]> Git Repo - linux.git/blob - net/core/dev.c
arch, drivers: replace for_each_membock() with for_each_mem_range()
[linux.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <[email protected]>
8  *                              Mark Evans, <[email protected]>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <[email protected]>
12  *              Alan Cox <[email protected]>
13  *              David Hinds <[email protected]>
14  *              Alexey Kuznetsov <[email protected]>
15  *              Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/pkt_cls.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140 #include <linux/crash_dump.h>
141 #include <linux/sctp.h>
142 #include <net/udp_tunnel.h>
143 #include <linux/net_namespace.h>
144 #include <linux/indirect_call_wrapper.h>
145 #include <net/devlink.h>
146 #include <linux/pm_runtime.h>
147
148 #include "net-sysfs.h"
149
150 #define MAX_GRO_SKBS 8
151
152 /* This should be increased if a protocol with a bigger head is added. */
153 #define GRO_MAX_HEAD (MAX_HEADER + 128)
154
155 static DEFINE_SPINLOCK(ptype_lock);
156 static DEFINE_SPINLOCK(offload_lock);
157 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
158 struct list_head ptype_all __read_mostly;       /* Taps */
159 static struct list_head offload_base __read_mostly;
160
161 static int netif_rx_internal(struct sk_buff *skb);
162 static int call_netdevice_notifiers_info(unsigned long val,
163                                          struct netdev_notifier_info *info);
164 static int call_netdevice_notifiers_extack(unsigned long val,
165                                            struct net_device *dev,
166                                            struct netlink_ext_ack *extack);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static DECLARE_RWSEM(devnet_rename_sem);
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203         while (++net->dev_base_seq == 0)
204                 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222         spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229         spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232
233 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
234                                                        const char *name)
235 {
236         struct netdev_name_node *name_node;
237
238         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
239         if (!name_node)
240                 return NULL;
241         INIT_HLIST_NODE(&name_node->hlist);
242         name_node->dev = dev;
243         name_node->name = name;
244         return name_node;
245 }
246
247 static struct netdev_name_node *
248 netdev_name_node_head_alloc(struct net_device *dev)
249 {
250         struct netdev_name_node *name_node;
251
252         name_node = netdev_name_node_alloc(dev, dev->name);
253         if (!name_node)
254                 return NULL;
255         INIT_LIST_HEAD(&name_node->list);
256         return name_node;
257 }
258
259 static void netdev_name_node_free(struct netdev_name_node *name_node)
260 {
261         kfree(name_node);
262 }
263
264 static void netdev_name_node_add(struct net *net,
265                                  struct netdev_name_node *name_node)
266 {
267         hlist_add_head_rcu(&name_node->hlist,
268                            dev_name_hash(net, name_node->name));
269 }
270
271 static void netdev_name_node_del(struct netdev_name_node *name_node)
272 {
273         hlist_del_rcu(&name_node->hlist);
274 }
275
276 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
277                                                         const char *name)
278 {
279         struct hlist_head *head = dev_name_hash(net, name);
280         struct netdev_name_node *name_node;
281
282         hlist_for_each_entry(name_node, head, hlist)
283                 if (!strcmp(name_node->name, name))
284                         return name_node;
285         return NULL;
286 }
287
288 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
289                                                             const char *name)
290 {
291         struct hlist_head *head = dev_name_hash(net, name);
292         struct netdev_name_node *name_node;
293
294         hlist_for_each_entry_rcu(name_node, head, hlist)
295                 if (!strcmp(name_node->name, name))
296                         return name_node;
297         return NULL;
298 }
299
300 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
301 {
302         struct netdev_name_node *name_node;
303         struct net *net = dev_net(dev);
304
305         name_node = netdev_name_node_lookup(net, name);
306         if (name_node)
307                 return -EEXIST;
308         name_node = netdev_name_node_alloc(dev, name);
309         if (!name_node)
310                 return -ENOMEM;
311         netdev_name_node_add(net, name_node);
312         /* The node that holds dev->name acts as a head of per-device list. */
313         list_add_tail(&name_node->list, &dev->name_node->list);
314
315         return 0;
316 }
317 EXPORT_SYMBOL(netdev_name_node_alt_create);
318
319 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
320 {
321         list_del(&name_node->list);
322         netdev_name_node_del(name_node);
323         kfree(name_node->name);
324         netdev_name_node_free(name_node);
325 }
326
327 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331
332         name_node = netdev_name_node_lookup(net, name);
333         if (!name_node)
334                 return -ENOENT;
335         /* lookup might have found our primary name or a name belonging
336          * to another device.
337          */
338         if (name_node == dev->name_node || name_node->dev != dev)
339                 return -EINVAL;
340
341         __netdev_name_node_alt_destroy(name_node);
342
343         return 0;
344 }
345 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
346
347 static void netdev_name_node_alt_flush(struct net_device *dev)
348 {
349         struct netdev_name_node *name_node, *tmp;
350
351         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
352                 __netdev_name_node_alt_destroy(name_node);
353 }
354
355 /* Device list insertion */
356 static void list_netdevice(struct net_device *dev)
357 {
358         struct net *net = dev_net(dev);
359
360         ASSERT_RTNL();
361
362         write_lock_bh(&dev_base_lock);
363         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
364         netdev_name_node_add(net, dev->name_node);
365         hlist_add_head_rcu(&dev->index_hlist,
366                            dev_index_hash(net, dev->ifindex));
367         write_unlock_bh(&dev_base_lock);
368
369         dev_base_seq_inc(net);
370 }
371
372 /* Device list removal
373  * caller must respect a RCU grace period before freeing/reusing dev
374  */
375 static void unlist_netdevice(struct net_device *dev)
376 {
377         ASSERT_RTNL();
378
379         /* Unlink dev from the device chain */
380         write_lock_bh(&dev_base_lock);
381         list_del_rcu(&dev->dev_list);
382         netdev_name_node_del(dev->name_node);
383         hlist_del_rcu(&dev->index_hlist);
384         write_unlock_bh(&dev_base_lock);
385
386         dev_base_seq_inc(dev_net(dev));
387 }
388
389 /*
390  *      Our notifier list
391  */
392
393 static RAW_NOTIFIER_HEAD(netdev_chain);
394
395 /*
396  *      Device drivers call our routines to queue packets here. We empty the
397  *      queue in the local softnet handler.
398  */
399
400 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
401 EXPORT_PER_CPU_SYMBOL(softnet_data);
402
403 #ifdef CONFIG_LOCKDEP
404 /*
405  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
406  * according to dev->type
407  */
408 static const unsigned short netdev_lock_type[] = {
409          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
410          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
411          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
412          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
413          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
414          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
415          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
416          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
417          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
418          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
419          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
420          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
421          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
422          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
423          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
424
425 static const char *const netdev_lock_name[] = {
426         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
427         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
428         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
429         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
430         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
431         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
432         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
433         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
434         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
435         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
436         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
437         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
438         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
439         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
440         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
441
442 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
443 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
444
445 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
446 {
447         int i;
448
449         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
450                 if (netdev_lock_type[i] == dev_type)
451                         return i;
452         /* the last key is used by default */
453         return ARRAY_SIZE(netdev_lock_type) - 1;
454 }
455
456 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
457                                                  unsigned short dev_type)
458 {
459         int i;
460
461         i = netdev_lock_pos(dev_type);
462         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
463                                    netdev_lock_name[i]);
464 }
465
466 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
467 {
468         int i;
469
470         i = netdev_lock_pos(dev->type);
471         lockdep_set_class_and_name(&dev->addr_list_lock,
472                                    &netdev_addr_lock_key[i],
473                                    netdev_lock_name[i]);
474 }
475 #else
476 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
477                                                  unsigned short dev_type)
478 {
479 }
480
481 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
482 {
483 }
484 #endif
485
486 /*******************************************************************************
487  *
488  *              Protocol management and registration routines
489  *
490  *******************************************************************************/
491
492
493 /*
494  *      Add a protocol ID to the list. Now that the input handler is
495  *      smarter we can dispense with all the messy stuff that used to be
496  *      here.
497  *
498  *      BEWARE!!! Protocol handlers, mangling input packets,
499  *      MUST BE last in hash buckets and checking protocol handlers
500  *      MUST start from promiscuous ptype_all chain in net_bh.
501  *      It is true now, do not change it.
502  *      Explanation follows: if protocol handler, mangling packet, will
503  *      be the first on list, it is not able to sense, that packet
504  *      is cloned and should be copied-on-write, so that it will
505  *      change it and subsequent readers will get broken packet.
506  *                                                      --ANK (980803)
507  */
508
509 static inline struct list_head *ptype_head(const struct packet_type *pt)
510 {
511         if (pt->type == htons(ETH_P_ALL))
512                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
513         else
514                 return pt->dev ? &pt->dev->ptype_specific :
515                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
516 }
517
518 /**
519  *      dev_add_pack - add packet handler
520  *      @pt: packet type declaration
521  *
522  *      Add a protocol handler to the networking stack. The passed &packet_type
523  *      is linked into kernel lists and may not be freed until it has been
524  *      removed from the kernel lists.
525  *
526  *      This call does not sleep therefore it can not
527  *      guarantee all CPU's that are in middle of receiving packets
528  *      will see the new packet type (until the next received packet).
529  */
530
531 void dev_add_pack(struct packet_type *pt)
532 {
533         struct list_head *head = ptype_head(pt);
534
535         spin_lock(&ptype_lock);
536         list_add_rcu(&pt->list, head);
537         spin_unlock(&ptype_lock);
538 }
539 EXPORT_SYMBOL(dev_add_pack);
540
541 /**
542  *      __dev_remove_pack        - remove packet handler
543  *      @pt: packet type declaration
544  *
545  *      Remove a protocol handler that was previously added to the kernel
546  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
547  *      from the kernel lists and can be freed or reused once this function
548  *      returns.
549  *
550  *      The packet type might still be in use by receivers
551  *      and must not be freed until after all the CPU's have gone
552  *      through a quiescent state.
553  */
554 void __dev_remove_pack(struct packet_type *pt)
555 {
556         struct list_head *head = ptype_head(pt);
557         struct packet_type *pt1;
558
559         spin_lock(&ptype_lock);
560
561         list_for_each_entry(pt1, head, list) {
562                 if (pt == pt1) {
563                         list_del_rcu(&pt->list);
564                         goto out;
565                 }
566         }
567
568         pr_warn("dev_remove_pack: %p not found\n", pt);
569 out:
570         spin_unlock(&ptype_lock);
571 }
572 EXPORT_SYMBOL(__dev_remove_pack);
573
574 /**
575  *      dev_remove_pack  - remove packet handler
576  *      @pt: packet type declaration
577  *
578  *      Remove a protocol handler that was previously added to the kernel
579  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
580  *      from the kernel lists and can be freed or reused once this function
581  *      returns.
582  *
583  *      This call sleeps to guarantee that no CPU is looking at the packet
584  *      type after return.
585  */
586 void dev_remove_pack(struct packet_type *pt)
587 {
588         __dev_remove_pack(pt);
589
590         synchronize_net();
591 }
592 EXPORT_SYMBOL(dev_remove_pack);
593
594
595 /**
596  *      dev_add_offload - register offload handlers
597  *      @po: protocol offload declaration
598  *
599  *      Add protocol offload handlers to the networking stack. The passed
600  *      &proto_offload is linked into kernel lists and may not be freed until
601  *      it has been removed from the kernel lists.
602  *
603  *      This call does not sleep therefore it can not
604  *      guarantee all CPU's that are in middle of receiving packets
605  *      will see the new offload handlers (until the next received packet).
606  */
607 void dev_add_offload(struct packet_offload *po)
608 {
609         struct packet_offload *elem;
610
611         spin_lock(&offload_lock);
612         list_for_each_entry(elem, &offload_base, list) {
613                 if (po->priority < elem->priority)
614                         break;
615         }
616         list_add_rcu(&po->list, elem->list.prev);
617         spin_unlock(&offload_lock);
618 }
619 EXPORT_SYMBOL(dev_add_offload);
620
621 /**
622  *      __dev_remove_offload     - remove offload handler
623  *      @po: packet offload declaration
624  *
625  *      Remove a protocol offload handler that was previously added to the
626  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
627  *      is removed from the kernel lists and can be freed or reused once this
628  *      function returns.
629  *
630  *      The packet type might still be in use by receivers
631  *      and must not be freed until after all the CPU's have gone
632  *      through a quiescent state.
633  */
634 static void __dev_remove_offload(struct packet_offload *po)
635 {
636         struct list_head *head = &offload_base;
637         struct packet_offload *po1;
638
639         spin_lock(&offload_lock);
640
641         list_for_each_entry(po1, head, list) {
642                 if (po == po1) {
643                         list_del_rcu(&po->list);
644                         goto out;
645                 }
646         }
647
648         pr_warn("dev_remove_offload: %p not found\n", po);
649 out:
650         spin_unlock(&offload_lock);
651 }
652
653 /**
654  *      dev_remove_offload       - remove packet offload handler
655  *      @po: packet offload declaration
656  *
657  *      Remove a packet offload handler that was previously added to the kernel
658  *      offload handlers by dev_add_offload(). The passed &offload_type is
659  *      removed from the kernel lists and can be freed or reused once this
660  *      function returns.
661  *
662  *      This call sleeps to guarantee that no CPU is looking at the packet
663  *      type after return.
664  */
665 void dev_remove_offload(struct packet_offload *po)
666 {
667         __dev_remove_offload(po);
668
669         synchronize_net();
670 }
671 EXPORT_SYMBOL(dev_remove_offload);
672
673 /******************************************************************************
674  *
675  *                    Device Boot-time Settings Routines
676  *
677  ******************************************************************************/
678
679 /* Boot time configuration table */
680 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
681
682 /**
683  *      netdev_boot_setup_add   - add new setup entry
684  *      @name: name of the device
685  *      @map: configured settings for the device
686  *
687  *      Adds new setup entry to the dev_boot_setup list.  The function
688  *      returns 0 on error and 1 on success.  This is a generic routine to
689  *      all netdevices.
690  */
691 static int netdev_boot_setup_add(char *name, struct ifmap *map)
692 {
693         struct netdev_boot_setup *s;
694         int i;
695
696         s = dev_boot_setup;
697         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
698                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
699                         memset(s[i].name, 0, sizeof(s[i].name));
700                         strlcpy(s[i].name, name, IFNAMSIZ);
701                         memcpy(&s[i].map, map, sizeof(s[i].map));
702                         break;
703                 }
704         }
705
706         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
707 }
708
709 /**
710  * netdev_boot_setup_check      - check boot time settings
711  * @dev: the netdevice
712  *
713  * Check boot time settings for the device.
714  * The found settings are set for the device to be used
715  * later in the device probing.
716  * Returns 0 if no settings found, 1 if they are.
717  */
718 int netdev_boot_setup_check(struct net_device *dev)
719 {
720         struct netdev_boot_setup *s = dev_boot_setup;
721         int i;
722
723         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
724                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
725                     !strcmp(dev->name, s[i].name)) {
726                         dev->irq = s[i].map.irq;
727                         dev->base_addr = s[i].map.base_addr;
728                         dev->mem_start = s[i].map.mem_start;
729                         dev->mem_end = s[i].map.mem_end;
730                         return 1;
731                 }
732         }
733         return 0;
734 }
735 EXPORT_SYMBOL(netdev_boot_setup_check);
736
737
738 /**
739  * netdev_boot_base     - get address from boot time settings
740  * @prefix: prefix for network device
741  * @unit: id for network device
742  *
743  * Check boot time settings for the base address of device.
744  * The found settings are set for the device to be used
745  * later in the device probing.
746  * Returns 0 if no settings found.
747  */
748 unsigned long netdev_boot_base(const char *prefix, int unit)
749 {
750         const struct netdev_boot_setup *s = dev_boot_setup;
751         char name[IFNAMSIZ];
752         int i;
753
754         sprintf(name, "%s%d", prefix, unit);
755
756         /*
757          * If device already registered then return base of 1
758          * to indicate not to probe for this interface
759          */
760         if (__dev_get_by_name(&init_net, name))
761                 return 1;
762
763         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
764                 if (!strcmp(name, s[i].name))
765                         return s[i].map.base_addr;
766         return 0;
767 }
768
769 /*
770  * Saves at boot time configured settings for any netdevice.
771  */
772 int __init netdev_boot_setup(char *str)
773 {
774         int ints[5];
775         struct ifmap map;
776
777         str = get_options(str, ARRAY_SIZE(ints), ints);
778         if (!str || !*str)
779                 return 0;
780
781         /* Save settings */
782         memset(&map, 0, sizeof(map));
783         if (ints[0] > 0)
784                 map.irq = ints[1];
785         if (ints[0] > 1)
786                 map.base_addr = ints[2];
787         if (ints[0] > 2)
788                 map.mem_start = ints[3];
789         if (ints[0] > 3)
790                 map.mem_end = ints[4];
791
792         /* Add new entry to the list */
793         return netdev_boot_setup_add(str, &map);
794 }
795
796 __setup("netdev=", netdev_boot_setup);
797
798 /*******************************************************************************
799  *
800  *                          Device Interface Subroutines
801  *
802  *******************************************************************************/
803
804 /**
805  *      dev_get_iflink  - get 'iflink' value of a interface
806  *      @dev: targeted interface
807  *
808  *      Indicates the ifindex the interface is linked to.
809  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
810  */
811
812 int dev_get_iflink(const struct net_device *dev)
813 {
814         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
815                 return dev->netdev_ops->ndo_get_iflink(dev);
816
817         return dev->ifindex;
818 }
819 EXPORT_SYMBOL(dev_get_iflink);
820
821 /**
822  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
823  *      @dev: targeted interface
824  *      @skb: The packet.
825  *
826  *      For better visibility of tunnel traffic OVS needs to retrieve
827  *      egress tunnel information for a packet. Following API allows
828  *      user to get this info.
829  */
830 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
831 {
832         struct ip_tunnel_info *info;
833
834         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
835                 return -EINVAL;
836
837         info = skb_tunnel_info_unclone(skb);
838         if (!info)
839                 return -ENOMEM;
840         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
841                 return -EINVAL;
842
843         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
844 }
845 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
846
847 /**
848  *      __dev_get_by_name       - find a device by its name
849  *      @net: the applicable net namespace
850  *      @name: name to find
851  *
852  *      Find an interface by name. Must be called under RTNL semaphore
853  *      or @dev_base_lock. If the name is found a pointer to the device
854  *      is returned. If the name is not found then %NULL is returned. The
855  *      reference counters are not incremented so the caller must be
856  *      careful with locks.
857  */
858
859 struct net_device *__dev_get_by_name(struct net *net, const char *name)
860 {
861         struct netdev_name_node *node_name;
862
863         node_name = netdev_name_node_lookup(net, name);
864         return node_name ? node_name->dev : NULL;
865 }
866 EXPORT_SYMBOL(__dev_get_by_name);
867
868 /**
869  * dev_get_by_name_rcu  - find a device by its name
870  * @net: the applicable net namespace
871  * @name: name to find
872  *
873  * Find an interface by name.
874  * If the name is found a pointer to the device is returned.
875  * If the name is not found then %NULL is returned.
876  * The reference counters are not incremented so the caller must be
877  * careful with locks. The caller must hold RCU lock.
878  */
879
880 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
881 {
882         struct netdev_name_node *node_name;
883
884         node_name = netdev_name_node_lookup_rcu(net, name);
885         return node_name ? node_name->dev : NULL;
886 }
887 EXPORT_SYMBOL(dev_get_by_name_rcu);
888
889 /**
890  *      dev_get_by_name         - find a device by its name
891  *      @net: the applicable net namespace
892  *      @name: name to find
893  *
894  *      Find an interface by name. This can be called from any
895  *      context and does its own locking. The returned handle has
896  *      the usage count incremented and the caller must use dev_put() to
897  *      release it when it is no longer needed. %NULL is returned if no
898  *      matching device is found.
899  */
900
901 struct net_device *dev_get_by_name(struct net *net, const char *name)
902 {
903         struct net_device *dev;
904
905         rcu_read_lock();
906         dev = dev_get_by_name_rcu(net, name);
907         if (dev)
908                 dev_hold(dev);
909         rcu_read_unlock();
910         return dev;
911 }
912 EXPORT_SYMBOL(dev_get_by_name);
913
914 /**
915  *      __dev_get_by_index - find a device by its ifindex
916  *      @net: the applicable net namespace
917  *      @ifindex: index of device
918  *
919  *      Search for an interface by index. Returns %NULL if the device
920  *      is not found or a pointer to the device. The device has not
921  *      had its reference counter increased so the caller must be careful
922  *      about locking. The caller must hold either the RTNL semaphore
923  *      or @dev_base_lock.
924  */
925
926 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
927 {
928         struct net_device *dev;
929         struct hlist_head *head = dev_index_hash(net, ifindex);
930
931         hlist_for_each_entry(dev, head, index_hlist)
932                 if (dev->ifindex == ifindex)
933                         return dev;
934
935         return NULL;
936 }
937 EXPORT_SYMBOL(__dev_get_by_index);
938
939 /**
940  *      dev_get_by_index_rcu - find a device by its ifindex
941  *      @net: the applicable net namespace
942  *      @ifindex: index of device
943  *
944  *      Search for an interface by index. Returns %NULL if the device
945  *      is not found or a pointer to the device. The device has not
946  *      had its reference counter increased so the caller must be careful
947  *      about locking. The caller must hold RCU lock.
948  */
949
950 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
951 {
952         struct net_device *dev;
953         struct hlist_head *head = dev_index_hash(net, ifindex);
954
955         hlist_for_each_entry_rcu(dev, head, index_hlist)
956                 if (dev->ifindex == ifindex)
957                         return dev;
958
959         return NULL;
960 }
961 EXPORT_SYMBOL(dev_get_by_index_rcu);
962
963
964 /**
965  *      dev_get_by_index - find a device by its ifindex
966  *      @net: the applicable net namespace
967  *      @ifindex: index of device
968  *
969  *      Search for an interface by index. Returns NULL if the device
970  *      is not found or a pointer to the device. The device returned has
971  *      had a reference added and the pointer is safe until the user calls
972  *      dev_put to indicate they have finished with it.
973  */
974
975 struct net_device *dev_get_by_index(struct net *net, int ifindex)
976 {
977         struct net_device *dev;
978
979         rcu_read_lock();
980         dev = dev_get_by_index_rcu(net, ifindex);
981         if (dev)
982                 dev_hold(dev);
983         rcu_read_unlock();
984         return dev;
985 }
986 EXPORT_SYMBOL(dev_get_by_index);
987
988 /**
989  *      dev_get_by_napi_id - find a device by napi_id
990  *      @napi_id: ID of the NAPI struct
991  *
992  *      Search for an interface by NAPI ID. Returns %NULL if the device
993  *      is not found or a pointer to the device. The device has not had
994  *      its reference counter increased so the caller must be careful
995  *      about locking. The caller must hold RCU lock.
996  */
997
998 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
999 {
1000         struct napi_struct *napi;
1001
1002         WARN_ON_ONCE(!rcu_read_lock_held());
1003
1004         if (napi_id < MIN_NAPI_ID)
1005                 return NULL;
1006
1007         napi = napi_by_id(napi_id);
1008
1009         return napi ? napi->dev : NULL;
1010 }
1011 EXPORT_SYMBOL(dev_get_by_napi_id);
1012
1013 /**
1014  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1015  *      @net: network namespace
1016  *      @name: a pointer to the buffer where the name will be stored.
1017  *      @ifindex: the ifindex of the interface to get the name from.
1018  */
1019 int netdev_get_name(struct net *net, char *name, int ifindex)
1020 {
1021         struct net_device *dev;
1022         int ret;
1023
1024         down_read(&devnet_rename_sem);
1025         rcu_read_lock();
1026
1027         dev = dev_get_by_index_rcu(net, ifindex);
1028         if (!dev) {
1029                 ret = -ENODEV;
1030                 goto out;
1031         }
1032
1033         strcpy(name, dev->name);
1034
1035         ret = 0;
1036 out:
1037         rcu_read_unlock();
1038         up_read(&devnet_rename_sem);
1039         return ret;
1040 }
1041
1042 /**
1043  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1044  *      @net: the applicable net namespace
1045  *      @type: media type of device
1046  *      @ha: hardware address
1047  *
1048  *      Search for an interface by MAC address. Returns NULL if the device
1049  *      is not found or a pointer to the device.
1050  *      The caller must hold RCU or RTNL.
1051  *      The returned device has not had its ref count increased
1052  *      and the caller must therefore be careful about locking
1053  *
1054  */
1055
1056 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1057                                        const char *ha)
1058 {
1059         struct net_device *dev;
1060
1061         for_each_netdev_rcu(net, dev)
1062                 if (dev->type == type &&
1063                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1064                         return dev;
1065
1066         return NULL;
1067 }
1068 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1069
1070 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1071 {
1072         struct net_device *dev;
1073
1074         ASSERT_RTNL();
1075         for_each_netdev(net, dev)
1076                 if (dev->type == type)
1077                         return dev;
1078
1079         return NULL;
1080 }
1081 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1082
1083 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1084 {
1085         struct net_device *dev, *ret = NULL;
1086
1087         rcu_read_lock();
1088         for_each_netdev_rcu(net, dev)
1089                 if (dev->type == type) {
1090                         dev_hold(dev);
1091                         ret = dev;
1092                         break;
1093                 }
1094         rcu_read_unlock();
1095         return ret;
1096 }
1097 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1098
1099 /**
1100  *      __dev_get_by_flags - find any device with given flags
1101  *      @net: the applicable net namespace
1102  *      @if_flags: IFF_* values
1103  *      @mask: bitmask of bits in if_flags to check
1104  *
1105  *      Search for any interface with the given flags. Returns NULL if a device
1106  *      is not found or a pointer to the device. Must be called inside
1107  *      rtnl_lock(), and result refcount is unchanged.
1108  */
1109
1110 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1111                                       unsigned short mask)
1112 {
1113         struct net_device *dev, *ret;
1114
1115         ASSERT_RTNL();
1116
1117         ret = NULL;
1118         for_each_netdev(net, dev) {
1119                 if (((dev->flags ^ if_flags) & mask) == 0) {
1120                         ret = dev;
1121                         break;
1122                 }
1123         }
1124         return ret;
1125 }
1126 EXPORT_SYMBOL(__dev_get_by_flags);
1127
1128 /**
1129  *      dev_valid_name - check if name is okay for network device
1130  *      @name: name string
1131  *
1132  *      Network device names need to be valid file names to
1133  *      to allow sysfs to work.  We also disallow any kind of
1134  *      whitespace.
1135  */
1136 bool dev_valid_name(const char *name)
1137 {
1138         if (*name == '\0')
1139                 return false;
1140         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1141                 return false;
1142         if (!strcmp(name, ".") || !strcmp(name, ".."))
1143                 return false;
1144
1145         while (*name) {
1146                 if (*name == '/' || *name == ':' || isspace(*name))
1147                         return false;
1148                 name++;
1149         }
1150         return true;
1151 }
1152 EXPORT_SYMBOL(dev_valid_name);
1153
1154 /**
1155  *      __dev_alloc_name - allocate a name for a device
1156  *      @net: network namespace to allocate the device name in
1157  *      @name: name format string
1158  *      @buf:  scratch buffer and result name string
1159  *
1160  *      Passed a format string - eg "lt%d" it will try and find a suitable
1161  *      id. It scans list of devices to build up a free map, then chooses
1162  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1163  *      while allocating the name and adding the device in order to avoid
1164  *      duplicates.
1165  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1166  *      Returns the number of the unit assigned or a negative errno code.
1167  */
1168
1169 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1170 {
1171         int i = 0;
1172         const char *p;
1173         const int max_netdevices = 8*PAGE_SIZE;
1174         unsigned long *inuse;
1175         struct net_device *d;
1176
1177         if (!dev_valid_name(name))
1178                 return -EINVAL;
1179
1180         p = strchr(name, '%');
1181         if (p) {
1182                 /*
1183                  * Verify the string as this thing may have come from
1184                  * the user.  There must be either one "%d" and no other "%"
1185                  * characters.
1186                  */
1187                 if (p[1] != 'd' || strchr(p + 2, '%'))
1188                         return -EINVAL;
1189
1190                 /* Use one page as a bit array of possible slots */
1191                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1192                 if (!inuse)
1193                         return -ENOMEM;
1194
1195                 for_each_netdev(net, d) {
1196                         if (!sscanf(d->name, name, &i))
1197                                 continue;
1198                         if (i < 0 || i >= max_netdevices)
1199                                 continue;
1200
1201                         /*  avoid cases where sscanf is not exact inverse of printf */
1202                         snprintf(buf, IFNAMSIZ, name, i);
1203                         if (!strncmp(buf, d->name, IFNAMSIZ))
1204                                 set_bit(i, inuse);
1205                 }
1206
1207                 i = find_first_zero_bit(inuse, max_netdevices);
1208                 free_page((unsigned long) inuse);
1209         }
1210
1211         snprintf(buf, IFNAMSIZ, name, i);
1212         if (!__dev_get_by_name(net, buf))
1213                 return i;
1214
1215         /* It is possible to run out of possible slots
1216          * when the name is long and there isn't enough space left
1217          * for the digits, or if all bits are used.
1218          */
1219         return -ENFILE;
1220 }
1221
1222 static int dev_alloc_name_ns(struct net *net,
1223                              struct net_device *dev,
1224                              const char *name)
1225 {
1226         char buf[IFNAMSIZ];
1227         int ret;
1228
1229         BUG_ON(!net);
1230         ret = __dev_alloc_name(net, name, buf);
1231         if (ret >= 0)
1232                 strlcpy(dev->name, buf, IFNAMSIZ);
1233         return ret;
1234 }
1235
1236 /**
1237  *      dev_alloc_name - allocate a name for a device
1238  *      @dev: device
1239  *      @name: name format string
1240  *
1241  *      Passed a format string - eg "lt%d" it will try and find a suitable
1242  *      id. It scans list of devices to build up a free map, then chooses
1243  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1244  *      while allocating the name and adding the device in order to avoid
1245  *      duplicates.
1246  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1247  *      Returns the number of the unit assigned or a negative errno code.
1248  */
1249
1250 int dev_alloc_name(struct net_device *dev, const char *name)
1251 {
1252         return dev_alloc_name_ns(dev_net(dev), dev, name);
1253 }
1254 EXPORT_SYMBOL(dev_alloc_name);
1255
1256 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1257                               const char *name)
1258 {
1259         BUG_ON(!net);
1260
1261         if (!dev_valid_name(name))
1262                 return -EINVAL;
1263
1264         if (strchr(name, '%'))
1265                 return dev_alloc_name_ns(net, dev, name);
1266         else if (__dev_get_by_name(net, name))
1267                 return -EEXIST;
1268         else if (dev->name != name)
1269                 strlcpy(dev->name, name, IFNAMSIZ);
1270
1271         return 0;
1272 }
1273
1274 /**
1275  *      dev_change_name - change name of a device
1276  *      @dev: device
1277  *      @newname: name (or format string) must be at least IFNAMSIZ
1278  *
1279  *      Change name of a device, can pass format strings "eth%d".
1280  *      for wildcarding.
1281  */
1282 int dev_change_name(struct net_device *dev, const char *newname)
1283 {
1284         unsigned char old_assign_type;
1285         char oldname[IFNAMSIZ];
1286         int err = 0;
1287         int ret;
1288         struct net *net;
1289
1290         ASSERT_RTNL();
1291         BUG_ON(!dev_net(dev));
1292
1293         net = dev_net(dev);
1294
1295         /* Some auto-enslaved devices e.g. failover slaves are
1296          * special, as userspace might rename the device after
1297          * the interface had been brought up and running since
1298          * the point kernel initiated auto-enslavement. Allow
1299          * live name change even when these slave devices are
1300          * up and running.
1301          *
1302          * Typically, users of these auto-enslaving devices
1303          * don't actually care about slave name change, as
1304          * they are supposed to operate on master interface
1305          * directly.
1306          */
1307         if (dev->flags & IFF_UP &&
1308             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1309                 return -EBUSY;
1310
1311         down_write(&devnet_rename_sem);
1312
1313         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1314                 up_write(&devnet_rename_sem);
1315                 return 0;
1316         }
1317
1318         memcpy(oldname, dev->name, IFNAMSIZ);
1319
1320         err = dev_get_valid_name(net, dev, newname);
1321         if (err < 0) {
1322                 up_write(&devnet_rename_sem);
1323                 return err;
1324         }
1325
1326         if (oldname[0] && !strchr(oldname, '%'))
1327                 netdev_info(dev, "renamed from %s\n", oldname);
1328
1329         old_assign_type = dev->name_assign_type;
1330         dev->name_assign_type = NET_NAME_RENAMED;
1331
1332 rollback:
1333         ret = device_rename(&dev->dev, dev->name);
1334         if (ret) {
1335                 memcpy(dev->name, oldname, IFNAMSIZ);
1336                 dev->name_assign_type = old_assign_type;
1337                 up_write(&devnet_rename_sem);
1338                 return ret;
1339         }
1340
1341         up_write(&devnet_rename_sem);
1342
1343         netdev_adjacent_rename_links(dev, oldname);
1344
1345         write_lock_bh(&dev_base_lock);
1346         netdev_name_node_del(dev->name_node);
1347         write_unlock_bh(&dev_base_lock);
1348
1349         synchronize_rcu();
1350
1351         write_lock_bh(&dev_base_lock);
1352         netdev_name_node_add(net, dev->name_node);
1353         write_unlock_bh(&dev_base_lock);
1354
1355         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1356         ret = notifier_to_errno(ret);
1357
1358         if (ret) {
1359                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1360                 if (err >= 0) {
1361                         err = ret;
1362                         down_write(&devnet_rename_sem);
1363                         memcpy(dev->name, oldname, IFNAMSIZ);
1364                         memcpy(oldname, newname, IFNAMSIZ);
1365                         dev->name_assign_type = old_assign_type;
1366                         old_assign_type = NET_NAME_RENAMED;
1367                         goto rollback;
1368                 } else {
1369                         pr_err("%s: name change rollback failed: %d\n",
1370                                dev->name, ret);
1371                 }
1372         }
1373
1374         return err;
1375 }
1376
1377 /**
1378  *      dev_set_alias - change ifalias of a device
1379  *      @dev: device
1380  *      @alias: name up to IFALIASZ
1381  *      @len: limit of bytes to copy from info
1382  *
1383  *      Set ifalias for a device,
1384  */
1385 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1386 {
1387         struct dev_ifalias *new_alias = NULL;
1388
1389         if (len >= IFALIASZ)
1390                 return -EINVAL;
1391
1392         if (len) {
1393                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1394                 if (!new_alias)
1395                         return -ENOMEM;
1396
1397                 memcpy(new_alias->ifalias, alias, len);
1398                 new_alias->ifalias[len] = 0;
1399         }
1400
1401         mutex_lock(&ifalias_mutex);
1402         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1403                                         mutex_is_locked(&ifalias_mutex));
1404         mutex_unlock(&ifalias_mutex);
1405
1406         if (new_alias)
1407                 kfree_rcu(new_alias, rcuhead);
1408
1409         return len;
1410 }
1411 EXPORT_SYMBOL(dev_set_alias);
1412
1413 /**
1414  *      dev_get_alias - get ifalias of a device
1415  *      @dev: device
1416  *      @name: buffer to store name of ifalias
1417  *      @len: size of buffer
1418  *
1419  *      get ifalias for a device.  Caller must make sure dev cannot go
1420  *      away,  e.g. rcu read lock or own a reference count to device.
1421  */
1422 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1423 {
1424         const struct dev_ifalias *alias;
1425         int ret = 0;
1426
1427         rcu_read_lock();
1428         alias = rcu_dereference(dev->ifalias);
1429         if (alias)
1430                 ret = snprintf(name, len, "%s", alias->ifalias);
1431         rcu_read_unlock();
1432
1433         return ret;
1434 }
1435
1436 /**
1437  *      netdev_features_change - device changes features
1438  *      @dev: device to cause notification
1439  *
1440  *      Called to indicate a device has changed features.
1441  */
1442 void netdev_features_change(struct net_device *dev)
1443 {
1444         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1445 }
1446 EXPORT_SYMBOL(netdev_features_change);
1447
1448 /**
1449  *      netdev_state_change - device changes state
1450  *      @dev: device to cause notification
1451  *
1452  *      Called to indicate a device has changed state. This function calls
1453  *      the notifier chains for netdev_chain and sends a NEWLINK message
1454  *      to the routing socket.
1455  */
1456 void netdev_state_change(struct net_device *dev)
1457 {
1458         if (dev->flags & IFF_UP) {
1459                 struct netdev_notifier_change_info change_info = {
1460                         .info.dev = dev,
1461                 };
1462
1463                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1464                                               &change_info.info);
1465                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1466         }
1467 }
1468 EXPORT_SYMBOL(netdev_state_change);
1469
1470 /**
1471  * netdev_notify_peers - notify network peers about existence of @dev
1472  * @dev: network device
1473  *
1474  * Generate traffic such that interested network peers are aware of
1475  * @dev, such as by generating a gratuitous ARP. This may be used when
1476  * a device wants to inform the rest of the network about some sort of
1477  * reconfiguration such as a failover event or virtual machine
1478  * migration.
1479  */
1480 void netdev_notify_peers(struct net_device *dev)
1481 {
1482         rtnl_lock();
1483         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1484         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1485         rtnl_unlock();
1486 }
1487 EXPORT_SYMBOL(netdev_notify_peers);
1488
1489 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1490 {
1491         const struct net_device_ops *ops = dev->netdev_ops;
1492         int ret;
1493
1494         ASSERT_RTNL();
1495
1496         if (!netif_device_present(dev)) {
1497                 /* may be detached because parent is runtime-suspended */
1498                 if (dev->dev.parent)
1499                         pm_runtime_resume(dev->dev.parent);
1500                 if (!netif_device_present(dev))
1501                         return -ENODEV;
1502         }
1503
1504         /* Block netpoll from trying to do any rx path servicing.
1505          * If we don't do this there is a chance ndo_poll_controller
1506          * or ndo_poll may be running while we open the device
1507          */
1508         netpoll_poll_disable(dev);
1509
1510         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1511         ret = notifier_to_errno(ret);
1512         if (ret)
1513                 return ret;
1514
1515         set_bit(__LINK_STATE_START, &dev->state);
1516
1517         if (ops->ndo_validate_addr)
1518                 ret = ops->ndo_validate_addr(dev);
1519
1520         if (!ret && ops->ndo_open)
1521                 ret = ops->ndo_open(dev);
1522
1523         netpoll_poll_enable(dev);
1524
1525         if (ret)
1526                 clear_bit(__LINK_STATE_START, &dev->state);
1527         else {
1528                 dev->flags |= IFF_UP;
1529                 dev_set_rx_mode(dev);
1530                 dev_activate(dev);
1531                 add_device_randomness(dev->dev_addr, dev->addr_len);
1532         }
1533
1534         return ret;
1535 }
1536
1537 /**
1538  *      dev_open        - prepare an interface for use.
