new value
8744 * This info can be used by switch drivers to set the phys state of the
8747 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8749 const struct net_device_ops *ops = dev->netdev_ops;
8751 if (!ops->ndo_change_proto_down)
8753 if (!netif_device_present(dev))
8755 return ops->ndo_change_proto_down(dev, proto_down);
8757 EXPORT_SYMBOL(dev_change_proto_down);
8760 * dev_change_proto_down_generic - generic implementation for
8761 * ndo_change_proto_down that sets carrier according to
8765 * @proto_down: new value
8767 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8770 netif_carrier_off(dev);
8772 netif_carrier_on(dev);
8773 dev->proto_down = proto_down;
8776 EXPORT_SYMBOL(dev_change_proto_down_generic);
8779 * dev_change_proto_down_reason - proto down reason
8782 * @mask: proto down mask
8783 * @value: proto down value
8785 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8791 dev->proto_down_reason = value;
8793 for_each_set_bit(b, &mask, 32) {
8794 if (value & (1 << b))
8795 dev->proto_down_reason |= BIT(b);
8797 dev->proto_down_reason &= ~BIT(b);
8801 EXPORT_SYMBOL(dev_change_proto_down_reason);
8803 struct bpf_xdp_link {
8804 struct bpf_link link;
8805 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8809 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8811 if (flags & XDP_FLAGS_HW_MODE)
8813 if (flags & XDP_FLAGS_DRV_MODE)
8814 return XDP_MODE_DRV;
8815 if (flags & XDP_FLAGS_SKB_MODE)
8816 return XDP_MODE_SKB;
8817 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8820 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8824 return generic_xdp_install;
8827 return dev->netdev_ops->ndo_bpf;
8833 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8834 enum bpf_xdp_mode mode)
8836 return dev->xdp_state[mode].link;
8839 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8840 enum bpf_xdp_mode mode)
8842 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8845 return link->link.prog;
8846 return dev->xdp_state[mode].prog;
8849 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8851 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8853 return prog ? prog->aux->id : 0;
8856 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8857 struct bpf_xdp_link *link)
8859 dev->xdp_state[mode].link = link;
8860 dev->xdp_state[mode].prog = NULL;
8863 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8864 struct bpf_prog *prog)
8866 dev->xdp_state[mode].link = NULL;
8867 dev->xdp_state[mode].prog = prog;
8870 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8871 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8872 u32 flags, struct bpf_prog *prog)
8874 struct netdev_bpf xdp;
8877 memset(&xdp, 0, sizeof(xdp));
8878 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8879 xdp.extack = extack;
8883 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
8884 * "moved" into driver), so they don't increment it on their own, but
8885 * they do decrement refcnt when program is detached or replaced.
8886 * Given net_device also owns link/prog, we need to bump refcnt here
8887 * to prevent drivers from underflowing it.
8891 err = bpf_op(dev, &xdp);
8898 if (mode != XDP_MODE_HW)
8899 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8904 static void dev_xdp_uninstall(struct net_device *dev)
8906 struct bpf_xdp_link *link;
8907 struct bpf_prog *prog;
8908 enum bpf_xdp_mode mode;
8913 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8914 prog = dev_xdp_prog(dev, mode);
8918 bpf_op = dev_xdp_bpf_op(dev, mode);
8922 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8924 /* auto-detach link from net device */
8925 link = dev_xdp_link(dev, mode);
8931 dev_xdp_set_link(dev, mode, NULL);
8935 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
8936 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
8937 struct bpf_prog *old_prog, u32 flags)
8939 struct bpf_prog *cur_prog;
8940 enum bpf_xdp_mode mode;
8946 /* either link or prog attachment, never both */
8947 if (link && (new_prog || old_prog))
8949 /* link supports only XDP mode flags */
8950 if (link && (flags & ~XDP_FLAGS_MODES)) {
8951 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
8954 /* just one XDP mode bit should be set, zero defaults to SKB mode */
8955 if (hweight32(flags & XDP_FLAGS_MODES) > 1) {
8956 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
8959 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
8960 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
8961 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
8965 mode = dev_xdp_mode(dev, flags);
8966 /* can't replace attached link */
8967 if (dev_xdp_link(dev, mode)) {
8968 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
8972 cur_prog = dev_xdp_prog(dev, mode);
8973 /* can't replace attached prog with link */
8974 if (link && cur_prog) {
8975 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
8978 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
8979 NL_SET_ERR_MSG(extack, "Active program does not match expected");
8983 /* put effective new program into new_prog */
8985 new_prog = link->link.prog;
8988 bool offload = mode == XDP_MODE_HW;
8989 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
8990 ? XDP_MODE_DRV : XDP_MODE_SKB;
8992 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
8993 NL_SET_ERR_MSG(extack, "XDP program already attached");
8996 if (!offload && dev_xdp_prog(dev, other_mode)) {
8997 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9000 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9001 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9004 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9005 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9008 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9009 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9014 /* don't call drivers if the effective program didn't change */
9015 if (new_prog != cur_prog) {
9016 bpf_op = dev_xdp_bpf_op(dev, mode);
9018 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9022 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9028 dev_xdp_set_link(dev, mode, link);
9030 dev_xdp_set_prog(dev, mode, new_prog);
9032 bpf_prog_put(cur_prog);
9037 static int dev_xdp_attach_link(struct net_device *dev,
9038 struct netlink_ext_ack *extack,
9039 struct bpf_xdp_link *link)
9041 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9044 static int dev_xdp_detach_link(struct net_device *dev,
9045 struct netlink_ext_ack *extack,
9046 struct bpf_xdp_link *link)
9048 enum bpf_xdp_mode mode;
9053 mode = dev_xdp_mode(dev, link->flags);
9054 if (dev_xdp_link(dev, mode) != link)
9057 bpf_op = dev_xdp_bpf_op(dev, mode);
9058 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9059 dev_xdp_set_link(dev, mode, NULL);
9063 static void bpf_xdp_link_release(struct bpf_link *link)
9065 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9069 /* if racing with net_device's tear down, xdp_link->dev might be
9070 * already NULL, in which case link was already auto-detached
9072 if (xdp_link->dev) {
9073 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9074 xdp_link->dev = NULL;
9080 static int bpf_xdp_link_detach(struct bpf_link *link)
9082 bpf_xdp_link_release(link);
9086 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9088 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9093 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9094 struct seq_file *seq)
9096 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9101 ifindex = xdp_link->dev->ifindex;
9104 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9107 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9108 struct bpf_link_info *info)
9110 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9115 ifindex = xdp_link->dev->ifindex;
9118 info->xdp.ifindex = ifindex;
9122 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9123 struct bpf_prog *old_prog)
9125 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9126 enum bpf_xdp_mode mode;
9132 /* link might have been auto-released already, so fail */
9133 if (!xdp_link->dev) {
9138 if (old_prog && link->prog != old_prog) {
9142 old_prog = link->prog;
9143 if (old_prog == new_prog) {
9144 /* no-op, don't disturb drivers */
9145 bpf_prog_put(new_prog);