1539  *      @dev: device to open
1540  *      @extack: netlink extended ack
1541  *
1542  *      Takes a device from down to up state. The device's private open
1543  *      function is invoked and then the multicast lists are loaded. Finally
1544  *      the device is moved into the up state and a %NETDEV_UP message is
1545  *      sent to the netdev notifier chain.
1546  *
1547  *      Calling this function on an active interface is a nop. On a failure
1548  *      a negative errno code is returned.
1549  */
1550 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1551 {
1552         int ret;
1553
1554         if (dev->flags & IFF_UP)
1555                 return 0;
1556
1557         ret = __dev_open(dev, extack);
1558         if (ret < 0)
1559                 return ret;
1560
1561         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1562         call_netdevice_notifiers(NETDEV_UP, dev);
1563
1564         return ret;
1565 }
1566 EXPORT_SYMBOL(dev_open);
1567
1568 static void __dev_close_many(struct list_head *head)
1569 {
1570         struct net_device *dev;
1571
1572         ASSERT_RTNL();
1573         might_sleep();
1574
1575         list_for_each_entry(dev, head, close_list) {
1576                 /* Temporarily disable netpoll until the interface is down */
1577                 netpoll_poll_disable(dev);
1578
1579                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1580
1581                 clear_bit(__LINK_STATE_START, &dev->state);
1582
1583                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1584                  * can be even on different cpu. So just clear netif_running().
1585                  *
1586                  * dev->stop() will invoke napi_disable() on all of it's
1587                  * napi_struct instances on this device.
1588                  */
1589                 smp_mb__after_atomic(); /* Commit netif_running(). */
1590         }
1591
1592         dev_deactivate_many(head);
1593
1594         list_for_each_entry(dev, head, close_list) {
1595                 const struct net_device_ops *ops = dev->netdev_ops;
1596
1597                 /*
1598                  *      Call the device specific close. This cannot fail.
1599                  *      Only if device is UP
1600                  *
1601                  *      We allow it to be called even after a DETACH hot-plug
1602                  *      event.
1603                  */
1604                 if (ops->ndo_stop)
1605                         ops->ndo_stop(dev);
1606
1607                 dev->flags &= ~IFF_UP;
1608                 netpoll_poll_enable(dev);
1609         }
1610 }
1611
1612 static void __dev_close(struct net_device *dev)
1613 {
1614         LIST_HEAD(single);
1615
1616         list_add(&dev->close_list, &single);
1617         __dev_close_many(&single);
1618         list_del(&single);
1619 }
1620
1621 void dev_close_many(struct list_head *head, bool unlink)
1622 {
1623         struct net_device *dev, *tmp;
1624
1625         /* Remove the devices that don't need to be closed */
1626         list_for_each_entry_safe(dev, tmp, head, close_list)
1627                 if (!(dev->flags & IFF_UP))
1628                         list_del_init(&dev->close_list);
1629
1630         __dev_close_many(head);
1631
1632         list_for_each_entry_safe(dev, tmp, head, close_list) {
1633                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1634                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1635                 if (unlink)
1636                         list_del_init(&dev->close_list);
1637         }
1638 }
1639 EXPORT_SYMBOL(dev_close_many);
1640
1641 /**
1642  *      dev_close - shutdown an interface.
1643  *      @dev: device to shutdown
1644  *
1645  *      This function moves an active device into down state. A
1646  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1647  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1648  *      chain.
1649  */
1650 void dev_close(struct net_device *dev)
1651 {
1652         if (dev->flags & IFF_UP) {
1653                 LIST_HEAD(single);
1654
1655                 list_add(&dev->close_list, &single);
1656                 dev_close_many(&single, true);
1657                 list_del(&single);
1658         }
1659 }
1660 EXPORT_SYMBOL(dev_close);
1661
1662
1663 /**
1664  *      dev_disable_lro - disable Large Receive Offload on a device
1665  *      @dev: device
1666  *
1667  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1668  *      called under RTNL.  This is needed if received packets may be
1669  *      forwarded to another interface.
1670  */
1671 void dev_disable_lro(struct net_device *dev)
1672 {
1673         struct net_device *lower_dev;
1674         struct list_head *iter;
1675
1676         dev->wanted_features &= ~NETIF_F_LRO;
1677         netdev_update_features(dev);
1678
1679         if (unlikely(dev->features & NETIF_F_LRO))
1680                 netdev_WARN(dev, "failed to disable LRO!\n");
1681
1682         netdev_for_each_lower_dev(dev, lower_dev, iter)
1683                 dev_disable_lro(lower_dev);
1684 }
1685 EXPORT_SYMBOL(dev_disable_lro);
1686
1687 /**
1688  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1689  *      @dev: device
1690  *
1691  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1692  *      called under RTNL.  This is needed if Generic XDP is installed on
1693  *      the device.
1694  */
1695 static void dev_disable_gro_hw(struct net_device *dev)
1696 {
1697         dev->wanted_features &= ~NETIF_F_GRO_HW;
1698         netdev_update_features(dev);
1699
1700         if (unlikely(dev->features & NETIF_F_GRO_HW))
1701                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1702 }
1703
1704 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1705 {
1706 #define N(val)                                          \
1707         case NETDEV_##val:                              \
1708                 return "NETDEV_" __stringify(val);
1709         switch (cmd) {
1710         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1711         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1712         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1713         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1714         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1715         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1716         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1717         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1718         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1719         N(PRE_CHANGEADDR)
1720         }
1721 #undef N
1722         return "UNKNOWN_NETDEV_EVENT";
1723 }
1724 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1725
1726 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1727                                    struct net_device *dev)
1728 {
1729         struct netdev_notifier_info info = {
1730                 .dev = dev,
1731         };
1732
1733         return nb->notifier_call(nb, val, &info);
1734 }
1735
1736 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1737                                              struct net_device *dev)
1738 {
1739         int err;
1740
1741         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1742         err = notifier_to_errno(err);
1743         if (err)
1744                 return err;
1745
1746         if (!(dev->flags & IFF_UP))
1747                 return 0;
1748
1749         call_netdevice_notifier(nb, NETDEV_UP, dev);
1750         return 0;
1751 }
1752
1753 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1754                                                 struct net_device *dev)
1755 {
1756         if (dev->flags & IFF_UP) {
1757                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1758                                         dev);
1759                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1760         }
1761         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1762 }
1763
1764 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1765                                                  struct net *net)
1766 {
1767         struct net_device *dev;
1768         int err;
1769
1770         for_each_netdev(net, dev) {
1771                 err = call_netdevice_register_notifiers(nb, dev);
1772                 if (err)
1773                         goto rollback;
1774         }
1775         return 0;
1776
1777 rollback:
1778         for_each_netdev_continue_reverse(net, dev)
1779                 call_netdevice_unregister_notifiers(nb, dev);
1780         return err;
1781 }
1782
1783 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1784                                                     struct net *net)
1785 {
1786         struct net_device *dev;
1787
1788         for_each_netdev(net, dev)
1789                 call_netdevice_unregister_notifiers(nb, dev);
1790 }
1791
1792 static int dev_boot_phase = 1;
1793
1794 /**
1795  * register_netdevice_notifier - register a network notifier block
1796  * @nb: notifier
1797  *
1798  * Register a notifier to be called when network device events occur.
1799  * The notifier passed is linked into the kernel structures and must
1800  * not be reused until it has been unregistered. A negative errno code
1801  * is returned on a failure.
1802  *
1803  * When registered all registration and up events are replayed
1804  * to the new notifier to allow device to have a race free
1805  * view of the network device list.
1806  */
1807
1808 int register_netdevice_notifier(struct notifier_block *nb)
1809 {
1810         struct net *net;
1811         int err;
1812
1813         /* Close race with setup_net() and cleanup_net() */
1814         down_write(&pernet_ops_rwsem);
1815         rtnl_lock();
1816         err = raw_notifier_chain_register(&netdev_chain, nb);
1817         if (err)
1818                 goto unlock;
1819         if (dev_boot_phase)
1820                 goto unlock;
1821         for_each_net(net) {
1822                 err = call_netdevice_register_net_notifiers(nb, net);
1823                 if (err)
1824                         goto rollback;
1825         }
1826
1827 unlock:
1828         rtnl_unlock();
1829         up_write(&pernet_ops_rwsem);
1830         return err;
1831
1832 rollback:
1833         for_each_net_continue_reverse(net)
1834                 call_netdevice_unregister_net_notifiers(nb, net);
1835
1836         raw_notifier_chain_unregister(&netdev_chain, nb);
1837         goto unlock;
1838 }
1839 EXPORT_SYMBOL(register_netdevice_notifier);
1840
1841 /**
1842  * unregister_netdevice_notifier - unregister a network notifier block
1843  * @nb: notifier
1844  *
1845  * Unregister a notifier previously registered by
1846  * register_netdevice_notifier(). The notifier is unlinked into the
1847  * kernel structures and may then be reused. A negative errno code
1848  * is returned on a failure.
1849  *
1850  * After unregistering unregister and down device events are synthesized
1851  * for all devices on the device list to the removed notifier to remove
1852  * the need for special case cleanup code.
1853  */
1854
1855 int unregister_netdevice_notifier(struct notifier_block *nb)
1856 {
1857         struct net *net;
1858         int err;
1859
1860         /* Close race with setup_net() and cleanup_net() */
1861         down_write(&pernet_ops_rwsem);
1862         rtnl_lock();
1863         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1864         if (err)
1865                 goto unlock;
1866
1867         for_each_net(net)
1868                 call_netdevice_unregister_net_notifiers(nb, net);
1869
1870 unlock:
1871         rtnl_unlock();
1872         up_write(&pernet_ops_rwsem);
1873         return err;
1874 }
1875 EXPORT_SYMBOL(unregister_netdevice_notifier);
1876
1877 static int __register_netdevice_notifier_net(struct net *net,
1878                                              struct notifier_block *nb,
1879                                              bool ignore_call_fail)
1880 {
1881         int err;
1882
1883         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1884         if (err)
1885                 return err;
1886         if (dev_boot_phase)
1887                 return 0;
1888
1889         err = call_netdevice_register_net_notifiers(nb, net);
1890         if (err && !ignore_call_fail)
1891                 goto chain_unregister;
1892
1893         return 0;
1894
1895 chain_unregister:
1896         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1897         return err;
1898 }
1899
1900 static int __unregister_netdevice_notifier_net(struct net *net,
1901                                                struct notifier_block *nb)
1902 {
1903         int err;
1904
1905         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1906         if (err)
1907                 return err;
1908
1909         call_netdevice_unregister_net_notifiers(nb, net);
1910         return 0;
1911 }
1912
1913 /**
1914  * register_netdevice_notifier_net - register a per-netns network notifier block
1915  * @net: network namespace
1916  * @nb: notifier
1917  *
1918  * Register a notifier to be called when network device events occur.
1919  * The notifier passed is linked into the kernel structures and must
1920  * not be reused until it has been unregistered. A negative errno code
1921  * is returned on a failure.
1922  *
1923  * When registered all registration and up events are replayed
1924  * to the new notifier to allow device to have a race free
1925  * view of the network device list.
1926  */
1927
1928 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1929 {
1930         int err;
1931
1932         rtnl_lock();
1933         err = __register_netdevice_notifier_net(net, nb, false);
1934         rtnl_unlock();
1935         return err;
1936 }
1937 EXPORT_SYMBOL(register_netdevice_notifier_net);
1938
1939 /**
1940  * unregister_netdevice_notifier_net - unregister a per-netns
1941  *                                     network notifier block
1942  * @net: network namespace
1943  * @nb: notifier
1944  *
1945  * Unregister a notifier previously registered by
1946  * register_netdevice_notifier(). The notifier is unlinked into the
1947  * kernel structures and may then be reused. A negative errno code
1948  * is returned on a failure.
1949  *
1950  * After unregistering unregister and down device events are synthesized
1951  * for all devices on the device list to the removed notifier to remove
1952  * the need for special case cleanup code.
1953  */
1954
1955 int unregister_netdevice_notifier_net(struct net *net,
1956                                       struct notifier_block *nb)
1957 {
1958         int err;
1959
1960         rtnl_lock();
1961         err = __unregister_netdevice_notifier_net(net, nb);
1962         rtnl_unlock();
1963         return err;
1964 }
1965 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1966
1967 int register_netdevice_notifier_dev_net(struct net_device *dev,
1968                                         struct notifier_block *nb,
1969                                         struct netdev_net_notifier *nn)
1970 {
1971         int err;
1972
1973         rtnl_lock();
1974         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1975         if (!err) {
1976                 nn->nb = nb;
1977                 list_add(&nn->list, &dev->net_notifier_list);
1978         }
1979         rtnl_unlock();
1980         return err;
1981 }
1982 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1983
1984 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1985                                           struct notifier_block *nb,
1986                                           struct netdev_net_notifier *nn)
1987 {
1988         int err;
1989
1990         rtnl_lock();
1991         list_del(&nn->list);
1992         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1993         rtnl_unlock();
1994         return err;
1995 }
1996 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1997
1998 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1999                                              struct net *net)
2000 {
2001         struct netdev_net_notifier *nn;
2002
2003         list_for_each_entry(nn, &dev->net_notifier_list, list) {
2004                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2005                 __register_netdevice_notifier_net(net, nn->nb, true);
2006         }
2007 }
2008
2009 /**
2010  *      call_netdevice_notifiers_info - call all network notifier blocks
2011  *      @val: value passed unmodified to notifier function
2012  *      @info: notifier information data
2013  *
2014  *      Call all network notifier blocks.  Parameters and return value
2015  *      are as for raw_notifier_call_chain().
2016  */
2017
2018 static int call_netdevice_notifiers_info(unsigned long val,
2019                                          struct netdev_notifier_info *info)
2020 {
2021         struct net *net = dev_net(info->dev);
2022         int ret;
2023
2024         ASSERT_RTNL();
2025
2026         /* Run per-netns notifier block chain first, then run the global one.
2027          * Hopefully, one day, the global one is going to be removed after
2028          * all notifier block registrators get converted to be per-netns.
2029          */
2030         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2031         if (ret & NOTIFY_STOP_MASK)
2032                 return ret;
2033         return raw_notifier_call_chain(&netdev_chain, val, info);
2034 }
2035
2036 static int call_netdevice_notifiers_extack(unsigned long val,
2037                                            struct net_device *dev,
2038                                            struct netlink_ext_ack *extack)
2039 {
2040         struct netdev_notifier_info info = {
2041                 .dev = dev,
2042                 .extack = extack,
2043         };
2044
2045         return call_netdevice_notifiers_info(val, &info);
2046 }
2047
2048 /**
2049  *      call_netdevice_notifiers - call all network notifier blocks
2050  *      @val: value passed unmodified to notifier function
2051  *      @dev: net_device pointer passed unmodified to notifier function
2052  *
2053  *      Call all network notifier blocks.  Parameters and return value
2054  *      are as for raw_notifier_call_chain().
2055  */
2056
2057 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2058 {
2059         return call_netdevice_notifiers_extack(val, dev, NULL);
2060 }
2061 EXPORT_SYMBOL(call_netdevice_notifiers);
2062
2063 /**
2064  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2065  *      @val: value passed unmodified to notifier function
2066  *      @dev: net_device pointer passed unmodified to notifier function
2067  *      @arg: additional u32 argument passed to the notifier function
2068  *
2069  *      Call all network notifier blocks.  Parameters and return value
2070  *      are as for raw_notifier_call_chain().
2071  */
2072 static int call_netdevice_notifiers_mtu(unsigned long val,
2073                                         struct net_device *dev, u32 arg)
2074 {
2075         struct netdev_notifier_info_ext info = {
2076                 .info.dev = dev,
2077                 .ext.mtu = arg,
2078         };
2079
2080         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2081
2082         return call_netdevice_notifiers_info(val, &info.info);
2083 }
2084
2085 #ifdef CONFIG_NET_INGRESS
2086 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2087
2088 void net_inc_ingress_queue(void)
2089 {
2090         static_branch_inc(&ingress_needed_key);
2091 }
2092 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2093
2094 void net_dec_ingress_queue(void)
2095 {
2096         static_branch_dec(&ingress_needed_key);
2097 }
2098 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2099 #endif
2100
2101 #ifdef CONFIG_NET_EGRESS
2102 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2103
2104 void net_inc_egress_queue(void)
2105 {
2106         static_branch_inc(&egress_needed_key);
2107 }
2108 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2109
2110 void net_dec_egress_queue(void)
2111 {
2112         static_branch_dec(&egress_needed_key);
2113 }
2114 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2115 #endif
2116
2117 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2118 #ifdef CONFIG_JUMP_LABEL
2119 static atomic_t netstamp_needed_deferred;
2120 static atomic_t netstamp_wanted;
2121 static void netstamp_clear(struct work_struct *work)
2122 {
2123         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2124         int wanted;
2125
2126         wanted = atomic_add_return(deferred, &netstamp_wanted);
2127         if (wanted > 0)
2128                 static_branch_enable(&netstamp_needed_key);
2129         else
2130                 static_branch_disable(&netstamp_needed_key);
2131 }
2132 static DECLARE_WORK(netstamp_work, netstamp_clear);
2133 #endif
2134
2135 void net_enable_timestamp(void)
2136 {
2137 #ifdef CONFIG_JUMP_LABEL
2138         int wanted;
2139
2140         while (1) {
2141                 wanted = atomic_read(&netstamp_wanted);
2142                 if (wanted <= 0)
2143                         break;
2144                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2145                         return;
2146         }
2147         atomic_inc(&netstamp_needed_deferred);
2148         schedule_work(&netstamp_work);
2149 #else
2150         static_branch_inc(&netstamp_needed_key);
2151 #endif
2152 }
2153 EXPORT_SYMBOL(net_enable_timestamp);
2154
2155 void net_disable_timestamp(void)
2156 {
2157 #ifdef CONFIG_JUMP_LABEL
2158         int wanted;
2159
2160         while (1) {
2161                 wanted = atomic_read(&netstamp_wanted);
2162                 if (wanted <= 1)
2163                         break;
2164                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2165                         return;
2166         }
2167         atomic_dec(&netstamp_needed_deferred);
2168         schedule_work(&netstamp_work);
2169 #else
2170         static_branch_dec(&netstamp_needed_key);
2171 #endif
2172 }
2173 EXPORT_SYMBOL(net_disable_timestamp);
2174
2175 static inline void net_timestamp_set(struct sk_buff *skb)
2176 {
2177         skb->tstamp = 0;
2178         if (static_branch_unlikely(&netstamp_needed_key))
2179                 __net_timestamp(skb);
2180 }
2181
2182 #define net_timestamp_check(COND, SKB)                          \
2183         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2184                 if ((COND) && !(SKB)->tstamp)                   \
2185                         __net_timestamp(SKB);                   \
2186         }                                                       \
2187
2188 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2189 {
2190         unsigned int len;
2191
2192         if (!(dev->flags & IFF_UP))
2193                 return false;
2194
2195         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2196         if (skb->len <= len)
2197                 return true;
2198
2199         /* if TSO is enabled, we don't care about the length as the packet
2200          * could be forwarded without being segmented before
2201          */
2202         if (skb_is_gso(skb))
2203                 return true;
2204
2205         return false;
2206 }
2207 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2208
2209 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2210 {
2211         int ret = ____dev_forward_skb(dev, skb);
2212
2213         if (likely(!ret)) {
2214                 skb->protocol = eth_type_trans(skb, dev);
2215                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2216         }
2217
2218         return ret;
2219 }
2220 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2221
2222 /**
2223  * dev_forward_skb - loopback an skb to another netif
2224  *
2225  * @dev: destination network device
2226  * @skb: buffer to forward
2227  *
2228  * return values:
2229  *      NET_RX_SUCCESS  (no congestion)
2230  *      NET_RX_DROP     (packet was dropped, but freed)
2231  *
2232  * dev_forward_skb can be used for injecting an skb from the
2233  * start_xmit function of one device into the receive queue
2234  * of another device.
2235  *
2236  * The receiving device may be in another namespace, so
2237  * we have to clear all information in the skb that could
2238  * impact namespace isolation.
2239  */
2240 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2241 {
2242         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2243 }
2244 EXPORT_SYMBOL_GPL(dev_forward_skb);
2245
2246 static inline int deliver_skb(struct sk_buff *skb,
2247                               struct packet_type *pt_prev,
2248                               struct net_device *orig_dev)
2249 {
2250         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2251                 return -ENOMEM;
2252         refcount_inc(&skb->users);
2253         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2254 }
2255
2256 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2257                                           struct packet_type **pt,
2258                                           struct net_device *orig_dev,
2259                                           __be16 type,
2260                                           struct list_head *ptype_list)
2261 {
2262         struct packet_type *ptype, *pt_prev = *pt;
2263
2264         list_for_each_entry_rcu(ptype, ptype_list, list) {
2265                 if (ptype->type != type)
2266                         continue;
2267                 if (pt_prev)
2268                         deliver_skb(skb, pt_prev, orig_dev);
2269                 pt_prev = ptype;
2270         }
2271         *pt = pt_prev;
2272 }
2273
2274 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2275 {
2276         if (!ptype->af_packet_priv || !skb->sk)
2277                 return false;
2278
2279         if (ptype->id_match)
2280                 return ptype->id_match(ptype, skb->sk);
2281         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2282                 return true;
2283
2284         return false;
2285 }
2286
2287 /**
2288  * dev_nit_active - return true if any network interface taps are in use
2289  *
2290  * @dev: network device to check for the presence of taps
2291  */
2292 bool dev_nit_active(struct net_device *dev)
2293 {
2294         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2295 }
2296 EXPORT_SYMBOL_GPL(dev_nit_active);
2297
2298 /*
2299  *      Support routine. Sends outgoing frames to any network
2300  *      taps currently in use.
2301  */
2302
2303 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2304 {
2305         struct packet_type *ptype;
2306         struct sk_buff *skb2 = NULL;
2307         struct packet_type *pt_prev = NULL;
2308         struct list_head *ptype_list = &ptype_all;
2309
2310         rcu_read_lock();
2311 again:
2312         list_for_each_entry_rcu(ptype, ptype_list, list) {
2313                 if (ptype->ignore_outgoing)
2314                         continue;
2315
2316                 /* Never send packets back to the socket
2317                  * they originated from - MvS ([email protected])
2318                  */
2319                 if (skb_loop_sk(ptype, skb))
2320                         continue;
2321
2322                 if (pt_prev) {
2323                         deliver_skb(skb2, pt_prev, skb->dev);
2324                         pt_prev = ptype;
2325                         continue;
2326                 }
2327
2328                 /* need to clone skb, done only once */
2329                 skb2 = skb_clone(skb, GFP_ATOMIC);
2330                 if (!skb2)
2331                         goto out_unlock;
2332
2333                 net_timestamp_set(skb2);
2334
2335                 /* skb->nh should be correctly
2336                  * set by sender, so that the second statement is
2337                  * just protection against buggy protocols.
2338                  */
2339                 skb_reset_mac_header(skb2);
2340
2341                 if (skb_network_header(skb2) < skb2->data ||
2342                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2343                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2344                                              ntohs(skb2->protocol),
2345                                              dev->name);
2346                         skb_reset_network_header(skb2);
2347                 }
2348
2349                 skb2->transport_header = skb2->network_header;
2350                 skb2->pkt_type = PACKET_OUTGOING;
2351                 pt_prev = ptype;
2352         }
2353
2354         if (ptype_list == &ptype_all) {
2355                 ptype_list = &dev->ptype_all;
2356                 goto again;
2357         }
2358 out_unlock:
2359         if (pt_prev) {
2360                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2361                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2362                 else
2363                         kfree_skb(skb2);
2364         }
2365         rcu_read_unlock();
2366 }
2367 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2368
2369 /**
2370  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2371  * @dev: Network device
2372  * @txq: number of queues available
2373  *
2374  * If real_num_tx_queues is changed the tc mappings may no longer be
2375  * valid. To resolve this verify the tc mapping remains valid and if
2376  * not NULL the mapping. With no priorities mapping to this
2377  * offset/count pair it will no longer be used. In the worst case TC0
2378  * is invalid nothing can be done so disable priority mappings. If is
2379  * expected that drivers will fix this mapping if they can before
2380  * calling netif_set_real_num_tx_queues.
2381  */
2382 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2383 {
2384         int i;
2385         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2386
2387         /* If TC0 is invalidated disable TC mapping */
2388         if (tc->offset + tc->count > txq) {
2389                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2390                 dev->num_tc = 0;
2391                 return;
2392         }
2393
2394         /* Invalidated prio to tc mappings set to TC0 */
2395         for (i = 1; i < TC_BITMASK + 1; i++) {
2396                 int q = netdev_get_prio_tc_map(dev, i);
2397
2398                 tc = &dev->tc_to_txq[q];
2399                 if (tc->offset + tc->count > txq) {
2400                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2401                                 i, q);
2402                         netdev_set_prio_tc_map(dev, i, 0);
2403                 }
2404         }
2405 }
2406
2407 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2408 {
2409         if (dev->num_tc) {
2410                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2411                 int i;
2412
2413                 /* walk through the TCs and see if it falls into any of them */
2414                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2415                         if ((txq - tc->offset) < tc->count)
2416                                 return i;
2417                 }
2418
2419                 /* didn't find it, just return -1 to indicate no match */
2420                 return -1;
2421         }
2422
2423         return 0;
2424 }
2425 EXPORT_SYMBOL(netdev_txq_to_tc);
2426
2427 #ifdef CONFIG_XPS
2428 struct static_key xps_needed __read_mostly;
2429 EXPORT_SYMBOL(xps_needed);
2430 struct static_key xps_rxqs_needed __read_mostly;
2431 EXPORT_SYMBOL(xps_rxqs_needed);
2432 static DEFINE_MUTEX(xps_map_mutex);
2433 #define xmap_dereference(P)             \
2434         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2435
2436 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2437                              int tci, u16 index)
2438 {
2439         struct xps_map *map = NULL;
2440         int pos;
2441
2442         if (dev_maps)
2443                 map = xmap_dereference(dev_maps->attr_map[tci]);
2444         if (!map)
2445                 return false;
2446
2447         for (pos = map->len; pos--;) {
2448                 if (map->queues[pos] != index)
2449                         continue;
2450
2451                 if (map->len > 1) {
2452                         map->queues[pos] = map->queues[--map->len];
2453                         break;
2454                 }
2455
2456                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2457                 kfree_rcu(map, rcu);
2458                 return false;
2459         }
2460
2461         return true;
2462 }
2463
2464 static bool remove_xps_queue_cpu(struct net_device *dev,
2465                                  struct xps_dev_maps *dev_maps,
2466                                  int cpu, u16 offset, u16 count)
2467 {
2468         int num_tc = dev->num_tc ? : 1;
2469         bool active = false;
2470         int tci;
2471
2472         for (tci = cpu * num_tc; num_tc--; tci++) {
2473                 int i, j;
2474
2475                 for (i = count, j = offset; i--; j++) {
2476                         if (!remove_xps_queue(dev_maps, tci, j))
2477                                 break;
2478                 }
2479
2480                 active |= i < 0;
2481         }
2482
2483         return active;
2484 }
2485
2486 static void reset_xps_maps(struct net_device *dev,
2487                            struct xps_dev_maps *dev_maps,
2488                            bool is_rxqs_map)
2489 {
2490         if (is_rxqs_map) {
2491                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2492                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2493         } else {
2494                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2495         }
2496         static_key_slow_dec_cpuslocked(&xps_needed);
2497         kfree_rcu(dev_maps, rcu);
2498 }
2499
2500 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2501                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2502                            u16 offset, u16 count, bool is_rxqs_map)
2503 {
2504         bool active = false;
2505         int i, j;
2506
2507         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2508              j < nr_ids;)
2509                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2510                                                count);
2511         if (!active)
2512                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2513
2514         if (!is_rxqs_map) {
2515                 for (i = offset + (count - 1); count--; i--) {
2516                         netdev_queue_numa_node_write(
2517                                 netdev_get_tx_queue(dev, i),
2518                                 NUMA_NO_NODE);
2519                 }
2520         }
2521 }
2522
2523 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2524                                    u16 count)
2525 {
2526         const unsigned long *possible_mask = NULL;
2527         struct xps_dev_maps *dev_maps;
2528         unsigned int nr_ids;
2529
2530         if (!static_key_false(&xps_needed))
2531                 return;
2532
2533         cpus_read_lock();
2534         mutex_lock(&xps_map_mutex);
2535
2536         if (static_key_false(&xps_rxqs_needed)) {
2537                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2538                 if (dev_maps) {
2539                         nr_ids = dev->num_rx_queues;
2540                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2541                                        offset, count, true);
2542                 }
2543         }
2544
2545         dev_maps = xmap_dereference(dev->xps_cpus_map);
2546         if (!dev_maps)
2547                 goto out_no_maps;
2548
2549         if (num_possible_cpus() > 1)
2550                 possible_mask = cpumask_bits(cpu_possible_mask);
2551         nr_ids = nr_cpu_ids;
2552         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2553                        false);
2554
2555 out_no_maps:
2556         mutex_unlock(&xps_map_mutex);
2557         cpus_read_unlock();
2558 }
2559
2560 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2561 {
2562         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2563 }
2564
2565 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2566                                       u16 index, bool is_rxqs_map)
2567 {
2568         struct xps_map *new_map;
2569         int alloc_len = XPS_MIN_MAP_ALLOC;
2570         int i, pos;
2571
2572         for (pos = 0; map && pos < map->len; pos++) {
2573                 if (map->queues[pos] != index)
2574                         continue;
2575                 return map;
2576         }
2577
2578         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2579         if (map) {
2580                 if (pos < map->alloc_len)
2581                         return map;
2582
2583                 alloc_len = map->alloc_len * 2;
2584         }
2585
2586         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2587          *  map
2588          */
2589         if (is_rxqs_map)
2590                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2591         else
2592                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2593                                        cpu_to_node(attr_index));
2594         if (!new_map)
2595                 return NULL;
2596
2597         for (i = 0; i < pos; i++)
2598                 new_map->queues[i] = map->queues[i];
2599         new_map->alloc_len = alloc_len;
2600         new_map->len = pos;
2601
2602         return new_map;
2603 }
2604
2605 /* Must be called under cpus_read_lock */
2606 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2607                           u16 index, bool is_rxqs_map)
2608 {
2609         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2610         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2611         int i, j, tci, numa_node_id = -2;
2612         int maps_sz, num_tc = 1, tc = 0;
2613         struct xps_map *map, *new_map;
2614         bool active = false;
2615         unsigned int nr_ids;
2616
2617         if (dev->num_tc) {
2618                 /* Do not allow XPS on subordinate device directly */
2619                 num_tc = dev->num_tc;
2620                 if (num_tc < 0)
2621                         return -EINVAL;
2622
2623                 /* If queue belongs to subordinate dev use its map */
2624                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2625
2626                 tc = netdev_txq_to_tc(dev, index);
2627                 if (tc < 0)
2628                         return -EINVAL;
2629         }
2630
2631         mutex_lock(&xps_map_mutex);
2632         if (is_rxqs_map) {
2633                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2634                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2635                 nr_ids = dev->num_rx_queues;
2636         } else {
2637                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2638                 if (num_possible_cpus() > 1) {
2639                         online_mask = cpumask_bits(cpu_online_mask);
2640                         possible_mask = cpumask_bits(cpu_possible_mask);
2641                 }
2642                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2643                 nr_ids = nr_cpu_ids;
2644         }
2645
2646         if (maps_sz < L1_CACHE_BYTES)
2647                 maps_sz = L1_CACHE_BYTES;
2648
2649         /* allocate memory for queue storage */
2650         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2651              j < nr_ids;) {
2652                 if (!new_dev_maps)
2653                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2654                 if (!new_dev_maps) {
2655                         mutex_unlock(&xps_map_mutex);
2656                         return -ENOMEM;
2657                 }
2658
2659                 tci = j * num_tc + tc;
2660                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2661                                  NULL;
2662
2663                 map = expand_xps_map(map, j, index, is_rxqs_map);
2664                 if (!map)
2665                         goto error;
2666
2667                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2668         }
2669
2670         if (!new_dev_maps)
2671                 goto out_no_new_maps;
2672
2673         if (!dev_maps) {
2674                 /* Increment static keys at most once per type */
2675                 static_key_slow_inc_cpuslocked(&xps_needed);
2676                 if (is_rxqs_map)
2677                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2678         }
2679
2680         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2681              j < nr_ids;) {
2682                 /* copy maps belonging to foreign traffic classes */
2683                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2684                         /* fill in the new device map from the old device map */
2685                         map = xmap_dereference(dev_maps->attr_map[tci]);
2686                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2687                 }
2688
2689                 /* We need to explicitly update tci as prevous loop
2690                  * could break out early if dev_maps is NULL.
2691                  */
2692                 tci = j * num_tc + tc;
2693
2694                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2695                     netif_attr_test_online(j, online_mask, nr_ids)) {
2696                         /* add tx-queue to CPU/rx-queue maps */
2697                         int pos = 0;
2698
2699                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2700                         while ((pos < map->len) && (map->queues[pos] != index))
2701                                 pos++;
2702
2703                         if (pos == map->len)
2704                                 map->queues[map->len++] = index;
2705 #ifdef CONFIG_NUMA
2706                         if (!is_rxqs_map) {
2707                                 if (numa_node_id == -2)
2708                                         numa_node_id = cpu_to_node(j);
2709                                 else if (numa_node_id != cpu_to_node(j))
2710                                         numa_node_id = -1;
2711                         }
2712 #endif
2713                 } else if (dev_maps) {
2714                         /* fill in the new device map from the old device map */
2715                         map = xmap_dereference(dev_maps->attr_map[tci]);
2716                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2717                 }
2718
2719                 /* copy maps belonging to foreign traffic classes */
2720                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2721                         /* fill in the new device map from the old device map */
2722                         map = xmap_dereference(dev_maps->attr_map[tci]);
2723                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2724                 }
2725         }
2726
2727         if (is_rxqs_map)
2728                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2729         else
2730                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2731
2732         /* Cleanup old maps */
2733         if (!dev_maps)
2734                 goto out_no_old_maps;
2735
2736         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2737              j < nr_ids;) {
2738                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2739                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2740                         map = xmap_dereference(dev_maps->attr_map[tci]);
2741                         if (map && map != new_map)
2742                                 kfree_rcu(map, rcu);
2743                 }
2744         }
2745
2746         kfree_rcu(dev_maps, rcu);
2747
2748 out_no_old_maps:
2749         dev_maps = new_dev_maps;
2750         active = true;
2751
2752 out_no_new_maps:
2753         if (!is_rxqs_map) {
2754                 /* update Tx queue numa node */
2755                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2756                                              (numa_node_id >= 0) ?
2757                                              numa_node_id : NUMA_NO_NODE);
2758         }
2759
2760         if (!dev_maps)
2761                 goto out_no_maps;
2762
2763         /* removes tx-queue from unused CPUs/rx-queues */
2764         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2765              j < nr_ids;) {
2766                 for (i = tc, tci = j * num_tc; i--; tci++)
2767                         active |= remove_xps_queue(dev_maps, tci, index);
2768                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2769                     !netif_attr_test_online(j, online_mask, nr_ids))
2770                         active |= remove_xps_queue(dev_maps, tci, index);
2771                 for (i = num_tc - tc, tci++; --i; tci++)
2772                         active |= remove_xps_queue(dev_maps, tci, index);
2773         }
2774
2775         /* free map if not active */
2776         if (!active)
2777                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2778
2779 out_no_maps:
2780         mutex_unlock(&xps_map_mutex);
2781
2782         return 0;
2783 error:
2784         /* remove any maps that we added */
2785         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2786              j < nr_ids;) {
2787                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2788                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2789                         map = dev_maps ?
2790                               xmap_dereference(dev_maps->attr_map[tci]) :
2791                               NULL;
2792                         if (new_map && new_map != map)
2793                                 kfree(new_map);
2794                 }
2795         }
2796
2797         mutex_unlock(&xps_map_mutex);
2798
2799         kfree(new_dev_maps);
2800         return -ENOMEM;
2801 }
2802 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2803
2804 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2805                         u16 index)
2806 {
2807         int ret;
2808
2809         cpus_read_lock();
2810         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2811         cpus_read_unlock();
2812
2813         return ret;
2814 }
2815 EXPORT_SYMBOL(netif_set_xps_queue);
2816
2817 #endif
2818 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2819 {
2820         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2821
2822         /* Unbind any subordinate channels */
2823         while (txq-- != &dev->_tx[0]) {
2824                 if (txq->sb_dev)
2825                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2826         }
2827 }
2828
2829 void netdev_reset_tc(struct net_device *dev)
2830 {
2831 #ifdef CONFIG_XPS
2832         netif_reset_xps_queues_gt(dev, 0);
2833 #endif
2834         netdev_unbind_all_sb_channels(dev);
2835
2836         /* Reset TC configuration of device */
2837         dev->num_tc = 0;
2838         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2839         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2840 }
2841 EXPORT_SYMBOL(netdev_reset_tc);
2842
2843 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2844 {
2845         if (tc >= dev->num_tc)
2846                 return -EINVAL;
2847
2848 #ifdef CONFIG_XPS
2849         netif_reset_xps_queues(dev, offset, count);
2850 #endif
2851         dev->tc_to_txq[tc].count = count;
2852         dev->tc_to_txq[tc].offset = offset;
2853         return 0;
2854 }
2855 EXPORT_SYMBOL(netdev_set_tc_queue);
2856
2857 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2858 {
2859         if (num_tc > TC_MAX_QUEUE)
2860                 return -EINVAL;
2861
2862 #ifdef CONFIG_XPS
2863         netif_reset_xps_queues_gt(dev, 0);
2864 #endif
2865         netdev_unbind_all_sb_channels(dev);
2866
2867         dev->num_tc = num_tc;
2868         return 0;
2869 }
2870 EXPORT_SYMBOL(netdev_set_num_tc);
2871
2872 void netdev_unbind_sb_channel(struct net_device *dev,
2873                               struct net_device *sb_dev)
2874 {
2875         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2876
2877 #ifdef CONFIG_XPS
2878         netif_reset_xps_queues_gt(sb_dev, 0);
2879 #endif
2880         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2881         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2882
2883         while (txq-- != &dev->_tx[0]) {
2884                 if (txq->sb_dev == sb_dev)
2885                         txq->sb_dev = NULL;
2886         }
2887 }
2888 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2889
2890 int netdev_bind_sb_channel_queue(struct net_device *dev,
2891                                  struct net_device *sb_dev,
2892                                  u8 tc, u16 count, u16 offset)
2893 {
2894         /* Make certain the sb_dev and dev are already configured */
2895         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2896                 return -EINVAL;
2897
2898         /* We cannot hand out queues we don't have */
2899         if ((offset + count) > dev->real_num_tx_queues)
2900                 return -EINVAL;
2901
2902         /* Record the mapping */
2903         sb_dev->tc_to_txq[tc].count = count;
2904         sb_dev->tc_to_txq[tc].offset = offset;
2905
2906         /* Provide a way for Tx queue to find the tc_to_txq map or
2907          * XPS map for itself.
2908          */
2909         while (count--)
2910                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2911
2912         return 0;
2913 }
2914 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2915
2916 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2917 {
2918         /* Do not use a multiqueue device to represent a subordinate channel */
2919         if (netif_is_multiqueue(dev))
2920                 return -ENODEV;
2921
2922         /* We allow channels 1 - 32767 to be used for subordinate channels.
2923          * Channel 0 is meant to be "native" mode and used only to represent
2924          * the main root device. We allow writing 0 to reset the device back
2925          * to normal mode after being used as a subordinate channel.
2926          */
2927         if (channel > S16_MAX)
2928                 return -EINVAL;
2929
2930         dev->num_tc = -channel;
2931
2932         return 0;
2933 }
2934 EXPORT_SYMBOL(netdev_set_sb_channel);
2935
2936 /*
2937  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2938  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2939  */
2940 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2941 {
2942         bool disabling;
2943         int rc;
2944
2945         disabling = txq < dev->real_num_tx_queues;
2946
2947         if (txq < 1 || txq > dev->num_tx_queues)
2948                 return -EINVAL;
2949
2950         if (dev->reg_state == NETREG_REGISTERED ||
2951             dev->reg_state == NETREG_UNREGISTERING) {
2952                 ASSERT_RTNL();
2953
2954                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2955                                                   txq);
2956                 if (rc)
2957                         return rc;
2958
2959                 if (dev->num_tc)
2960                         netif_setup_tc(dev, txq);
2961
2962                 dev->real_num_tx_queues = txq;
2963
2964                 if (disabling) {
2965                         synchronize_net();
2966                         qdisc_reset_all_tx_gt(dev, txq);
2967 #ifdef CONFIG_XPS
2968                         netif_reset_xps_queues_gt(dev, txq);
2969 #endif
2970                 }
2971         } else {
2972                 dev->real_num_tx_queues = txq;
2973         }
2974
2975         return 0;
2976 }
2977 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2978
2979 #ifdef CONFIG_SYSFS
2980 /**
2981  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2982  *      @dev: Network device
2983  *      @rxq: Actual number of RX queues
2984  *
2985  *      This must be called either with the rtnl_lock held or before
2986  *      registration of the net device.  Returns 0 on success, or a
2987  *      negative error code.  If called before registration, it always
2988  *      succeeds.
2989  */
2990 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2991 {
2992         int rc;
2993
2994         if (rxq < 1 || rxq > dev->num_rx_queues)
2995                 return -EINVAL;
2996
2997         if (dev->reg_state == NETREG_REGISTERED) {
2998                 ASSERT_RTNL();
2999
3000                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3001                                                   rxq);
3002                 if (rc)
3003                         return rc;
3004         }
3005
3006         dev->real_num_rx_queues = rxq;
3007         return 0;
3008 }
3009 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3010 #endif
3011
3012 /**
3013  * netif_get_num_default_rss_queues - default number of RSS queues
3014  *
3015  * This routine should set an upper limit on the number of RSS queues
3016  * used by default by multiqueue devices.
3017  */
3018 int netif_get_num_default_rss_queues(void)
3019 {
3020         return is_kdump_kernel() ?
3021                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3022 }
3023 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3024
3025 static void __netif_reschedule(struct Qdisc *q)
3026 {
3027         struct softnet_data *sd;
3028         unsigned long flags;
3029
3030         local_irq_save(flags);
3031         sd = this_cpu_ptr(&softnet_data);
3032         q->next_sched = NULL;
3033         *sd->output_queue_tailp = q;
3034         sd->output_queue_tailp = &q->next_sched;
3035         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3036         local_irq_restore(flags);
3037 }
3038
3039 void __netif_schedule(struct Qdisc *q)
3040 {
3041         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3042                 __netif_reschedule(q);
3043 }
3044 EXPORT_SYMBOL(__netif_schedule);
3045
3046 struct dev_kfree_skb_cb {
3047         enum skb_free_reason reason;
3048 };
3049
3050 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3051 {
3052         return (struct dev_kfree_skb_cb *)skb->cb;
3053 }
3054
3055 void netif_schedule_queue(struct netdev_queue *txq)
3056 {
3057         rcu_read_lock();
3058         if (!netif_xmit_stopped(txq)) {
3059                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3060
3061                 __netif_schedule(q);
3062         }
3063         rcu_read_unlock();
3064 }
3065 EXPORT_SYMBOL(netif_schedule_queue);
3066
3067 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3068 {
3069         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3070                 struct Qdisc *q;
3071
3072                 rcu_read_lock();
3073                 q = rcu_dereference(dev_queue->qdisc);
3074                 __netif_schedule(q);
3075                 rcu_read_unlock();
3076         }
3077 }
3078 EXPORT_SYMBOL(netif_tx_wake_queue);
3079
3080 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3081 {
3082         unsigned long flags;
3083
3084         if (unlikely(!skb))
3085                 return;
3086
3087         if (likely(refcount_read(&skb->users) == 1)) {
3088                 smp_rmb();
3089                 refcount_set(&skb->users, 0);
3090         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3091                 return;
3092         }
3093         get_kfree_skb_cb(skb)->reason = reason;
3094         local_irq_save(flags);
3095         skb->next = __this_cpu_read(softnet_data.completion_queue);
3096         __this_cpu_write(softnet_data.completion_queue, skb);
3097         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3098         local_irq_restore(flags);
3099 }
3100 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3101
3102 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3103 {
3104         if (in_irq() || irqs_disabled())
3105                 __dev_kfree_skb_irq(skb, reason);
3106         else
3107                 dev_kfree_skb(skb);
3108 }
3109 EXPORT_SYMBOL(__dev_kfree_skb_any);
3110
3111
3112 /**
3113  * netif_device_detach - mark device as removed
3114  * @dev: network device
3115  *
3116  * Mark device as removed from system and therefore no longer available.
3117  */
3118 void netif_device_detach(struct net_device *dev)
3119 {
3120         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3121             netif_running(dev)) {
3122                 netif_tx_stop_all_queues(dev);
3123         }
3124 }
3125 EXPORT_SYMBOL(netif_device_detach);
3126
3127 /**
3128  * netif_device_attach - mark device as attached
3129  * @dev: network device
3130  *
3131  * Mark device as attached from system and restart if needed.
3132  */
3133 void netif_device_attach(struct net_device *dev)
3134 {
3135         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3136             netif_running(dev)) {
3137                 netif_tx_wake_all_queues(dev);
3138                 __netdev_watchdog_up(dev);
3139         }
3140 }
3141 EXPORT_SYMBOL(netif_device_attach);
3142
3143 /*
3144  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3145  * to be used as a distribution range.
3146  */
3147 static u16 skb_tx_hash(const struct net_device *dev,
3148                        const struct net_device *sb_dev,
3149                        struct sk_buff *skb)
3150 {
3151         u32 hash;
3152         u16 qoffset = 0;
3153         u16 qcount = dev->real_num_tx_queues;
3154
3155         if (dev->num_tc) {
3156                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3157
3158                 qoffset = sb_dev->tc_to_txq[tc].offset;
3159                 qcount = sb_dev->tc_to_txq[tc].count;
3160         }
3161
3162         if (skb_rx_queue_recorded(skb)) {
3163                 hash = skb_get_rx_queue(skb);
3164                 if (hash >= qoffset)
3165                         hash -= qoffset;
3166                 while (unlikely(hash >= qcount))
3167                         hash -= qcount;
3168                 return hash + qoffset;
3169         }
3170
3171         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3172 }
3173
3174 static void skb_warn_bad_offload(const struct sk_buff *skb)
3175 {
3176         static const netdev_features_t null_features;
3177         struct net_device *dev = skb->dev;
3178         const char *name = "";
3179
3180         if (!net_ratelimit())
3181                 return;
3182
3183         if (dev) {
3184                 if (dev->dev.parent)
3185                         name = dev_driver_string(dev->dev.parent);
3186                 else
3187                         name = netdev_name(dev);
3188         }
3189         skb_dump(KERN_WARNING, skb, false);
3190         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3191              name, dev ? &dev->features : &null_features,
3192              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3193 }
3194
3195 /*
3196  * Invalidate hardware checksum when packet is to be mangled, and
3197  * complete checksum manually on outgoing path.
3198  */
3199 int skb_checksum_help(struct sk_buff *skb)
3200 {
3201         __wsum csum;
3202         int ret = 0, offset;
3203
3204         if (skb->ip_summed == CHECKSUM_COMPLETE)
3205                 goto out_set_summed;
3206
3207         if (unlikely(skb_shinfo(skb)->gso_size)) {
3208                 skb_warn_bad_offload(skb);
3209                 return -EINVAL;
3210         }
3211
3212         /* Before computing a checksum, we should make sure no frag could
3213          * be modified by an external entity : checksum could be wrong.
3214          */
3215         if (skb_has_shared_frag(skb)) {
3216                 ret = __skb_linearize(skb);
3217                 if (ret)
3218                         goto out;
3219         }
3220
3221         offset = skb_checksum_start_offset(skb);
3222         BUG_ON(offset >= skb_headlen(skb));
3223         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3224
3225         offset += skb->csum_offset;
3226         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3227
3228         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3229         if (ret)
3230                 goto out;
3231
3232         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3233 out_set_summed:
3234         skb->ip_summed = CHECKSUM_NONE;
3235 out:
3236         return ret;
3237 }
3238 EXPORT_SYMBOL(skb_checksum_help);
3239
3240 int skb_crc32c_csum_help(struct sk_buff *skb)
3241 {
3242         __le32 crc32c_csum;
3243         int ret = 0, offset, start;
3244
3245         if (skb->ip_summed != CHECKSUM_PARTIAL)
3246                 goto out;
3247
3248         if (unlikely(skb_is_gso(skb)))
3249                 goto out;
3250
3251         /* Before computing a checksum, we should make sure no frag could
3252          * be modified by an external entity : checksum could be wrong.
3253          */
3254         if (unlikely(skb_has_shared_frag(skb))) {
3255                 ret = __skb_linearize(skb);
3256                 if (ret)
3257                         goto out;
3258         }
3259         start = skb_checksum_start_offset(skb);
3260         offset = start + offsetof(struct sctphdr, checksum);
3261         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3262                 ret = -EINVAL;
3263                 goto out;
3264         }
3265
3266         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3267         if (ret)
3268                 goto out;
3269
3270         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3271                                                   skb->len - start, ~(__u32)0,
3272                                                   crc32c_csum_stub));
3273         *(__le32 *)(skb->data + offset) = crc32c_csum;
3274         skb->ip_summed = CHECKSUM_NONE;
3275         skb->csum_not_inet = 0;
3276 out:
3277         return ret;
3278 }
3279
3280 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3281 {
3282         __be16 type = skb->protocol;
3283
3284         /* Tunnel gso handlers can set protocol to ethernet. */
3285         if (type == htons(ETH_P_TEB)) {
3286                 struct ethhdr *eth;
3287
3288                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3289                         return 0;
3290
3291                 eth = (struct ethhdr *)skb->data;
3292                 type = eth->h_proto;
3293         }
3294
3295         return __vlan_get_protocol(skb, type, depth);
3296 }
3297
3298 /**
3299  *      skb_mac_gso_segment - mac layer segmentation handler.
3300  *      @skb: buffer to segment
3301  *      @features: features for the output path (see dev->features)
3302  */
3303 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3304                                     netdev_features_t features)
3305 {
3306         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3307         struct packet_offload *ptype;
3308         int vlan_depth = skb->mac_len;
3309         __be16 type = skb_network_protocol(skb, &vlan_depth);
3310
3311         if (unlikely(!type))
3312                 return ERR_PTR(-EINVAL);
3313
3314         __skb_pull(skb, vlan_depth);
3315
3316         rcu_read_lock();
3317         list_for_each_entry_rcu(ptype, &offload_base, list) {
3318                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3319                         segs = ptype->callbacks.gso_segment(skb, features);
3320                         break;
3321                 }
3322         }
3323         rcu_read_unlock();
3324
3325         __skb_push(skb, skb->data - skb_mac_header(skb));
3326
3327         return segs;
3328 }
3329 EXPORT_SYMBOL(skb_mac_gso_segment);
3330
3331
3332 /* openvswitch calls this on rx path, so we need a different check.
3333  */
3334 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3335 {
3336         if (tx_path)
3337                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3338                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3339
3340         return skb->ip_summed == CHECKSUM_NONE;
3341 }
3342
3343 /**
3344  *      __skb_gso_segment - Perform segmentation on skb.
3345  *      @skb: buffer to segment
3346  *      @features: features for the output path (see dev->features)
3347  *      @tx_path: whether it is called in TX path
3348  *
3349  *      This function segments the given skb and returns a list of segments.
3350  *
3351  *      It may return NULL if the skb requires no segmentation.  This is
3352  *      only possible when GSO is used for verifying header integrity.
3353  *
3354  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3355  */
3356 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3357                                   netdev_features_t features, bool tx_path)
3358 {
3359         struct sk_buff *segs;
3360
3361         if (unlikely(skb_needs_check(skb, tx_path))) {
3362                 int err;
3363
3364                 /* We're going to init ->check field in TCP or UDP header */
3365                 err = skb_cow_head(skb, 0);
3366                 if (err < 0)
3367                         return ERR_PTR(err);
3368         }
3369
3370         /* Only report GSO partial support if it will enable us to
3371          * support segmentation on this frame without needing additional
3372          * work.
3373          */
3374         if (features & NETIF_F_GSO_PARTIAL) {
3375                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3376                 struct net_device *dev = skb->dev;
3377
3378                 partial_features |= dev->features & dev->gso_partial_features;
3379                 if (!skb_gso_ok(skb, features | partial_features))
3380                         features &= ~NETIF_F_GSO_PARTIAL;
3381         }
3382
3383         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3384                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3385
3386         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3387         SKB_GSO_CB(skb)->encap_level = 0;
3388
3389         skb_reset_mac_header(skb);
3390         skb_reset_mac_len(skb);
3391
3392         segs = skb_mac_gso_segment(skb, features);
3393
3394         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3395                 skb_warn_bad_offload(skb);
3396
3397         return segs;
3398 }
3399 EXPORT_SYMBOL(__skb_gso_segment);
3400
3401 /* Take action when hardware reception checksum errors are detected. */
3402 #ifdef CONFIG_BUG
3403 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3404 {
3405         if (net_ratelimit()) {
3406                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3407                 skb_dump(KERN_ERR, skb, true);
3408                 dump_stack();
3409         }
3410 }
3411 EXPORT_SYMBOL(netdev_rx_csum_fault);
3412 #endif
3413
3414 /* XXX: check that highmem exists at all on the given machine. */
3415 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3416 {
3417 #ifdef CONFIG_HIGHMEM
3418         int i;
3419
3420         if (!(dev->features & NETIF_F_HIGHDMA)) {
3421                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3422                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3423
3424                         if (PageHighMem(skb_frag_page(frag)))
3425                                 return 1;
3426                 }
3427         }
3428 #endif
3429         return 0;
3430 }
3431
3432 /* If MPLS offload request, verify we are testing hardware MPLS features
3433  * instead of standard features for the netdev.
3434  */
3435 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3436 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3437                                            netdev_features_t features,
3438                                            __be16 type)
3439 {
3440         if (eth_p_mpls(type))
3441                 features &= skb->dev->mpls_features;
3442
3443         return features;
3444 }
3445 #else
3446 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3447                                            netdev_features_t features,
3448                                            __be16 type)
3449 {
3450         return features;
3451 }
3452 #endif
3453
3454 static netdev_features_t harmonize_features(struct sk_buff *skb,
3455         netdev_features_t features)
3456 {
3457         __be16 type;
3458
3459         type = skb_network_protocol(skb, NULL);
3460         features = net_mpls_features(skb, features, type);
3461
3462         if (skb->ip_summed != CHECKSUM_NONE &&
3463             !can_checksum_protocol(features, type)) {
3464                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3465         }
3466         if (illegal_highdma(skb->dev, skb))
3467                 features &= ~NETIF_F_SG;
3468
3469         return features;
3470 }
3471
3472 netdev_features_t passthru_features_check(struct sk_buff *skb,
3473                                           struct net_device *dev,
3474                                           netdev_features_t features)
3475 {
3476         return features;
3477 }
3478 EXPORT_SYMBOL(passthru_features_check);
3479
3480 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3481                                              struct net_device *dev,
3482                                              netdev_features_t features)
3483 {
3484         return vlan_features_check(skb, features);
3485 }
3486
3487 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3488                                             struct net_device *dev,
3489                                             netdev_features_t features)
3490 {
3491         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3492
3493         if (gso_segs > dev->gso_max_segs)
3494                 return features & ~NETIF_F_GSO_MASK;
3495
3496         /* Support for GSO partial features requires software
3497          * intervention before we can actually process the packets
3498          * so we need to strip support for any partial features now
3499          * and we can pull them back in after we have partially
3500          * segmented the frame.
3501          */
3502         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3503                 features &= ~dev->gso_partial_features;
3504
3505         /* Make sure to clear the IPv4 ID mangling feature if the
3506          * IPv4 header has the potential to be fragmented.
3507          */
3508         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3509                 struct iphdr *iph = skb->encapsulation ?
3510                                     inner_ip_hdr(skb) : ip_hdr(skb);
3511
3512                 if (!(iph->frag_off & htons(IP_DF)))
3513                         features &= ~NETIF_F_TSO_MANGLEID;
3514         }
3515
3516         return features;
3517 }
3518
3519 netdev_features_t netif_skb_features(struct sk_buff *skb)
3520 {
3521         struct net_device *dev = skb->dev;
3522         netdev_features_t features = dev->features;
3523
3524         if (skb_is_gso(skb))
3525                 features = gso_features_check(skb, dev, features);
3526
3527         /* If encapsulation offload request, verify we are testing
3528          * hardware encapsulation features instead of standard
3529          * features for the netdev
3530          */
3531         if (skb->encapsulation)
3532                 features &= dev->hw_enc_features;
3533
3534         if (skb_vlan_tagged(skb))
3535                 features = netdev_intersect_features(features,
3536                                                      dev->vlan_features |
3537                                                      NETIF_F_HW_VLAN_CTAG_TX |
3538                                                      NETIF_F_HW_VLAN_STAG_TX);
3539
3540         if (dev->netdev_ops->ndo_features_check)
3541                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3542                                                                 features);
3543         else
3544                 features &= dflt_features_check(skb, dev, features);
3545
3546         return harmonize_features(skb, features);
3547 }
3548 EXPORT_SYMBOL(netif_skb_features);
3549
3550 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3551                     struct netdev_queue *txq, bool more)
3552 {
3553         unsigned int len;
3554         int rc;
3555
3556         if (dev_nit_active(dev))
3557                 dev_queue_xmit_nit(skb, dev);
3558
3559         len = skb->len;
3560         trace_net_dev_start_xmit(skb, dev);
3561         rc = netdev_start_xmit(skb, dev, txq, more);
3562         trace_net_dev_xmit(skb, rc, dev, len);
3563
3564         return rc;
3565 }
3566
3567 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3568                                     struct netdev_queue *txq, int *ret)
3569 {
3570         struct sk_buff *skb = first;
3571         int rc = NETDEV_TX_OK;
3572
3573         while (skb) {
3574                 struct sk_buff *next = skb->next;
3575
3576                 skb_mark_not_on_list(skb);
3577                 rc = xmit_one(skb, dev, txq, next != NULL);
3578                 if (unlikely(!dev_xmit_complete(rc))) {
3579                         skb->next = next;
3580                         goto out;
3581                 }
3582
3583                 skb = next;
3584                 if (netif_tx_queue_stopped(txq) && skb) {
3585                         rc = NETDEV_TX_BUSY;
3586                         break;
3587                 }
3588         }
3589
3590 out:
3591         *ret = rc;
3592         return skb;
3593 }
3594
3595 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3596                                           netdev_features_t features)
3597 {
3598         if (skb_vlan_tag_present(skb) &&
3599             !vlan_hw_offload_capable(features, skb->vlan_proto))
3600                 skb = __vlan_hwaccel_push_inside(skb);
3601         return skb;
3602 }
3603
3604 int skb_csum_hwoffload_help(struct sk_buff *skb,
3605                             const netdev_features_t features)
3606 {
3607         if (unlikely(skb->csum_not_inet))
3608                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3609                         skb_crc32c_csum_help(skb);
3610
3611         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3612 }
3613 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3614
3615 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3616 {
3617         netdev_features_t features;
3618
3619         features = netif_skb_features(skb);
3620         skb = validate_xmit_vlan(skb, features);
3621         if (unlikely(!skb))
3622                 goto out_null;
3623
3624         skb = sk_validate_xmit_skb(skb, dev);
3625         if (unlikely(!skb))
3626                 goto out_null;
3627
3628         if (netif_needs_gso(skb, features)) {
3629                 struct sk_buff *segs;
3630
3631                 segs = skb_gso_segment(skb, features);
3632                 if (IS_ERR(segs)) {
3633                         goto out_kfree_skb;
3634                 } else if (segs) {
3635                         consume_skb(skb);
3636                         skb = segs;
3637                 }
3638         } else {
3639                 if (skb_needs_linearize(skb, features) &&
3640                     __skb_linearize(skb))
3641                         goto out_kfree_skb;
3642
3643                 /* If packet is not checksummed and device does not
3644                  * support checksumming for this protocol, complete
3645                  * checksumming here.
3646                  */
3647                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3648                         if (skb->encapsulation)
3649                                 skb_set_inner_transport_header(skb,
3650                                                                skb_checksum_start_offset(skb));
3651                         else
3652                                 skb_set_transport_header(skb,
3653                                                          skb_checksum_start_offset(skb));
3654                         if (skb_csum_hwoffload_help(skb, features))
3655                                 goto out_kfree_skb;
3656                 }
3657         }
3658
3659         skb = validate_xmit_xfrm(skb, features, again);
3660
3661         return skb;
3662
3663 out_kfree_skb:
3664         kfree_skb(skb);
3665 out_null:
3666         atomic_long_inc(&dev->tx_dropped);
3667         return NULL;
3668 }
3669
3670 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3671 {
3672         struct sk_buff *next, *head = NULL, *tail;
3673
3674         for (; skb != NULL; skb = next) {
3675                 next = skb->next;
3676                 skb_mark_not_on_list(skb);
3677
3678                 /* in case skb wont be segmented, point to itself */
3679                 skb->prev = skb;
3680
3681                 skb = validate_xmit_skb(skb, dev, again);
3682                 if (!skb)
3683                         continue;
3684
3685                 if (!head)
3686                         head = skb;
3687                 else
3688                         tail->next = skb;
3689                 /* If skb was segmented, skb->prev points to
3690                  * the last segment. If not, it still contains skb.
3691                  */
3692                 tail = skb->prev;
3693         }
3694         return head;
3695 }
3696 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3697
3698 static void qdisc_pkt_len_init(struct sk_buff *skb)
3699 {
3700         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3701
3702         qdisc_skb_cb(skb)->pkt_len = skb->len;
3703
3704         /* To get more precise estimation of bytes sent on wire,
3705          * we add to pkt_len the headers size of all segments
3706          */
3707         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3708                 unsigned int hdr_len;
3709                 u16 gso_segs = shinfo->gso_segs;
3710
3711                 /* mac layer + network layer */
3712                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3713
3714                 /* + transport layer */
3715                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3716                         const struct tcphdr *th;
3717                         struct tcphdr _tcphdr;
3718
3719                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3720                                                 sizeof(_tcphdr), &_tcphdr);
3721                         if (likely(th))
3722                                 hdr_len += __tcp_hdrlen(th);
3723                 } else {
3724                         struct udphdr _udphdr;
3725
3726                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3727                                                sizeof(_udphdr), &_udphdr))
3728                                 hdr_len += sizeof(struct udphdr);
3729                 }
3730
3731                 if (shinfo->gso_type & SKB_GSO_DODGY)
3732                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3733                                                 shinfo->gso_size);
3734
3735                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3736         }
3737 }
3738
3739 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3740                                  struct net_device *dev,
3741                                  struct netdev_queue *txq)
3742 {
3743         spinlock_t *root_lock = qdisc_lock(q);
3744         struct sk_buff *to_free = NULL;
3745         bool contended;
3746         int rc;
3747
3748         qdisc_calculate_pkt_len(skb, q);
3749
3750         if (q->flags & TCQ_F_NOLOCK) {
3751                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3752                 qdisc_run(q);
3753
3754                 if (unlikely(to_free))
3755                         kfree_skb_list(to_free);
3756                 return rc;
3757         }
3758
3759         /*
3760          * Heuristic to force contended enqueues to serialize on a
3761          * separate lock before trying to get qdisc main lock.
3762          * This permits qdisc->running owner to get the lock more
3763          * often and dequeue packets faster.
3764          */
3765         contended = qdisc_is_running(q);
3766         if (unlikely(contended))
3767                 spin_lock(&q->busylock);
3768
3769         spin_lock(root_lock);
3770         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3771                 __qdisc_drop(skb, &to_free);
3772                 rc = NET_XMIT_DROP;
3773         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3774                    qdisc_run_begin(q)) {
3775                 /*
3776                  * This is a work-conserving queue; there are no old skbs
3777                  * waiting to be sent out; and the qdisc is not running -
3778                  * xmit the skb directly.
3779                  */
3780
3781                 qdisc_bstats_update(q, skb);
3782
3783                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3784                         if (unlikely(contended)) {
3785                                 spin_unlock(&q->busylock);
3786                                 contended = false;
3787                         }
3788                         __qdisc_run(q);
3789                 }
3790
3791                 qdisc_run_end(q);
3792                 rc = NET_XMIT_SUCCESS;
3793         } else {
3794                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3795                 if (qdisc_run_begin(q)) {
3796                         if (unlikely(contended)) {
3797                                 spin_unlock(&q->busylock);
3798                                 contended = false;
3799                         }
3800                         __qdisc_run(q);
3801                         qdisc_run_end(q);
3802                 }
3803         }
3804         spin_unlock(root_lock);
3805         if (unlikely(to_free))
3806                 kfree_skb_list(to_free);
3807         if (unlikely(contended))
3808                 spin_unlock(&q->busylock);
3809         return rc;
3810 }
3811
3812 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3813 static void skb_update_prio(struct sk_buff *skb)
3814 {
3815         const struct netprio_map *map;
3816         const struct sock *sk;
3817         unsigned int prioidx;
3818
3819         if (skb->priority)
3820                 return;
3821         map = rcu_dereference_bh(skb->dev->priomap);
3822         if (!map)
3823                 return;
3824         sk = skb_to_full_sk(skb);
3825         if (!sk)
3826                 return;
3827
3828         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3829
3830         if (prioidx < map->priomap_len)
3831                 skb->priority = map->priomap[prioidx];
3832 }
3833 #else
3834 #define skb_update_prio(skb)
3835 #endif
3836
3837 /**
3838  *      dev_loopback_xmit - loop back @skb
3839  *      @net: network namespace this loopback is happening in
3840  *      @sk:  sk needed to be a netfilter okfn
3841  *      @skb: buffer to transmit
3842  */
3843 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3844 {
3845         skb_reset_mac_header(skb);
3846         __skb_pull(skb, skb_network_offset(skb));
3847         skb->pkt_type = PACKET_LOOPBACK;
3848         skb->ip_summed = CHECKSUM_UNNECESSARY;
3849         WARN_ON(!skb_dst(skb));
3850         skb_dst_force(skb);
3851         netif_rx_ni(skb);
3852         return 0;
3853 }
3854 EXPORT_SYMBOL(dev_loopback_xmit);
3855
3856 #ifdef CONFIG_NET_EGRESS
3857 static struct sk_buff *
3858 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3859 {
3860         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3861         struct tcf_result cl_res;
3862
3863         if (!miniq)
3864                 return skb;
3865
3866         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3867         mini_qdisc_bstats_cpu_update(miniq, skb);
3868
3869         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3870         case TC_ACT_OK:
3871         case TC_ACT_RECLASSIFY:
3872                 skb->tc_index = TC_H_MIN(cl_res.classid);
3873                 break;
3874         case TC_ACT_SHOT:
3875                 mini_qdisc_qstats_cpu_drop(miniq);
3876                 *ret = NET_XMIT_DROP;
3877                 kfree_skb(skb);
3878                 return NULL;
3879         case TC_ACT_STOLEN:
3880         case TC_ACT_QUEUED:
3881         case TC_ACT_TRAP:
3882                 *ret = NET_XMIT_SUCCESS;
3883                 consume_skb(skb);
3884                 return NULL;
3885         case TC_ACT_REDIRECT:
3886                 /* No need to push/pop skb's mac_header here on egress! */
3887                 skb_do_redirect(skb);
3888                 *ret = NET_XMIT_SUCCESS;
3889                 return NULL;
3890         default:
3891                 break;
3892         }
3893
3894         return skb;
3895 }
3896 #endif /* CONFIG_NET_EGRESS */
3897
3898 #ifdef CONFIG_XPS
3899 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3900                                struct xps_dev_maps *dev_maps, unsigned int tci)
3901 {
3902         struct xps_map *map;
3903         int queue_index = -1;
3904
3905         if (dev->num_tc) {
3906                 tci *= dev->num_tc;
3907                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3908         }
3909
3910         map = rcu_dereference(dev_maps->attr_map[tci]);
3911         if (map) {
3912                 if (map->len == 1)
3913                         queue_index = map->queues[0];
3914                 else
3915                         queue_index = map->queues[reciprocal_scale(
3916                                                 skb_get_hash(skb), map->len)];
3917                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3918                         queue_index = -1;
3919         }
3920         return queue_index;
3921 }
3922 #endif
3923
3924 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3925                          struct sk_buff *skb)
3926 {
3927 #ifdef CONFIG_XPS
3928         struct xps_dev_maps *dev_maps;
3929         struct sock *sk = skb->sk;
3930         int queue_index = -1;
3931
3932         if (!static_key_false(&xps_needed))
3933                 return -1;
3934
3935         rcu_read_lock();
3936         if (!static_key_false(&xps_rxqs_needed))
3937                 goto get_cpus_map;
3938
3939         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3940         if (dev_maps) {
3941                 int tci = sk_rx_queue_get(sk);
3942
3943                 if (tci >= 0 && tci < dev->num_rx_queues)
3944                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3945                                                           tci);
3946         }
3947
3948 get_cpus_map:
3949         if (queue_index < 0) {
3950                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3951                 if (dev_maps) {
3952                         unsigned int tci = skb->sender_cpu - 1;
3953
3954                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3955                                                           tci);
3956                 }
3957         }
3958         rcu_read_unlock();
3959
3960         return queue_index;
3961 #else
3962         return -1;
3963 #endif
3964 }
3965
3966 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3967                      struct net_device *sb_dev)
3968 {
3969         return 0;
3970 }
3971 EXPORT_SYMBOL(dev_pick_tx_zero);
3972
3973 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3974                        struct net_device *sb_dev)
3975 {
3976         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3977 }
3978 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3979
3980 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3981                      struct net_device *sb_dev)
3982 {
3983         struct sock *sk = skb->sk;
3984         int queue_index = sk_tx_queue_get(sk);
3985
3986         sb_dev = sb_dev ? : dev;
3987
3988         if (queue_index < 0 || skb->ooo_okay ||
3989             queue_index >= dev->real_num_tx_queues) {
3990                 int new_index = get_xps_queue(dev, sb_dev, skb);
3991
3992                 if (new_index < 0)
3993                         new_index = skb_tx_hash(dev, sb_dev, skb);
3994
3995                 if (queue_index != new_index && sk &&
3996                     sk_fullsock(sk) &&
3997                     rcu_access_pointer(sk->sk_dst_cache))
3998                         sk_tx_queue_set(sk, new_index);
3999
4000                 queue_index = new_index;
4001         }
4002
4003         return queue_index;
4004 }
4005 EXPORT_SYMBOL(netdev_pick_tx);
4006
4007 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4008                                          struct sk_buff *skb,
4009                                          struct net_device *sb_dev)
4010 {
4011         int queue_index = 0;
4012
4013 #ifdef CONFIG_XPS
4014         u32 sender_cpu = skb->sender_cpu - 1;
4015
4016         if (sender_cpu >= (u32)NR_CPUS)
4017                 skb->sender_cpu = raw_smp_processor_id() + 1;
4018 #endif
4019
4020         if (dev->real_num_tx_queues != 1) {
4021                 const struct net_device_ops *ops = dev->netdev_ops;
4022
4023                 if (ops->ndo_select_queue)
4024                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4025                 else
4026                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4027
4028                 queue_index = netdev_cap_txqueue(dev, queue_index);
4029         }
4030
4031         skb_set_queue_mapping(skb, queue_index);
4032         return netdev_get_tx_queue(dev, queue_index);
4033 }
4034
4035 /**
4036  *      __dev_queue_xmit - transmit a buffer
4037  *      @skb: buffer to transmit
4038  *      @sb_dev: suboordinate device used for L2 forwarding offload
4039  *
4040  *      Queue a buffer for transmission to a network device. The caller must
4041  *      have set the device and priority and built the buffer before calling
4042  *      this function. The function can be called from an interrupt.
4043  *
4044  *      A negative errno code is returned on a failure. A success does not
4045  *      guarantee the frame will be transmitted as it may be dropped due
4046  *      to congestion or traffic shaping.
4047  *
4048  * -----------------------------------------------------------------------------------
4049  *      I notice this method can also return errors from the queue disciplines,
4050  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4051  *      be positive.
4052  *
4053  *      Regardless of the return value, the skb is consumed, so it is currently
4054  *      difficult to retry a send to this method.  (You can bump the ref count
4055  *      before sending to hold a reference for retry if you are careful.)
4056  *
4057  *      When calling this method, interrupts MUST be enabled.  This is because
4058  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4059  *          --BLG
4060  */
4061 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4062 {
4063         struct net_device *dev = skb->dev;
4064         struct netdev_queue *txq;
4065         struct Qdisc *q;
4066         int rc = -ENOMEM;
4067         bool again = false;
4068
4069         skb_reset_mac_header(skb);
4070
4071         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4072                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4073
4074         /* Disable soft irqs for various locks below. Also
4075          * stops preemption for RCU.
4076          */
4077         rcu_read_lock_bh();
4078
4079         skb_update_prio(skb);
4080
4081         qdisc_pkt_len_init(skb);
4082 #ifdef CONFIG_NET_CLS_ACT
4083         skb->tc_at_ingress = 0;
4084 # ifdef CONFIG_NET_EGRESS
4085         if (static_branch_unlikely(&egress_needed_key)) {
4086                 skb = sch_handle_egress(skb, &rc, dev);
4087                 if (!skb)
4088                         goto out;
4089         }
4090 # endif
4091 #endif
4092         /* If device/qdisc don't need skb->dst, release it right now while
4093          * its hot in this cpu cache.
4094          */
4095         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4096                 skb_dst_drop(skb);
4097         else
4098                 skb_dst_force(skb);
4099
4100         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4101         q = rcu_dereference_bh(txq->qdisc);
4102
4103         trace_net_dev_queue(skb);
4104         if (q->enqueue) {
4105                 rc = __dev_xmit_skb(skb, q, dev, txq);
4106                 goto out;
4107         }
4108
4109         /* The device has no queue. Common case for software devices:
4110          * loopback, all the sorts of tunnels...
4111
4112          * Really, it is unlikely that netif_tx_lock protection is necessary
4113          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4114          * counters.)
4115          * However, it is possible, that they rely on protection
4116          * made by us here.
4117
4118          * Check this and shot the lock. It is not prone from deadlocks.