9149 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9150 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9151 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9152 xdp_link->flags, new_prog);
9156 old_prog = xchg(&link->prog, new_prog);
9157 bpf_prog_put(old_prog);
9164 static const struct bpf_link_ops bpf_xdp_link_lops = {
9165 .release = bpf_xdp_link_release,
9166 .dealloc = bpf_xdp_link_dealloc,
9167 .detach = bpf_xdp_link_detach,
9168 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9169 .fill_link_info = bpf_xdp_link_fill_link_info,
9170 .update_prog = bpf_xdp_link_update,
9173 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9175 struct net *net = current->nsproxy->net_ns;
9176 struct bpf_link_primer link_primer;
9177 struct bpf_xdp_link *link;
9178 struct net_device *dev;
9181 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9185 link = kzalloc(sizeof(*link), GFP_USER);
9191 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9193 link->flags = attr->link_create.flags;
9195 err = bpf_link_prime(&link->link, &link_primer);
9202 err = dev_xdp_attach_link(dev, NULL, link);
9206 bpf_link_cleanup(&link_primer);
9210 fd = bpf_link_settle(&link_primer);
9211 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9221 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9223 * @extack: netlink extended ack
9224 * @fd: new program fd or negative value to clear
9225 * @expected_fd: old program fd that userspace expects to replace or clear
9226 * @flags: xdp-related flags
9228 * Set or clear a bpf program for a device
9230 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9231 int fd, int expected_fd, u32 flags)
9233 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9234 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9240 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9241 mode != XDP_MODE_SKB);
9242 if (IS_ERR(new_prog))
9243 return PTR_ERR(new_prog);
9246 if (expected_fd >= 0) {
9247 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9248 mode != XDP_MODE_SKB);
9249 if (IS_ERR(old_prog)) {
9250 err = PTR_ERR(old_prog);
9256 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9259 if (err && new_prog)
9260 bpf_prog_put(new_prog);
9262 bpf_prog_put(old_prog);
9267 * dev_new_index - allocate an ifindex
9268 * @net: the applicable net namespace
9270 * Returns a suitable unique value for a new device interface
9271 * number. The caller must hold the rtnl semaphore or the
9272 * dev_base_lock to be sure it remains unique.
9274 static int dev_new_index(struct net *net)
9276 int ifindex = net->ifindex;
9281 if (!__dev_get_by_index(net, ifindex))
9282 return net->ifindex = ifindex;
9286 /* Delayed registration/unregisteration */
9287 static LIST_HEAD(net_todo_list);
9288 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9290 static void net_set_todo(struct net_device *dev)
9292 list_add_tail(&dev->todo_list, &net_todo_list);
9293 dev_net(dev)->dev_unreg_count++;
9296 static void rollback_registered_many(struct list_head *head)
9298 struct net_device *dev, *tmp;
9299 LIST_HEAD(close_head);
9301 BUG_ON(dev_boot_phase);
9304 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9305 /* Some devices call without registering
9306 * for initialization unwind. Remove those
9307 * devices and proceed with the remaining.
9309 if (dev->reg_state == NETREG_UNINITIALIZED) {
9310 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9314 list_del(&dev->unreg_list);
9317 dev->dismantle = true;
9318 BUG_ON(dev->reg_state != NETREG_REGISTERED);
9321 /* If device is running, close it first. */
9322 list_for_each_entry(dev, head, unreg_list)
9323 list_add_tail(&dev->close_list, &close_head);
9324 dev_close_many(&close_head, true);
9326 list_for_each_entry(dev, head, unreg_list) {
9327 /* And unlink it from device chain. */
9328 unlist_netdevice(dev);
9330 dev->reg_state = NETREG_UNREGISTERING;
9332 flush_all_backlogs();
9336 list_for_each_entry(dev, head, unreg_list) {
9337 struct sk_buff *skb = NULL;
9339 /* Shutdown queueing discipline. */
9342 dev_xdp_uninstall(dev);
9344 /* Notify protocols, that we are about to destroy
9345 * this device. They should clean all the things.
9347 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9349 if (!dev->rtnl_link_ops ||
9350 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9351 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9352 GFP_KERNEL, NULL, 0);
9355 * Flush the unicast and multicast chains
9360 netdev_name_node_alt_flush(dev);
9361 netdev_name_node_free(dev->name_node);
9363 if (dev->netdev_ops->ndo_uninit)
9364 dev->netdev_ops->ndo_uninit(dev);
9367 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9369 /* Notifier chain MUST detach us all upper devices. */
9370 WARN_ON(netdev_has_any_upper_dev(dev));
9371 WARN_ON(netdev_has_any_lower_dev(dev));
9373 /* Remove entries from kobject tree */
9374 netdev_unregister_kobject(dev);
9376 /* Remove XPS queueing entries */
9377 netif_reset_xps_queues_gt(dev, 0);
9383 list_for_each_entry(dev, head, unreg_list)
9387 static void rollback_registered(struct net_device *dev)
9391 list_add(&dev->unreg_list, &single);
9392 rollback_registered_many(&single);
9396 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9397 struct net_device *upper, netdev_features_t features)
9399 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9400 netdev_features_t feature;
9403 for_each_netdev_feature(upper_disables, feature_bit) {
9404 feature = __NETIF_F_BIT(feature_bit);
9405 if (!(upper->wanted_features & feature)
9406 && (features & feature)) {
9407 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9408 &feature, upper->name);
9409 features &= ~feature;
9416 static void netdev_sync_lower_features(struct net_device *upper,
9417 struct net_device *lower, netdev_features_t features)
9419 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9420 netdev_features_t feature;
9423 for_each_netdev_feature(upper_disables, feature_bit) {
9424 feature = __NETIF_F_BIT(feature_bit);
9425 if (!(features & feature) && (lower->features & feature)) {
9426 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9427 &feature, lower->name);
9428 lower->wanted_features &= ~feature;
9429 __netdev_update_features(lower);
9431 if (unlikely(lower->features & feature))
9432 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9433 &feature, lower->name);
9435 netdev_features_change(lower);
9440 static netdev_features_t netdev_fix_features(struct net_device *dev,
9441 netdev_features_t features)
9443 /* Fix illegal checksum combinations */
9444 if ((features & NETIF_F_HW_CSUM) &&
9445 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9446 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9447 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9450 /* TSO requires that SG is present as well. */
9451 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9452 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9453 features &= ~NETIF_F_ALL_TSO;
9456 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9457 !(features & NETIF_F_IP_CSUM)) {
9458 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9459 features &= ~NETIF_F_TSO;
9460 features &= ~NETIF_F_TSO_ECN;
9463 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9464 !(features & NETIF_F_IPV6_CSUM)) {
9465 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9466 features &= ~NETIF_F_TSO6;
9469 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9470 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9471 features &= ~NETIF_F_TSO_MANGLEID;
9473 /* TSO ECN requires that TSO is present as well. */
9474 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9475 features &= ~NETIF_F_TSO_ECN;
9477 /* Software GSO depends on SG. */
9478 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9479 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9480 features &= ~NETIF_F_GSO;
9483 /* GSO partial features require GSO partial be set */
9484 if ((features & dev->gso_partial_features) &&
9485 !(features & NETIF_F_GSO_PARTIAL)) {
9487 "Dropping partially supported GSO features since no GSO partial.\n");
9488 features &= ~dev->gso_partial_features;
9491 if (!(features & NETIF_F_RXCSUM)) {
9492 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9493 * successfully merged by hardware must also have the
9494 * checksum verified by hardware. If the user does not
9495 * want to enable RXCSUM, logically, we should disable GRO_HW.
9497 if (features & NETIF_F_GRO_HW) {
9498 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9499 features &= ~NETIF_F_GRO_HW;
9503 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9504 if (features & NETIF_F_RXFCS) {
9505 if (features & NETIF_F_LRO) {
9506 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9507 features &= ~NETIF_F_LRO;
9510 if (features & NETIF_F_GRO_HW) {
9511 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9512 features &= ~NETIF_F_GRO_HW;
9519 int __netdev_update_features(struct net_device *dev)
9521 struct net_device *upper, *lower;
9522 netdev_features_t features;
9523 struct list_head *iter;
9528 features = netdev_get_wanted_features(dev);
9530 if (dev->netdev_ops->ndo_fix_features)
9531 features = dev->netdev_ops->ndo_fix_features(dev, features);
9533 /* driver might be less strict about feature dependencies */
9534 features = netdev_fix_features(dev, features);
9536 /* some features can't be enabled if they're off an an upper device */
9537 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9538 features = netdev_sync_upper_features(dev, upper, features);
9540 if (dev->features == features)
9543 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9544 &dev->features, &features);
9546 if (dev->netdev_ops->ndo_set_features)
9547 err = dev->netdev_ops->ndo_set_features(dev, features);
9551 if (unlikely(err < 0)) {
9553 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9554 err, &features, &dev->features);
9555 /* return non-0 since some features might have changed and
9556 * it's better to fire a spurious notification than miss it
9562 /* some features must be disabled on lower devices when disabled
9563 * on an upper device (think: bonding master or bridge)
9565 netdev_for_each_lower_dev(dev, lower, iter)
9566 netdev_sync_lower_features(dev, lower, features);
9569 netdev_features_t diff = features ^ dev->features;
9571 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9572 /* udp_tunnel_{get,drop}_rx_info both need
9573 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9574 * device, or they won't do anything.
9575 * Thus we need to update dev->features
9576 * *before* calling udp_tunnel_get_rx_info,
9577 * but *after* calling udp_tunnel_drop_rx_info.
9579 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9580 dev->features = features;
9581 udp_tunnel_get_rx_info(dev);
9583 udp_tunnel_drop_rx_info(dev);
9587 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9588 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9589 dev->features = features;
9590 err |= vlan_get_rx_ctag_filter_info(dev);
9592 vlan_drop_rx_ctag_filter_info(dev);
9596 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9597 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9598 dev->features = features;
9599 err |= vlan_get_rx_stag_filter_info(dev);
9601 vlan_drop_rx_stag_filter_info(dev);
9605 dev->features = features;
9608 return err < 0 ? 0 : 1;
9612 * netdev_update_features - recalculate device features
9613 * @dev: the device to check
9615 * Recalculate dev->features set and send notifications if it
9616 * has changed. Should be called after driver or hardware dependent
9617 * conditions might have changed that influence the features.
9619 void netdev_update_features(struct net_device *dev)
9621 if (__netdev_update_features(dev))
9622 netdev_features_change(dev);
9624 EXPORT_SYMBOL(netdev_update_features);
9627 * netdev_change_features - recalculate device features
9628 * @dev: the device to check
9630 * Recalculate dev->features set and send notifications even
9631 * if they have not changed. Should be called instead of
9632 * netdev_update_features() if also dev->vlan_features might
9633 * have changed to allow the changes to be propagated to stacked
9636 void netdev_change_features(struct net_device *dev)
9638 __netdev_update_features(dev);
9639 netdev_features_change(dev);
9641 EXPORT_SYMBOL(netdev_change_features);
9644 * netif_stacked_transfer_operstate - transfer operstate
9645 * @rootdev: the root or lower level device to transfer state from
9646 * @dev: the device to transfer operstate to
9648 * Transfer operational state from root to device. This is normally
9649 * called when a stacking relationship exists between the root
9650 * device and the device(a leaf device).
9652 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9653 struct net_device *dev)
9655 if (rootdev->operstate == IF_OPER_DORMANT)
9656 netif_dormant_on(dev);
9658 netif_dormant_off(dev);
9660 if (rootdev->operstate == IF_OPER_TESTING)
9661 netif_testing_on(dev);
9663 netif_testing_off(dev);
9665 if (netif_carrier_ok(rootdev))
9666 netif_carrier_on(dev);
9668 netif_carrier_off(dev);
9670 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9672 static int netif_alloc_rx_queues(struct net_device *dev)
9674 unsigned int i, count = dev->num_rx_queues;
9675 struct netdev_rx_queue *rx;
9676 size_t sz = count * sizeof(*rx);
9681 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9687 for (i = 0; i < count; i++) {
9690 /* XDP RX-queue setup */
9691 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9698 /* Rollback successful reg's and free other resources */
9700 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9706 static void netif_free_rx_queues(struct net_device *dev)
9708 unsigned int i, count = dev->num_rx_queues;
9710 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9714 for (i = 0; i < count; i++)
9715 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9720 static void netdev_init_one_queue(struct net_device *dev,
9721 struct netdev_queue *queue, void *_unused)
9723 /* Initialize queue lock */
9724 spin_lock_init(&queue->_xmit_lock);
9725 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9726 queue->xmit_lock_owner = -1;
9727 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9730 dql_init(&queue->dql, HZ);
9734 static void netif_free_tx_queues(struct net_device *dev)
9739 static int netif_alloc_netdev_queues(struct net_device *dev)
9741 unsigned int count = dev->num_tx_queues;
9742 struct netdev_queue *tx;
9743 size_t sz = count * sizeof(*tx);
9745 if (count < 1 || count > 0xffff)
9748 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9754 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9755 spin_lock_init(&dev->tx_global_lock);
9760 void netif_tx_stop_all_queues(struct net_device *dev)
9764 for (i = 0; i < dev->num_tx_queues; i++) {
9765 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9767 netif_tx_stop_queue(txq);
9770 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9773 * register_netdevice - register a network device
9774 * @dev: device to register
9776 * Take a completed network device structure and add it to the kernel
9777 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9778 * chain. 0 is returned on success. A negative errno code is returned
9779 * on a failure to set up the device, or if the name is a duplicate.