4119          *Either shot noqueue qdisc, it is even simpler 8)
4120          */
4121         if (dev->flags & IFF_UP) {
4122                 int cpu = smp_processor_id(); /* ok because BHs are off */
4123
4124                 if (txq->xmit_lock_owner != cpu) {
4125                         if (dev_xmit_recursion())
4126                                 goto recursion_alert;
4127
4128                         skb = validate_xmit_skb(skb, dev, &again);
4129                         if (!skb)
4130                                 goto out;
4131
4132                         HARD_TX_LOCK(dev, txq, cpu);
4133
4134                         if (!netif_xmit_stopped(txq)) {
4135                                 dev_xmit_recursion_inc();
4136                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4137                                 dev_xmit_recursion_dec();
4138                                 if (dev_xmit_complete(rc)) {
4139                                         HARD_TX_UNLOCK(dev, txq);
4140                                         goto out;
4141                                 }
4142                         }
4143                         HARD_TX_UNLOCK(dev, txq);
4144                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4145                                              dev->name);
4146                 } else {
4147                         /* Recursion is detected! It is possible,
4148                          * unfortunately
4149                          */
4150 recursion_alert:
4151                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4152                                              dev->name);
4153                 }
4154         }
4155
4156         rc = -ENETDOWN;
4157         rcu_read_unlock_bh();
4158
4159         atomic_long_inc(&dev->tx_dropped);
4160         kfree_skb_list(skb);
4161         return rc;
4162 out:
4163         rcu_read_unlock_bh();
4164         return rc;
4165 }
4166
4167 int dev_queue_xmit(struct sk_buff *skb)
4168 {
4169         return __dev_queue_xmit(skb, NULL);
4170 }
4171 EXPORT_SYMBOL(dev_queue_xmit);
4172
4173 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4174 {
4175         return __dev_queue_xmit(skb, sb_dev);
4176 }
4177 EXPORT_SYMBOL(dev_queue_xmit_accel);
4178
4179 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4180 {
4181         struct net_device *dev = skb->dev;
4182         struct sk_buff *orig_skb = skb;
4183         struct netdev_queue *txq;
4184         int ret = NETDEV_TX_BUSY;
4185         bool again = false;
4186
4187         if (unlikely(!netif_running(dev) ||
4188                      !netif_carrier_ok(dev)))
4189                 goto drop;
4190
4191         skb = validate_xmit_skb_list(skb, dev, &again);
4192         if (skb != orig_skb)
4193                 goto drop;
4194
4195         skb_set_queue_mapping(skb, queue_id);
4196         txq = skb_get_tx_queue(dev, skb);
4197
4198         local_bh_disable();
4199
4200         dev_xmit_recursion_inc();
4201         HARD_TX_LOCK(dev, txq, smp_processor_id());
4202         if (!netif_xmit_frozen_or_drv_stopped(txq))
4203                 ret = netdev_start_xmit(skb, dev, txq, false);
4204         HARD_TX_UNLOCK(dev, txq);
4205         dev_xmit_recursion_dec();
4206
4207         local_bh_enable();
4208
4209         if (!dev_xmit_complete(ret))
4210                 kfree_skb(skb);
4211
4212         return ret;
4213 drop:
4214         atomic_long_inc(&dev->tx_dropped);
4215         kfree_skb_list(skb);
4216         return NET_XMIT_DROP;
4217 }
4218 EXPORT_SYMBOL(dev_direct_xmit);
4219
4220 /*************************************************************************
4221  *                      Receiver routines
4222  *************************************************************************/
4223
4224 int netdev_max_backlog __read_mostly = 1000;
4225 EXPORT_SYMBOL(netdev_max_backlog);
4226
4227 int netdev_tstamp_prequeue __read_mostly = 1;
4228 int netdev_budget __read_mostly = 300;
4229 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4230 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4231 int weight_p __read_mostly = 64;           /* old backlog weight */
4232 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4233 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4234 int dev_rx_weight __read_mostly = 64;
4235 int dev_tx_weight __read_mostly = 64;
4236 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4237 int gro_normal_batch __read_mostly = 8;
4238
4239 /* Called with irq disabled */
4240 static inline void ____napi_schedule(struct softnet_data *sd,
4241                                      struct napi_struct *napi)
4242 {
4243         list_add_tail(&napi->poll_list, &sd->poll_list);
4244         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4245 }
4246
4247 #ifdef CONFIG_RPS
4248
4249 /* One global table that all flow-based protocols share. */
4250 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4251 EXPORT_SYMBOL(rps_sock_flow_table);
4252 u32 rps_cpu_mask __read_mostly;
4253 EXPORT_SYMBOL(rps_cpu_mask);
4254
4255 struct static_key_false rps_needed __read_mostly;
4256 EXPORT_SYMBOL(rps_needed);
4257 struct static_key_false rfs_needed __read_mostly;
4258 EXPORT_SYMBOL(rfs_needed);
4259
4260 static struct rps_dev_flow *
4261 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4262             struct rps_dev_flow *rflow, u16 next_cpu)
4263 {
4264         if (next_cpu < nr_cpu_ids) {
4265 #ifdef CONFIG_RFS_ACCEL
4266                 struct netdev_rx_queue *rxqueue;
4267                 struct rps_dev_flow_table *flow_table;
4268                 struct rps_dev_flow *old_rflow;
4269                 u32 flow_id;
4270                 u16 rxq_index;
4271                 int rc;
4272
4273                 /* Should we steer this flow to a different hardware queue? */
4274                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4275                     !(dev->features & NETIF_F_NTUPLE))
4276                         goto out;
4277                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4278                 if (rxq_index == skb_get_rx_queue(skb))
4279                         goto out;
4280
4281                 rxqueue = dev->_rx + rxq_index;
4282                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4283                 if (!flow_table)
4284                         goto out;
4285                 flow_id = skb_get_hash(skb) & flow_table->mask;
4286                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4287                                                         rxq_index, flow_id);
4288                 if (rc < 0)
4289                         goto out;
4290                 old_rflow = rflow;
4291                 rflow = &flow_table->flows[flow_id];
4292                 rflow->filter = rc;
4293                 if (old_rflow->filter == rflow->filter)
4294                         old_rflow->filter = RPS_NO_FILTER;
4295         out:
4296 #endif
4297                 rflow->last_qtail =
4298                         per_cpu(softnet_data, next_cpu).input_queue_head;
4299         }
4300
4301         rflow->cpu = next_cpu;
4302         return rflow;
4303 }
4304
4305 /*
4306  * get_rps_cpu is called from netif_receive_skb and returns the target
4307  * CPU from the RPS map of the receiving queue for a given skb.
4308  * rcu_read_lock must be held on entry.
4309  */
4310 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4311                        struct rps_dev_flow **rflowp)
4312 {
4313         const struct rps_sock_flow_table *sock_flow_table;
4314         struct netdev_rx_queue *rxqueue = dev->_rx;
4315         struct rps_dev_flow_table *flow_table;
4316         struct rps_map *map;
4317         int cpu = -1;
4318         u32 tcpu;
4319         u32 hash;
4320
4321         if (skb_rx_queue_recorded(skb)) {
4322                 u16 index = skb_get_rx_queue(skb);
4323
4324                 if (unlikely(index >= dev->real_num_rx_queues)) {
4325                         WARN_ONCE(dev->real_num_rx_queues > 1,
4326                                   "%s received packet on queue %u, but number "
4327                                   "of RX queues is %u\n",
4328                                   dev->name, index, dev->real_num_rx_queues);
4329                         goto done;
4330                 }
4331                 rxqueue += index;
4332         }
4333
4334         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4335
4336         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4337         map = rcu_dereference(rxqueue->rps_map);
4338         if (!flow_table && !map)
4339                 goto done;
4340
4341         skb_reset_network_header(skb);
4342         hash = skb_get_hash(skb);
4343         if (!hash)
4344                 goto done;
4345
4346         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4347         if (flow_table && sock_flow_table) {
4348                 struct rps_dev_flow *rflow;
4349                 u32 next_cpu;
4350                 u32 ident;
4351
4352                 /* First check into global flow table if there is a match */
4353                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4354                 if ((ident ^ hash) & ~rps_cpu_mask)
4355                         goto try_rps;
4356
4357                 next_cpu = ident & rps_cpu_mask;
4358
4359                 /* OK, now we know there is a match,
4360                  * we can look at the local (per receive queue) flow table
4361                  */
4362                 rflow = &flow_table->flows[hash & flow_table->mask];
4363                 tcpu = rflow->cpu;
4364
4365                 /*
4366                  * If the desired CPU (where last recvmsg was done) is
4367                  * different from current CPU (one in the rx-queue flow
4368                  * table entry), switch if one of the following holds:
4369                  *   - Current CPU is unset (>= nr_cpu_ids).
4370                  *   - Current CPU is offline.
4371                  *   - The current CPU's queue tail has advanced beyond the
4372                  *     last packet that was enqueued using this table entry.
4373                  *     This guarantees that all previous packets for the flow
4374                  *     have been dequeued, thus preserving in order delivery.
4375                  */
4376                 if (unlikely(tcpu != next_cpu) &&
4377                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4378                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4379                       rflow->last_qtail)) >= 0)) {
4380                         tcpu = next_cpu;
4381                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4382                 }
4383
4384                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4385                         *rflowp = rflow;
4386                         cpu = tcpu;
4387                         goto done;
4388                 }
4389         }
4390
4391 try_rps:
4392
4393         if (map) {
4394                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4395                 if (cpu_online(tcpu)) {
4396                         cpu = tcpu;
4397                         goto done;
4398                 }
4399         }
4400
4401 done:
4402         return cpu;
4403 }
4404
4405 #ifdef CONFIG_RFS_ACCEL
4406
4407 /**
4408  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4409  * @dev: Device on which the filter was set
4410  * @rxq_index: RX queue index
4411  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4412  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4413  *
4414  * Drivers that implement ndo_rx_flow_steer() should periodically call
4415  * this function for each installed filter and remove the filters for
4416  * which it returns %true.
4417  */
4418 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4419                          u32 flow_id, u16 filter_id)
4420 {
4421         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4422         struct rps_dev_flow_table *flow_table;
4423         struct rps_dev_flow *rflow;
4424         bool expire = true;
4425         unsigned int cpu;
4426
4427         rcu_read_lock();
4428         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4429         if (flow_table && flow_id <= flow_table->mask) {
4430                 rflow = &flow_table->flows[flow_id];
4431                 cpu = READ_ONCE(rflow->cpu);
4432                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4433                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4434                            rflow->last_qtail) <
4435                      (int)(10 * flow_table->mask)))
4436                         expire = false;
4437         }
4438         rcu_read_unlock();
4439         return expire;
4440 }
4441 EXPORT_SYMBOL(rps_may_expire_flow);
4442
4443 #endif /* CONFIG_RFS_ACCEL */
4444
4445 /* Called from hardirq (IPI) context */
4446 static void rps_trigger_softirq(void *data)
4447 {
4448         struct softnet_data *sd = data;
4449
4450         ____napi_schedule(sd, &sd->backlog);
4451         sd->received_rps++;
4452 }
4453
4454 #endif /* CONFIG_RPS */
4455
4456 /*
4457  * Check if this softnet_data structure is another cpu one
4458  * If yes, queue it to our IPI list and return 1
4459  * If no, return 0
4460  */
4461 static int rps_ipi_queued(struct softnet_data *sd)
4462 {
4463 #ifdef CONFIG_RPS
4464         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4465
4466         if (sd != mysd) {
4467                 sd->rps_ipi_next = mysd->rps_ipi_list;
4468                 mysd->rps_ipi_list = sd;
4469
4470                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4471                 return 1;
4472         }
4473 #endif /* CONFIG_RPS */
4474         return 0;
4475 }
4476
4477 #ifdef CONFIG_NET_FLOW_LIMIT
4478 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4479 #endif
4480
4481 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4482 {
4483 #ifdef CONFIG_NET_FLOW_LIMIT
4484         struct sd_flow_limit *fl;
4485         struct softnet_data *sd;
4486         unsigned int old_flow, new_flow;
4487
4488         if (qlen < (netdev_max_backlog >> 1))
4489                 return false;
4490
4491         sd = this_cpu_ptr(&softnet_data);
4492
4493         rcu_read_lock();
4494         fl = rcu_dereference(sd->flow_limit);
4495         if (fl) {
4496                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4497                 old_flow = fl->history[fl->history_head];
4498                 fl->history[fl->history_head] = new_flow;
4499
4500                 fl->history_head++;
4501                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4502
4503                 if (likely(fl->buckets[old_flow]))
4504                         fl->buckets[old_flow]--;
4505
4506                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4507                         fl->count++;
4508                         rcu_read_unlock();
4509                         return true;
4510                 }
4511         }
4512         rcu_read_unlock();
4513 #endif
4514         return false;
4515 }
4516
4517 /*
4518  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4519  * queue (may be a remote CPU queue).
4520  */
4521 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4522                               unsigned int *qtail)
4523 {
4524         struct softnet_data *sd;
4525         unsigned long flags;
4526         unsigned int qlen;
4527
4528         sd = &per_cpu(softnet_data, cpu);
4529
4530         local_irq_save(flags);
4531
4532         rps_lock(sd);
4533         if (!netif_running(skb->dev))
4534                 goto drop;
4535         qlen = skb_queue_len(&sd->input_pkt_queue);
4536         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4537                 if (qlen) {
4538 enqueue:
4539                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4540                         input_queue_tail_incr_save(sd, qtail);
4541                         rps_unlock(sd);
4542                         local_irq_restore(flags);
4543                         return NET_RX_SUCCESS;
4544                 }
4545
4546                 /* Schedule NAPI for backlog device
4547                  * We can use non atomic operation since we own the queue lock
4548                  */
4549                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4550                         if (!rps_ipi_queued(sd))
4551                                 ____napi_schedule(sd, &sd->backlog);
4552                 }
4553                 goto enqueue;
4554         }
4555
4556 drop:
4557         sd->dropped++;
4558         rps_unlock(sd);
4559
4560         local_irq_restore(flags);
4561
4562         atomic_long_inc(&skb->dev->rx_dropped);
4563         kfree_skb(skb);
4564         return NET_RX_DROP;
4565 }
4566
4567 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4568 {
4569         struct net_device *dev = skb->dev;
4570         struct netdev_rx_queue *rxqueue;
4571
4572         rxqueue = dev->_rx;
4573
4574         if (skb_rx_queue_recorded(skb)) {
4575                 u16 index = skb_get_rx_queue(skb);
4576
4577                 if (unlikely(index >= dev->real_num_rx_queues)) {
4578                         WARN_ONCE(dev->real_num_rx_queues > 1,
4579                                   "%s received packet on queue %u, but number "
4580                                   "of RX queues is %u\n",
4581                                   dev->name, index, dev->real_num_rx_queues);
4582
4583                         return rxqueue; /* Return first rxqueue */
4584                 }
4585                 rxqueue += index;
4586         }
4587         return rxqueue;
4588 }
4589
4590 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4591                                      struct xdp_buff *xdp,
4592                                      struct bpf_prog *xdp_prog)
4593 {
4594         struct netdev_rx_queue *rxqueue;
4595         void *orig_data, *orig_data_end;
4596         u32 metalen, act = XDP_DROP;
4597         __be16 orig_eth_type;
4598         struct ethhdr *eth;
4599         bool orig_bcast;
4600         int hlen, off;
4601         u32 mac_len;
4602
4603         /* Reinjected packets coming from act_mirred or similar should
4604          * not get XDP generic processing.
4605          */
4606         if (skb_is_redirected(skb))
4607                 return XDP_PASS;
4608
4609         /* XDP packets must be linear and must have sufficient headroom
4610          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4611          * native XDP provides, thus we need to do it here as well.
4612          */
4613         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4614             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4615                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4616                 int troom = skb->tail + skb->data_len - skb->end;
4617
4618                 /* In case we have to go down the path and also linearize,
4619                  * then lets do the pskb_expand_head() work just once here.
4620                  */
4621                 if (pskb_expand_head(skb,
4622                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4623                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4624                         goto do_drop;
4625                 if (skb_linearize(skb))
4626                         goto do_drop;
4627         }
4628
4629         /* The XDP program wants to see the packet starting at the MAC
4630          * header.
4631          */
4632         mac_len = skb->data - skb_mac_header(skb);
4633         hlen = skb_headlen(skb) + mac_len;
4634         xdp->data = skb->data - mac_len;
4635         xdp->data_meta = xdp->data;
4636         xdp->data_end = xdp->data + hlen;
4637         xdp->data_hard_start = skb->data - skb_headroom(skb);
4638
4639         /* SKB "head" area always have tailroom for skb_shared_info */
4640         xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4641         xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4642
4643         orig_data_end = xdp->data_end;
4644         orig_data = xdp->data;
4645         eth = (struct ethhdr *)xdp->data;
4646         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4647         orig_eth_type = eth->h_proto;
4648
4649         rxqueue = netif_get_rxqueue(skb);
4650         xdp->rxq = &rxqueue->xdp_rxq;
4651
4652         act = bpf_prog_run_xdp(xdp_prog, xdp);
4653
4654         /* check if bpf_xdp_adjust_head was used */
4655         off = xdp->data - orig_data;
4656         if (off) {
4657                 if (off > 0)
4658                         __skb_pull(skb, off);
4659                 else if (off < 0)
4660                         __skb_push(skb, -off);
4661
4662                 skb->mac_header += off;
4663                 skb_reset_network_header(skb);
4664         }
4665
4666         /* check if bpf_xdp_adjust_tail was used */
4667         off = xdp->data_end - orig_data_end;
4668         if (off != 0) {
4669                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4670                 skb->len += off; /* positive on grow, negative on shrink */
4671         }
4672
4673         /* check if XDP changed eth hdr such SKB needs update */
4674         eth = (struct ethhdr *)xdp->data;
4675         if ((orig_eth_type != eth->h_proto) ||
4676             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4677                 __skb_push(skb, ETH_HLEN);
4678                 skb->protocol = eth_type_trans(skb, skb->dev);
4679         }
4680
4681         switch (act) {
4682         case XDP_REDIRECT:
4683         case XDP_TX:
4684                 __skb_push(skb, mac_len);
4685                 break;
4686         case XDP_PASS:
4687                 metalen = xdp->data - xdp->data_meta;
4688                 if (metalen)
4689                         skb_metadata_set(skb, metalen);
4690                 break;
4691         default:
4692                 bpf_warn_invalid_xdp_action(act);
4693                 fallthrough;
4694         case XDP_ABORTED:
4695                 trace_xdp_exception(skb->dev, xdp_prog, act);
4696                 fallthrough;
4697         case XDP_DROP:
4698         do_drop:
4699                 kfree_skb(skb);
4700                 break;
4701         }
4702
4703         return act;
4704 }
4705
4706 /* When doing generic XDP we have to bypass the qdisc layer and the
4707  * network taps in order to match in-driver-XDP behavior.
4708  */
4709 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4710 {
4711         struct net_device *dev = skb->dev;
4712         struct netdev_queue *txq;
4713         bool free_skb = true;
4714         int cpu, rc;
4715
4716         txq = netdev_core_pick_tx(dev, skb, NULL);
4717         cpu = smp_processor_id();
4718         HARD_TX_LOCK(dev, txq, cpu);
4719         if (!netif_xmit_stopped(txq)) {
4720                 rc = netdev_start_xmit(skb, dev, txq, 0);
4721                 if (dev_xmit_complete(rc))
4722                         free_skb = false;
4723         }
4724         HARD_TX_UNLOCK(dev, txq);
4725         if (free_skb) {
4726                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4727                 kfree_skb(skb);
4728         }
4729 }
4730
4731 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4732
4733 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4734 {
4735         if (xdp_prog) {
4736                 struct xdp_buff xdp;
4737                 u32 act;
4738                 int err;
4739
4740                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4741                 if (act != XDP_PASS) {
4742                         switch (act) {
4743                         case XDP_REDIRECT:
4744                                 err = xdp_do_generic_redirect(skb->dev, skb,
4745                                                               &xdp, xdp_prog);
4746                                 if (err)
4747                                         goto out_redir;
4748                                 break;
4749                         case XDP_TX:
4750                                 generic_xdp_tx(skb, xdp_prog);
4751                                 break;
4752                         }
4753                         return XDP_DROP;
4754                 }
4755         }
4756         return XDP_PASS;
4757 out_redir:
4758         kfree_skb(skb);
4759         return XDP_DROP;
4760 }
4761 EXPORT_SYMBOL_GPL(do_xdp_generic);
4762
4763 static int netif_rx_internal(struct sk_buff *skb)
4764 {
4765         int ret;
4766
4767         net_timestamp_check(netdev_tstamp_prequeue, skb);
4768
4769         trace_netif_rx(skb);
4770
4771 #ifdef CONFIG_RPS
4772         if (static_branch_unlikely(&rps_needed)) {
4773                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4774                 int cpu;
4775
4776                 preempt_disable();
4777                 rcu_read_lock();
4778
4779                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4780                 if (cpu < 0)
4781                         cpu = smp_processor_id();
4782
4783                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4784
4785                 rcu_read_unlock();
4786                 preempt_enable();
4787         } else
4788 #endif
4789         {
4790                 unsigned int qtail;
4791
4792                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4793                 put_cpu();
4794         }
4795         return ret;
4796 }
4797
4798 /**
4799  *      netif_rx        -       post buffer to the network code
4800  *      @skb: buffer to post
4801  *
4802  *      This function receives a packet from a device driver and queues it for
4803  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4804  *      may be dropped during processing for congestion control or by the
4805  *      protocol layers.
4806  *
4807  *      return values:
4808  *      NET_RX_SUCCESS  (no congestion)
4809  *      NET_RX_DROP     (packet was dropped)
4810  *
4811  */
4812
4813 int netif_rx(struct sk_buff *skb)
4814 {
4815         int ret;
4816
4817         trace_netif_rx_entry(skb);
4818
4819         ret = netif_rx_internal(skb);
4820         trace_netif_rx_exit(ret);
4821
4822         return ret;
4823 }
4824 EXPORT_SYMBOL(netif_rx);
4825
4826 int netif_rx_ni(struct sk_buff *skb)
4827 {
4828         int err;
4829
4830         trace_netif_rx_ni_entry(skb);
4831
4832         preempt_disable();
4833         err = netif_rx_internal(skb);
4834         if (local_softirq_pending())
4835                 do_softirq();
4836         preempt_enable();
4837         trace_netif_rx_ni_exit(err);
4838
4839         return err;
4840 }
4841 EXPORT_SYMBOL(netif_rx_ni);
4842
4843 static __latent_entropy void net_tx_action(struct softirq_action *h)
4844 {
4845         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4846
4847         if (sd->completion_queue) {
4848                 struct sk_buff *clist;
4849
4850                 local_irq_disable();
4851                 clist = sd->completion_queue;
4852                 sd->completion_queue = NULL;
4853                 local_irq_enable();
4854
4855                 while (clist) {
4856                         struct sk_buff *skb = clist;
4857
4858                         clist = clist->next;
4859
4860                         WARN_ON(refcount_read(&skb->users));
4861                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4862                                 trace_consume_skb(skb);
4863                         else
4864                                 trace_kfree_skb(skb, net_tx_action);
4865
4866                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4867                                 __kfree_skb(skb);
4868                         else
4869                                 __kfree_skb_defer(skb);
4870                 }
4871
4872                 __kfree_skb_flush();
4873         }
4874
4875         if (sd->output_queue) {
4876                 struct Qdisc *head;
4877
4878                 local_irq_disable();
4879                 head = sd->output_queue;
4880                 sd->output_queue = NULL;
4881                 sd->output_queue_tailp = &sd->output_queue;
4882                 local_irq_enable();
4883
4884                 while (head) {
4885                         struct Qdisc *q = head;
4886                         spinlock_t *root_lock = NULL;
4887
4888                         head = head->next_sched;
4889
4890                         if (!(q->flags & TCQ_F_NOLOCK)) {
4891                                 root_lock = qdisc_lock(q);
4892                                 spin_lock(root_lock);
4893                         }
4894                         /* We need to make sure head->next_sched is read
4895                          * before clearing __QDISC_STATE_SCHED
4896                          */
4897                         smp_mb__before_atomic();
4898                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4899                         qdisc_run(q);
4900                         if (root_lock)
4901                                 spin_unlock(root_lock);
4902                 }
4903         }
4904
4905         xfrm_dev_backlog(sd);
4906 }
4907
4908 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4909 /* This hook is defined here for ATM LANE */
4910 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4911                              unsigned char *addr) __read_mostly;
4912 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4913 #endif
4914
4915 static inline struct sk_buff *
4916 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4917                    struct net_device *orig_dev)
4918 {
4919 #ifdef CONFIG_NET_CLS_ACT
4920         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4921         struct tcf_result cl_res;
4922
4923         /* If there's at least one ingress present somewhere (so
4924          * we get here via enabled static key), remaining devices
4925          * that are not configured with an ingress qdisc will bail
4926          * out here.
4927          */
4928         if (!miniq)
4929                 return skb;
4930
4931         if (*pt_prev) {
4932                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4933                 *pt_prev = NULL;
4934         }
4935
4936         qdisc_skb_cb(skb)->pkt_len = skb->len;
4937         skb->tc_at_ingress = 1;
4938         mini_qdisc_bstats_cpu_update(miniq, skb);
4939
4940         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4941                                      &cl_res, false)) {
4942         case TC_ACT_OK:
4943         case TC_ACT_RECLASSIFY:
4944                 skb->tc_index = TC_H_MIN(cl_res.classid);
4945                 break;
4946         case TC_ACT_SHOT:
4947                 mini_qdisc_qstats_cpu_drop(miniq);
4948                 kfree_skb(skb);
4949                 return NULL;
4950         case TC_ACT_STOLEN:
4951         case TC_ACT_QUEUED:
4952         case TC_ACT_TRAP:
4953                 consume_skb(skb);
4954                 return NULL;
4955         case TC_ACT_REDIRECT:
4956                 /* skb_mac_header check was done by cls/act_bpf, so
4957                  * we can safely push the L2 header back before
4958                  * redirecting to another netdev
4959                  */
4960                 __skb_push(skb, skb->mac_len);
4961                 skb_do_redirect(skb);
4962                 return NULL;
4963         case TC_ACT_CONSUMED:
4964                 return NULL;
4965         default:
4966                 break;
4967         }
4968 #endif /* CONFIG_NET_CLS_ACT */
4969         return skb;
4970 }
4971
4972 /**
4973  *      netdev_is_rx_handler_busy - check if receive handler is registered
4974  *      @dev: device to check
4975  *
4976  *      Check if a receive handler is already registered for a given device.
4977  *      Return true if there one.
4978  *
4979  *      The caller must hold the rtnl_mutex.
4980  */
4981 bool netdev_is_rx_handler_busy(struct net_device *dev)
4982 {
4983         ASSERT_RTNL();
4984         return dev && rtnl_dereference(dev->rx_handler);
4985 }
4986 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4987
4988 /**
4989  *      netdev_rx_handler_register - register receive handler
4990  *      @dev: device to register a handler for
4991  *      @rx_handler: receive handler to register
4992  *      @rx_handler_data: data pointer that is used by rx handler
4993  *
4994  *      Register a receive handler for a device. This handler will then be
4995  *      called from __netif_receive_skb. A negative errno code is returned
4996  *      on a failure.
4997  *
4998  *      The caller must hold the rtnl_mutex.
4999  *
5000  *      For a general description of rx_handler, see enum rx_handler_result.
5001  */
5002 int netdev_rx_handler_register(struct net_device *dev,
5003                                rx_handler_func_t *rx_handler,
5004                                void *rx_handler_data)
5005 {
5006         if (netdev_is_rx_handler_busy(dev))
5007                 return -EBUSY;
5008
5009         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5010                 return -EINVAL;
5011
5012         /* Note: rx_handler_data must be set before rx_handler */
5013         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5014         rcu_assign_pointer(dev->rx_handler, rx_handler);
5015
5016         return 0;
5017 }
5018 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5019
5020 /**
5021  *      netdev_rx_handler_unregister - unregister receive handler
5022  *      @dev: device to unregister a handler from
5023  *
5024  *      Unregister a receive handler from a device.
5025  *
5026  *      The caller must hold the rtnl_mutex.
5027  */
5028 void netdev_rx_handler_unregister(struct net_device *dev)
5029 {
5030
5031         ASSERT_RTNL();
5032         RCU_INIT_POINTER(dev->rx_handler, NULL);
5033         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5034          * section has a guarantee to see a non NULL rx_handler_data
5035          * as well.
5036          */
5037         synchronize_net();
5038         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5039 }
5040 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5041
5042 /*
5043  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5044  * the special handling of PFMEMALLOC skbs.
5045  */
5046 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5047 {
5048         switch (skb->protocol) {
5049         case htons(ETH_P_ARP):
5050         case htons(ETH_P_IP):
5051         case htons(ETH_P_IPV6):
5052         case htons(ETH_P_8021Q):
5053         case htons(ETH_P_8021AD):
5054                 return true;
5055         default:
5056                 return false;
5057         }
5058 }
5059
5060 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5061                              int *ret, struct net_device *orig_dev)
5062 {
5063         if (nf_hook_ingress_active(skb)) {
5064                 int ingress_retval;
5065
5066                 if (*pt_prev) {
5067                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5068                         *pt_prev = NULL;
5069                 }
5070
5071                 rcu_read_lock();
5072                 ingress_retval = nf_hook_ingress(skb);
5073                 rcu_read_unlock();
5074                 return ingress_retval;
5075         }
5076         return 0;
5077 }
5078
5079 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5080                                     struct packet_type **ppt_prev)
5081 {
5082         struct packet_type *ptype, *pt_prev;
5083         rx_handler_func_t *rx_handler;
5084         struct sk_buff *skb = *pskb;
5085         struct net_device *orig_dev;
5086         bool deliver_exact = false;
5087         int ret = NET_RX_DROP;
5088         __be16 type;
5089
5090         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5091
5092         trace_netif_receive_skb(skb);
5093
5094         orig_dev = skb->dev;
5095
5096         skb_reset_network_header(skb);
5097         if (!skb_transport_header_was_set(skb))
5098                 skb_reset_transport_header(skb);
5099         skb_reset_mac_len(skb);
5100
5101         pt_prev = NULL;
5102
5103 another_round:
5104         skb->skb_iif = skb->dev->ifindex;
5105
5106         __this_cpu_inc(softnet_data.processed);
5107
5108         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5109                 int ret2;
5110
5111                 preempt_disable();
5112                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5113                 preempt_enable();
5114
5115                 if (ret2 != XDP_PASS) {
5116                         ret = NET_RX_DROP;
5117                         goto out;
5118                 }
5119                 skb_reset_mac_len(skb);
5120         }
5121
5122         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5123             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5124                 skb = skb_vlan_untag(skb);
5125                 if (unlikely(!skb))
5126                         goto out;
5127         }
5128
5129         if (skb_skip_tc_classify(skb))
5130                 goto skip_classify;
5131
5132         if (pfmemalloc)
5133                 goto skip_taps;
5134
5135         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5136                 if (pt_prev)
5137                         ret = deliver_skb(skb, pt_prev, orig_dev);
5138                 pt_prev = ptype;
5139         }
5140
5141         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5142                 if (pt_prev)
5143                         ret = deliver_skb(skb, pt_prev, orig_dev);
5144                 pt_prev = ptype;
5145         }
5146
5147 skip_taps:
5148 #ifdef CONFIG_NET_INGRESS
5149         if (static_branch_unlikely(&ingress_needed_key)) {
5150                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5151                 if (!skb)
5152                         goto out;
5153
5154                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5155                         goto out;
5156         }
5157 #endif
5158         skb_reset_redirect(skb);
5159 skip_classify:
5160         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5161                 goto drop;
5162
5163         if (skb_vlan_tag_present(skb)) {
5164                 if (pt_prev) {
5165                         ret = deliver_skb(skb, pt_prev, orig_dev);
5166                         pt_prev = NULL;
5167                 }
5168                 if (vlan_do_receive(&skb))
5169                         goto another_round;
5170                 else if (unlikely(!skb))
5171                         goto out;
5172         }
5173
5174         rx_handler = rcu_dereference(skb->dev->rx_handler);
5175         if (rx_handler) {
5176                 if (pt_prev) {
5177                         ret = deliver_skb(skb, pt_prev, orig_dev);
5178                         pt_prev = NULL;
5179                 }
5180                 switch (rx_handler(&skb)) {
5181                 case RX_HANDLER_CONSUMED:
5182                         ret = NET_RX_SUCCESS;
5183                         goto out;
5184                 case RX_HANDLER_ANOTHER:
5185                         goto another_round;
5186                 case RX_HANDLER_EXACT:
5187                         deliver_exact = true;
5188                 case RX_HANDLER_PASS:
5189                         break;
5190                 default:
5191                         BUG();
5192                 }
5193         }
5194
5195         if (unlikely(skb_vlan_tag_present(skb))) {
5196 check_vlan_id:
5197                 if (skb_vlan_tag_get_id(skb)) {
5198                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5199                          * find vlan device.
5200                          */
5201                         skb->pkt_type = PACKET_OTHERHOST;
5202                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5203                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5204                         /* Outer header is 802.1P with vlan 0, inner header is
5205                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5206                          * not find vlan dev for vlan id 0.
5207                          */
5208                         __vlan_hwaccel_clear_tag(skb);
5209                         skb = skb_vlan_untag(skb);
5210                         if (unlikely(!skb))
5211                                 goto out;
5212                         if (vlan_do_receive(&skb))
5213                                 /* After stripping off 802.1P header with vlan 0
5214                                  * vlan dev is found for inner header.
5215                                  */
5216                                 goto another_round;
5217                         else if (unlikely(!skb))
5218                                 goto out;
5219                         else
5220                                 /* We have stripped outer 802.1P vlan 0 header.
5221                                  * But could not find vlan dev.
5222                                  * check again for vlan id to set OTHERHOST.
5223                                  */
5224                                 goto check_vlan_id;
5225                 }
5226                 /* Note: we might in the future use prio bits
5227                  * and set skb->priority like in vlan_do_receive()
5228                  * For the time being, just ignore Priority Code Point
5229                  */
5230                 __vlan_hwaccel_clear_tag(skb);
5231         }
5232
5233         type = skb->protocol;
5234
5235         /* deliver only exact match when indicated */
5236         if (likely(!deliver_exact)) {
5237                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5238                                        &ptype_base[ntohs(type) &
5239                                                    PTYPE_HASH_MASK]);
5240         }
5241
5242         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5243                                &orig_dev->ptype_specific);
5244
5245         if (unlikely(skb->dev != orig_dev)) {
5246                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5247                                        &skb->dev->ptype_specific);
5248         }
5249
5250         if (pt_prev) {
5251                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5252                         goto drop;
5253                 *ppt_prev = pt_prev;
5254         } else {
5255 drop:
5256                 if (!deliver_exact)
5257                         atomic_long_inc(&skb->dev->rx_dropped);
5258                 else
5259                         atomic_long_inc(&skb->dev->rx_nohandler);
5260                 kfree_skb(skb);
5261                 /* Jamal, now you will not able to escape explaining
5262                  * me how you were going to use this. :-)
5263                  */
5264                 ret = NET_RX_DROP;
5265         }
5266
5267 out:
5268         /* The invariant here is that if *ppt_prev is not NULL
5269          * then skb should also be non-NULL.
5270          *
5271          * Apparently *ppt_prev assignment above holds this invariant due to
5272          * skb dereferencing near it.
5273          */
5274         *pskb = skb;
5275         return ret;
5276 }
5277
5278 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5279 {
5280         struct net_device *orig_dev = skb->dev;
5281         struct packet_type *pt_prev = NULL;
5282         int ret;
5283
5284         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5285         if (pt_prev)
5286                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5287                                          skb->dev, pt_prev, orig_dev);
5288         return ret;
5289 }
5290
5291 /**
5292  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5293  *      @skb: buffer to process
5294  *
5295  *      More direct receive version of netif_receive_skb().  It should
5296  *      only be used by callers that have a need to skip RPS and Generic XDP.
5297  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5298  *
5299  *      This function may only be called from softirq context and interrupts
5300  *      should be enabled.
5301  *
5302  *      Return values (usually ignored):
5303  *      NET_RX_SUCCESS: no congestion
5304  *      NET_RX_DROP: packet was dropped
5305  */
5306 int netif_receive_skb_core(struct sk_buff *skb)
5307 {
5308         int ret;
5309
5310         rcu_read_lock();
5311         ret = __netif_receive_skb_one_core(skb, false);
5312         rcu_read_unlock();
5313
5314         return ret;
5315 }
5316 EXPORT_SYMBOL(netif_receive_skb_core);
5317
5318 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5319                                                   struct packet_type *pt_prev,
5320                                                   struct net_device *orig_dev)
5321 {
5322         struct sk_buff *skb, *next;
5323
5324         if (!pt_prev)
5325                 return;
5326         if (list_empty(head))
5327                 return;
5328         if (pt_prev->list_func != NULL)
5329                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5330                                    ip_list_rcv, head, pt_prev, orig_dev);
5331         else
5332                 list_for_each_entry_safe(skb, next, head, list) {
5333                         skb_list_del_init(skb);
5334                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5335                 }
5336 }
5337
5338 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5339 {
5340         /* Fast-path assumptions:
5341          * - There is no RX handler.
5342          * - Only one packet_type matches.
5343          * If either of these fails, we will end up doing some per-packet
5344          * processing in-line, then handling the 'last ptype' for the whole
5345          * sublist.  This can't cause out-of-order delivery to any single ptype,
5346          * because the 'last ptype' must be constant across the sublist, and all
5347          * other ptypes are handled per-packet.
5348          */
5349         /* Current (common) ptype of sublist */
5350         struct packet_type *pt_curr = NULL;
5351         /* Current (common) orig_dev of sublist */
5352         struct net_device *od_curr = NULL;
5353         struct list_head sublist;
5354         struct sk_buff *skb, *next;
5355
5356         INIT_LIST_HEAD(&sublist);
5357         list_for_each_entry_safe(skb, next, head, list) {
5358                 struct net_device *orig_dev = skb->dev;
5359                 struct packet_type *pt_prev = NULL;
5360
5361                 skb_list_del_init(skb);
5362                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5363                 if (!pt_prev)
5364                         continue;
5365                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5366                         /* dispatch old sublist */
5367                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5368                         /* start new sublist */
5369                         INIT_LIST_HEAD(&sublist);
5370                         pt_curr = pt_prev;
5371                         od_curr = orig_dev;
5372                 }
5373                 list_add_tail(&skb->list, &sublist);
5374         }
5375
5376         /* dispatch final sublist */
5377         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5378 }
5379
5380 static int __netif_receive_skb(struct sk_buff *skb)
5381 {
5382         int ret;
5383
5384         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5385                 unsigned int noreclaim_flag;
5386
5387                 /*
5388                  * PFMEMALLOC skbs are special, they should
5389                  * - be delivered to SOCK_MEMALLOC sockets only
5390                  * - stay away from userspace
5391                  * - have bounded memory usage
5392                  *
5393                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5394                  * context down to all allocation sites.