9781 * Callers must hold the rtnl semaphore. You may want
9782 * register_netdev() instead of this.
9785 * The locking appears insufficient to guarantee two parallel registers
9786 * will not get the same name.
9789 int register_netdevice(struct net_device *dev)
9792 struct net *net = dev_net(dev);
9794 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9795 NETDEV_FEATURE_COUNT);
9796 BUG_ON(dev_boot_phase);
9801 /* When net_device's are persistent, this will be fatal. */
9802 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9805 ret = ethtool_check_ops(dev->ethtool_ops);
9809 spin_lock_init(&dev->addr_list_lock);
9810 netdev_set_addr_lockdep_class(dev);
9812 ret = dev_get_valid_name(net, dev, dev->name);
9817 dev->name_node = netdev_name_node_head_alloc(dev);
9818 if (!dev->name_node)
9821 /* Init, if this function is available */
9822 if (dev->netdev_ops->ndo_init) {
9823 ret = dev->netdev_ops->ndo_init(dev);
9831 if (((dev->hw_features | dev->features) &
9832 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9833 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9834 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9835 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9842 dev->ifindex = dev_new_index(net);
9843 else if (__dev_get_by_index(net, dev->ifindex))
9846 /* Transfer changeable features to wanted_features and enable
9847 * software offloads (GSO and GRO).
9849 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9850 dev->features |= NETIF_F_SOFT_FEATURES;
9852 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9853 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9854 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9857 dev->wanted_features = dev->features & dev->hw_features;
9859 if (!(dev->flags & IFF_LOOPBACK))
9860 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9862 /* If IPv4 TCP segmentation offload is supported we should also
9863 * allow the device to enable segmenting the frame with the option
9864 * of ignoring a static IP ID value. This doesn't enable the
9865 * feature itself but allows the user to enable it later.
9867 if (dev->hw_features & NETIF_F_TSO)
9868 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9869 if (dev->vlan_features & NETIF_F_TSO)
9870 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9871 if (dev->mpls_features & NETIF_F_TSO)
9872 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9873 if (dev->hw_enc_features & NETIF_F_TSO)
9874 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9876 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9878 dev->vlan_features |= NETIF_F_HIGHDMA;
9880 /* Make NETIF_F_SG inheritable to tunnel devices.
9882 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9884 /* Make NETIF_F_SG inheritable to MPLS.
9886 dev->mpls_features |= NETIF_F_SG;
9888 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9889 ret = notifier_to_errno(ret);
9893 ret = netdev_register_kobject(dev);
9895 dev->reg_state = NETREG_UNREGISTERED;
9898 dev->reg_state = NETREG_REGISTERED;
9900 __netdev_update_features(dev);
9903 * Default initial state at registry is that the
9904 * device is present.
9907 set_bit(__LINK_STATE_PRESENT, &dev->state);
9909 linkwatch_init_dev(dev);
9911 dev_init_scheduler(dev);
9913 list_netdevice(dev);
9914 add_device_randomness(dev->dev_addr, dev->addr_len);
9916 /* If the device has permanent device address, driver should
9917 * set dev_addr and also addr_assign_type should be set to
9918 * NET_ADDR_PERM (default value).
9920 if (dev->addr_assign_type == NET_ADDR_PERM)
9921 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9923 /* Notify protocols, that a new device appeared. */
9924 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9925 ret = notifier_to_errno(ret);
9927 rollback_registered(dev);
9930 dev->reg_state = NETREG_UNREGISTERED;
9931 /* We should put the kobject that hold in
9932 * netdev_unregister_kobject(), otherwise
9933 * the net device cannot be freed when
9934 * driver calls free_netdev(), because the
9935 * kobject is being hold.
9937 kobject_put(&dev->dev.kobj);
9940 * Prevent userspace races by waiting until the network
9941 * device is fully setup before sending notifications.
9943 if (!dev->rtnl_link_ops ||
9944 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9945 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9951 if (dev->netdev_ops->ndo_uninit)
9952 dev->netdev_ops->ndo_uninit(dev);
9953 if (dev->priv_destructor)
9954 dev->priv_destructor(dev);
9956 netdev_name_node_free(dev->name_node);
9959 EXPORT_SYMBOL(register_netdevice);
9962 * init_dummy_netdev - init a dummy network device for NAPI
9963 * @dev: device to init
9965 * This takes a network device structure and initialize the minimum
9966 * amount of fields so it can be used to schedule NAPI polls without
9967 * registering a full blown interface. This is to be used by drivers
9968 * that need to tie several hardware interfaces to a single NAPI
9969 * poll scheduler due to HW limitations.
9971 int init_dummy_netdev(struct net_device *dev)
9973 /* Clear everything. Note we don't initialize spinlocks
9974 * are they aren't supposed to be taken by any of the
9975 * NAPI code and this dummy netdev is supposed to be
9976 * only ever used for NAPI polls
9978 memset(dev, 0, sizeof(struct net_device));
9980 /* make sure we BUG if trying to hit standard
9981 * register/unregister code path
9983 dev->reg_state = NETREG_DUMMY;
9985 /* NAPI wants this */
9986 INIT_LIST_HEAD(&dev->napi_list);
9988 /* a dummy interface is started by default */
9989 set_bit(__LINK_STATE_PRESENT, &dev->state);
9990 set_bit(__LINK_STATE_START, &dev->state);
9992 /* napi_busy_loop stats accounting wants this */
9993 dev_net_set(dev, &init_net);
9995 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9996 * because users of this 'device' dont need to change
10002 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10006 * register_netdev - register a network device
10007 * @dev: device to register
10009 * Take a completed network device structure and add it to the kernel
10010 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10011 * chain. 0 is returned on success. A negative errno code is returned
10012 * on a failure to set up the device, or if the name is a duplicate.