5395                  */
5396                 noreclaim_flag = memalloc_noreclaim_save();
5397                 ret = __netif_receive_skb_one_core(skb, true);
5398                 memalloc_noreclaim_restore(noreclaim_flag);
5399         } else
5400                 ret = __netif_receive_skb_one_core(skb, false);
5401
5402         return ret;
5403 }
5404
5405 static void __netif_receive_skb_list(struct list_head *head)
5406 {
5407         unsigned long noreclaim_flag = 0;
5408         struct sk_buff *skb, *next;
5409         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5410
5411         list_for_each_entry_safe(skb, next, head, list) {
5412                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5413                         struct list_head sublist;
5414
5415                         /* Handle the previous sublist */
5416                         list_cut_before(&sublist, head, &skb->list);
5417                         if (!list_empty(&sublist))
5418                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5419                         pfmemalloc = !pfmemalloc;
5420                         /* See comments in __netif_receive_skb */
5421                         if (pfmemalloc)
5422                                 noreclaim_flag = memalloc_noreclaim_save();
5423                         else
5424                                 memalloc_noreclaim_restore(noreclaim_flag);
5425                 }
5426         }
5427         /* Handle the remaining sublist */
5428         if (!list_empty(head))
5429                 __netif_receive_skb_list_core(head, pfmemalloc);
5430         /* Restore pflags */
5431         if (pfmemalloc)
5432                 memalloc_noreclaim_restore(noreclaim_flag);
5433 }
5434
5435 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5436 {
5437         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5438         struct bpf_prog *new = xdp->prog;
5439         int ret = 0;
5440
5441         if (new) {
5442                 u32 i;
5443
5444                 /* generic XDP does not work with DEVMAPs that can
5445                  * have a bpf_prog installed on an entry
5446                  */
5447                 for (i = 0; i < new->aux->used_map_cnt; i++) {
5448                         if (dev_map_can_have_prog(new->aux->used_maps[i]))
5449                                 return -EINVAL;
5450                         if (cpu_map_prog_allowed(new->aux->used_maps[i]))
5451                                 return -EINVAL;
5452                 }
5453         }
5454
5455         switch (xdp->command) {
5456         case XDP_SETUP_PROG:
5457                 rcu_assign_pointer(dev->xdp_prog, new);
5458                 if (old)
5459                         bpf_prog_put(old);
5460
5461                 if (old && !new) {
5462                         static_branch_dec(&generic_xdp_needed_key);
5463                 } else if (new && !old) {
5464                         static_branch_inc(&generic_xdp_needed_key);
5465                         dev_disable_lro(dev);
5466                         dev_disable_gro_hw(dev);
5467                 }
5468                 break;
5469
5470         default:
5471                 ret = -EINVAL;
5472                 break;
5473         }
5474
5475         return ret;
5476 }
5477
5478 static int netif_receive_skb_internal(struct sk_buff *skb)
5479 {
5480         int ret;
5481
5482         net_timestamp_check(netdev_tstamp_prequeue, skb);
5483
5484         if (skb_defer_rx_timestamp(skb))
5485                 return NET_RX_SUCCESS;
5486
5487         rcu_read_lock();
5488 #ifdef CONFIG_RPS
5489         if (static_branch_unlikely(&rps_needed)) {
5490                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5491                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5492
5493                 if (cpu >= 0) {
5494                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5495                         rcu_read_unlock();
5496                         return ret;
5497                 }
5498         }
5499 #endif
5500         ret = __netif_receive_skb(skb);
5501         rcu_read_unlock();
5502         return ret;
5503 }
5504
5505 static void netif_receive_skb_list_internal(struct list_head *head)
5506 {
5507         struct sk_buff *skb, *next;
5508         struct list_head sublist;
5509
5510         INIT_LIST_HEAD(&sublist);
5511         list_for_each_entry_safe(skb, next, head, list) {
5512                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5513                 skb_list_del_init(skb);
5514                 if (!skb_defer_rx_timestamp(skb))
5515                         list_add_tail(&skb->list, &sublist);
5516         }
5517         list_splice_init(&sublist, head);
5518
5519         rcu_read_lock();
5520 #ifdef CONFIG_RPS
5521         if (static_branch_unlikely(&rps_needed)) {
5522                 list_for_each_entry_safe(skb, next, head, list) {
5523                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5524                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5525
5526                         if (cpu >= 0) {
5527                                 /* Will be handled, remove from list */
5528                                 skb_list_del_init(skb);
5529                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5530                         }
5531                 }
5532         }
5533 #endif
5534         __netif_receive_skb_list(head);
5535         rcu_read_unlock();
5536 }
5537
5538 /**
5539  *      netif_receive_skb - process receive buffer from network
5540  *      @skb: buffer to process
5541  *
5542  *      netif_receive_skb() is the main receive data processing function.
5543  *      It always succeeds. The buffer may be dropped during processing
5544  *      for congestion control or by the protocol layers.
5545  *
5546  *      This function may only be called from softirq context and interrupts
5547  *      should be enabled.
5548  *
5549  *      Return values (usually ignored):
5550  *      NET_RX_SUCCESS: no congestion
5551  *      NET_RX_DROP: packet was dropped
5552  */
5553 int netif_receive_skb(struct sk_buff *skb)
5554 {
5555         int ret;
5556
5557         trace_netif_receive_skb_entry(skb);
5558
5559         ret = netif_receive_skb_internal(skb);
5560         trace_netif_receive_skb_exit(ret);
5561
5562         return ret;
5563 }
5564 EXPORT_SYMBOL(netif_receive_skb);
5565
5566 /**
5567  *      netif_receive_skb_list - process many receive buffers from network
5568  *      @head: list of skbs to process.
5569  *
5570  *      Since return value of netif_receive_skb() is normally ignored, and
5571  *      wouldn't be meaningful for a list, this function returns void.
5572  *
5573  *      This function may only be called from softirq context and interrupts
5574  *      should be enabled.
5575  */
5576 void netif_receive_skb_list(struct list_head *head)
5577 {
5578         struct sk_buff *skb;
5579
5580         if (list_empty(head))
5581                 return;
5582         if (trace_netif_receive_skb_list_entry_enabled()) {
5583                 list_for_each_entry(skb, head, list)
5584                         trace_netif_receive_skb_list_entry(skb);
5585         }
5586         netif_receive_skb_list_internal(head);
5587         trace_netif_receive_skb_list_exit(0);
5588 }
5589 EXPORT_SYMBOL(netif_receive_skb_list);
5590
5591 static DEFINE_PER_CPU(struct work_struct, flush_works);
5592
5593 /* Network device is going away, flush any packets still pending */
5594 static void flush_backlog(struct work_struct *work)
5595 {
5596         struct sk_buff *skb, *tmp;
5597         struct softnet_data *sd;
5598
5599         local_bh_disable();
5600         sd = this_cpu_ptr(&softnet_data);
5601
5602         local_irq_disable();
5603         rps_lock(sd);
5604         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5605                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5606                         __skb_unlink(skb, &sd->input_pkt_queue);
5607                         dev_kfree_skb_irq(skb);
5608                         input_queue_head_incr(sd);
5609                 }
5610         }
5611         rps_unlock(sd);
5612         local_irq_enable();
5613
5614         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5615                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5616                         __skb_unlink(skb, &sd->process_queue);
5617                         kfree_skb(skb);
5618                         input_queue_head_incr(sd);
5619                 }
5620         }
5621         local_bh_enable();
5622 }
5623
5624 static void flush_all_backlogs(void)
5625 {
5626         unsigned int cpu;
5627
5628         get_online_cpus();
5629
5630         for_each_online_cpu(cpu)
5631                 queue_work_on(cpu, system_highpri_wq,
5632                               per_cpu_ptr(&flush_works, cpu));
5633
5634         for_each_online_cpu(cpu)
5635                 flush_work(per_cpu_ptr(&flush_works, cpu));
5636
5637         put_online_cpus();
5638 }
5639
5640 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5641 static void gro_normal_list(struct napi_struct *napi)
5642 {
5643         if (!napi->rx_count)
5644                 return;
5645         netif_receive_skb_list_internal(&napi->rx_list);
5646         INIT_LIST_HEAD(&napi->rx_list);
5647         napi->rx_count = 0;
5648 }
5649
5650 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5651  * pass the whole batch up to the stack.
5652  */
5653 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5654 {
5655         list_add_tail(&skb->list, &napi->rx_list);
5656         if (++napi->rx_count >= gro_normal_batch)
5657                 gro_normal_list(napi);
5658 }
5659
5660 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5661 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5662 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5663 {
5664         struct packet_offload *ptype;
5665         __be16 type = skb->protocol;
5666         struct list_head *head = &offload_base;
5667         int err = -ENOENT;
5668
5669         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5670
5671         if (NAPI_GRO_CB(skb)->count == 1) {
5672                 skb_shinfo(skb)->gso_size = 0;
5673                 goto out;
5674         }
5675
5676         rcu_read_lock();
5677         list_for_each_entry_rcu(ptype, head, list) {
5678                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5679                         continue;
5680
5681                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5682                                          ipv6_gro_complete, inet_gro_complete,
5683                                          skb, 0);
5684                 break;
5685         }
5686         rcu_read_unlock();
5687
5688         if (err) {
5689                 WARN_ON(&ptype->list == head);
5690                 kfree_skb(skb);
5691                 return NET_RX_SUCCESS;
5692         }
5693
5694 out:
5695         gro_normal_one(napi, skb);
5696         return NET_RX_SUCCESS;
5697 }
5698
5699 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5700                                    bool flush_old)
5701 {
5702         struct list_head *head = &napi->gro_hash[index].list;
5703         struct sk_buff *skb, *p;
5704
5705         list_for_each_entry_safe_reverse(skb, p, head, list) {
5706                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5707                         return;
5708                 skb_list_del_init(skb);
5709                 napi_gro_complete(napi, skb);
5710                 napi->gro_hash[index].count--;
5711         }
5712
5713         if (!napi->gro_hash[index].count)
5714                 __clear_bit(index, &napi->gro_bitmask);
5715 }
5716
5717 /* napi->gro_hash[].list contains packets ordered by age.
5718  * youngest packets at the head of it.
5719  * Complete skbs in reverse order to reduce latencies.
5720  */
5721 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5722 {
5723         unsigned long bitmask = napi->gro_bitmask;
5724         unsigned int i, base = ~0U;
5725
5726         while ((i = ffs(bitmask)) != 0) {
5727                 bitmask >>= i;
5728                 base += i;
5729                 __napi_gro_flush_chain(napi, base, flush_old);
5730         }
5731 }
5732 EXPORT_SYMBOL(napi_gro_flush);
5733
5734 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5735                                           struct sk_buff *skb)
5736 {
5737         unsigned int maclen = skb->dev->hard_header_len;
5738         u32 hash = skb_get_hash_raw(skb);
5739         struct list_head *head;
5740         struct sk_buff *p;
5741
5742         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5743         list_for_each_entry(p, head, list) {
5744                 unsigned long diffs;
5745
5746                 NAPI_GRO_CB(p)->flush = 0;
5747
5748                 if (hash != skb_get_hash_raw(p)) {
5749                         NAPI_GRO_CB(p)->same_flow = 0;
5750                         continue;
5751                 }
5752
5753                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5754                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5755                 if (skb_vlan_tag_present(p))
5756                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5757                 diffs |= skb_metadata_dst_cmp(p, skb);
5758                 diffs |= skb_metadata_differs(p, skb);
5759                 if (maclen == ETH_HLEN)
5760                         diffs |= compare_ether_header(skb_mac_header(p),
5761                                                       skb_mac_header(skb));
5762                 else if (!diffs)
5763                         diffs = memcmp(skb_mac_header(p),
5764                                        skb_mac_header(skb),
5765                                        maclen);
5766                 NAPI_GRO_CB(p)->same_flow = !diffs;
5767         }
5768
5769         return head;
5770 }
5771
5772 static void skb_gro_reset_offset(struct sk_buff *skb)
5773 {
5774         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5775         const skb_frag_t *frag0 = &pinfo->frags[0];
5776
5777         NAPI_GRO_CB(skb)->data_offset = 0;
5778         NAPI_GRO_CB(skb)->frag0 = NULL;
5779         NAPI_GRO_CB(skb)->frag0_len = 0;
5780
5781         if (!skb_headlen(skb) && pinfo->nr_frags &&
5782             !PageHighMem(skb_frag_page(frag0))) {
5783                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5784                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5785                                                     skb_frag_size(frag0),
5786                                                     skb->end - skb->tail);
5787         }
5788 }
5789
5790 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5791 {
5792         struct skb_shared_info *pinfo = skb_shinfo(skb);
5793
5794         BUG_ON(skb->end - skb->tail < grow);
5795
5796         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5797
5798         skb->data_len -= grow;
5799         skb->tail += grow;
5800
5801         skb_frag_off_add(&pinfo->frags[0], grow);
5802         skb_frag_size_sub(&pinfo->frags[0], grow);
5803
5804         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5805                 skb_frag_unref(skb, 0);
5806                 memmove(pinfo->frags, pinfo->frags + 1,
5807                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5808         }
5809 }
5810
5811 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5812 {
5813         struct sk_buff *oldest;
5814
5815         oldest = list_last_entry(head, struct sk_buff, list);
5816
5817         /* We are called with head length >= MAX_GRO_SKBS, so this is
5818          * impossible.
5819          */
5820         if (WARN_ON_ONCE(!oldest))
5821                 return;
5822
5823         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5824          * SKB to the chain.
5825          */
5826         skb_list_del_init(oldest);
5827         napi_gro_complete(napi, oldest);
5828 }
5829
5830 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5831                                                            struct sk_buff *));
5832 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5833                                                            struct sk_buff *));
5834 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5835 {
5836         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5837         struct list_head *head = &offload_base;
5838         struct packet_offload *ptype;
5839         __be16 type = skb->protocol;
5840         struct list_head *gro_head;
5841         struct sk_buff *pp = NULL;
5842         enum gro_result ret;
5843         int same_flow;
5844         int grow;
5845
5846         if (netif_elide_gro(skb->dev))
5847                 goto normal;
5848
5849         gro_head = gro_list_prepare(napi, skb);
5850
5851         rcu_read_lock();
5852         list_for_each_entry_rcu(ptype, head, list) {
5853                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5854                         continue;
5855
5856                 skb_set_network_header(skb, skb_gro_offset(skb));
5857                 skb_reset_mac_len(skb);
5858                 NAPI_GRO_CB(skb)->same_flow = 0;
5859                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5860                 NAPI_GRO_CB(skb)->free = 0;
5861                 NAPI_GRO_CB(skb)->encap_mark = 0;
5862                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5863                 NAPI_GRO_CB(skb)->is_fou = 0;
5864                 NAPI_GRO_CB(skb)->is_atomic = 1;
5865                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5866
5867                 /* Setup for GRO checksum validation */
5868                 switch (skb->ip_summed) {
5869                 case CHECKSUM_COMPLETE:
5870                         NAPI_GRO_CB(skb)->csum = skb->csum;
5871                         NAPI_GRO_CB(skb)->csum_valid = 1;
5872                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5873                         break;
5874                 case CHECKSUM_UNNECESSARY:
5875                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5876                         NAPI_GRO_CB(skb)->csum_valid = 0;
5877                         break;
5878                 default:
5879                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5880                         NAPI_GRO_CB(skb)->csum_valid = 0;
5881                 }
5882
5883                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5884                                         ipv6_gro_receive, inet_gro_receive,
5885                                         gro_head, skb);
5886                 break;
5887         }
5888         rcu_read_unlock();
5889
5890         if (&ptype->list == head)
5891                 goto normal;
5892
5893         if (PTR_ERR(pp) == -EINPROGRESS) {
5894                 ret = GRO_CONSUMED;
5895                 goto ok;
5896         }
5897
5898         same_flow = NAPI_GRO_CB(skb)->same_flow;
5899         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5900
5901         if (pp) {
5902                 skb_list_del_init(pp);
5903                 napi_gro_complete(napi, pp);
5904                 napi->gro_hash[hash].count--;
5905         }
5906
5907         if (same_flow)
5908                 goto ok;
5909
5910         if (NAPI_GRO_CB(skb)->flush)
5911                 goto normal;
5912
5913         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5914                 gro_flush_oldest(napi, gro_head);
5915         } else {
5916                 napi->gro_hash[hash].count++;
5917         }
5918         NAPI_GRO_CB(skb)->count = 1;
5919         NAPI_GRO_CB(skb)->age = jiffies;
5920         NAPI_GRO_CB(skb)->last = skb;
5921         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5922         list_add(&skb->list, gro_head);
5923         ret = GRO_HELD;
5924
5925 pull:
5926         grow = skb_gro_offset(skb) - skb_headlen(skb);
5927         if (grow > 0)
5928                 gro_pull_from_frag0(skb, grow);
5929 ok:
5930         if (napi->gro_hash[hash].count) {
5931                 if (!test_bit(hash, &napi->gro_bitmask))
5932                         __set_bit(hash, &napi->gro_bitmask);
5933         } else if (test_bit(hash, &napi->gro_bitmask)) {
5934                 __clear_bit(hash, &napi->gro_bitmask);
5935         }
5936
5937         return ret;
5938
5939 normal:
5940         ret = GRO_NORMAL;
5941         goto pull;
5942 }
5943
5944 struct packet_offload *gro_find_receive_by_type(__be16 type)
5945 {
5946         struct list_head *offload_head = &offload_base;
5947         struct packet_offload *ptype;
5948
5949         list_for_each_entry_rcu(ptype, offload_head, list) {
5950                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5951                         continue;
5952                 return ptype;
5953         }
5954         return NULL;
5955 }
5956 EXPORT_SYMBOL(gro_find_receive_by_type);
5957
5958 struct packet_offload *gro_find_complete_by_type(__be16 type)
5959 {
5960         struct list_head *offload_head = &offload_base;
5961         struct packet_offload *ptype;
5962
5963         list_for_each_entry_rcu(ptype, offload_head, list) {
5964                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5965                         continue;
5966                 return ptype;
5967         }
5968         return NULL;
5969 }
5970 EXPORT_SYMBOL(gro_find_complete_by_type);
5971
5972 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5973 {
5974         skb_dst_drop(skb);
5975         skb_ext_put(skb);
5976         kmem_cache_free(skbuff_head_cache, skb);
5977 }
5978
5979 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5980                                     struct sk_buff *skb,
5981                                     gro_result_t ret)
5982 {
5983         switch (ret) {
5984         case GRO_NORMAL:
5985                 gro_normal_one(napi, skb);
5986                 break;
5987
5988         case GRO_DROP:
5989                 kfree_skb(skb);
5990                 break;
5991
5992         case GRO_MERGED_FREE:
5993                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5994                         napi_skb_free_stolen_head(skb);
5995                 else
5996                         __kfree_skb(skb);
5997                 break;
5998
5999         case GRO_HELD:
6000         case GRO_MERGED:
6001         case GRO_CONSUMED:
6002                 break;
6003         }
6004
6005         return ret;
6006 }
6007
6008 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6009 {
6010         gro_result_t ret;
6011
6012         skb_mark_napi_id(skb, napi);
6013         trace_napi_gro_receive_entry(skb);
6014
6015         skb_gro_reset_offset(skb);
6016
6017         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6018         trace_napi_gro_receive_exit(ret);
6019
6020         return ret;
6021 }
6022 EXPORT_SYMBOL(napi_gro_receive);
6023
6024 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6025 {
6026         if (unlikely(skb->pfmemalloc)) {
6027                 consume_skb(skb);
6028                 return;
6029         }
6030         __skb_pull(skb, skb_headlen(skb));
6031         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6032         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6033         __vlan_hwaccel_clear_tag(skb);
6034         skb->dev = napi->dev;
6035         skb->skb_iif = 0;
6036
6037         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6038         skb->pkt_type = PACKET_HOST;
6039
6040         skb->encapsulation = 0;
6041         skb_shinfo(skb)->gso_type = 0;
6042         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6043         skb_ext_reset(skb);
6044
6045         napi->skb = skb;
6046 }
6047
6048 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6049 {
6050         struct sk_buff *skb = napi->skb;
6051
6052         if (!skb) {
6053                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6054                 if (skb) {
6055                         napi->skb = skb;
6056                         skb_mark_napi_id(skb, napi);
6057                 }
6058         }
6059         return skb;
6060 }
6061 EXPORT_SYMBOL(napi_get_frags);
6062
6063 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6064                                       struct sk_buff *skb,
6065                                       gro_result_t ret)
6066 {
6067         switch (ret) {
6068         case GRO_NORMAL:
6069         case GRO_HELD:
6070                 __skb_push(skb, ETH_HLEN);
6071                 skb->protocol = eth_type_trans(skb, skb->dev);
6072                 if (ret == GRO_NORMAL)
6073                         gro_normal_one(napi, skb);
6074                 break;
6075
6076         case GRO_DROP:
6077                 napi_reuse_skb(napi, skb);
6078                 break;
6079
6080         case GRO_MERGED_FREE:
6081                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6082                         napi_skb_free_stolen_head(skb);
6083                 else
6084                         napi_reuse_skb(napi, skb);
6085                 break;
6086
6087         case GRO_MERGED:
6088         case GRO_CONSUMED:
6089                 break;
6090         }
6091
6092         return ret;
6093 }
6094
6095 /* Upper GRO stack assumes network header starts at gro_offset=0
6096  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6097  * We copy ethernet header into skb->data to have a common layout.
6098  */
6099 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6100 {
6101         struct sk_buff *skb = napi->skb;
6102         const struct ethhdr *eth;
6103         unsigned int hlen = sizeof(*eth);
6104
6105         napi->skb = NULL;
6106
6107         skb_reset_mac_header(skb);
6108         skb_gro_reset_offset(skb);
6109
6110         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6111                 eth = skb_gro_header_slow(skb, hlen, 0);
6112                 if (unlikely(!eth)) {
6113                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6114                                              __func__, napi->dev->name);
6115                         napi_reuse_skb(napi, skb);
6116                         return NULL;
6117                 }
6118         } else {
6119                 eth = (const struct ethhdr *)skb->data;
6120                 gro_pull_from_frag0(skb, hlen);
6121                 NAPI_GRO_CB(skb)->frag0 += hlen;
6122                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6123         }
6124         __skb_pull(skb, hlen);
6125
6126         /*
6127          * This works because the only protocols we care about don't require
6128          * special handling.
6129          * We'll fix it up properly in napi_frags_finish()
6130          */
6131         skb->protocol = eth->h_proto;
6132
6133         return skb;
6134 }
6135
6136 gro_result_t napi_gro_frags(struct napi_struct *napi)
6137 {
6138         gro_result_t ret;
6139         struct sk_buff *skb = napi_frags_skb(napi);
6140
6141         if (!skb)
6142                 return GRO_DROP;
6143
6144         trace_napi_gro_frags_entry(skb);
6145
6146         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6147         trace_napi_gro_frags_exit(ret);
6148
6149         return ret;
6150 }
6151 EXPORT_SYMBOL(napi_gro_frags);
6152
6153 /* Compute the checksum from gro_offset and return the folded value
6154  * after adding in any pseudo checksum.
6155  */
6156 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6157 {
6158         __wsum wsum;
6159         __sum16 sum;
6160
6161         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6162
6163         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6164         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6165         /* See comments in __skb_checksum_complete(). */
6166         if (likely(!sum)) {
6167                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6168                     !skb->csum_complete_sw)
6169                         netdev_rx_csum_fault(skb->dev, skb);
6170         }
6171
6172         NAPI_GRO_CB(skb)->csum = wsum;
6173         NAPI_GRO_CB(skb)->csum_valid = 1;
6174
6175         return sum;
6176 }
6177 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6178
6179 static void net_rps_send_ipi(struct softnet_data *remsd)
6180 {
6181 #ifdef CONFIG_RPS
6182         while (remsd) {
6183                 struct softnet_data *next = remsd->rps_ipi_next;
6184
6185                 if (cpu_online(remsd->cpu))
6186                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6187                 remsd = next;
6188         }
6189 #endif
6190 }
6191
6192 /*
6193  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6194  * Note: called with local irq disabled, but exits with local irq enabled.
6195  */
6196 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6197 {
6198 #ifdef CONFIG_RPS
6199         struct softnet_data *remsd = sd->rps_ipi_list;
6200
6201         if (remsd) {
6202                 sd->rps_ipi_list = NULL;
6203
6204                 local_irq_enable();
6205
6206                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6207                 net_rps_send_ipi(remsd);
6208         } else
6209 #endif
6210                 local_irq_enable();
6211 }
6212
6213 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6214 {
6215 #ifdef CONFIG_RPS
6216         return sd->rps_ipi_list != NULL;
6217 #else
6218         return false;
6219 #endif
6220 }
6221
6222 static int process_backlog(struct napi_struct *napi, int quota)
6223 {
6224         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6225         bool again = true;
6226         int work = 0;
6227
6228         /* Check if we have pending ipi, its better to send them now,
6229          * not waiting net_rx_action() end.
6230          */
6231         if (sd_has_rps_ipi_waiting(sd)) {
6232                 local_irq_disable();
6233                 net_rps_action_and_irq_enable(sd);
6234         }
6235
6236         napi->weight = dev_rx_weight;
6237         while (again) {
6238                 struct sk_buff *skb;
6239
6240                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6241                         rcu_read_lock();
6242                         __netif_receive_skb(skb);
6243                         rcu_read_unlock();
6244                         input_queue_head_incr(sd);
6245                         if (++work >= quota)
6246                                 return work;
6247
6248                 }
6249
6250                 local_irq_disable();
6251                 rps_lock(sd);
6252                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6253                         /*
6254                          * Inline a custom version of __napi_complete().
6255                          * only current cpu owns and manipulates this napi,
6256                          * and NAPI_STATE_SCHED is the only possible flag set
6257                          * on backlog.
6258                          * We can use a plain write instead of clear_bit(),
6259                          * and we dont need an smp_mb() memory barrier.
6260                          */
6261                         napi->state = 0;
6262                         again = false;
6263                 } else {
6264                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6265                                                    &sd->process_queue);
6266                 }
6267                 rps_unlock(sd);
6268                 local_irq_enable();
6269         }
6270
6271         return work;
6272 }
6273
6274 /**
6275  * __napi_schedule - schedule for receive
6276  * @n: entry to schedule
6277  *
6278  * The entry's receive function will be scheduled to run.
6279  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6280  */
6281 void __napi_schedule(struct napi_struct *n)
6282 {
6283         unsigned long flags;
6284
6285         local_irq_save(flags);
6286         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6287         local_irq_restore(flags);
6288 }
6289 EXPORT_SYMBOL(__napi_schedule);
6290
6291 /**
6292  *      napi_schedule_prep - check if napi can be scheduled
6293  *      @n: napi context
6294  *
6295  * Test if NAPI routine is already running, and if not mark
6296  * it as running.  This is used as a condition variable
6297  * insure only one NAPI poll instance runs.  We also make
6298  * sure there is no pending NAPI disable.
6299  */
6300 bool napi_schedule_prep(struct napi_struct *n)
6301 {
6302         unsigned long val, new;
6303
6304         do {
6305                 val = READ_ONCE(n->state);
6306                 if (unlikely(val & NAPIF_STATE_DISABLE))
6307                         return false;
6308                 new = val | NAPIF_STATE_SCHED;
6309
6310                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6311                  * This was suggested by Alexander Duyck, as compiler
6312                  * emits better code than :
6313                  * if (val & NAPIF_STATE_SCHED)
6314                  *     new |= NAPIF_STATE_MISSED;
6315                  */
6316                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6317                                                    NAPIF_STATE_MISSED;
6318         } while (cmpxchg(&n->state, val, new) != val);
6319
6320         return !(val & NAPIF_STATE_SCHED);
6321 }
6322 EXPORT_SYMBOL(napi_schedule_prep);
6323
6324 /**
6325  * __napi_schedule_irqoff - schedule for receive
6326  * @n: entry to schedule
6327  *
6328  * Variant of __napi_schedule() assuming hard irqs are masked
6329  */
6330 void __napi_schedule_irqoff(struct napi_struct *n)
6331 {
6332         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6333 }
6334 EXPORT_SYMBOL(__napi_schedule_irqoff);
6335
6336 bool napi_complete_done(struct napi_struct *n, int work_done)
6337 {
6338         unsigned long flags, val, new, timeout = 0;
6339         bool ret = true;
6340
6341         /*
6342          * 1) Don't let napi dequeue from the cpu poll list
6343          *    just in case its running on a different cpu.
6344          * 2) If we are busy polling, do nothing here, we have
6345          *    the guarantee we will be called later.
6346          */
6347         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6348                                  NAPIF_STATE_IN_BUSY_POLL)))
6349                 return false;
6350
6351         if (work_done) {
6352                 if (n->gro_bitmask)
6353                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6354                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6355         }
6356         if (n->defer_hard_irqs_count > 0) {
6357                 n->defer_hard_irqs_count--;
6358                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6359                 if (timeout)
6360                         ret = false;
6361         }
6362         if (n->gro_bitmask) {
6363                 /* When the NAPI instance uses a timeout and keeps postponing
6364                  * it, we need to bound somehow the time packets are kept in
6365                  * the GRO layer
6366                  */
6367                 napi_gro_flush(n, !!timeout);
6368         }
6369
6370         gro_normal_list(n);
6371
6372         if (unlikely(!list_empty(&n->poll_list))) {
6373                 /* If n->poll_list is not empty, we need to mask irqs */
6374                 local_irq_save(flags);
6375                 list_del_init(&n->poll_list);
6376                 local_irq_restore(flags);
6377         }
6378
6379         do {
6380                 val = READ_ONCE(n->state);
6381
6382                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6383
6384                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6385
6386                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6387                  * because we will call napi->poll() one more time.
6388                  * This C code was suggested by Alexander Duyck to help gcc.
6389                  */
6390                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6391                                                     NAPIF_STATE_SCHED;
6392         } while (cmpxchg(&n->state, val, new) != val);
6393
6394         if (unlikely(val & NAPIF_STATE_MISSED)) {
6395                 __napi_schedule(n);
6396                 return false;
6397         }
6398
6399         if (timeout)
6400                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6401                               HRTIMER_MODE_REL_PINNED);
6402         return ret;
6403 }
6404 EXPORT_SYMBOL(napi_complete_done);
6405
6406 /* must be called under rcu_read_lock(), as we dont take a reference */
6407 static struct napi_struct *napi_by_id(unsigned int napi_id)
6408 {
6409         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6410         struct napi_struct *napi;
6411
6412         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6413                 if (napi->napi_id == napi_id)
6414                         return napi;
6415
6416         return NULL;
6417 }
6418
6419 #if defined(CONFIG_NET_RX_BUSY_POLL)
6420
6421 #define BUSY_POLL_BUDGET 8
6422
6423 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6424 {
6425         int rc;
6426
6427         /* Busy polling means there is a high chance device driver hard irq
6428          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6429          * set in napi_schedule_prep().
6430          * Since we are about to call napi->poll() once more, we can safely
6431          * clear NAPI_STATE_MISSED.
6432          *
6433          * Note: x86 could use a single "lock and ..." instruction
6434          * to perform these two clear_bit()
6435          */
6436         clear_bit(NAPI_STATE_MISSED, &napi->state);
6437         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6438
6439         local_bh_disable();
6440
6441         /* All we really want here is to re-enable device interrupts.
6442          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6443          */
6444         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6445         /* We can't gro_normal_list() here, because napi->poll() might have
6446          * rearmed the napi (napi_complete_done()) in which case it could
6447          * already be running on another CPU.
6448          */
6449         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6450         netpoll_poll_unlock(have_poll_lock);
6451         if (rc == BUSY_POLL_BUDGET) {
6452                 /* As the whole budget was spent, we still own the napi so can
6453                  * safely handle the rx_list.
6454                  */
6455                 gro_normal_list(napi);
6456                 __napi_schedule(napi);
6457         }
6458         local_bh_enable();
6459 }
6460
6461 void napi_busy_loop(unsigned int napi_id,
6462                     bool (*loop_end)(void *, unsigned long),
6463                     void *loop_end_arg)
6464 {
6465         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6466         int (*napi_poll)(struct napi_struct *napi, int budget);
6467         void *have_poll_lock = NULL;
6468         struct napi_struct *napi;
6469
6470 restart:
6471         napi_poll = NULL;
6472
6473         rcu_read_lock();
6474
6475         napi = napi_by_id(napi_id);
6476         if (!napi)
6477                 goto out;
6478
6479         preempt_disable();
6480         for (;;) {
6481                 int work = 0;
6482
6483                 local_bh_disable();
6484                 if (!napi_poll) {
6485                         unsigned long val = READ_ONCE(napi->state);
6486
6487                         /* If multiple threads are competing for this napi,
6488                          * we avoid dirtying napi->state as much as we can.
6489                          */
6490                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6491                                    NAPIF_STATE_IN_BUSY_POLL))
6492                                 goto count;
6493                         if (cmpxchg(&napi->state, val,
6494                                     val | NAPIF_STATE_IN_BUSY_POLL |
6495                                           NAPIF_STATE_SCHED) != val)
6496                                 goto count;
6497                         have_poll_lock = netpoll_poll_lock(napi);
6498                         napi_poll = napi->poll;
6499                 }
6500                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6501                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6502                 gro_normal_list(napi);
6503 count:
6504                 if (work > 0)
6505                         __NET_ADD_STATS(dev_net(napi->dev),
6506                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6507                 local_bh_enable();
6508
6509                 if (!loop_end || loop_end(loop_end_arg, start_time))
6510                         break;
6511
6512                 if (unlikely(need_resched())) {
6513                         if (napi_poll)
6514                                 busy_poll_stop(napi, have_poll_lock);
6515                         preempt_enable();
6516                         rcu_read_unlock();
6517                         cond_resched();
6518                         if (loop_end(loop_end_arg, start_time))
6519                                 return;
6520                         goto restart;
6521                 }
6522                 cpu_relax();
6523         }
6524         if (napi_poll)
6525                 busy_poll_stop(napi, have_poll_lock);
6526         preempt_enable();
6527 out:
6528         rcu_read_unlock();
6529 }
6530 EXPORT_SYMBOL(napi_busy_loop);
6531
6532 #endif /* CONFIG_NET_RX_BUSY_POLL */
6533
6534 static void napi_hash_add(struct napi_struct *napi)
6535 {
6536         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6537             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6538                 return;
6539
6540         spin_lock(&napi_hash_lock);
6541
6542         /* 0..NR_CPUS range is reserved for sender_cpu use */
6543         do {
6544                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6545                         napi_gen_id = MIN_NAPI_ID;
6546         } while (napi_by_id(napi_gen_id));
6547         napi->napi_id = napi_gen_id;
6548
6549         hlist_add_head_rcu(&napi->napi_hash_node,
6550                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6551
6552         spin_unlock(&napi_hash_lock);
6553 }
6554
6555 /* Warning : caller is responsible to make sure rcu grace period
6556  * is respected before freeing memory containing @napi
6557  */
6558 bool napi_hash_del(struct napi_struct *napi)
6559 {
6560         bool rcu_sync_needed = false;
6561
6562         spin_lock(&napi_hash_lock);
6563
6564         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6565                 rcu_sync_needed = true;
6566                 hlist_del_rcu(&napi->napi_hash_node);
6567         }
6568         spin_unlock(&napi_hash_lock);
6569         return rcu_sync_needed;
6570 }
6571 EXPORT_SYMBOL_GPL(napi_hash_del);
6572
6573 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6574 {
6575         struct napi_struct *napi;
6576
6577         napi = container_of(timer, struct napi_struct, timer);
6578
6579         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6580          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6581          */
6582         if (!napi_disable_pending(napi) &&
6583             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6584                 __napi_schedule_irqoff(napi);
6585
6586         return HRTIMER_NORESTART;
6587 }
6588
6589 static void init_gro_hash(struct napi_struct *napi)
6590 {
6591         int i;
6592
6593         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6594                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6595                 napi->gro_hash[i].count = 0;
6596         }
6597         napi->gro_bitmask = 0;
6598 }
6599
6600 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6601                     int (*poll)(struct napi_struct *, int), int weight)
6602 {
6603         INIT_LIST_HEAD(&napi->poll_list);
6604         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6605         napi->timer.function = napi_watchdog;
6606         init_gro_hash(napi);
6607         napi->skb = NULL;
6608         INIT_LIST_HEAD(&napi->rx_list);
6609         napi->rx_count = 0;
6610         napi->poll = poll;
6611         if (weight > NAPI_POLL_WEIGHT)
6612                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6613                                 weight);
6614         napi->weight = weight;
6615         napi->dev = dev;
6616 #ifdef CONFIG_NETPOLL
6617         napi->poll_owner = -1;
6618 #endif
6619         set_bit(NAPI_STATE_SCHED, &napi->state);
6620         set_bit(NAPI_STATE_NPSVC, &napi->state);
6621         list_add_rcu(&napi->dev_list, &dev->napi_list);
6622         napi_hash_add(napi);
6623 }
6624 EXPORT_SYMBOL(netif_napi_add);
6625
6626 void napi_disable(struct napi_struct *n)
6627 {
6628         might_sleep();
6629         set_bit(NAPI_STATE_DISABLE, &n->state);
6630
6631         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6632                 msleep(1);
6633         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6634                 msleep(1);
6635
6636         hrtimer_cancel(&n->timer);
6637
6638         clear_bit(NAPI_STATE_DISABLE, &n->state);
6639 }
6640 EXPORT_SYMBOL(napi_disable);
6641
6642 static void flush_gro_hash(struct napi_struct *napi)
6643 {
6644         int i;
6645
6646         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6647                 struct sk_buff *skb, *n;
6648
6649                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6650                         kfree_skb(skb);
6651                 napi->gro_hash[i].count = 0;
6652         }
6653 }
6654
6655 /* Must be called in process context */
6656 void netif_napi_del(struct napi_struct *napi)
6657 {
6658         might_sleep();
6659         if (napi_hash_del(napi))
6660                 synchronize_net();
6661         list_del_init(&napi->dev_list);
6662         napi_free_frags(napi);
6663
6664         flush_gro_hash(napi);
6665         napi->gro_bitmask = 0;
6666 }
6667 EXPORT_SYMBOL(netif_napi_del);
6668
6669 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6670 {
6671         void *have;
6672         int work, weight;
6673
6674         list_del_init(&n->poll_list);
6675
6676         have = netpoll_poll_lock(n);
6677
6678         weight = n->weight;
6679
6680         /* This NAPI_STATE_SCHED test is for avoiding a race
6681          * with netpoll's poll_napi().  Only the entity which
6682          * obtains the lock and sees NAPI_STATE_SCHED set will
6683          * actually make the ->poll() call.  Therefore we avoid
6684          * accidentally calling ->poll() when NAPI is not scheduled.
6685          */
6686         work = 0;
6687         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6688                 work = n->poll(n, weight);
6689                 trace_napi_poll(n, work, weight);
6690         }
6691
6692         if (unlikely(work > weight))
6693                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6694                             n->poll, work, weight);
6695
6696         if (likely(work < weight))
6697                 goto out_unlock;
6698
6699         /* Drivers must not modify the NAPI state if they
6700          * consume the entire weight.  In such cases this code
6701          * still "owns" the NAPI instance and therefore can
6702          * move the instance around on the list at-will.
6703          */
6704         if (unlikely(napi_disable_pending(n))) {
6705                 napi_complete(n);
6706                 goto out_unlock;
6707         }
6708
6709         if (n->gro_bitmask) {
6710                 /* flush too old packets
6711                  * If HZ < 1000, flush all packets.
6712                  */
6713                 napi_gro_flush(n, HZ >= 1000);
6714         }
6715
6716         gro_normal_list(n);
6717
6718         /* Some drivers may have called napi_schedule
6719          * prior to exhausting their budget.
6720          */
6721         if (unlikely(!list_empty(&n->poll_list))) {
6722                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6723                              n->dev ? n->dev->name : "backlog");
6724                 goto out_unlock;
6725         }
6726
6727         list_add_tail(&n->poll_list, repoll);
6728
6729 out_unlock:
6730         netpoll_poll_unlock(have);
6731
6732         return work;
6733 }
6734
6735 static __latent_entropy void net_rx_action(struct softirq_action *h)
6736 {
6737         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6738         unsigned long time_limit = jiffies +
6739                 usecs_to_jiffies(netdev_budget_usecs);
6740         int budget = netdev_budget;
6741         LIST_HEAD(list);
6742         LIST_HEAD(repoll);
6743
6744         local_irq_disable();
6745         list_splice_init(&sd->poll_list, &list);
6746         local_irq_enable();
6747
6748         for (;;) {
6749                 struct napi_struct *n;
6750
6751                 if (list_empty(&list)) {
6752                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6753                                 goto out;
6754                         break;
6755                 }
6756
6757                 n = list_first_entry(&list, struct napi_struct, poll_list);
6758                 budget -= napi_poll(n, &repoll);
6759
6760                 /* If softirq window is exhausted then punt.