10014 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10015 * and expands the device name if you passed a format string to
10018 int register_netdev(struct net_device *dev)
10022 if (rtnl_lock_killable())
10024 err = register_netdevice(dev);
10028 EXPORT_SYMBOL(register_netdev);
10030 int netdev_refcnt_read(const struct net_device *dev)
10034 for_each_possible_cpu(i)
10035 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10038 EXPORT_SYMBOL(netdev_refcnt_read);
10041 * netdev_wait_allrefs - wait until all references are gone.
10042 * @dev: target net_device
10044 * This is called when unregistering network devices.
10046 * Any protocol or device that holds a reference should register
10047 * for netdevice notification, and cleanup and put back the
10048 * reference if they receive an UNREGISTER event.
10049 * We can get stuck here if buggy protocols don't correctly
10052 static void netdev_wait_allrefs(struct net_device *dev)
10054 unsigned long rebroadcast_time, warning_time;
10057 linkwatch_forget_dev(dev);
10059 rebroadcast_time = warning_time = jiffies;
10060 refcnt = netdev_refcnt_read(dev);
10062 while (refcnt != 0) {
10063 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10066 /* Rebroadcast unregister notification */
10067 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10073 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10075 /* We must not have linkwatch events
10076 * pending on unregister. If this
10077 * happens, we simply run the queue
10078 * unscheduled, resulting in a noop
10081 linkwatch_run_queue();
10086 rebroadcast_time = jiffies;
10091 refcnt = netdev_refcnt_read(dev);
10093 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10094 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10095 dev->name, refcnt);
10096 warning_time = jiffies;
10101 /* The sequence is:
10105 * register_netdevice(x1);
10106 * register_netdevice(x2);
10108 * unregister_netdevice(y1);
10109 * unregister_netdevice(y2);
10115 * We are invoked by rtnl_unlock().
10116 * This allows us to deal with problems:
10117 * 1) We can delete sysfs objects which invoke hotplug
10118 * without deadlocking with linkwatch via keventd.
10119 * 2) Since we run with the RTNL semaphore not held, we can sleep
10120 * safely in order to wait for the netdev refcnt to drop to zero.
10122 * We must not return until all unregister events added during
10123 * the interval the lock was held have been completed.
10125 void netdev_run_todo(void)
10127 struct list_head list;
10128 #ifdef CONFIG_LOCKDEP
10129 struct list_head unlink_list;
10131 list_replace_init(&net_unlink_list, &unlink_list);
10133 while (!list_empty(&unlink_list)) {
10134 struct net_device *dev = list_first_entry(&unlink_list,
10137 list_del(&dev->unlink_list);
10138 dev->nested_level = dev->lower_level - 1;
10142 /* Snapshot list, allow later requests */
10143 list_replace_init(&net_todo_list, &list);
10148 /* Wait for rcu callbacks to finish before next phase */
10149 if (!list_empty(&list))
10152 while (!list_empty(&list)) {
10153 struct net_device *dev
10154 = list_first_entry(&list, struct net_device, todo_list);
10155 list_del(&dev->todo_list);
10157 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10158 pr_err("network todo '%s' but state %d\n",
10159 dev->name, dev->reg_state);
10164 dev->reg_state = NETREG_UNREGISTERED;
10166 netdev_wait_allrefs(dev);
10169 BUG_ON(netdev_refcnt_read(dev));
10170 BUG_ON(!list_empty(&dev->ptype_all));
10171 BUG_ON(!list_empty(&dev->ptype_specific));
10172 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10173 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10174 #if IS_ENABLED(CONFIG_DECNET)
10175 WARN_ON(dev->dn_ptr);
10177 if (dev->priv_destructor)
10178 dev->priv_destructor(dev);
10179 if (dev->needs_free_netdev)
10182 /* Report a network device has been unregistered */
10184 dev_net(dev)->dev_unreg_count--;
10186 wake_up(&netdev_unregistering_wq);
10188 /* Free network device */
10189 kobject_put(&dev->dev.kobj);
10193 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10194 * all the same fields in the same order as net_device_stats, with only
10195 * the type differing, but rtnl_link_stats64 may have additional fields
10196 * at the end for newer counters.
10198 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10199 const struct net_device_stats *netdev_stats)
10201 #if BITS_PER_LONG == 64
10202 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10203 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10204 /* zero out counters that only exist in rtnl_link_stats64 */
10205 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10206 sizeof(*stats64) - sizeof(*netdev_stats));
10208 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10209 const unsigned long *src = (const unsigned long *)netdev_stats;
10210 u64 *dst = (u64 *)stats64;
10212 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10213 for (i = 0; i < n; i++)
10215 /* zero out counters that only exist in rtnl_link_stats64 */
10216 memset((char *)stats64 + n * sizeof(u64), 0,
10217 sizeof(*stats64) - n * sizeof(u64));
10220 EXPORT_SYMBOL(netdev_stats_to_stats64);
10223 * dev_get_stats - get network device statistics
10224 * @dev: device to get statistics from
10225 * @storage: place to store stats
10227 * Get network statistics from device. Return @storage.
10228 * The device driver may provide its own method by setting
10229 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10230 * otherwise the internal statistics structure is used.
10232 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10233 struct rtnl_link_stats64 *storage)
10235 const struct net_device_ops *ops = dev->netdev_ops;
10237 if (ops->ndo_get_stats64) {
10238 memset(storage, 0, sizeof(*storage));
10239 ops->ndo_get_stats64(dev, storage);
10240 } else if (ops->ndo_get_stats) {
10241 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10243 netdev_stats_to_stats64(storage, &dev->stats);
10245 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10246 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10247 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10250 EXPORT_SYMBOL(dev_get_stats);
10252 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10254 struct netdev_queue *queue = dev_ingress_queue(dev);
10256 #ifdef CONFIG_NET_CLS_ACT
10259 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10262 netdev_init_one_queue(dev, queue, NULL);
10263 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10264 queue->qdisc_sleeping = &noop_qdisc;
10265 rcu_assign_pointer(dev->ingress_queue, queue);
10270 static const struct ethtool_ops default_ethtool_ops;
10272 void netdev_set_default_ethtool_ops(struct net_device *dev,
10273 const struct ethtool_ops *ops)
10275 if (dev->ethtool_ops == &default_ethtool_ops)
10276 dev->ethtool_ops = ops;
10278 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10280 void netdev_freemem(struct net_device *dev)
10282 char *addr = (char *)dev - dev->padded;
10288 * alloc_netdev_mqs - allocate network device
10289 * @sizeof_priv: size of private data to allocate space for
10290 * @name: device name format string
10291 * @name_assign_type: origin of device name
10292 * @setup: callback to initialize device
10293 * @txqs: the number of TX subqueues to allocate
10294 * @rxqs: the number of RX subqueues to allocate
10296 * Allocates a struct net_device with private data area for driver use
10297 * and performs basic initialization. Also allocates subqueue structs
10298 * for each queue on the device.
10300 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10301 unsigned char name_assign_type,
10302 void (*setup)(struct net_device *),
10303 unsigned int txqs, unsigned int rxqs)
10305 struct net_device *dev;
10306 unsigned int alloc_size;
10307 struct net_device *p;
10309 BUG_ON(strlen(name) >= sizeof(dev->name));
10312 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10317 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10321 alloc_size = sizeof(struct net_device);
10323 /* ensure 32-byte alignment of private area */
10324 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10325 alloc_size += sizeof_priv;
10327 /* ensure 32-byte alignment of whole construct */
10328 alloc_size += NETDEV_ALIGN - 1;
10330 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10334 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10335 dev->padded = (char *)dev - (char *)p;
10337 dev->pcpu_refcnt = alloc_percpu(int);
10338 if (!dev->pcpu_refcnt)
10341 if (dev_addr_init(dev))
10347 dev_net_set(dev, &init_net);
10349 dev->gso_max_size = GSO_MAX_SIZE;
10350 dev->gso_max_segs = GSO_MAX_SEGS;
10351 dev->upper_level = 1;
10352 dev->lower_level = 1;
10353 #ifdef CONFIG_LOCKDEP
10354 dev->nested_level = 0;
10355 INIT_LIST_HEAD(&dev->unlink_list);
10358 INIT_LIST_HEAD(&dev->napi_list);
10359 INIT_LIST_HEAD(&dev->unreg_list);
10360 INIT_LIST_HEAD(&dev->close_list);
10361 INIT_LIST_HEAD(&dev->link_watch_list);
10362 INIT_LIST_HEAD(&dev->adj_list.upper);
10363 INIT_LIST_HEAD(&dev->adj_list.lower);
10364 INIT_LIST_HEAD(&dev->ptype_all);
10365 INIT_LIST_HEAD(&dev->ptype_specific);
10366 INIT_LIST_HEAD(&dev->net_notifier_list);
10367 #ifdef CONFIG_NET_SCHED
10368 hash_init(dev->qdisc_hash);
10370 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10373 if (!dev->tx_queue_len) {
10374 dev->priv_flags |= IFF_NO_QUEUE;
10375 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10378 dev->num_tx_queues = txqs;
10379 dev->real_num_tx_queues = txqs;
10380 if (netif_alloc_netdev_queues(dev))
10383 dev->num_rx_queues = rxqs;
10384 dev->real_num_rx_queues = rxqs;
10385 if (netif_alloc_rx_queues(dev))
10388 strcpy(dev->name, name);
10389 dev->name_assign_type = name_assign_type;
10390 dev->group = INIT_NETDEV_GROUP;
10391 if (!dev->ethtool_ops)
10392 dev->ethtool_ops = &default_ethtool_ops;
10394 nf_hook_ingress_init(dev);
10403 free_percpu(dev->pcpu_refcnt);
10405 netdev_freemem(dev);
10408 EXPORT_SYMBOL(alloc_netdev_mqs);
10411 * free_netdev - free network device
10414 * This function does the last stage of destroying an allocated device
10415 * interface. The reference to the device object is released. If this
10416 * is the last reference then it will be freed.Must be called in process
10419 void free_netdev(struct net_device *dev)
10421 struct napi_struct *p, *n;
10424 netif_free_tx_queues(dev);
10425 netif_free_rx_queues(dev);
10427 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10429 /* Flush device addresses */
10430 dev_addr_flush(dev);
10432 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10435 free_percpu(dev->pcpu_refcnt);
10436 dev->pcpu_refcnt = NULL;
10437 free_percpu(dev->xdp_bulkq);
10438 dev->xdp_bulkq = NULL;
10440 /* Compatibility with error handling in drivers */
10441 if (dev->reg_state == NETREG_UNINITIALIZED) {
10442 netdev_freemem(dev);
10446 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10447 dev->reg_state = NETREG_RELEASED;
10449 /* will free via device release */
10450 put_device(&dev->dev);
10452 EXPORT_SYMBOL(free_netdev);
10455 * synchronize_net - Synchronize with packet receive processing
10457 * Wait for packets currently being received to be done.
10458 * Does not block later packets from starting.
10460 void synchronize_net(void)
10463 if (rtnl_is_locked())
10464 synchronize_rcu_expedited();
10468 EXPORT_SYMBOL(synchronize_net);
10471 * unregister_netdevice_queue - remove device from the kernel
10475 * This function shuts down a device interface and removes it
10476 * from the kernel tables.
10477 * If head not NULL, device is queued to be unregistered later.
10479 * Callers must hold the rtnl semaphore. You may want
10480 * unregister_netdev() instead of this.
10483 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10488 list_move_tail(&dev->unreg_list, head);
10490 rollback_registered(dev);
10491 /* Finish processing unregister after unlock */
10495 EXPORT_SYMBOL(unregister_netdevice_queue);
10498 * unregister_netdevice_many - unregister many devices
10499 * @head: list of devices
10501 * Note: As most callers use a stack allocated list_head,
10502 * we force a list_del() to make sure stack wont be corrupted later.
10504 void unregister_netdevice_many(struct list_head *head)
10506 struct net_device *dev;
10508 if (!list_empty(head)) {
10509 rollback_registered_many(head);
10510 list_for_each_entry(dev, head, unreg_list)
10515 EXPORT_SYMBOL(unregister_netdevice_many);
10518 * unregister_netdev - remove device from the kernel
10521 * This function shuts down a device interface and removes it
10522 * from the kernel tables.
10524 * This is just a wrapper for unregister_netdevice that takes
10525 * the rtnl semaphore. In general you want to use this and not
10526 * unregister_netdevice.
10528 void unregister_netdev(struct net_device *dev)
10531 unregister_netdevice(dev);
10534 EXPORT_SYMBOL(unregister_netdev);
10537 * dev_change_net_namespace - move device to different nethost namespace
10539 * @net: network namespace
10540 * @pat: If not NULL name pattern to try if the current device name
10541 * is already taken in the destination network namespace.
10543 * This function shuts down a device interface and moves it
10544 * to a new network namespace. On success 0 is returned, on
10545 * a failure a netagive errno code is returned.