6761                  * Allow this to run for 2 jiffies since which will allow
6762                  * an average latency of 1.5/HZ.
6763                  */
6764                 if (unlikely(budget <= 0 ||
6765                              time_after_eq(jiffies, time_limit))) {
6766                         sd->time_squeeze++;
6767                         break;
6768                 }
6769         }
6770
6771         local_irq_disable();
6772
6773         list_splice_tail_init(&sd->poll_list, &list);
6774         list_splice_tail(&repoll, &list);
6775         list_splice(&list, &sd->poll_list);
6776         if (!list_empty(&sd->poll_list))
6777                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6778
6779         net_rps_action_and_irq_enable(sd);
6780 out:
6781         __kfree_skb_flush();
6782 }
6783
6784 struct netdev_adjacent {
6785         struct net_device *dev;
6786
6787         /* upper master flag, there can only be one master device per list */
6788         bool master;
6789
6790         /* lookup ignore flag */
6791         bool ignore;
6792
6793         /* counter for the number of times this device was added to us */
6794         u16 ref_nr;
6795
6796         /* private field for the users */
6797         void *private;
6798
6799         struct list_head list;
6800         struct rcu_head rcu;
6801 };
6802
6803 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6804                                                  struct list_head *adj_list)
6805 {
6806         struct netdev_adjacent *adj;
6807
6808         list_for_each_entry(adj, adj_list, list) {
6809                 if (adj->dev == adj_dev)
6810                         return adj;
6811         }
6812         return NULL;
6813 }
6814
6815 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6816                                     struct netdev_nested_priv *priv)
6817 {
6818         struct net_device *dev = (struct net_device *)priv->data;
6819
6820         return upper_dev == dev;
6821 }
6822
6823 /**
6824  * netdev_has_upper_dev - Check if device is linked to an upper device
6825  * @dev: device
6826  * @upper_dev: upper device to check
6827  *
6828  * Find out if a device is linked to specified upper device and return true
6829  * in case it is. Note that this checks only immediate upper device,
6830  * not through a complete stack of devices. The caller must hold the RTNL lock.
6831  */
6832 bool netdev_has_upper_dev(struct net_device *dev,
6833                           struct net_device *upper_dev)
6834 {
6835         struct netdev_nested_priv priv = {
6836                 .data = (void *)upper_dev,
6837         };
6838
6839         ASSERT_RTNL();
6840
6841         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6842                                              &priv);
6843 }
6844 EXPORT_SYMBOL(netdev_has_upper_dev);
6845
6846 /**
6847  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6848  * @dev: device
6849  * @upper_dev: upper device to check
6850  *
6851  * Find out if a device is linked to specified upper device and return true
6852  * in case it is. Note that this checks the entire upper device chain.
6853  * The caller must hold rcu lock.
6854  */
6855
6856 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6857                                   struct net_device *upper_dev)
6858 {
6859         struct netdev_nested_priv priv = {
6860                 .data = (void *)upper_dev,
6861         };
6862
6863         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6864                                                &priv);
6865 }
6866 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6867
6868 /**
6869  * netdev_has_any_upper_dev - Check if device is linked to some device
6870  * @dev: device
6871  *
6872  * Find out if a device is linked to an upper device and return true in case
6873  * it is. The caller must hold the RTNL lock.
6874  */
6875 bool netdev_has_any_upper_dev(struct net_device *dev)
6876 {
6877         ASSERT_RTNL();
6878
6879         return !list_empty(&dev->adj_list.upper);
6880 }
6881 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6882
6883 /**
6884  * netdev_master_upper_dev_get - Get master upper device
6885  * @dev: device
6886  *
6887  * Find a master upper device and return pointer to it or NULL in case
6888  * it's not there. The caller must hold the RTNL lock.
6889  */
6890 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6891 {
6892         struct netdev_adjacent *upper;
6893
6894         ASSERT_RTNL();
6895
6896         if (list_empty(&dev->adj_list.upper))
6897                 return NULL;
6898
6899         upper = list_first_entry(&dev->adj_list.upper,
6900                                  struct netdev_adjacent, list);
6901         if (likely(upper->master))
6902                 return upper->dev;
6903         return NULL;
6904 }
6905 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6906
6907 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6908 {
6909         struct netdev_adjacent *upper;
6910
6911         ASSERT_RTNL();
6912
6913         if (list_empty(&dev->adj_list.upper))
6914                 return NULL;
6915
6916         upper = list_first_entry(&dev->adj_list.upper,
6917                                  struct netdev_adjacent, list);
6918         if (likely(upper->master) && !upper->ignore)
6919                 return upper->dev;
6920         return NULL;
6921 }
6922
6923 /**
6924  * netdev_has_any_lower_dev - Check if device is linked to some device
6925  * @dev: device
6926  *
6927  * Find out if a device is linked to a lower device and return true in case
6928  * it is. The caller must hold the RTNL lock.
6929  */
6930 static bool netdev_has_any_lower_dev(struct net_device *dev)
6931 {
6932         ASSERT_RTNL();
6933
6934         return !list_empty(&dev->adj_list.lower);
6935 }
6936
6937 void *netdev_adjacent_get_private(struct list_head *adj_list)
6938 {
6939         struct netdev_adjacent *adj;
6940
6941         adj = list_entry(adj_list, struct netdev_adjacent, list);
6942
6943         return adj->private;
6944 }
6945 EXPORT_SYMBOL(netdev_adjacent_get_private);
6946
6947 /**
6948  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6949  * @dev: device
6950  * @iter: list_head ** of the current position
6951  *
6952  * Gets the next device from the dev's upper list, starting from iter
6953  * position. The caller must hold RCU read lock.
6954  */
6955 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6956                                                  struct list_head **iter)
6957 {
6958         struct netdev_adjacent *upper;
6959
6960         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6961
6962         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6963
6964         if (&upper->list == &dev->adj_list.upper)
6965                 return NULL;
6966
6967         *iter = &upper->list;
6968
6969         return upper->dev;
6970 }
6971 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6972
6973 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6974                                                   struct list_head **iter,
6975                                                   bool *ignore)
6976 {
6977         struct netdev_adjacent *upper;
6978
6979         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6980
6981         if (&upper->list == &dev->adj_list.upper)
6982                 return NULL;
6983
6984         *iter = &upper->list;
6985         *ignore = upper->ignore;
6986
6987         return upper->dev;
6988 }
6989
6990 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6991                                                     struct list_head **iter)
6992 {
6993         struct netdev_adjacent *upper;
6994
6995         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6996
6997         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6998
6999         if (&upper->list == &dev->adj_list.upper)
7000                 return NULL;
7001
7002         *iter = &upper->list;
7003
7004         return upper->dev;
7005 }
7006
7007 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7008                                        int (*fn)(struct net_device *dev,
7009                                          struct netdev_nested_priv *priv),
7010                                        struct netdev_nested_priv *priv)
7011 {
7012         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7013         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7014         int ret, cur = 0;
7015         bool ignore;
7016
7017         now = dev;
7018         iter = &dev->adj_list.upper;
7019
7020         while (1) {
7021                 if (now != dev) {
7022                         ret = fn(now, priv);
7023                         if (ret)
7024                                 return ret;
7025                 }
7026
7027                 next = NULL;
7028                 while (1) {
7029                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7030                         if (!udev)
7031                                 break;
7032                         if (ignore)
7033                                 continue;
7034
7035                         next = udev;
7036                         niter = &udev->adj_list.upper;
7037                         dev_stack[cur] = now;
7038                         iter_stack[cur++] = iter;
7039                         break;
7040                 }
7041
7042                 if (!next) {
7043                         if (!cur)
7044                                 return 0;
7045                         next = dev_stack[--cur];
7046                         niter = iter_stack[cur];
7047                 }
7048
7049                 now = next;
7050                 iter = niter;
7051         }
7052
7053         return 0;
7054 }
7055
7056 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7057                                   int (*fn)(struct net_device *dev,
7058                                             struct netdev_nested_priv *priv),
7059                                   struct netdev_nested_priv *priv)
7060 {
7061         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7062         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7063         int ret, cur = 0;
7064
7065         now = dev;
7066         iter = &dev->adj_list.upper;
7067
7068         while (1) {
7069                 if (now != dev) {
7070                         ret = fn(now, priv);
7071                         if (ret)
7072                                 return ret;
7073                 }
7074
7075                 next = NULL;
7076                 while (1) {
7077                         udev = netdev_next_upper_dev_rcu(now, &iter);
7078                         if (!udev)
7079                                 break;
7080
7081                         next = udev;
7082                         niter = &udev->adj_list.upper;
7083                         dev_stack[cur] = now;
7084                         iter_stack[cur++] = iter;
7085                         break;
7086                 }
7087
7088                 if (!next) {
7089                         if (!cur)
7090                                 return 0;
7091                         next = dev_stack[--cur];
7092                         niter = iter_stack[cur];
7093                 }
7094
7095                 now = next;
7096                 iter = niter;
7097         }
7098
7099         return 0;
7100 }
7101 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7102
7103 static bool __netdev_has_upper_dev(struct net_device *dev,
7104                                    struct net_device *upper_dev)
7105 {
7106         struct netdev_nested_priv priv = {
7107                 .flags = 0,
7108                 .data = (void *)upper_dev,
7109         };
7110
7111         ASSERT_RTNL();
7112
7113         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7114                                            &priv);
7115 }
7116
7117 /**
7118  * netdev_lower_get_next_private - Get the next ->private from the
7119  *                                 lower neighbour list
7120  * @dev: device
7121  * @iter: list_head ** of the current position
7122  *
7123  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7124  * list, starting from iter position. The caller must hold either hold the
7125  * RTNL lock or its own locking that guarantees that the neighbour lower
7126  * list will remain unchanged.
7127  */
7128 void *netdev_lower_get_next_private(struct net_device *dev,
7129                                     struct list_head **iter)
7130 {
7131         struct netdev_adjacent *lower;
7132
7133         lower = list_entry(*iter, struct netdev_adjacent, list);
7134
7135         if (&lower->list == &dev->adj_list.lower)
7136                 return NULL;
7137
7138         *iter = lower->list.next;
7139
7140         return lower->private;
7141 }
7142 EXPORT_SYMBOL(netdev_lower_get_next_private);
7143
7144 /**
7145  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7146  *                                     lower neighbour list, RCU
7147  *                                     variant
7148  * @dev: device
7149  * @iter: list_head ** of the current position
7150  *
7151  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7152  * list, starting from iter position. The caller must hold RCU read lock.
7153  */
7154 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7155                                         struct list_head **iter)
7156 {
7157         struct netdev_adjacent *lower;
7158
7159         WARN_ON_ONCE(!rcu_read_lock_held());
7160
7161         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7162
7163         if (&lower->list == &dev->adj_list.lower)
7164                 return NULL;
7165
7166         *iter = &lower->list;
7167
7168         return lower->private;
7169 }
7170 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7171
7172 /**
7173  * netdev_lower_get_next - Get the next device from the lower neighbour
7174  *                         list
7175  * @dev: device
7176  * @iter: list_head ** of the current position
7177  *
7178  * Gets the next netdev_adjacent from the dev's lower neighbour
7179  * list, starting from iter position. The caller must hold RTNL lock or
7180  * its own locking that guarantees that the neighbour lower
7181  * list will remain unchanged.
7182  */
7183 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7184 {
7185         struct netdev_adjacent *lower;
7186
7187         lower = list_entry(*iter, struct netdev_adjacent, list);
7188
7189         if (&lower->list == &dev->adj_list.lower)
7190                 return NULL;
7191
7192         *iter = lower->list.next;
7193
7194         return lower->dev;
7195 }
7196 EXPORT_SYMBOL(netdev_lower_get_next);
7197
7198 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7199                                                 struct list_head **iter)
7200 {
7201         struct netdev_adjacent *lower;
7202
7203         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7204
7205         if (&lower->list == &dev->adj_list.lower)
7206                 return NULL;
7207
7208         *iter = &lower->list;
7209
7210         return lower->dev;
7211 }
7212
7213 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7214                                                   struct list_head **iter,
7215                                                   bool *ignore)
7216 {
7217         struct netdev_adjacent *lower;
7218
7219         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7220
7221         if (&lower->list == &dev->adj_list.lower)
7222                 return NULL;
7223
7224         *iter = &lower->list;
7225         *ignore = lower->ignore;
7226
7227         return lower->dev;
7228 }
7229
7230 int netdev_walk_all_lower_dev(struct net_device *dev,
7231                               int (*fn)(struct net_device *dev,
7232                                         struct netdev_nested_priv *priv),
7233                               struct netdev_nested_priv *priv)
7234 {
7235         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7236         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7237         int ret, cur = 0;
7238
7239         now = dev;
7240         iter = &dev->adj_list.lower;
7241
7242         while (1) {
7243                 if (now != dev) {
7244                         ret = fn(now, priv);
7245                         if (ret)
7246                                 return ret;
7247                 }
7248
7249                 next = NULL;
7250                 while (1) {
7251                         ldev = netdev_next_lower_dev(now, &iter);
7252                         if (!ldev)
7253                                 break;
7254
7255                         next = ldev;
7256                         niter = &ldev->adj_list.lower;
7257                         dev_stack[cur] = now;
7258                         iter_stack[cur++] = iter;
7259                         break;
7260                 }
7261
7262                 if (!next) {
7263                         if (!cur)
7264                                 return 0;
7265                         next = dev_stack[--cur];
7266                         niter = iter_stack[cur];
7267                 }
7268
7269                 now = next;
7270                 iter = niter;
7271         }
7272
7273         return 0;
7274 }
7275 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7276
7277 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7278                                        int (*fn)(struct net_device *dev,
7279                                          struct netdev_nested_priv *priv),
7280                                        struct netdev_nested_priv *priv)
7281 {
7282         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7283         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7284         int ret, cur = 0;
7285         bool ignore;
7286
7287         now = dev;
7288         iter = &dev->adj_list.lower;
7289
7290         while (1) {
7291                 if (now != dev) {
7292                         ret = fn(now, priv);
7293                         if (ret)
7294                                 return ret;
7295                 }
7296
7297                 next = NULL;
7298                 while (1) {
7299                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7300                         if (!ldev)
7301                                 break;
7302                         if (ignore)
7303                                 continue;
7304
7305                         next = ldev;
7306                         niter = &ldev->adj_list.lower;
7307                         dev_stack[cur] = now;
7308                         iter_stack[cur++] = iter;
7309                         break;
7310                 }
7311
7312                 if (!next) {
7313                         if (!cur)
7314                                 return 0;
7315                         next = dev_stack[--cur];
7316                         niter = iter_stack[cur];
7317                 }
7318
7319                 now = next;
7320                 iter = niter;
7321         }
7322
7323         return 0;
7324 }
7325
7326 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7327                                              struct list_head **iter)
7328 {
7329         struct netdev_adjacent *lower;
7330
7331         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7332         if (&lower->list == &dev->adj_list.lower)
7333                 return NULL;
7334
7335         *iter = &lower->list;
7336
7337         return lower->dev;
7338 }
7339 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7340
7341 static u8 __netdev_upper_depth(struct net_device *dev)
7342 {
7343         struct net_device *udev;
7344         struct list_head *iter;
7345         u8 max_depth = 0;
7346         bool ignore;
7347
7348         for (iter = &dev->adj_list.upper,
7349              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7350              udev;
7351              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7352                 if (ignore)
7353                         continue;
7354                 if (max_depth < udev->upper_level)
7355                         max_depth = udev->upper_level;
7356         }
7357
7358         return max_depth;
7359 }
7360
7361 static u8 __netdev_lower_depth(struct net_device *dev)
7362 {
7363         struct net_device *ldev;
7364         struct list_head *iter;
7365         u8 max_depth = 0;
7366         bool ignore;
7367
7368         for (iter = &dev->adj_list.lower,
7369              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7370              ldev;
7371              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7372                 if (ignore)
7373                         continue;
7374                 if (max_depth < ldev->lower_level)
7375                         max_depth = ldev->lower_level;
7376         }
7377
7378         return max_depth;
7379 }
7380
7381 static int __netdev_update_upper_level(struct net_device *dev,
7382                                        struct netdev_nested_priv *__unused)
7383 {
7384         dev->upper_level = __netdev_upper_depth(dev) + 1;
7385         return 0;
7386 }
7387
7388 static int __netdev_update_lower_level(struct net_device *dev,
7389                                        struct netdev_nested_priv *priv)
7390 {
7391         dev->lower_level = __netdev_lower_depth(dev) + 1;
7392
7393 #ifdef CONFIG_LOCKDEP
7394         if (!priv)
7395                 return 0;
7396
7397         if (priv->flags & NESTED_SYNC_IMM)
7398                 dev->nested_level = dev->lower_level - 1;
7399         if (priv->flags & NESTED_SYNC_TODO)
7400                 net_unlink_todo(dev);
7401 #endif
7402         return 0;
7403 }
7404
7405 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7406                                   int (*fn)(struct net_device *dev,
7407                                             struct netdev_nested_priv *priv),
7408                                   struct netdev_nested_priv *priv)
7409 {
7410         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7411         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7412         int ret, cur = 0;
7413
7414         now = dev;
7415         iter = &dev->adj_list.lower;
7416
7417         while (1) {
7418                 if (now != dev) {
7419                         ret = fn(now, priv);
7420                         if (ret)
7421                                 return ret;
7422                 }
7423
7424                 next = NULL;
7425                 while (1) {
7426                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7427                         if (!ldev)
7428                                 break;
7429
7430                         next = ldev;
7431                         niter = &ldev->adj_list.lower;
7432                         dev_stack[cur] = now;
7433                         iter_stack[cur++] = iter;
7434                         break;
7435                 }
7436
7437                 if (!next) {
7438                         if (!cur)
7439                                 return 0;
7440                         next = dev_stack[--cur];
7441                         niter = iter_stack[cur];
7442                 }
7443
7444                 now = next;
7445                 iter = niter;
7446         }
7447
7448         return 0;
7449 }
7450 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7451
7452 /**
7453  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7454  *                                     lower neighbour list, RCU
7455  *                                     variant
7456  * @dev: device
7457  *
7458  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7459  * list. The caller must hold RCU read lock.
7460  */
7461 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7462 {
7463         struct netdev_adjacent *lower;
7464
7465         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7466                         struct netdev_adjacent, list);
7467         if (lower)
7468                 return lower->private;
7469         return NULL;
7470 }
7471 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7472
7473 /**
7474  * netdev_master_upper_dev_get_rcu - Get master upper device
7475  * @dev: device
7476  *
7477  * Find a master upper device and return pointer to it or NULL in case
7478  * it's not there. The caller must hold the RCU read lock.
7479  */
7480 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7481 {
7482         struct netdev_adjacent *upper;
7483
7484         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7485                                        struct netdev_adjacent, list);
7486         if (upper && likely(upper->master))
7487                 return upper->dev;
7488         return NULL;
7489 }
7490 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7491
7492 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7493                               struct net_device *adj_dev,
7494                               struct list_head *dev_list)
7495 {
7496         char linkname[IFNAMSIZ+7];
7497
7498         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7499                 "upper_%s" : "lower_%s", adj_dev->name);
7500         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7501                                  linkname);
7502 }
7503 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7504                                char *name,
7505                                struct list_head *dev_list)
7506 {
7507         char linkname[IFNAMSIZ+7];
7508
7509         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7510                 "upper_%s" : "lower_%s", name);
7511         sysfs_remove_link(&(dev->dev.kobj), linkname);
7512 }
7513
7514 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7515                                                  struct net_device *adj_dev,
7516                                                  struct list_head *dev_list)
7517 {
7518         return (dev_list == &dev->adj_list.upper ||
7519                 dev_list == &dev->adj_list.lower) &&
7520                 net_eq(dev_net(dev), dev_net(adj_dev));
7521 }
7522
7523 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7524                                         struct net_device *adj_dev,
7525                                         struct list_head *dev_list,
7526                                         void *private, bool master)
7527 {
7528         struct netdev_adjacent *adj;
7529         int ret;
7530
7531         adj = __netdev_find_adj(adj_dev, dev_list);
7532
7533         if (adj) {
7534                 adj->ref_nr += 1;
7535                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7536                          dev->name, adj_dev->name, adj->ref_nr);
7537
7538                 return 0;
7539         }
7540
7541         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7542         if (!adj)
7543                 return -ENOMEM;
7544
7545         adj->dev = adj_dev;
7546         adj->master = master;
7547         adj->ref_nr = 1;
7548         adj->private = private;
7549         adj->ignore = false;
7550         dev_hold(adj_dev);
7551
7552         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7553                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7554
7555         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7556                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7557                 if (ret)
7558                         goto free_adj;
7559         }
7560
7561         /* Ensure that master link is always the first item in list. */
7562         if (master) {
7563                 ret = sysfs_create_link(&(dev->dev.kobj),
7564                                         &(adj_dev->dev.kobj), "master");
7565                 if (ret)
7566                         goto remove_symlinks;
7567
7568                 list_add_rcu(&adj->list, dev_list);
7569         } else {
7570                 list_add_tail_rcu(&adj->list, dev_list);
7571         }
7572
7573         return 0;
7574
7575 remove_symlinks:
7576         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7577                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7578 free_adj:
7579         kfree(adj);
7580         dev_put(adj_dev);
7581
7582         return ret;
7583 }
7584
7585 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7586                                          struct net_device *adj_dev,
7587                                          u16 ref_nr,
7588                                          struct list_head *dev_list)
7589 {
7590         struct netdev_adjacent *adj;
7591
7592         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7593                  dev->name, adj_dev->name, ref_nr);
7594
7595         adj = __netdev_find_adj(adj_dev, dev_list);
7596
7597         if (!adj) {
7598                 pr_err("Adjacency does not exist for device %s from %s\n",
7599                        dev->name, adj_dev->name);
7600                 WARN_ON(1);
7601                 return;
7602         }
7603
7604         if (adj->ref_nr > ref_nr) {
7605                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7606                          dev->name, adj_dev->name, ref_nr,
7607                          adj->ref_nr - ref_nr);
7608                 adj->ref_nr -= ref_nr;
7609                 return;
7610         }
7611
7612         if (adj->master)
7613                 sysfs_remove_link(&(dev->dev.kobj), "master");
7614
7615         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7616                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7617
7618         list_del_rcu(&adj->list);
7619         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7620                  adj_dev->name, dev->name, adj_dev->name);
7621         dev_put(adj_dev);
7622         kfree_rcu(adj, rcu);
7623 }
7624
7625 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7626                                             struct net_device *upper_dev,
7627                                             struct list_head *up_list,
7628                                             struct list_head *down_list,
7629                                             void *private, bool master)
7630 {
7631         int ret;
7632
7633         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7634                                            private, master);
7635         if (ret)
7636                 return ret;
7637
7638         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7639                                            private, false);
7640         if (ret) {
7641                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7642                 return ret;
7643         }
7644
7645         return 0;
7646 }
7647
7648 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7649                                                struct net_device *upper_dev,
7650                                                u16 ref_nr,
7651                                                struct list_head *up_list,
7652                                                struct list_head *down_list)
7653 {
7654         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7655         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7656 }
7657
7658 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7659                                                 struct net_device *upper_dev,
7660                                                 void *private, bool master)
7661 {
7662         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7663                                                 &dev->adj_list.upper,
7664                                                 &upper_dev->adj_list.lower,
7665                                                 private, master);
7666 }
7667
7668 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7669                                                    struct net_device *upper_dev)
7670 {
7671         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7672                                            &dev->adj_list.upper,
7673                                            &upper_dev->adj_list.lower);
7674 }
7675
7676 static int __netdev_upper_dev_link(struct net_device *dev,
7677                                    struct net_device *upper_dev, bool master,
7678                                    void *upper_priv, void *upper_info,
7679                                    struct netdev_nested_priv *priv,
7680                                    struct netlink_ext_ack *extack)
7681 {
7682         struct netdev_notifier_changeupper_info changeupper_info = {
7683                 .info = {
7684                         .dev = dev,
7685                         .extack = extack,
7686                 },
7687                 .upper_dev = upper_dev,
7688                 .master = master,
7689                 .linking = true,
7690                 .upper_info = upper_info,
7691         };
7692         struct net_device *master_dev;
7693         int ret = 0;
7694
7695         ASSERT_RTNL();
7696
7697         if (dev == upper_dev)
7698                 return -EBUSY;
7699
7700         /* To prevent loops, check if dev is not upper device to upper_dev. */
7701         if (__netdev_has_upper_dev(upper_dev, dev))
7702                 return -EBUSY;
7703
7704         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7705                 return -EMLINK;
7706
7707         if (!master) {
7708                 if (__netdev_has_upper_dev(dev, upper_dev))
7709                         return -EEXIST;
7710         } else {
7711                 master_dev = __netdev_master_upper_dev_get(dev);
7712                 if (master_dev)
7713                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7714         }
7715
7716         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7717                                             &changeupper_info.info);
7718         ret = notifier_to_errno(ret);
7719         if (ret)
7720                 return ret;
7721
7722         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7723                                                    master);
7724         if (ret)
7725                 return ret;
7726
7727         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7728                                             &changeupper_info.info);
7729         ret = notifier_to_errno(ret);
7730         if (ret)
7731                 goto rollback;
7732
7733         __netdev_update_upper_level(dev, NULL);
7734         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7735
7736         __netdev_update_lower_level(upper_dev, priv);
7737         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7738                                     priv);
7739
7740         return 0;
7741
7742 rollback:
7743         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7744
7745         return ret;
7746 }
7747
7748 /**
7749  * netdev_upper_dev_link - Add a link to the upper device
7750  * @dev: device
7751  * @upper_dev: new upper device
7752  * @extack: netlink extended ack
7753  *
7754  * Adds a link to device which is upper to this one. The caller must hold
7755  * the RTNL lock. On a failure a negative errno code is returned.
7756  * On success the reference counts are adjusted and the function
7757  * returns zero.
7758  */
7759 int netdev_upper_dev_link(struct net_device *dev,
7760                           struct net_device *upper_dev,
7761                           struct netlink_ext_ack *extack)
7762 {
7763         struct netdev_nested_priv priv = {
7764                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7765                 .data = NULL,
7766         };
7767
7768         return __netdev_upper_dev_link(dev, upper_dev, false,
7769                                        NULL, NULL, &priv, extack);
7770 }
7771 EXPORT_SYMBOL(netdev_upper_dev_link);
7772
7773 /**
7774  * netdev_master_upper_dev_link - Add a master link to the upper device
7775  * @dev: device
7776  * @upper_dev: new upper device
7777  * @upper_priv: upper device private
7778  * @upper_info: upper info to be passed down via notifier
7779  * @extack: netlink extended ack
7780  *
7781  * Adds a link to device which is upper to this one. In this case, only
7782  * one master upper device can be linked, although other non-master devices
7783  * might be linked as well. The caller must hold the RTNL lock.
7784  * On a failure a negative errno code is returned. On success the reference
7785  * counts are adjusted and the function returns zero.
7786  */
7787 int netdev_master_upper_dev_link(struct net_device *dev,
7788                                  struct net_device *upper_dev,
7789                                  void *upper_priv, void *upper_info,
7790                                  struct netlink_ext_ack *extack)
7791 {
7792         struct netdev_nested_priv priv = {
7793                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7794                 .data = NULL,
7795         };
7796
7797         return __netdev_upper_dev_link(dev, upper_dev, true,
7798                                        upper_priv, upper_info, &priv, extack);
7799 }
7800 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7801
7802 static void __netdev_upper_dev_unlink(struct net_device *dev,
7803                                       struct net_device *upper_dev,
7804                                       struct netdev_nested_priv *priv)
7805 {
7806         struct netdev_notifier_changeupper_info changeupper_info = {
7807                 .info = {
7808                         .dev = dev,
7809                 },
7810                 .upper_dev = upper_dev,
7811                 .linking = false,
7812         };
7813
7814         ASSERT_RTNL();
7815
7816         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7817
7818         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7819                                       &changeupper_info.info);
7820
7821         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7822
7823         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7824                                       &changeupper_info.info);
7825
7826         __netdev_update_upper_level(dev, NULL);
7827         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7828
7829         __netdev_update_lower_level(upper_dev, priv);
7830         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7831                                     priv);
7832 }
7833
7834 /**
7835  * netdev_upper_dev_unlink - Removes a link to upper device
7836  * @dev: device
7837  * @upper_dev: new upper device
7838  *
7839  * Removes a link to device which is upper to this one. The caller must hold
7840  * the RTNL lock.
7841  */
7842 void netdev_upper_dev_unlink(struct net_device *dev,
7843                              struct net_device *upper_dev)
7844 {
7845         struct netdev_nested_priv priv = {
7846                 .flags = NESTED_SYNC_TODO,
7847                 .data = NULL,
7848         };
7849
7850         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7851 }
7852 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7853
7854 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7855                                       struct net_device *lower_dev,
7856                                       bool val)
7857 {
7858         struct netdev_adjacent *adj;
7859
7860         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7861         if (adj)
7862                 adj->ignore = val;
7863
7864         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7865         if (adj)
7866                 adj->ignore = val;
7867 }
7868
7869 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7870                                         struct net_device *lower_dev)
7871 {
7872         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7873 }
7874
7875 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7876                                        struct net_device *lower_dev)
7877 {
7878         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7879 }
7880
7881 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7882                                    struct net_device *new_dev,
7883                                    struct net_device *dev,
7884                                    struct netlink_ext_ack *extack)
7885 {
7886         struct netdev_nested_priv priv = {
7887                 .flags = 0,
7888                 .data = NULL,
7889         };
7890         int err;
7891
7892         if (!new_dev)
7893                 return 0;
7894
7895         if (old_dev && new_dev != old_dev)
7896                 netdev_adjacent_dev_disable(dev, old_dev);
7897         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7898                                       extack);
7899         if (err) {
7900                 if (old_dev && new_dev != old_dev)
7901                         netdev_adjacent_dev_enable(dev, old_dev);
7902                 return err;
7903         }
7904
7905         return 0;
7906 }
7907 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7908
7909 void netdev_adjacent_change_commit(struct net_device *old_dev,
7910                                    struct net_device *new_dev,
7911                                    struct net_device *dev)
7912 {
7913         struct netdev_nested_priv priv = {
7914                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7915                 .data = NULL,
7916         };
7917
7918         if (!new_dev || !old_dev)
7919                 return;
7920
7921         if (new_dev == old_dev)
7922                 return;
7923
7924         netdev_adjacent_dev_enable(dev, old_dev);
7925         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7926 }
7927 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7928
7929 void netdev_adjacent_change_abort(struct net_device *old_dev,
7930                                   struct net_device *new_dev,
7931                                   struct net_device *dev)
7932 {
7933         struct netdev_nested_priv priv = {
7934                 .flags = 0,
7935                 .data = NULL,
7936         };
7937
7938         if (!new_dev)
7939                 return;
7940
7941         if (old_dev && new_dev != old_dev)
7942                 netdev_adjacent_dev_enable(dev, old_dev);
7943
7944         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7945 }
7946 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7947
7948 /**
7949  * netdev_bonding_info_change - Dispatch event about slave change
7950  * @dev: device
7951  * @bonding_info: info to dispatch
7952  *
7953  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7954  * The caller must hold the RTNL lock.
7955  */
7956 void netdev_bonding_info_change(struct net_device *dev,
7957                                 struct netdev_bonding_info *bonding_info)
7958 {
7959         struct netdev_notifier_bonding_info info = {
7960                 .info.dev = dev,
7961         };
7962
7963         memcpy(&info.bonding_info, bonding_info,
7964                sizeof(struct netdev_bonding_info));
7965         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7966                                       &info.info);
7967 }
7968 EXPORT_SYMBOL(netdev_bonding_info_change);
7969
7970 /**
7971  * netdev_get_xmit_slave - Get the xmit slave of master device
7972  * @dev: device
7973  * @skb: The packet
7974  * @all_slaves: assume all the slaves are active
7975  *
7976  * The reference counters are not incremented so the caller must be
7977  * careful with locks. The caller must hold RCU lock.
7978  * %NULL is returned if no slave is found.
7979  */
7980
7981 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7982                                          struct sk_buff *skb,
7983                                          bool all_slaves)
7984 {
7985         const struct net_device_ops *ops = dev->netdev_ops;
7986
7987         if (!ops->ndo_get_xmit_slave)
7988                 return NULL;
7989         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7990 }
7991 EXPORT_SYMBOL(netdev_get_xmit_slave);
7992
7993 static void netdev_adjacent_add_links(struct net_device *dev)
7994 {
7995         struct netdev_adjacent *iter;
7996
7997         struct net *net = dev_net(dev);
7998
7999         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8000                 if (!net_eq(net, dev_net(iter->dev)))
8001                         continue;
8002                 netdev_adjacent_sysfs_add(iter->dev, dev,
8003                                           &iter->dev->adj_list.lower);
8004                 netdev_adjacent_sysfs_add(dev, iter->dev,
8005                                           &dev->adj_list.upper);
8006         }
8007
8008         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8009                 if (!net_eq(net, dev_net(iter->dev)))
8010                         continue;
8011                 netdev_adjacent_sysfs_add(iter->dev, dev,
8012                                           &iter->dev->adj_list.upper);
8013                 netdev_adjacent_sysfs_add(dev, iter->dev,
8014                                           &dev->adj_list.lower);
8015         }
8016 }
8017
8018 static void netdev_adjacent_del_links(struct net_device *dev)
8019 {
8020         struct netdev_adjacent *iter;
8021
8022         struct net *net = dev_net(dev);
8023
8024         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8025                 if (!net_eq(net, dev_net(iter->dev)))
8026                         continue;
8027                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8028                                           &iter->dev->adj_list.lower);
8029                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8030                                           &dev->adj_list.upper);
8031         }
8032
8033         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8034                 if (!net_eq(net, dev_net(iter->dev)))
8035                         continue;
8036                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8037                                           &iter->dev->adj_list.upper);
8038                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8039                                           &dev->adj_list.lower);
8040         }
8041 }
8042
8043 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8044 {
8045         struct netdev_adjacent *iter;
8046
8047         struct net *net = dev_net(dev);
8048
8049         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8050                 if (!net_eq(net, dev_net(iter->dev)))
8051                         continue;
8052                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8053                                           &iter->dev->adj_list.lower);
8054                 netdev_adjacent_sysfs_add(iter->dev, dev,
8055                                           &iter->dev->adj_list.lower);
8056         }
8057
8058         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8059                 if (!net_eq(net, dev_net(iter->dev)))
8060                         continue;
8061                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8062                                           &iter->dev->adj_list.upper);
8063                 netdev_adjacent_sysfs_add(iter->dev, dev,
8064                                           &iter->dev->adj_list.upper);
8065         }
8066 }
8067
8068 void *netdev_lower_dev_get_private(struct net_device *dev,
8069                                    struct net_device *lower_dev)
8070 {
8071         struct netdev_adjacent *lower;
8072
8073         if (!lower_dev)
8074                 return NULL;
8075         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8076         if (!lower)
8077                 return NULL;
8078
8079         return lower->private;
8080 }
8081 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8082
8083
8084 /**
8085  * netdev_lower_change - Dispatch event about lower device state change
8086  * @lower_dev: device
8087  * @lower_state_info: state to dispatch
8088  *
8089  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8090  * The caller must hold the RTNL lock.
8091  */
8092 void netdev_lower_state_changed(struct net_device *lower_dev,
8093                                 void *lower_state_info)
8094 {
8095         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8096                 .info.dev = lower_dev,
8097         };
8098
8099         ASSERT_RTNL();
8100         changelowerstate_info.lower_state_info = lower_state_info;
8101         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8102                                       &changelowerstate_info.info);
8103 }
8104 EXPORT_SYMBOL(netdev_lower_state_changed);
8105
8106 static void dev_change_rx_flags(struct net_device *dev, int flags)
8107 {
8108         const struct net_device_ops *ops = dev->netdev_ops;
8109
8110         if (ops->ndo_change_rx_flags)
8111                 ops->ndo_change_rx_flags(dev, flags);
8112 }
8113
8114 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8115 {
8116         unsigned int old_flags = dev->flags;
8117         kuid_t uid;
8118         kgid_t gid;
8119
8120         ASSERT_RTNL();
8121
8122         dev->flags |= IFF_PROMISC;
8123         dev->promiscuity += inc;
8124         if (dev->promiscuity == 0) {
8125                 /*
8126                  * Avoid overflow.
8127                  * If inc causes overflow, untouch promisc and return error.
8128                  */
8129                 if (inc < 0)
8130                         dev->flags &= ~IFF_PROMISC;
8131                 else {
8132                         dev->promiscuity -= inc;
8133                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8134                                 dev->name);
8135                         return -EOVERFLOW;
8136                 }
8137         }
8138         if (dev->flags != old_flags) {
8139                 pr_info("device %s %s promiscuous mode\n",
8140                         dev->name,
8141                         dev->flags & IFF_PROMISC ? "entered" : "left");
8142                 if (audit_enabled) {
8143                         current_uid_gid(&uid, &gid);
8144                         audit_log(audit_context(), GFP_ATOMIC,
8145                                   AUDIT_ANOM_PROMISCUOUS,
8146                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8147                                   dev->name, (dev->flags & IFF_PROMISC),
8148                                   (old_flags & IFF_PROMISC),
8149                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8150                                   from_kuid(&init_user_ns, uid),
8151                                   from_kgid(&init_user_ns, gid),
8152                                   audit_get_sessionid(current));
8153                 }
8154
8155                 dev_change_rx_flags(dev, IFF_PROMISC);
8156         }
8157         if (notify)
8158                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8159         return 0;
8160 }
8161
8162 /**
8163  *      dev_set_promiscuity     - update promiscuity count on a device
8164  *      @dev: device
8165  *      @inc: modifier
8166  *
8167  *      Add or remove promiscuity from a device. While the count in the device
8168  *      remains above zero the interface remains promiscuous. Once it hits zero
8169  *      the device reverts back to normal filtering operation. A negative inc
8170  *      value is used to drop promiscuity on the device.
8171  *      Return 0 if successful or a negative errno code on error.
8172  */
8173 int dev_set_promiscuity(struct net_device *dev, int inc)
8174 {
8175         unsigned int old_flags = dev->flags;
8176         int err;
8177
8178         err = __dev_set_promiscuity(dev, inc, true);
8179         if (err < 0)
8180                 return err;
8181         if (dev->flags != old_flags)
8182                 dev_set_rx_mode(dev);
8183         return err;
8184 }
8185 EXPORT_SYMBOL(dev_set_promiscuity);
8186
8187 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8188 {
8189         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8190
8191         ASSERT_RTNL();
8192
8193         dev->flags |= IFF_ALLMULTI;
8194         dev->allmulti += inc;
8195         if (dev->allmulti == 0) {
8196                 /*
8197                  * Avoid overflow.
8198                  * If inc causes overflow, untouch allmulti and return error.