10547 * Callers must hold the rtnl semaphore.
10550 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10552 struct net *net_old = dev_net(dev);
10553 int err, new_nsid, new_ifindex;
10557 /* Don't allow namespace local devices to be moved. */
10559 if (dev->features & NETIF_F_NETNS_LOCAL)
10562 /* Ensure the device has been registrered */
10563 if (dev->reg_state != NETREG_REGISTERED)
10566 /* Get out if there is nothing todo */
10568 if (net_eq(net_old, net))
10571 /* Pick the destination device name, and ensure
10572 * we can use it in the destination network namespace.
10575 if (__dev_get_by_name(net, dev->name)) {
10576 /* We get here if we can't use the current device name */
10579 err = dev_get_valid_name(net, dev, pat);
10585 * And now a mini version of register_netdevice unregister_netdevice.
10588 /* If device is running close it first. */
10591 /* And unlink it from device chain */
10592 unlist_netdevice(dev);
10596 /* Shutdown queueing discipline. */
10599 /* Notify protocols, that we are about to destroy
10600 * this device. They should clean all the things.
10602 * Note that dev->reg_state stays at NETREG_REGISTERED.
10603 * This is wanted because this way 8021q and macvlan know
10604 * the device is just moving and can keep their slaves up.
10606 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10609 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10610 /* If there is an ifindex conflict assign a new one */
10611 if (__dev_get_by_index(net, dev->ifindex))
10612 new_ifindex = dev_new_index(net);
10614 new_ifindex = dev->ifindex;
10616 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10620 * Flush the unicast and multicast chains
10625 /* Send a netdev-removed uevent to the old namespace */
10626 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10627 netdev_adjacent_del_links(dev);
10629 /* Move per-net netdevice notifiers that are following the netdevice */
10630 move_netdevice_notifiers_dev_net(dev, net);
10632 /* Actually switch the network namespace */
10633 dev_net_set(dev, net);
10634 dev->ifindex = new_ifindex;
10636 /* Send a netdev-add uevent to the new namespace */
10637 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10638 netdev_adjacent_add_links(dev);
10640 /* Fixup kobjects */
10641 err = device_rename(&dev->dev, dev->name);
10644 /* Adapt owner in case owning user namespace of target network
10645 * namespace is different from the original one.
10647 err = netdev_change_owner(dev, net_old, net);
10650 /* Add the device back in the hashes */
10651 list_netdevice(dev);
10653 /* Notify protocols, that a new device appeared. */
10654 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10657 * Prevent userspace races by waiting until the network
10658 * device is fully setup before sending notifications.
10660 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10667 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10669 static int dev_cpu_dead(unsigned int oldcpu)
10671 struct sk_buff **list_skb;
10672 struct sk_buff *skb;
10674 struct softnet_data *sd, *oldsd, *remsd = NULL;
10676 local_irq_disable();
10677 cpu = smp_processor_id();
10678 sd = &per_cpu(softnet_data, cpu);
10679 oldsd = &per_cpu(softnet_data, oldcpu);
10681 /* Find end of our completion_queue. */
10682 list_skb = &sd->completion_queue;
10684 list_skb = &(*list_skb)->next;
10685 /* Append completion queue from offline CPU. */
10686 *list_skb = oldsd->completion_queue;
10687 oldsd->completion_queue = NULL;
10689 /* Append output queue from offline CPU. */
10690 if (oldsd->output_queue) {
10691 *sd->output_queue_tailp = oldsd->output_queue;
10692 sd->output_queue_tailp = oldsd->output_queue_tailp;
10693 oldsd->output_queue = NULL;
10694 oldsd->output_queue_tailp = &oldsd->output_queue;
10696 /* Append NAPI poll list from offline CPU, with one exception :
10697 * process_backlog() must be called by cpu owning percpu backlog.
10698 * We properly handle process_queue & input_pkt_queue later.
10700 while (!list_empty(&oldsd->poll_list)) {
10701 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10702 struct napi_struct,
10705 list_del_init(&napi->poll_list);
10706 if (napi->poll == process_backlog)
10709 ____napi_schedule(sd, napi);
10712 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10713 local_irq_enable();
10716 remsd = oldsd->rps_ipi_list;
10717 oldsd->rps_ipi_list = NULL;
10719 /* send out pending IPI's on offline CPU */
10720 net_rps_send_ipi(remsd);
10722 /* Process offline CPU's input_pkt_queue */
10723 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10725 input_queue_head_incr(oldsd);
10727 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10729 input_queue_head_incr(oldsd);
10736 * netdev_increment_features - increment feature set by one
10737 * @all: current feature set
10738 * @one: new feature set
10739 * @mask: mask feature set
10741 * Computes a new feature set after adding a device with feature set
10742 * @one to the master device with current feature set @all. Will not
10743 * enable anything that is off in @mask. Returns the new feature set.
10745 netdev_features_t netdev_increment_features(netdev_features_t all,
10746 netdev_features_t one, netdev_features_t mask)
10748 if (mask & NETIF_F_HW_CSUM)
10749 mask |= NETIF_F_CSUM_MASK;
10750 mask |= NETIF_F_VLAN_CHALLENGED;
10752 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10753 all &= one | ~NETIF_F_ALL_FOR_ALL;
10755 /* If one device supports hw checksumming, set for all. */
10756 if (all & NETIF_F_HW_CSUM)
10757 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10761 EXPORT_SYMBOL(netdev_increment_features);
10763 static struct hlist_head * __net_init netdev_create_hash(void)
10766 struct hlist_head *hash;
10768 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10770 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10771 INIT_HLIST_HEAD(&hash[i]);
10776 /* Initialize per network namespace state */
10777 static int __net_init netdev_init(struct net *net)
10779 BUILD_BUG_ON(GRO_HASH_BUCKETS >
10780 8 * sizeof_field(struct napi_struct, gro_bitmask));
10782 if (net != &init_net)
10783 INIT_LIST_HEAD(&net->dev_base_head);
10785 net->dev_name_head = netdev_create_hash();
10786 if (net->dev_name_head == NULL)
10789 net->dev_index_head = netdev_create_hash();
10790 if (net->dev_index_head == NULL)
10793 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10798 kfree(net->dev_name_head);
10804 * netdev_drivername - network driver for the device
10805 * @dev: network device
10807 * Determine network driver for device.