8199                  */
8200                 if (inc < 0)
8201                         dev->flags &= ~IFF_ALLMULTI;
8202                 else {
8203                         dev->allmulti -= inc;
8204                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8205                                 dev->name);
8206                         return -EOVERFLOW;
8207                 }
8208         }
8209         if (dev->flags ^ old_flags) {
8210                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8211                 dev_set_rx_mode(dev);
8212                 if (notify)
8213                         __dev_notify_flags(dev, old_flags,
8214                                            dev->gflags ^ old_gflags);
8215         }
8216         return 0;
8217 }
8218
8219 /**
8220  *      dev_set_allmulti        - update allmulti count on a device
8221  *      @dev: device
8222  *      @inc: modifier
8223  *
8224  *      Add or remove reception of all multicast frames to a device. While the
8225  *      count in the device remains above zero the interface remains listening
8226  *      to all interfaces. Once it hits zero the device reverts back to normal
8227  *      filtering operation. A negative @inc value is used to drop the counter
8228  *      when releasing a resource needing all multicasts.
8229  *      Return 0 if successful or a negative errno code on error.
8230  */
8231
8232 int dev_set_allmulti(struct net_device *dev, int inc)
8233 {
8234         return __dev_set_allmulti(dev, inc, true);
8235 }
8236 EXPORT_SYMBOL(dev_set_allmulti);
8237
8238 /*
8239  *      Upload unicast and multicast address lists to device and
8240  *      configure RX filtering. When the device doesn't support unicast
8241  *      filtering it is put in promiscuous mode while unicast addresses
8242  *      are present.
8243  */
8244 void __dev_set_rx_mode(struct net_device *dev)
8245 {
8246         const struct net_device_ops *ops = dev->netdev_ops;
8247
8248         /* dev_open will call this function so the list will stay sane. */
8249         if (!(dev->flags&IFF_UP))
8250                 return;
8251
8252         if (!netif_device_present(dev))
8253                 return;
8254
8255         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8256                 /* Unicast addresses changes may only happen under the rtnl,
8257                  * therefore calling __dev_set_promiscuity here is safe.
8258                  */
8259                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8260                         __dev_set_promiscuity(dev, 1, false);
8261                         dev->uc_promisc = true;
8262                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8263                         __dev_set_promiscuity(dev, -1, false);
8264                         dev->uc_promisc = false;
8265                 }
8266         }
8267
8268         if (ops->ndo_set_rx_mode)
8269                 ops->ndo_set_rx_mode(dev);
8270 }
8271
8272 void dev_set_rx_mode(struct net_device *dev)
8273 {
8274         netif_addr_lock_bh(dev);
8275         __dev_set_rx_mode(dev);
8276         netif_addr_unlock_bh(dev);
8277 }
8278
8279 /**
8280  *      dev_get_flags - get flags reported to userspace
8281  *      @dev: device
8282  *
8283  *      Get the combination of flag bits exported through APIs to userspace.
8284  */
8285 unsigned int dev_get_flags(const struct net_device *dev)
8286 {
8287         unsigned int flags;
8288
8289         flags = (dev->flags & ~(IFF_PROMISC |
8290                                 IFF_ALLMULTI |
8291                                 IFF_RUNNING |
8292                                 IFF_LOWER_UP |
8293                                 IFF_DORMANT)) |
8294                 (dev->gflags & (IFF_PROMISC |
8295                                 IFF_ALLMULTI));
8296
8297         if (netif_running(dev)) {
8298                 if (netif_oper_up(dev))
8299                         flags |= IFF_RUNNING;
8300                 if (netif_carrier_ok(dev))
8301                         flags |= IFF_LOWER_UP;
8302                 if (netif_dormant(dev))
8303                         flags |= IFF_DORMANT;
8304         }
8305
8306         return flags;
8307 }
8308 EXPORT_SYMBOL(dev_get_flags);
8309
8310 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8311                        struct netlink_ext_ack *extack)
8312 {
8313         unsigned int old_flags = dev->flags;
8314         int ret;
8315
8316         ASSERT_RTNL();
8317
8318         /*
8319          *      Set the flags on our device.
8320          */
8321
8322         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8323                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8324                                IFF_AUTOMEDIA)) |
8325                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8326                                     IFF_ALLMULTI));
8327
8328         /*
8329          *      Load in the correct multicast list now the flags have changed.
8330          */
8331
8332         if ((old_flags ^ flags) & IFF_MULTICAST)
8333                 dev_change_rx_flags(dev, IFF_MULTICAST);
8334
8335         dev_set_rx_mode(dev);
8336
8337         /*
8338          *      Have we downed the interface. We handle IFF_UP ourselves
8339          *      according to user attempts to set it, rather than blindly
8340          *      setting it.
8341          */
8342
8343         ret = 0;
8344         if ((old_flags ^ flags) & IFF_UP) {
8345                 if (old_flags & IFF_UP)
8346                         __dev_close(dev);
8347                 else
8348                         ret = __dev_open(dev, extack);
8349         }
8350
8351         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8352                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8353                 unsigned int old_flags = dev->flags;
8354
8355                 dev->gflags ^= IFF_PROMISC;
8356
8357                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8358                         if (dev->flags != old_flags)
8359                                 dev_set_rx_mode(dev);
8360         }
8361
8362         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8363          * is important. Some (broken) drivers set IFF_PROMISC, when
8364          * IFF_ALLMULTI is requested not asking us and not reporting.
8365          */
8366         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8367                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8368
8369                 dev->gflags ^= IFF_ALLMULTI;
8370                 __dev_set_allmulti(dev, inc, false);
8371         }
8372
8373         return ret;
8374 }
8375
8376 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8377                         unsigned int gchanges)
8378 {
8379         unsigned int changes = dev->flags ^ old_flags;
8380
8381         if (gchanges)
8382                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8383
8384         if (changes & IFF_UP) {
8385                 if (dev->flags & IFF_UP)
8386                         call_netdevice_notifiers(NETDEV_UP, dev);
8387                 else
8388                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8389         }
8390
8391         if (dev->flags & IFF_UP &&
8392             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8393                 struct netdev_notifier_change_info change_info = {
8394                         .info = {
8395                                 .dev = dev,
8396                         },
8397                         .flags_changed = changes,
8398                 };
8399
8400                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8401         }
8402 }
8403
8404 /**
8405  *      dev_change_flags - change device settings
8406  *      @dev: device
8407  *      @flags: device state flags
8408  *      @extack: netlink extended ack
8409  *
8410  *      Change settings on device based state flags. The flags are
8411  *      in the userspace exported format.
8412  */
8413 int dev_change_flags(struct net_device *dev, unsigned int flags,
8414                      struct netlink_ext_ack *extack)
8415 {
8416         int ret;
8417         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8418
8419         ret = __dev_change_flags(dev, flags, extack);
8420         if (ret < 0)
8421                 return ret;
8422
8423         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8424         __dev_notify_flags(dev, old_flags, changes);
8425         return ret;
8426 }
8427 EXPORT_SYMBOL(dev_change_flags);
8428
8429 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8430 {
8431         const struct net_device_ops *ops = dev->netdev_ops;
8432
8433         if (ops->ndo_change_mtu)
8434                 return ops->ndo_change_mtu(dev, new_mtu);
8435
8436         /* Pairs with all the lockless reads of dev->mtu in the stack */
8437         WRITE_ONCE(dev->mtu, new_mtu);
8438         return 0;
8439 }
8440 EXPORT_SYMBOL(__dev_set_mtu);
8441
8442 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8443                      struct netlink_ext_ack *extack)
8444 {
8445         /* MTU must be positive, and in range */
8446         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8447                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8448                 return -EINVAL;
8449         }
8450
8451         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8452                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8453                 return -EINVAL;
8454         }
8455         return 0;
8456 }
8457
8458 /**
8459  *      dev_set_mtu_ext - Change maximum transfer unit
8460  *      @dev: device
8461  *      @new_mtu: new transfer unit
8462  *      @extack: netlink extended ack
8463  *
8464  *      Change the maximum transfer size of the network device.
8465  */
8466 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8467                     struct netlink_ext_ack *extack)
8468 {
8469         int err, orig_mtu;
8470
8471         if (new_mtu == dev->mtu)
8472                 return 0;
8473
8474         err = dev_validate_mtu(dev, new_mtu, extack);
8475         if (err)
8476                 return err;
8477
8478         if (!netif_device_present(dev))
8479                 return -ENODEV;
8480
8481         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8482         err = notifier_to_errno(err);
8483         if (err)
8484                 return err;
8485
8486         orig_mtu = dev->mtu;
8487         err = __dev_set_mtu(dev, new_mtu);
8488
8489         if (!err) {
8490                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8491                                                    orig_mtu);
8492                 err = notifier_to_errno(err);
8493                 if (err) {
8494                         /* setting mtu back and notifying everyone again,
8495                          * so that they have a chance to revert changes.
8496                          */
8497                         __dev_set_mtu(dev, orig_mtu);
8498                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8499                                                      new_mtu);
8500                 }
8501         }
8502         return err;
8503 }
8504
8505 int dev_set_mtu(struct net_device *dev, int new_mtu)
8506 {
8507         struct netlink_ext_ack extack;
8508         int err;
8509
8510         memset(&extack, 0, sizeof(extack));
8511         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8512         if (err && extack._msg)
8513                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8514         return err;
8515 }
8516 EXPORT_SYMBOL(dev_set_mtu);
8517
8518 /**
8519  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8520  *      @dev: device
8521  *      @new_len: new tx queue length
8522  */
8523 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8524 {
8525         unsigned int orig_len = dev->tx_queue_len;
8526         int res;
8527
8528         if (new_len != (unsigned int)new_len)
8529                 return -ERANGE;
8530
8531         if (new_len != orig_len) {
8532                 dev->tx_queue_len = new_len;
8533                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8534                 res = notifier_to_errno(res);
8535                 if (res)
8536                         goto err_rollback;
8537                 res = dev_qdisc_change_tx_queue_len(dev);
8538                 if (res)
8539                         goto err_rollback;
8540         }
8541
8542         return 0;
8543
8544 err_rollback:
8545         netdev_err(dev, "refused to change device tx_queue_len\n");
8546         dev->tx_queue_len = orig_len;
8547         return res;
8548 }
8549
8550 /**
8551  *      dev_set_group - Change group this device belongs to
8552  *      @dev: device
8553  *      @new_group: group this device should belong to
8554  */
8555 void dev_set_group(struct net_device *dev, int new_group)
8556 {
8557         dev->group = new_group;
8558 }
8559 EXPORT_SYMBOL(dev_set_group);
8560
8561 /**
8562  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8563  *      @dev: device
8564  *      @addr: new address
8565  *      @extack: netlink extended ack
8566  */
8567 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8568                               struct netlink_ext_ack *extack)
8569 {
8570         struct netdev_notifier_pre_changeaddr_info info = {
8571                 .info.dev = dev,
8572                 .info.extack = extack,
8573                 .dev_addr = addr,
8574         };
8575         int rc;
8576
8577         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8578         return notifier_to_errno(rc);
8579 }
8580 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8581
8582 /**
8583  *      dev_set_mac_address - Change Media Access Control Address
8584  *      @dev: device
8585  *      @sa: new address
8586  *      @extack: netlink extended ack
8587  *
8588  *      Change the hardware (MAC) address of the device
8589  */
8590 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8591                         struct netlink_ext_ack *extack)
8592 {
8593         const struct net_device_ops *ops = dev->netdev_ops;
8594         int err;
8595
8596         if (!ops->ndo_set_mac_address)
8597                 return -EOPNOTSUPP;
8598         if (sa->sa_family != dev->type)
8599                 return -EINVAL;
8600         if (!netif_device_present(dev))
8601                 return -ENODEV;
8602         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8603         if (err)
8604                 return err;
8605         err = ops->ndo_set_mac_address(dev, sa);
8606         if (err)
8607                 return err;
8608         dev->addr_assign_type = NET_ADDR_SET;
8609         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8610         add_device_randomness(dev->dev_addr, dev->addr_len);
8611         return 0;
8612 }
8613 EXPORT_SYMBOL(dev_set_mac_address);
8614
8615 /**
8616  *      dev_change_carrier - Change device carrier
8617  *      @dev: device
8618  *      @new_carrier: new value
8619  *
8620  *      Change device carrier
8621  */
8622 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8623 {
8624         const struct net_device_ops *ops = dev->netdev_ops;
8625
8626         if (!ops->ndo_change_carrier)
8627                 return -EOPNOTSUPP;
8628         if (!netif_device_present(dev))
8629                 return -ENODEV;
8630         return ops->ndo_change_carrier(dev, new_carrier);
8631 }
8632 EXPORT_SYMBOL(dev_change_carrier);
8633
8634 /**
8635  *      dev_get_phys_port_id - Get device physical port ID
8636  *      @dev: device
8637  *      @ppid: port ID
8638  *
8639  *      Get device physical port ID
8640  */
8641 int dev_get_phys_port_id(struct net_device *dev,
8642                          struct netdev_phys_item_id *ppid)
8643 {
8644         const struct net_device_ops *ops = dev->netdev_ops;
8645
8646         if (!ops->ndo_get_phys_port_id)
8647                 return -EOPNOTSUPP;
8648         return ops->ndo_get_phys_port_id(dev, ppid);
8649 }
8650 EXPORT_SYMBOL(dev_get_phys_port_id);
8651
8652 /**
8653  *      dev_get_phys_port_name - Get device physical port name
8654  *      @dev: device
8655  *      @name: port name
8656  *      @len: limit of bytes to copy to name
8657  *
8658  *      Get device physical port name
8659  */
8660 int dev_get_phys_port_name(struct net_device *dev,
8661                            char *name, size_t len)
8662 {
8663         const struct net_device_ops *ops = dev->netdev_ops;
8664         int err;
8665
8666         if (ops->ndo_get_phys_port_name) {
8667                 err = ops->ndo_get_phys_port_name(dev, name, len);
8668                 if (err != -EOPNOTSUPP)
8669                         return err;
8670         }
8671         return devlink_compat_phys_port_name_get(dev, name, len);
8672 }
8673 EXPORT_SYMBOL(dev_get_phys_port_name);
8674
8675 /**
8676  *      dev_get_port_parent_id - Get the device's port parent identifier
8677  *      @dev: network device
8678  *      @ppid: pointer to a storage for the port's parent identifier
8679  *      @recurse: allow/disallow recursion to lower devices
8680  *
8681  *      Get the devices's port parent identifier
8682  */
8683 int dev_get_port_parent_id(struct net_device *dev,
8684                            struct netdev_phys_item_id *ppid,
8685                            bool recurse)
8686 {
8687         const struct net_device_ops *ops = dev->netdev_ops;
8688         struct netdev_phys_item_id first = { };
8689         struct net_device *lower_dev;
8690         struct list_head *iter;
8691         int err;
8692
8693         if (ops->ndo_get_port_parent_id) {
8694                 err = ops->ndo_get_port_parent_id(dev, ppid);
8695                 if (err != -EOPNOTSUPP)
8696                         return err;
8697         }
8698
8699         err = devlink_compat_switch_id_get(dev, ppid);
8700         if (!err || err != -EOPNOTSUPP)
8701                 return err;
8702
8703         if (!recurse)
8704                 return -EOPNOTSUPP;
8705
8706         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8707                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8708                 if (err)
8709                         break;
8710                 if (!first.id_len)
8711                         first = *ppid;
8712                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8713                         return -EOPNOTSUPP;
8714         }
8715
8716         return err;
8717 }
8718 EXPORT_SYMBOL(dev_get_port_parent_id);
8719
8720 /**
8721  *      netdev_port_same_parent_id - Indicate if two network devices have
8722  *      the same port parent identifier
8723  *      @a: first network device
8724  *      @b: second network device
8725  */
8726 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8727 {
8728         struct netdev_phys_item_id a_id = { };
8729         struct netdev_phys_item_id b_id = { };
8730
8731         if (dev_get_port_parent_id(a, &a_id, true) ||
8732             dev_get_port_parent_id(b, &b_id, true))
8733                 return false;
8734
8735         return netdev_phys_item_id_same(&a_id, &b_id);
8736 }
8737 EXPORT_SYMBOL(netdev_port_same_parent_id);
8738
8739 /**
8740  *      dev_change_proto_down - update protocol port state information
8741  *      @dev: device
8742  *      @proto_down: new value
8743  *
8744  *      This info can be used by switch drivers to set the phys state of the
8745  *      port.
8746  */
8747 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8748 {
8749         const struct net_device_ops *ops = dev->netdev_ops;
8750
8751         if (!ops->ndo_change_proto_down)
8752                 return -EOPNOTSUPP;
8753         if (!netif_device_present(dev))
8754                 return -ENODEV;
8755         return ops->ndo_change_proto_down(dev, proto_down);
8756 }
8757 EXPORT_SYMBOL(dev_change_proto_down);
8758
8759 /**
8760  *      dev_change_proto_down_generic - generic implementation for
8761  *      ndo_change_proto_down that sets carrier according to
8762  *      proto_down.
8763  *
8764  *      @dev: device
8765  *      @proto_down: new value
8766  */
8767 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8768 {
8769         if (proto_down)
8770                 netif_carrier_off(dev);
8771         else
8772                 netif_carrier_on(dev);
8773         dev->proto_down = proto_down;
8774         return 0;
8775 }
8776 EXPORT_SYMBOL(dev_change_proto_down_generic);
8777
8778 /**
8779  *      dev_change_proto_down_reason - proto down reason
8780  *
8781  *      @dev: device
8782  *      @mask: proto down mask
8783  *      @value: proto down value
8784  */
8785 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8786                                   u32 value)
8787 {
8788         int b;
8789
8790         if (!mask) {
8791                 dev->proto_down_reason = value;
8792         } else {
8793                 for_each_set_bit(b, &mask, 32) {
8794                         if (value & (1 << b))
8795                                 dev->proto_down_reason |= BIT(b);
8796                         else
8797                                 dev->proto_down_reason &= ~BIT(b);
8798                 }
8799         }
8800 }
8801 EXPORT_SYMBOL(dev_change_proto_down_reason);
8802
8803 struct bpf_xdp_link {
8804         struct bpf_link link;
8805         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8806         int flags;
8807 };
8808
8809 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8810 {
8811         if (flags & XDP_FLAGS_HW_MODE)
8812                 return XDP_MODE_HW;
8813         if (flags & XDP_FLAGS_DRV_MODE)
8814                 return XDP_MODE_DRV;
8815         if (flags & XDP_FLAGS_SKB_MODE)
8816                 return XDP_MODE_SKB;
8817         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8818 }
8819
8820 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8821 {
8822         switch (mode) {
8823         case XDP_MODE_SKB:
8824                 return generic_xdp_install;
8825         case XDP_MODE_DRV:
8826         case XDP_MODE_HW:
8827                 return dev->netdev_ops->ndo_bpf;
8828         default:
8829                 return NULL;
8830         };
8831 }
8832
8833 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8834                                          enum bpf_xdp_mode mode)
8835 {
8836         return dev->xdp_state[mode].link;
8837 }
8838
8839 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8840                                      enum bpf_xdp_mode mode)
8841 {
8842         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8843
8844         if (link)
8845                 return link->link.prog;
8846         return dev->xdp_state[mode].prog;
8847 }
8848
8849 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8850 {
8851         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8852
8853         return prog ? prog->aux->id : 0;
8854 }
8855
8856 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8857                              struct bpf_xdp_link *link)
8858 {
8859         dev->xdp_state[mode].link = link;
8860         dev->xdp_state[mode].prog = NULL;
8861 }
8862
8863 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8864                              struct bpf_prog *prog)
8865 {
8866         dev->xdp_state[mode].link = NULL;
8867         dev->xdp_state[mode].prog = prog;
8868 }
8869
8870 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8871                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8872                            u32 flags, struct bpf_prog *prog)
8873 {
8874         struct netdev_bpf xdp;
8875         int err;
8876
8877         memset(&xdp, 0, sizeof(xdp));
8878         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8879         xdp.extack = extack;
8880         xdp.flags = flags;
8881         xdp.prog = prog;
8882
8883         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
8884          * "moved" into driver), so they don't increment it on their own, but
8885          * they do decrement refcnt when program is detached or replaced.
8886          * Given net_device also owns link/prog, we need to bump refcnt here
8887          * to prevent drivers from underflowing it.
8888          */
8889         if (prog)
8890                 bpf_prog_inc(prog);
8891         err = bpf_op(dev, &xdp);
8892         if (err) {
8893                 if (prog)
8894                         bpf_prog_put(prog);
8895                 return err;
8896         }
8897
8898         if (mode != XDP_MODE_HW)
8899                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8900
8901         return 0;
8902 }
8903
8904 static void dev_xdp_uninstall(struct net_device *dev)
8905 {
8906         struct bpf_xdp_link *link;
8907         struct bpf_prog *prog;
8908         enum bpf_xdp_mode mode;
8909         bpf_op_t bpf_op;
8910
8911         ASSERT_RTNL();
8912
8913         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8914                 prog = dev_xdp_prog(dev, mode);
8915                 if (!prog)
8916                         continue;
8917
8918                 bpf_op = dev_xdp_bpf_op(dev, mode);
8919                 if (!bpf_op)
8920                         continue;
8921
8922                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8923
8924                 /* auto-detach link from net device */
8925                 link = dev_xdp_link(dev, mode);
8926                 if (link)
8927                         link->dev = NULL;
8928                 else
8929                         bpf_prog_put(prog);
8930
8931                 dev_xdp_set_link(dev, mode, NULL);
8932         }
8933 }
8934
8935 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
8936                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
8937                           struct bpf_prog *old_prog, u32 flags)
8938 {
8939         struct bpf_prog *cur_prog;
8940         enum bpf_xdp_mode mode;
8941         bpf_op_t bpf_op;
8942         int err;
8943
8944         ASSERT_RTNL();
8945
8946         /* either link or prog attachment, never both */
8947         if (link && (new_prog || old_prog))
8948                 return -EINVAL;
8949         /* link supports only XDP mode flags */
8950         if (link && (flags & ~XDP_FLAGS_MODES)) {
8951                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
8952                 return -EINVAL;
8953         }
8954         /* just one XDP mode bit should be set, zero defaults to SKB mode */
8955         if (hweight32(flags & XDP_FLAGS_MODES) > 1) {
8956                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
8957                 return -EINVAL;
8958         }
8959         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
8960         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
8961                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
8962                 return -EINVAL;
8963         }
8964
8965         mode = dev_xdp_mode(dev, flags);
8966         /* can't replace attached link */
8967         if (dev_xdp_link(dev, mode)) {
8968                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
8969                 return -EBUSY;
8970         }
8971
8972         cur_prog = dev_xdp_prog(dev, mode);
8973         /* can't replace attached prog with link */
8974         if (link && cur_prog) {
8975                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
8976                 return -EBUSY;
8977         }
8978         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
8979                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
8980                 return -EEXIST;
8981         }
8982
8983         /* put effective new program into new_prog */
8984         if (link)
8985                 new_prog = link->link.prog;
8986
8987         if (new_prog) {
8988                 bool offload = mode == XDP_MODE_HW;
8989                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
8990                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
8991
8992                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
8993                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8994                         return -EBUSY;
8995                 }
8996                 if (!offload && dev_xdp_prog(dev, other_mode)) {
8997                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
8998                         return -EEXIST;
8999                 }
9000                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9001                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9002                         return -EINVAL;
9003                 }
9004                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9005                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9006                         return -EINVAL;
9007                 }
9008                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9009                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9010                         return -EINVAL;
9011                 }
9012         }
9013
9014         /* don't call drivers if the effective program didn't change */
9015         if (new_prog != cur_prog) {
9016                 bpf_op = dev_xdp_bpf_op(dev, mode);
9017                 if (!bpf_op) {
9018                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9019                         return -EOPNOTSUPP;
9020                 }
9021
9022                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9023                 if (err)
9024                         return err;
9025         }
9026
9027         if (link)
9028                 dev_xdp_set_link(dev, mode, link);
9029         else
9030                 dev_xdp_set_prog(dev, mode, new_prog);
9031         if (cur_prog)
9032                 bpf_prog_put(cur_prog);
9033
9034         return 0;
9035 }
9036
9037 static int dev_xdp_attach_link(struct net_device *dev,
9038                                struct netlink_ext_ack *extack,
9039                                struct bpf_xdp_link *link)
9040 {
9041         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9042 }
9043
9044 static int dev_xdp_detach_link(struct net_device *dev,
9045                                struct netlink_ext_ack *extack,
9046                                struct bpf_xdp_link *link)
9047 {
9048         enum bpf_xdp_mode mode;
9049         bpf_op_t bpf_op;
9050
9051         ASSERT_RTNL();
9052
9053         mode = dev_xdp_mode(dev, link->flags);
9054         if (dev_xdp_link(dev, mode) != link)
9055                 return -EINVAL;
9056
9057         bpf_op = dev_xdp_bpf_op(dev, mode);
9058         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9059         dev_xdp_set_link(dev, mode, NULL);
9060         return 0;
9061 }
9062
9063 static void bpf_xdp_link_release(struct bpf_link *link)
9064 {
9065         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9066
9067         rtnl_lock();
9068
9069         /* if racing with net_device's tear down, xdp_link->dev might be
9070          * already NULL, in which case link was already auto-detached
9071          */
9072         if (xdp_link->dev) {
9073                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9074                 xdp_link->dev = NULL;
9075         }
9076
9077         rtnl_unlock();
9078 }
9079
9080 static int bpf_xdp_link_detach(struct bpf_link *link)
9081 {
9082         bpf_xdp_link_release(link);
9083         return 0;
9084 }
9085
9086 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9087 {
9088         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9089
9090         kfree(xdp_link);
9091 }
9092
9093 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9094                                      struct seq_file *seq)
9095 {
9096         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9097         u32 ifindex = 0;
9098
9099         rtnl_lock();
9100         if (xdp_link->dev)
9101                 ifindex = xdp_link->dev->ifindex;
9102         rtnl_unlock();
9103
9104         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9105 }
9106
9107 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9108                                        struct bpf_link_info *info)
9109 {
9110         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9111         u32 ifindex = 0;
9112
9113         rtnl_lock();
9114         if (xdp_link->dev)
9115                 ifindex = xdp_link->dev->ifindex;
9116         rtnl_unlock();
9117
9118         info->xdp.ifindex = ifindex;
9119         return 0;
9120 }
9121
9122 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9123                                struct bpf_prog *old_prog)
9124 {
9125         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9126         enum bpf_xdp_mode mode;
9127         bpf_op_t bpf_op;
9128         int err = 0;
9129
9130         rtnl_lock();
9131
9132         /* link might have been auto-released already, so fail */
9133         if (!xdp_link->dev) {
9134                 err = -ENOLINK;
9135                 goto out_unlock;
9136         }
9137
9138         if (old_prog && link->prog != old_prog) {
9139                 err = -EPERM;
9140                 goto out_unlock;
9141         }
9142         old_prog = link->prog;
9143         if (old_prog == new_prog) {
9144                 /* no-op, don't disturb drivers */
9145                 bpf_prog_put(new_prog);
9146                 goto out_unlock;
9147         }
9148
9149         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9150         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9151         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9152                               xdp_link->flags, new_prog);
9153         if (err)
9154                 goto out_unlock;
9155
9156         old_prog = xchg(&link->prog, new_prog);
9157         bpf_prog_put(old_prog);
9158
9159 out_unlock:
9160         rtnl_unlock();
9161         return err;
9162 }
9163
9164 static const struct bpf_link_ops bpf_xdp_link_lops = {
9165         .release = bpf_xdp_link_release,
9166         .dealloc = bpf_xdp_link_dealloc,
9167         .detach = bpf_xdp_link_detach,
9168         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9169         .fill_link_info = bpf_xdp_link_fill_link_info,
9170         .update_prog = bpf_xdp_link_update,
9171 };
9172
9173 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9174 {
9175         struct net *net = current->nsproxy->net_ns;
9176         struct bpf_link_primer link_primer;
9177         struct bpf_xdp_link *link;
9178         struct net_device *dev;
9179         int err, fd;
9180
9181         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9182         if (!dev)
9183                 return -EINVAL;
9184
9185         link = kzalloc(sizeof(*link), GFP_USER);
9186         if (!link) {
9187                 err = -ENOMEM;
9188                 goto out_put_dev;
9189         }
9190
9191         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9192         link->dev = dev;
9193         link->flags = attr->link_create.flags;
9194
9195         err = bpf_link_prime(&link->link, &link_primer);
9196         if (err) {
9197                 kfree(link);
9198                 goto out_put_dev;
9199         }
9200
9201         rtnl_lock();
9202         err = dev_xdp_attach_link(dev, NULL, link);
9203         rtnl_unlock();
9204
9205         if (err) {
9206                 bpf_link_cleanup(&link_primer);
9207                 goto out_put_dev;
9208         }
9209
9210         fd = bpf_link_settle(&link_primer);
9211         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9212         dev_put(dev);
9213         return fd;
9214
9215 out_put_dev:
9216         dev_put(dev);
9217         return err;
9218 }
9219
9220 /**
9221  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9222  *      @dev: device
9223  *      @extack: netlink extended ack
9224  *      @fd: new program fd or negative value to clear
9225  *      @expected_fd: old program fd that userspace expects to replace or clear
9226  *      @flags: xdp-related flags
9227  *
9228  *      Set or clear a bpf program for a device
9229  */
9230 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9231                       int fd, int expected_fd, u32 flags)
9232 {
9233         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9234         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9235         int err;
9236
9237         ASSERT_RTNL();
9238
9239         if (fd >= 0) {
9240                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9241                                                  mode != XDP_MODE_SKB);
9242                 if (IS_ERR(new_prog))
9243                         return PTR_ERR(new_prog);
9244         }
9245
9246         if (expected_fd >= 0) {
9247                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9248                                                  mode != XDP_MODE_SKB);
9249                 if (IS_ERR(old_prog)) {
9250                         err = PTR_ERR(old_prog);
9251                         old_prog = NULL;
9252                         goto err_out;
9253                 }
9254         }
9255
9256         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9257
9258 err_out:
9259         if (err && new_prog)
9260                 bpf_prog_put(new_prog);
9261         if (old_prog)
9262                 bpf_prog_put(old_prog);
9263         return err;
9264 }
9265
9266 /**
9267  *      dev_new_index   -       allocate an ifindex
9268  *      @net: the applicable net namespace
9269  *
9270  *      Returns a suitable unique value for a new device interface
9271  *      number.  The caller must hold the rtnl semaphore or the
9272  *      dev_base_lock to be sure it remains unique.
9273  */
9274 static int dev_new_index(struct net *net)
9275 {
9276         int ifindex = net->ifindex;
9277
9278         for (;;) {
9279                 if (++ifindex <= 0)
9280                         ifindex = 1;
9281                 if (!__dev_get_by_index(net, ifindex))
9282                         return net->ifindex = ifindex;
9283         }
9284 }
9285
9286 /* Delayed registration/unregisteration */
9287 static LIST_HEAD(net_todo_list);
9288 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9289
9290 static void net_set_todo(struct net_device *dev)
9291 {
9292         list_add_tail(&dev->todo_list, &net_todo_list);
9293         dev_net(dev)->dev_unreg_count++;
9294 }
9295
9296 static void rollback_registered_many(struct list_head *head)
9297 {
9298         struct net_device *dev, *tmp;
9299         LIST_HEAD(close_head);
9300
9301         BUG_ON(dev_boot_phase);
9302         ASSERT_RTNL();
9303
9304         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9305                 /* Some devices call without registering
9306                  * for initialization unwind. Remove those
9307                  * devices and proceed with the remaining.
9308                  */
9309                 if (dev->reg_state == NETREG_UNINITIALIZED) {
9310                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9311                                  dev->name, dev);
9312
9313                         WARN_ON(1);
9314                         list_del(&dev->unreg_list);
9315                         continue;
9316                 }
9317                 dev->dismantle = true;
9318                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
9319         }
9320
9321         /* If device is running, close it first. */
9322         list_for_each_entry(dev, head, unreg_list)
9323                 list_add_tail(&dev->close_list, &close_head);
9324         dev_close_many(&close_head, true);
9325
9326         list_for_each_entry(dev, head, unreg_list) {
9327                 /* And unlink it from device chain. */
9328                 unlist_netdevice(dev);
9329
9330                 dev->reg_state = NETREG_UNREGISTERING;
9331         }
9332         flush_all_backlogs();
9333
9334         synchronize_net();
9335
9336         list_for_each_entry(dev, head, unreg_list) {
9337                 struct sk_buff *skb = NULL;
9338
9339                 /* Shutdown queueing discipline. */
9340                 dev_shutdown(dev);
9341
9342                 dev_xdp_uninstall(dev);
9343
9344                 /* Notify protocols, that we are about to destroy
9345                  * this device. They should clean all the things.
9346                  */
9347                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9348
9349                 if (!dev->rtnl_link_ops ||
9350                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9351                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9352                                                      GFP_KERNEL, NULL, 0);
9353
9354                 /*
9355                  *      Flush the unicast and multicast chains
9356                  */
9357                 dev_uc_flush(dev);
9358                 dev_mc_flush(dev);
9359
9360                 netdev_name_node_alt_flush(dev);
9361                 netdev_name_node_free(dev->name_node);
9362
9363                 if (dev->netdev_ops->ndo_uninit)
9364                         dev->netdev_ops->ndo_uninit(dev);
9365
9366                 if (skb)
9367                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9368
9369                 /* Notifier chain MUST detach us all upper devices. */
9370                 WARN_ON(netdev_has_any_upper_dev(dev));
9371                 WARN_ON(netdev_has_any_lower_dev(dev));
9372
9373                 /* Remove entries from kobject tree */
9374                 netdev_unregister_kobject(dev);
9375 #ifdef CONFIG_XPS
9376                 /* Remove XPS queueing entries */
9377                 netif_reset_xps_queues_gt(dev, 0);
9378 #endif
9379         }
9380
9381         synchronize_net();
9382
9383         list_for_each_entry(dev, head, unreg_list)
9384                 dev_put(dev);
9385 }
9386
9387 static void rollback_registered(struct net_device *dev)
9388 {
9389         LIST_HEAD(single);
9390
9391         list_add(&dev->unreg_list, &single);
9392         rollback_registered_many(&single);
9393         list_del(&single);
9394 }
9395
9396 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9397         struct net_device *upper, netdev_features_t features)
9398 {
9399         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9400         netdev_features_t feature;
9401         int feature_bit;
9402
9403         for_each_netdev_feature(upper_disables, feature_bit) {
9404                 feature = __NETIF_F_BIT(feature_bit);
9405                 if (!(upper->wanted_features & feature)
9406                     && (features & feature)) {
9407                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9408                                    &feature, upper->name);
9409                         features &= ~feature;
9410                 }
9411         }
9412
9413         return features;
9414 }
9415
9416 static void netdev_sync_lower_features(struct net_device *upper,
9417         struct net_device *lower, netdev_features_t features)
9418 {
9419         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9420         netdev_features_t feature;
9421         int feature_bit;
9422
9423         for_each_netdev_feature(upper_disables, feature_bit) {
9424                 feature = __NETIF_F_BIT(feature_bit);
9425                 if (!(features & feature) && (lower->features & feature)) {
9426                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9427                                    &feature, lower->name);
9428                         lower->wanted_features &= ~feature;
9429                         __netdev_update_features(lower);
9430
9431                         if (unlikely(lower->features & feature))
9432                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9433                                             &feature, lower->name);
9434                         else
9435                                 netdev_features_change(lower);
9436                 }
9437         }
9438 }
9439
9440 static netdev_features_t netdev_fix_features(struct net_device *dev,
9441         netdev_features_t features)
9442 {
9443         /* Fix illegal checksum combinations */
9444         if ((features & NETIF_F_HW_CSUM) &&
9445             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9446                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9447                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9448         }
9449
9450         /* TSO requires that SG is present as well. */
9451         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9452                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9453                 features &= ~NETIF_F_ALL_TSO;
9454         }
9455
9456         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9457                                         !(features & NETIF_F_IP_CSUM)) {
9458                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9459                 features &= ~NETIF_F_TSO;
9460                 features &= ~NETIF_F_TSO_ECN;
9461         }
9462
9463         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9464                                          !(features & NETIF_F_IPV6_CSUM)) {
9465                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9466                 features &= ~NETIF_F_TSO6;
9467         }
9468
9469         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9470         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9471                 features &= ~NETIF_F_TSO_MANGLEID;
9472
9473         /* TSO ECN requires that TSO is present as well. */
9474         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9475                 features &= ~NETIF_F_TSO_ECN;
9476
9477         /* Software GSO depends on SG. */
9478         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9479                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9480                 features &= ~NETIF_F_GSO;
9481         }
9482
9483         /* GSO partial features require GSO partial be set */
9484         if ((features & dev->gso_partial_features) &&
9485             !(features & NETIF_F_GSO_PARTIAL)) {
9486                 netdev_dbg(dev,
9487                            "Dropping partially supported GSO features since no GSO partial.\n");
9488                 features &= ~dev->gso_partial_features;
9489         }
9490
9491         if (!(features & NETIF_F_RXCSUM)) {
9492                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9493                  * successfully merged by hardware must also have the
9494                  * checksum verified by hardware.  If the user does not
9495                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9496                  */
9497                 if (features & NETIF_F_GRO_HW) {
9498                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9499                         features &= ~NETIF_F_GRO_HW;
9500                 }
9501         }
9502
9503         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9504         if (features & NETIF_F_RXFCS) {
9505                 if (features & NETIF_F_LRO) {
9506                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9507                         features &= ~NETIF_F_LRO;
9508                 }
9509
9510                 if (features & NETIF_F_GRO_HW) {
9511                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9512                         features &= ~NETIF_F_GRO_HW;
9513                 }
9514         }
9515
9516         return features;
9517 }
9518
9519 int __netdev_update_features(struct net_device *dev)
9520 {
9521         struct net_device *upper, *lower;
9522         netdev_features_t features;
9523         struct list_head *iter;
9524         int err = -1;
9525
9526         ASSERT_RTNL();
9527
9528         features = netdev_get_wanted_features(dev);
9529
9530         if (dev->netdev_ops->ndo_fix_features)
9531                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9532
9533         /* driver might be less strict about feature dependencies */
9534         features = netdev_fix_features(dev, features);
9535
9536         /* some features can't be enabled if they're off an an upper device */
9537         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9538                 features = netdev_sync_upper_features(dev, upper, features);
9539
9540         if (dev->features == features)
9541                 goto sync_lower;
9542
9543         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9544                 &dev->features, &features);
9545
9546         if (dev->netdev_ops->ndo_set_features)
9547                 err = dev->netdev_ops->ndo_set_features(dev, features);
9548         else
9549                 err = 0;
9550
9551         if (unlikely(err < 0)) {
9552                 netdev_err(dev,
9553                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9554                         err, &features, &dev->features);
9555                 /* return non-0 since some features might have changed and
9556                  * it's better to fire a spurious notification than miss it
9557                  */
9558                 return -1;
9559         }
9560
9561 sync_lower:
9562         /* some features must be disabled on lower devices when disabled
9563          * on an upper device (think: bonding master or bridge)
9564          */
9565         netdev_for_each_lower_dev(dev, lower, iter)
9566                 netdev_sync_lower_features(dev, lower, features);
9567
9568         if (!err) {
9569                 netdev_features_t diff = features ^ dev->features;
9570
9571                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9572                         /* udp_tunnel_{get,drop}_rx_info both need
9573                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9574                          * device, or they won't do anything.