10809 const char *netdev_drivername(const struct net_device *dev)
10811 const struct device_driver *driver;
10812 const struct device *parent;
10813 const char *empty = "";
10815 parent = dev->dev.parent;
10819 driver = parent->driver;
10820 if (driver && driver->name)
10821 return driver->name;
10825 static void __netdev_printk(const char *level, const struct net_device *dev,
10826 struct va_format *vaf)
10828 if (dev && dev->dev.parent) {
10829 dev_printk_emit(level[1] - '0',
10832 dev_driver_string(dev->dev.parent),
10833 dev_name(dev->dev.parent),
10834 netdev_name(dev), netdev_reg_state(dev),
10837 printk("%s%s%s: %pV",
10838 level, netdev_name(dev), netdev_reg_state(dev), vaf);
10840 printk("%s(NULL net_device): %pV", level, vaf);
10844 void netdev_printk(const char *level, const struct net_device *dev,
10845 const char *format, ...)
10847 struct va_format vaf;
10850 va_start(args, format);
10855 __netdev_printk(level, dev, &vaf);
10859 EXPORT_SYMBOL(netdev_printk);
10861 #define define_netdev_printk_level(func, level) \
10862 void func(const struct net_device *dev, const char *fmt, ...) \
10864 struct va_format vaf; \
10867 va_start(args, fmt); \
10872 __netdev_printk(level, dev, &vaf); \
10876 EXPORT_SYMBOL(func);
10878 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10879 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10880 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10881 define_netdev_printk_level(netdev_err, KERN_ERR);
10882 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10883 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10884 define_netdev_printk_level(netdev_info, KERN_INFO);
10886 static void __net_exit netdev_exit(struct net *net)
10888 kfree(net->dev_name_head);
10889 kfree(net->dev_index_head);
10890 if (net != &init_net)
10891 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10894 static struct pernet_operations __net_initdata netdev_net_ops = {
10895 .init = netdev_init,
10896 .exit = netdev_exit,
10899 static void __net_exit default_device_exit(struct net *net)
10901 struct net_device *dev, *aux;
10903 * Push all migratable network devices back to the
10904 * initial network namespace
10907 for_each_netdev_safe(net, dev, aux) {
10909 char fb_name[IFNAMSIZ];
10911 /* Ignore unmoveable devices (i.e. loopback) */
10912 if (dev->features & NETIF_F_NETNS_LOCAL)
10915 /* Leave virtual devices for the generic cleanup */
10916 if (dev->rtnl_link_ops)
10919 /* Push remaining network devices to init_net */
10920 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10921 if (__dev_get_by_name(&init_net, fb_name))
10922 snprintf(fb_name, IFNAMSIZ, "dev%%d");
10923 err = dev_change_net_namespace(dev, &init_net, fb_name);
10925 pr_emerg("%s: failed to move %s to init_net: %d\n",
10926 __func__, dev->name, err);
10933 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10935 /* Return with the rtnl_lock held when there are no network
10936 * devices unregistering in any network namespace in net_list.
10939 bool unregistering;
10940 DEFINE_WAIT_FUNC(wait, woken_wake_function);
10942 add_wait_queue(&netdev_unregistering_wq, &wait);
10944 unregistering = false;
10946 list_for_each_entry(net, net_list, exit_list) {
10947 if (net->dev_unreg_count > 0) {
10948 unregistering = true;
10952 if (!unregistering)
10956 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10958 remove_wait_queue(&netdev_unregistering_wq, &wait);
10961 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10963 /* At exit all network devices most be removed from a network
10964 * namespace. Do this in the reverse order of registration.
10965 * Do this across as many network namespaces as possible to
10966 * improve batching efficiency.
10968 struct net_device *dev;
10970 LIST_HEAD(dev_kill_list);
10972 /* To prevent network device cleanup code from dereferencing
10973 * loopback devices or network devices that have been freed
10974 * wait here for all pending unregistrations to complete,
10975 * before unregistring the loopback device and allowing the
10976 * network namespace be freed.
10978 * The netdev todo list containing all network devices
10979 * unregistrations that happen in default_device_exit_batch
10980 * will run in the rtnl_unlock() at the end of
10981 * default_device_exit_batch.
10983 rtnl_lock_unregistering(net_list);
10984 list_for_each_entry(net, net_list, exit_list) {
10985 for_each_netdev_reverse(net, dev) {
10986 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10987 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10989 unregister_netdevice_queue(dev, &dev_kill_list);
10992 unregister_netdevice_many(&dev_kill_list);
10996 static struct pernet_operations __net_initdata default_device_ops = {
10997 .exit = default_device_exit,
10998 .exit_batch = default_device_exit_batch,
11002 * Initialize the DEV module. At boot time this walks the device list and
11003 * unhooks any devices that fail to initialise (normally hardware not
11004 * present) and leaves us with a valid list of present and active devices.
11009 * This is called single threaded during boot, so no need
11010 * to take the rtnl semaphore.
11012 static int __init net_dev_init(void)
11014 int i, rc = -ENOMEM;
11016 BUG_ON(!dev_boot_phase);
11018 if (dev_proc_init())
11021 if (netdev_kobject_init())
11024 INIT_LIST_HEAD(&ptype_all);
11025 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11026 INIT_LIST_HEAD(&ptype_base[i]);
11028 INIT_LIST_HEAD(&offload_base);
11030 if (register_pernet_subsys(&netdev_net_ops))
11034 * Initialise the packet receive queues.
11037 for_each_possible_cpu(i) {
11038 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11039 struct softnet_data *sd = &per_cpu(softnet_data, i);
11041 INIT_WORK(flush, flush_backlog);
11043 skb_queue_head_init(&sd->input_pkt_queue);
11044 skb_queue_head_init(&sd->process_queue);
11045 #ifdef CONFIG_XFRM_OFFLOAD
11046 skb_queue_head_init(&sd->xfrm_backlog);
11048 INIT_LIST_HEAD(&sd->poll_list);
11049 sd->output_queue_tailp = &sd->output_queue;
11051 sd->csd.func = rps_trigger_softirq;
11056 init_gro_hash(&sd->backlog);
11057 sd->backlog.poll = process_backlog;
11058 sd->backlog.weight = weight_p;
11061 dev_boot_phase = 0;
11063 /* The loopback device is special if any other network devices
11064 * is present in a network namespace the loopback device must
11065 * be present. Since we now dynamically allocate and free the
11066 * loopback device ensure this invariant is maintained by
11067 * keeping the loopback device as the first device on the
11068 * list of network devices. Ensuring the loopback devices
11069 * is the first device that appears and the last network device
11072 if (register_pernet_device(&loopback_net_ops))
11075 if (register_pernet_device(&default_device_ops))
11078 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11079 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11081 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11082 NULL, dev_cpu_dead);
11089 subsys_initcall(net_dev_init);