9575                          * Thus we need to update dev->features
9576                          * *before* calling udp_tunnel_get_rx_info,
9577                          * but *after* calling udp_tunnel_drop_rx_info.
9578                          */
9579                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9580                                 dev->features = features;
9581                                 udp_tunnel_get_rx_info(dev);
9582                         } else {
9583                                 udp_tunnel_drop_rx_info(dev);
9584                         }
9585                 }
9586
9587                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9588                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9589                                 dev->features = features;
9590                                 err |= vlan_get_rx_ctag_filter_info(dev);
9591                         } else {
9592                                 vlan_drop_rx_ctag_filter_info(dev);
9593                         }
9594                 }
9595
9596                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9597                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9598                                 dev->features = features;
9599                                 err |= vlan_get_rx_stag_filter_info(dev);
9600                         } else {
9601                                 vlan_drop_rx_stag_filter_info(dev);
9602                         }
9603                 }
9604
9605                 dev->features = features;
9606         }
9607
9608         return err < 0 ? 0 : 1;
9609 }
9610
9611 /**
9612  *      netdev_update_features - recalculate device features
9613  *      @dev: the device to check
9614  *
9615  *      Recalculate dev->features set and send notifications if it
9616  *      has changed. Should be called after driver or hardware dependent
9617  *      conditions might have changed that influence the features.
9618  */
9619 void netdev_update_features(struct net_device *dev)
9620 {
9621         if (__netdev_update_features(dev))
9622                 netdev_features_change(dev);
9623 }
9624 EXPORT_SYMBOL(netdev_update_features);
9625
9626 /**
9627  *      netdev_change_features - recalculate device features
9628  *      @dev: the device to check
9629  *
9630  *      Recalculate dev->features set and send notifications even
9631  *      if they have not changed. Should be called instead of
9632  *      netdev_update_features() if also dev->vlan_features might
9633  *      have changed to allow the changes to be propagated to stacked
9634  *      VLAN devices.
9635  */
9636 void netdev_change_features(struct net_device *dev)
9637 {
9638         __netdev_update_features(dev);
9639         netdev_features_change(dev);
9640 }
9641 EXPORT_SYMBOL(netdev_change_features);
9642
9643 /**
9644  *      netif_stacked_transfer_operstate -      transfer operstate
9645  *      @rootdev: the root or lower level device to transfer state from
9646  *      @dev: the device to transfer operstate to
9647  *
9648  *      Transfer operational state from root to device. This is normally
9649  *      called when a stacking relationship exists between the root
9650  *      device and the device(a leaf device).
9651  */
9652 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9653                                         struct net_device *dev)
9654 {
9655         if (rootdev->operstate == IF_OPER_DORMANT)
9656                 netif_dormant_on(dev);
9657         else
9658                 netif_dormant_off(dev);
9659
9660         if (rootdev->operstate == IF_OPER_TESTING)
9661                 netif_testing_on(dev);
9662         else
9663                 netif_testing_off(dev);
9664
9665         if (netif_carrier_ok(rootdev))
9666                 netif_carrier_on(dev);
9667         else
9668                 netif_carrier_off(dev);
9669 }
9670 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9671
9672 static int netif_alloc_rx_queues(struct net_device *dev)
9673 {
9674         unsigned int i, count = dev->num_rx_queues;
9675         struct netdev_rx_queue *rx;
9676         size_t sz = count * sizeof(*rx);
9677         int err = 0;
9678
9679         BUG_ON(count < 1);
9680
9681         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9682         if (!rx)
9683                 return -ENOMEM;
9684
9685         dev->_rx = rx;
9686
9687         for (i = 0; i < count; i++) {
9688                 rx[i].dev = dev;
9689
9690                 /* XDP RX-queue setup */
9691                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9692                 if (err < 0)
9693                         goto err_rxq_info;
9694         }
9695         return 0;
9696
9697 err_rxq_info:
9698         /* Rollback successful reg's and free other resources */
9699         while (i--)
9700                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9701         kvfree(dev->_rx);
9702         dev->_rx = NULL;
9703         return err;
9704 }
9705
9706 static void netif_free_rx_queues(struct net_device *dev)
9707 {
9708         unsigned int i, count = dev->num_rx_queues;
9709
9710         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9711         if (!dev->_rx)
9712                 return;
9713
9714         for (i = 0; i < count; i++)
9715                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9716
9717         kvfree(dev->_rx);
9718 }
9719
9720 static void netdev_init_one_queue(struct net_device *dev,
9721                                   struct netdev_queue *queue, void *_unused)
9722 {
9723         /* Initialize queue lock */
9724         spin_lock_init(&queue->_xmit_lock);
9725         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9726         queue->xmit_lock_owner = -1;
9727         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9728         queue->dev = dev;
9729 #ifdef CONFIG_BQL
9730         dql_init(&queue->dql, HZ);
9731 #endif
9732 }
9733
9734 static void netif_free_tx_queues(struct net_device *dev)
9735 {
9736         kvfree(dev->_tx);
9737 }
9738
9739 static int netif_alloc_netdev_queues(struct net_device *dev)
9740 {
9741         unsigned int count = dev->num_tx_queues;
9742         struct netdev_queue *tx;
9743         size_t sz = count * sizeof(*tx);
9744
9745         if (count < 1 || count > 0xffff)
9746                 return -EINVAL;
9747
9748         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9749         if (!tx)
9750                 return -ENOMEM;
9751
9752         dev->_tx = tx;
9753
9754         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9755         spin_lock_init(&dev->tx_global_lock);
9756
9757         return 0;
9758 }
9759
9760 void netif_tx_stop_all_queues(struct net_device *dev)
9761 {
9762         unsigned int i;
9763
9764         for (i = 0; i < dev->num_tx_queues; i++) {
9765                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9766
9767                 netif_tx_stop_queue(txq);
9768         }
9769 }
9770 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9771
9772 /**
9773  *      register_netdevice      - register a network device
9774  *      @dev: device to register
9775  *
9776  *      Take a completed network device structure and add it to the kernel
9777  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9778  *      chain. 0 is returned on success. A negative errno code is returned
9779  *      on a failure to set up the device, or if the name is a duplicate.
9780  *
9781  *      Callers must hold the rtnl semaphore. You may want
9782  *      register_netdev() instead of this.
9783  *
9784  *      BUGS:
9785  *      The locking appears insufficient to guarantee two parallel registers
9786  *      will not get the same name.
9787  */
9788
9789 int register_netdevice(struct net_device *dev)
9790 {
9791         int ret;
9792         struct net *net = dev_net(dev);
9793
9794         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9795                      NETDEV_FEATURE_COUNT);
9796         BUG_ON(dev_boot_phase);
9797         ASSERT_RTNL();
9798
9799         might_sleep();
9800
9801         /* When net_device's are persistent, this will be fatal. */
9802         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9803         BUG_ON(!net);
9804
9805         ret = ethtool_check_ops(dev->ethtool_ops);
9806         if (ret)
9807                 return ret;
9808
9809         spin_lock_init(&dev->addr_list_lock);
9810         netdev_set_addr_lockdep_class(dev);
9811
9812         ret = dev_get_valid_name(net, dev, dev->name);
9813         if (ret < 0)
9814                 goto out;
9815
9816         ret = -ENOMEM;
9817         dev->name_node = netdev_name_node_head_alloc(dev);
9818         if (!dev->name_node)
9819                 goto out;
9820
9821         /* Init, if this function is available */
9822         if (dev->netdev_ops->ndo_init) {
9823                 ret = dev->netdev_ops->ndo_init(dev);
9824                 if (ret) {
9825                         if (ret > 0)
9826                                 ret = -EIO;
9827                         goto err_free_name;
9828                 }
9829         }
9830
9831         if (((dev->hw_features | dev->features) &
9832              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9833             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9834              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9835                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9836                 ret = -EINVAL;
9837                 goto err_uninit;
9838         }
9839
9840         ret = -EBUSY;
9841         if (!dev->ifindex)
9842                 dev->ifindex = dev_new_index(net);
9843         else if (__dev_get_by_index(net, dev->ifindex))
9844                 goto err_uninit;
9845
9846         /* Transfer changeable features to wanted_features and enable
9847          * software offloads (GSO and GRO).
9848          */
9849         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9850         dev->features |= NETIF_F_SOFT_FEATURES;
9851
9852         if (dev->netdev_ops->ndo_udp_tunnel_add) {
9853                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9854                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9855         }
9856
9857         dev->wanted_features = dev->features & dev->hw_features;
9858
9859         if (!(dev->flags & IFF_LOOPBACK))
9860                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9861
9862         /* If IPv4 TCP segmentation offload is supported we should also
9863          * allow the device to enable segmenting the frame with the option
9864          * of ignoring a static IP ID value.  This doesn't enable the
9865          * feature itself but allows the user to enable it later.
9866          */
9867         if (dev->hw_features & NETIF_F_TSO)
9868                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9869         if (dev->vlan_features & NETIF_F_TSO)
9870                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9871         if (dev->mpls_features & NETIF_F_TSO)
9872                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9873         if (dev->hw_enc_features & NETIF_F_TSO)
9874                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9875
9876         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9877          */
9878         dev->vlan_features |= NETIF_F_HIGHDMA;
9879
9880         /* Make NETIF_F_SG inheritable to tunnel devices.
9881          */
9882         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9883
9884         /* Make NETIF_F_SG inheritable to MPLS.
9885          */
9886         dev->mpls_features |= NETIF_F_SG;
9887
9888         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9889         ret = notifier_to_errno(ret);
9890         if (ret)
9891                 goto err_uninit;
9892
9893         ret = netdev_register_kobject(dev);
9894         if (ret) {
9895                 dev->reg_state = NETREG_UNREGISTERED;
9896                 goto err_uninit;
9897         }
9898         dev->reg_state = NETREG_REGISTERED;
9899
9900         __netdev_update_features(dev);
9901
9902         /*
9903          *      Default initial state at registry is that the
9904          *      device is present.
9905          */
9906
9907         set_bit(__LINK_STATE_PRESENT, &dev->state);
9908
9909         linkwatch_init_dev(dev);
9910
9911         dev_init_scheduler(dev);
9912         dev_hold(dev);
9913         list_netdevice(dev);
9914         add_device_randomness(dev->dev_addr, dev->addr_len);
9915
9916         /* If the device has permanent device address, driver should
9917          * set dev_addr and also addr_assign_type should be set to
9918          * NET_ADDR_PERM (default value).
9919          */
9920         if (dev->addr_assign_type == NET_ADDR_PERM)
9921                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9922
9923         /* Notify protocols, that a new device appeared. */
9924         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9925         ret = notifier_to_errno(ret);
9926         if (ret) {
9927                 rollback_registered(dev);
9928                 rcu_barrier();
9929
9930                 dev->reg_state = NETREG_UNREGISTERED;
9931                 /* We should put the kobject that hold in
9932                  * netdev_unregister_kobject(), otherwise
9933                  * the net device cannot be freed when
9934                  * driver calls free_netdev(), because the
9935                  * kobject is being hold.
9936                  */
9937                 kobject_put(&dev->dev.kobj);
9938         }
9939         /*
9940          *      Prevent userspace races by waiting until the network
9941          *      device is fully setup before sending notifications.
9942          */
9943         if (!dev->rtnl_link_ops ||
9944             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9945                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9946
9947 out:
9948         return ret;
9949
9950 err_uninit:
9951         if (dev->netdev_ops->ndo_uninit)
9952                 dev->netdev_ops->ndo_uninit(dev);
9953         if (dev->priv_destructor)
9954                 dev->priv_destructor(dev);
9955 err_free_name:
9956         netdev_name_node_free(dev->name_node);
9957         goto out;
9958 }
9959 EXPORT_SYMBOL(register_netdevice);
9960
9961 /**
9962  *      init_dummy_netdev       - init a dummy network device for NAPI
9963  *      @dev: device to init
9964  *
9965  *      This takes a network device structure and initialize the minimum
9966  *      amount of fields so it can be used to schedule NAPI polls without
9967  *      registering a full blown interface. This is to be used by drivers
9968  *      that need to tie several hardware interfaces to a single NAPI
9969  *      poll scheduler due to HW limitations.
9970  */
9971 int init_dummy_netdev(struct net_device *dev)
9972 {
9973         /* Clear everything. Note we don't initialize spinlocks
9974          * are they aren't supposed to be taken by any of the
9975          * NAPI code and this dummy netdev is supposed to be
9976          * only ever used for NAPI polls
9977          */
9978         memset(dev, 0, sizeof(struct net_device));
9979
9980         /* make sure we BUG if trying to hit standard
9981          * register/unregister code path
9982          */
9983         dev->reg_state = NETREG_DUMMY;
9984
9985         /* NAPI wants this */
9986         INIT_LIST_HEAD(&dev->napi_list);
9987
9988         /* a dummy interface is started by default */
9989         set_bit(__LINK_STATE_PRESENT, &dev->state);
9990         set_bit(__LINK_STATE_START, &dev->state);
9991
9992         /* napi_busy_loop stats accounting wants this */
9993         dev_net_set(dev, &init_net);
9994
9995         /* Note : We dont allocate pcpu_refcnt for dummy devices,
9996          * because users of this 'device' dont need to change
9997          * its refcount.
9998          */
9999
10000         return 0;
10001 }
10002 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10003
10004
10005 /**
10006  *      register_netdev - register a network device
10007  *      @dev: device to register
10008  *
10009  *      Take a completed network device structure and add it to the kernel
10010  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10011  *      chain. 0 is returned on success. A negative errno code is returned
10012  *      on a failure to set up the device, or if the name is a duplicate.
10013  *
10014  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10015  *      and expands the device name if you passed a format string to
10016  *      alloc_netdev.
10017  */
10018 int register_netdev(struct net_device *dev)
10019 {
10020         int err;
10021
10022         if (rtnl_lock_killable())
10023                 return -EINTR;
10024         err = register_netdevice(dev);
10025         rtnl_unlock();
10026         return err;
10027 }
10028 EXPORT_SYMBOL(register_netdev);
10029
10030 int netdev_refcnt_read(const struct net_device *dev)
10031 {
10032         int i, refcnt = 0;
10033
10034         for_each_possible_cpu(i)
10035                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10036         return refcnt;
10037 }
10038 EXPORT_SYMBOL(netdev_refcnt_read);
10039
10040 /**
10041  * netdev_wait_allrefs - wait until all references are gone.
10042  * @dev: target net_device
10043  *
10044  * This is called when unregistering network devices.
10045  *
10046  * Any protocol or device that holds a reference should register
10047  * for netdevice notification, and cleanup and put back the
10048  * reference if they receive an UNREGISTER event.
10049  * We can get stuck here if buggy protocols don't correctly
10050  * call dev_put.
10051  */
10052 static void netdev_wait_allrefs(struct net_device *dev)
10053 {
10054         unsigned long rebroadcast_time, warning_time;
10055         int refcnt;
10056
10057         linkwatch_forget_dev(dev);
10058
10059         rebroadcast_time = warning_time = jiffies;
10060         refcnt = netdev_refcnt_read(dev);
10061
10062         while (refcnt != 0) {
10063                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10064                         rtnl_lock();
10065
10066                         /* Rebroadcast unregister notification */
10067                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10068
10069                         __rtnl_unlock();
10070                         rcu_barrier();
10071                         rtnl_lock();
10072
10073                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10074                                      &dev->state)) {
10075                                 /* We must not have linkwatch events
10076                                  * pending on unregister. If this
10077                                  * happens, we simply run the queue
10078                                  * unscheduled, resulting in a noop
10079                                  * for this device.
10080                                  */
10081                                 linkwatch_run_queue();
10082                         }
10083
10084                         __rtnl_unlock();
10085
10086                         rebroadcast_time = jiffies;
10087                 }
10088
10089                 msleep(250);
10090
10091                 refcnt = netdev_refcnt_read(dev);
10092
10093                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10094                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10095                                  dev->name, refcnt);
10096                         warning_time = jiffies;
10097                 }
10098         }
10099 }
10100
10101 /* The sequence is:
10102  *
10103  *      rtnl_lock();
10104  *      ...
10105  *      register_netdevice(x1);
10106  *      register_netdevice(x2);
10107  *      ...
10108  *      unregister_netdevice(y1);
10109  *      unregister_netdevice(y2);
10110  *      ...
10111  *      rtnl_unlock();
10112  *      free_netdev(y1);
10113  *      free_netdev(y2);
10114  *
10115  * We are invoked by rtnl_unlock().
10116  * This allows us to deal with problems:
10117  * 1) We can delete sysfs objects which invoke hotplug
10118  *    without deadlocking with linkwatch via keventd.
10119  * 2) Since we run with the RTNL semaphore not held, we can sleep
10120  *    safely in order to wait for the netdev refcnt to drop to zero.
10121  *
10122  * We must not return until all unregister events added during
10123  * the interval the lock was held have been completed.
10124  */
10125 void netdev_run_todo(void)
10126 {
10127         struct list_head list;
10128 #ifdef CONFIG_LOCKDEP
10129         struct list_head unlink_list;
10130
10131         list_replace_init(&net_unlink_list, &unlink_list);
10132
10133         while (!list_empty(&unlink_list)) {
10134                 struct net_device *dev = list_first_entry(&unlink_list,
10135                                                           struct net_device,
10136                                                           unlink_list);
10137                 list_del(&dev->unlink_list);
10138                 dev->nested_level = dev->lower_level - 1;
10139         }
10140 #endif
10141
10142         /* Snapshot list, allow later requests */
10143         list_replace_init(&net_todo_list, &list);
10144
10145         __rtnl_unlock();
10146
10147
10148         /* Wait for rcu callbacks to finish before next phase */
10149         if (!list_empty(&list))
10150                 rcu_barrier();
10151
10152         while (!list_empty(&list)) {
10153                 struct net_device *dev
10154                         = list_first_entry(&list, struct net_device, todo_list);
10155                 list_del(&dev->todo_list);
10156
10157                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10158                         pr_err("network todo '%s' but state %d\n",
10159                                dev->name, dev->reg_state);
10160                         dump_stack();
10161                         continue;
10162                 }
10163
10164                 dev->reg_state = NETREG_UNREGISTERED;
10165
10166                 netdev_wait_allrefs(dev);
10167
10168                 /* paranoia */
10169                 BUG_ON(netdev_refcnt_read(dev));
10170                 BUG_ON(!list_empty(&dev->ptype_all));
10171                 BUG_ON(!list_empty(&dev->ptype_specific));
10172                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10173                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10174 #if IS_ENABLED(CONFIG_DECNET)
10175                 WARN_ON(dev->dn_ptr);
10176 #endif
10177                 if (dev->priv_destructor)
10178                         dev->priv_destructor(dev);
10179                 if (dev->needs_free_netdev)
10180                         free_netdev(dev);
10181
10182                 /* Report a network device has been unregistered */
10183                 rtnl_lock();
10184                 dev_net(dev)->dev_unreg_count--;
10185                 __rtnl_unlock();
10186                 wake_up(&netdev_unregistering_wq);
10187
10188                 /* Free network device */
10189                 kobject_put(&dev->dev.kobj);
10190         }
10191 }
10192
10193 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10194  * all the same fields in the same order as net_device_stats, with only
10195  * the type differing, but rtnl_link_stats64 may have additional fields
10196  * at the end for newer counters.
10197  */
10198 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10199                              const struct net_device_stats *netdev_stats)
10200 {
10201 #if BITS_PER_LONG == 64
10202         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10203         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10204         /* zero out counters that only exist in rtnl_link_stats64 */
10205         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10206                sizeof(*stats64) - sizeof(*netdev_stats));
10207 #else
10208         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10209         const unsigned long *src = (const unsigned long *)netdev_stats;
10210         u64 *dst = (u64 *)stats64;
10211
10212         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10213         for (i = 0; i < n; i++)
10214                 dst[i] = src[i];
10215         /* zero out counters that only exist in rtnl_link_stats64 */
10216         memset((char *)stats64 + n * sizeof(u64), 0,
10217                sizeof(*stats64) - n * sizeof(u64));
10218 #endif
10219 }
10220 EXPORT_SYMBOL(netdev_stats_to_stats64);
10221
10222 /**
10223  *      dev_get_stats   - get network device statistics
10224  *      @dev: device to get statistics from
10225  *      @storage: place to store stats
10226  *
10227  *      Get network statistics from device. Return @storage.
10228  *      The device driver may provide its own method by setting
10229  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10230  *      otherwise the internal statistics structure is used.
10231  */
10232 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10233                                         struct rtnl_link_stats64 *storage)
10234 {
10235         const struct net_device_ops *ops = dev->netdev_ops;
10236
10237         if (ops->ndo_get_stats64) {
10238                 memset(storage, 0, sizeof(*storage));
10239                 ops->ndo_get_stats64(dev, storage);
10240         } else if (ops->ndo_get_stats) {
10241                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10242         } else {
10243                 netdev_stats_to_stats64(storage, &dev->stats);
10244         }
10245         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10246         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10247         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10248         return storage;
10249 }
10250 EXPORT_SYMBOL(dev_get_stats);
10251
10252 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10253 {
10254         struct netdev_queue *queue = dev_ingress_queue(dev);
10255
10256 #ifdef CONFIG_NET_CLS_ACT
10257         if (queue)
10258                 return queue;
10259         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10260         if (!queue)
10261                 return NULL;
10262         netdev_init_one_queue(dev, queue, NULL);
10263         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10264         queue->qdisc_sleeping = &noop_qdisc;
10265         rcu_assign_pointer(dev->ingress_queue, queue);
10266 #endif
10267         return queue;
10268 }
10269
10270 static const struct ethtool_ops default_ethtool_ops;
10271
10272 void netdev_set_default_ethtool_ops(struct net_device *dev,
10273                                     const struct ethtool_ops *ops)
10274 {
10275         if (dev->ethtool_ops == &default_ethtool_ops)
10276                 dev->ethtool_ops = ops;
10277 }
10278 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10279
10280 void netdev_freemem(struct net_device *dev)
10281 {
10282         char *addr = (char *)dev - dev->padded;
10283
10284         kvfree(addr);
10285 }
10286
10287 /**
10288  * alloc_netdev_mqs - allocate network device
10289  * @sizeof_priv: size of private data to allocate space for
10290  * @name: device name format string
10291  * @name_assign_type: origin of device name
10292  * @setup: callback to initialize device
10293  * @txqs: the number of TX subqueues to allocate
10294  * @rxqs: the number of RX subqueues to allocate
10295  *
10296  * Allocates a struct net_device with private data area for driver use
10297  * and performs basic initialization.  Also allocates subqueue structs
10298  * for each queue on the device.
10299  */
10300 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10301                 unsigned char name_assign_type,
10302                 void (*setup)(struct net_device *),
10303                 unsigned int txqs, unsigned int rxqs)
10304 {
10305         struct net_device *dev;
10306         unsigned int alloc_size;
10307         struct net_device *p;
10308
10309         BUG_ON(strlen(name) >= sizeof(dev->name));
10310
10311         if (txqs < 1) {
10312                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10313                 return NULL;
10314         }
10315
10316         if (rxqs < 1) {
10317                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10318                 return NULL;
10319         }
10320
10321         alloc_size = sizeof(struct net_device);
10322         if (sizeof_priv) {
10323                 /* ensure 32-byte alignment of private area */
10324                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10325                 alloc_size += sizeof_priv;
10326         }
10327         /* ensure 32-byte alignment of whole construct */
10328         alloc_size += NETDEV_ALIGN - 1;
10329
10330         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10331         if (!p)
10332                 return NULL;
10333
10334         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10335         dev->padded = (char *)dev - (char *)p;
10336
10337         dev->pcpu_refcnt = alloc_percpu(int);
10338         if (!dev->pcpu_refcnt)
10339                 goto free_dev;
10340
10341         if (dev_addr_init(dev))
10342                 goto free_pcpu;
10343
10344         dev_mc_init(dev);
10345         dev_uc_init(dev);
10346
10347         dev_net_set(dev, &init_net);
10348
10349         dev->gso_max_size = GSO_MAX_SIZE;
10350         dev->gso_max_segs = GSO_MAX_SEGS;
10351         dev->upper_level = 1;
10352         dev->lower_level = 1;
10353 #ifdef CONFIG_LOCKDEP
10354         dev->nested_level = 0;
10355         INIT_LIST_HEAD(&dev->unlink_list);
10356 #endif
10357
10358         INIT_LIST_HEAD(&dev->napi_list);
10359         INIT_LIST_HEAD(&dev->unreg_list);
10360         INIT_LIST_HEAD(&dev->close_list);
10361         INIT_LIST_HEAD(&dev->link_watch_list);
10362         INIT_LIST_HEAD(&dev->adj_list.upper);
10363         INIT_LIST_HEAD(&dev->adj_list.lower);
10364         INIT_LIST_HEAD(&dev->ptype_all);
10365         INIT_LIST_HEAD(&dev->ptype_specific);
10366         INIT_LIST_HEAD(&dev->net_notifier_list);
10367 #ifdef CONFIG_NET_SCHED
10368         hash_init(dev->qdisc_hash);
10369 #endif
10370         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10371         setup(dev);
10372
10373         if (!dev->tx_queue_len) {
10374                 dev->priv_flags |= IFF_NO_QUEUE;
10375                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10376         }
10377
10378         dev->num_tx_queues = txqs;
10379         dev->real_num_tx_queues = txqs;
10380         if (netif_alloc_netdev_queues(dev))
10381                 goto free_all;
10382
10383         dev->num_rx_queues = rxqs;
10384         dev->real_num_rx_queues = rxqs;
10385         if (netif_alloc_rx_queues(dev))
10386                 goto free_all;
10387
10388         strcpy(dev->name, name);
10389         dev->name_assign_type = name_assign_type;
10390         dev->group = INIT_NETDEV_GROUP;
10391         if (!dev->ethtool_ops)
10392                 dev->ethtool_ops = &default_ethtool_ops;
10393
10394         nf_hook_ingress_init(dev);
10395
10396         return dev;
10397
10398 free_all:
10399         free_netdev(dev);
10400         return NULL;
10401
10402 free_pcpu:
10403         free_percpu(dev->pcpu_refcnt);
10404 free_dev:
10405         netdev_freemem(dev);
10406         return NULL;
10407 }
10408 EXPORT_SYMBOL(alloc_netdev_mqs);
10409
10410 /**
10411  * free_netdev - free network device
10412  * @dev: device
10413  *
10414  * This function does the last stage of destroying an allocated device
10415  * interface. The reference to the device object is released. If this
10416  * is the last reference then it will be freed.Must be called in process
10417  * context.
10418  */
10419 void free_netdev(struct net_device *dev)
10420 {
10421         struct napi_struct *p, *n;
10422
10423         might_sleep();
10424         netif_free_tx_queues(dev);
10425         netif_free_rx_queues(dev);
10426
10427         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10428
10429         /* Flush device addresses */
10430         dev_addr_flush(dev);
10431
10432         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10433                 netif_napi_del(p);
10434
10435         free_percpu(dev->pcpu_refcnt);
10436         dev->pcpu_refcnt = NULL;
10437         free_percpu(dev->xdp_bulkq);
10438         dev->xdp_bulkq = NULL;
10439
10440         /*  Compatibility with error handling in drivers */
10441         if (dev->reg_state == NETREG_UNINITIALIZED) {
10442                 netdev_freemem(dev);
10443                 return;
10444         }
10445
10446         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10447         dev->reg_state = NETREG_RELEASED;
10448
10449         /* will free via device release */
10450         put_device(&dev->dev);
10451 }
10452 EXPORT_SYMBOL(free_netdev);
10453
10454 /**
10455  *      synchronize_net -  Synchronize with packet receive processing
10456  *
10457  *      Wait for packets currently being received to be done.
10458  *      Does not block later packets from starting.
10459  */
10460 void synchronize_net(void)
10461 {
10462         might_sleep();
10463         if (rtnl_is_locked())
10464                 synchronize_rcu_expedited();
10465         else
10466                 synchronize_rcu();
10467 }
10468 EXPORT_SYMBOL(synchronize_net);
10469
10470 /**
10471  *      unregister_netdevice_queue - remove device from the kernel
10472  *      @dev: device
10473  *      @head: list
10474  *
10475  *      This function shuts down a device interface and removes it
10476  *      from the kernel tables.
10477  *      If head not NULL, device is queued to be unregistered later.
10478  *
10479  *      Callers must hold the rtnl semaphore.  You may want
10480  *      unregister_netdev() instead of this.
10481  */
10482
10483 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10484 {
10485         ASSERT_RTNL();
10486
10487         if (head) {
10488                 list_move_tail(&dev->unreg_list, head);
10489         } else {
10490                 rollback_registered(dev);
10491                 /* Finish processing unregister after unlock */
10492                 net_set_todo(dev);
10493         }
10494 }
10495 EXPORT_SYMBOL(unregister_netdevice_queue);
10496
10497 /**
10498  *      unregister_netdevice_many - unregister many devices
10499  *      @head: list of devices
10500  *
10501  *  Note: As most callers use a stack allocated list_head,
10502  *  we force a list_del() to make sure stack wont be corrupted later.
10503  */
10504 void unregister_netdevice_many(struct list_head *head)
10505 {
10506         struct net_device *dev;
10507
10508         if (!list_empty(head)) {
10509                 rollback_registered_many(head);
10510                 list_for_each_entry(dev, head, unreg_list)
10511                         net_set_todo(dev);
10512                 list_del(head);
10513         }
10514 }
10515 EXPORT_SYMBOL(unregister_netdevice_many);
10516
10517 /**
10518  *      unregister_netdev - remove device from the kernel
10519  *      @dev: device
10520  *
10521  *      This function shuts down a device interface and removes it
10522  *      from the kernel tables.
10523  *
10524  *      This is just a wrapper for unregister_netdevice that takes
10525  *      the rtnl semaphore.  In general you want to use this and not
10526  *      unregister_netdevice.
10527  */
10528 void unregister_netdev(struct net_device *dev)
10529 {
10530         rtnl_lock();
10531         unregister_netdevice(dev);
10532         rtnl_unlock();
10533 }
10534 EXPORT_SYMBOL(unregister_netdev);
10535
10536 /**
10537  *      dev_change_net_namespace - move device to different nethost namespace
10538  *      @dev: device
10539  *      @net: network namespace
10540  *      @pat: If not NULL name pattern to try if the current device name
10541  *            is already taken in the destination network namespace.
10542  *
10543  *      This function shuts down a device interface and moves it
10544  *      to a new network namespace. On success 0 is returned, on
10545  *      a failure a netagive errno code is returned.
10546  *
10547  *      Callers must hold the rtnl semaphore.
10548  */
10549
10550 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10551 {
10552         struct net *net_old = dev_net(dev);
10553         int err, new_nsid, new_ifindex;
10554
10555         ASSERT_RTNL();
10556
10557         /* Don't allow namespace local devices to be moved. */
10558         err = -EINVAL;
10559         if (dev->features & NETIF_F_NETNS_LOCAL)
10560                 goto out;
10561
10562         /* Ensure the device has been registrered */
10563         if (dev->reg_state != NETREG_REGISTERED)
10564                 goto out;
10565
10566         /* Get out if there is nothing todo */
10567         err = 0;
10568         if (net_eq(net_old, net))
10569                 goto out;
10570
10571         /* Pick the destination device name, and ensure
10572          * we can use it in the destination network namespace.
10573          */
10574         err = -EEXIST;
10575         if (__dev_get_by_name(net, dev->name)) {
10576                 /* We get here if we can't use the current device name */
10577                 if (!pat)
10578                         goto out;
10579                 err = dev_get_valid_name(net, dev, pat);
10580                 if (err < 0)
10581                         goto out;
10582         }
10583
10584         /*
10585          * And now a mini version of register_netdevice unregister_netdevice.
10586          */
10587
10588         /* If device is running close it first. */
10589         dev_close(dev);
10590
10591         /* And unlink it from device chain */
10592         unlist_netdevice(dev);
10593
10594         synchronize_net();
10595
10596         /* Shutdown queueing discipline. */
10597         dev_shutdown(dev);
10598
10599         /* Notify protocols, that we are about to destroy
10600          * this device. They should clean all the things.
10601          *
10602          * Note that dev->reg_state stays at NETREG_REGISTERED.
10603          * This is wanted because this way 8021q and macvlan know
10604          * the device is just moving and can keep their slaves up.
10605          */
10606         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10607         rcu_barrier();
10608
10609         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10610         /* If there is an ifindex conflict assign a new one */
10611         if (__dev_get_by_index(net, dev->ifindex))
10612                 new_ifindex = dev_new_index(net);
10613         else
10614                 new_ifindex = dev->ifindex;
10615
10616         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10617                             new_ifindex);
10618
10619         /*
10620          *      Flush the unicast and multicast chains
10621          */
10622         dev_uc_flush(dev);
10623         dev_mc_flush(dev);
10624
10625         /* Send a netdev-removed uevent to the old namespace */
10626         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10627         netdev_adjacent_del_links(dev);
10628
10629         /* Move per-net netdevice notifiers that are following the netdevice */
10630         move_netdevice_notifiers_dev_net(dev, net);
10631
10632         /* Actually switch the network namespace */
10633         dev_net_set(dev, net);
10634         dev->ifindex = new_ifindex;
10635
10636         /* Send a netdev-add uevent to the new namespace */
10637         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10638         netdev_adjacent_add_links(dev);
10639
10640         /* Fixup kobjects */
10641         err = device_rename(&dev->dev, dev->name);
10642         WARN_ON(err);
10643
10644         /* Adapt owner in case owning user namespace of target network
10645          * namespace is different from the original one.
10646          */
10647         err = netdev_change_owner(dev, net_old, net);
10648         WARN_ON(err);
10649
10650         /* Add the device back in the hashes */
10651         list_netdevice(dev);
10652
10653         /* Notify protocols, that a new device appeared. */
10654         call_netdevice_notifiers(NETDEV_REGISTER, dev);
10655
10656         /*
10657          *      Prevent userspace races by waiting until the network
10658          *      device is fully setup before sending notifications.
10659          */
10660         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10661
10662         synchronize_net();
10663         err = 0;
10664 out:
10665         return err;
10666 }
10667 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10668
10669 static int dev_cpu_dead(unsigned int oldcpu)
10670 {
10671         struct sk_buff **list_skb;
10672         struct sk_buff *skb;
10673         unsigned int cpu;
10674         struct softnet_data *sd, *oldsd, *remsd = NULL;
10675
10676         local_irq_disable();
10677         cpu = smp_processor_id();
10678         sd = &per_cpu(softnet_data, cpu);
10679         oldsd = &per_cpu(softnet_data, oldcpu);
10680
10681         /* Find end of our completion_queue. */
10682         list_skb = &sd->completion_queue;
10683         while (*list_skb)
10684                 list_skb = &(*list_skb)->next;
10685         /* Append completion queue from offline CPU. */
10686         *list_skb = oldsd->completion_queue;
10687         oldsd->completion_queue = NULL;
10688
10689         /* Append output queue from offline CPU. */
10690         if (oldsd->output_queue) {
10691                 *sd->output_queue_tailp = oldsd->output_queue;
10692                 sd->output_queue_tailp = oldsd->output_queue_tailp;
10693                 oldsd->output_queue = NULL;
10694                 oldsd->output_queue_tailp = &oldsd->output_queue;
10695         }
10696         /* Append NAPI poll list from offline CPU, with one exception :
10697          * process_backlog() must be called by cpu owning percpu backlog.
10698          * We properly handle process_queue & input_pkt_queue later.
10699          */
10700         while (!list_empty(&oldsd->poll_list)) {
10701                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10702                                                             struct napi_struct,
10703                                                             poll_list);
10704
10705                 list_del_init(&napi->poll_list);
10706                 if (napi->poll == process_backlog)
10707                         napi->state = 0;
10708                 else
10709                         ____napi_schedule(sd, napi);
10710         }
10711
10712         raise_softirq_irqoff(NET_TX_SOFTIRQ);
10713         local_irq_enable();
10714
10715 #ifdef CONFIG_RPS
10716         remsd = oldsd->rps_ipi_list;
10717         oldsd->rps_ipi_list = NULL;
10718 #endif
10719         /* send out pending IPI's on offline CPU */
10720         net_rps_send_ipi(remsd);
10721
10722         /* Process offline CPU's input_pkt_queue */
10723         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10724                 netif_rx_ni(skb);
10725                 input_queue_head_incr(oldsd);
10726         }
10727         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10728                 netif_rx_ni(skb);
10729                 input_queue_head_incr(oldsd);
10730         }
10731
10732         return 0;
10733 }
10734
10735 /**
10736  *      netdev_increment_features - increment feature set by one
10737  *      @all: current feature set
10738  *      @one: new feature set
10739  *      @mask: mask feature set
10740  *
10741  *      Computes a new feature set after adding a device with feature set
10742  *      @one to the master device with current feature set @all.  Will not
10743  *      enable anything that is off in @mask. Returns the new feature set.
10744  */
10745 netdev_features_t netdev_increment_features(netdev_features_t all,
10746         netdev_features_t one, netdev_features_t mask)
10747 {
10748         if (mask & NETIF_F_HW_CSUM)
10749                 mask |= NETIF_F_CSUM_MASK;
10750         mask |= NETIF_F_VLAN_CHALLENGED;
10751
10752         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10753         all &= one | ~NETIF_F_ALL_FOR_ALL;
10754
10755         /* If one device supports hw checksumming, set for all. */
10756         if (all & NETIF_F_HW_CSUM)
10757                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10758
10759         return all;
10760 }
10761 EXPORT_SYMBOL(netdev_increment_features);
10762
10763 static struct hlist_head * __net_init netdev_create_hash(void)
10764 {
10765         int i;
10766         struct hlist_head *hash;
10767
10768         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10769         if (hash != NULL)
10770                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10771                         INIT_HLIST_HEAD(&hash[i]);
10772
10773         return hash;
10774 }
10775
10776 /* Initialize per network namespace state */
10777 static int __net_init netdev_init(struct net *net)
10778 {
10779         BUILD_BUG_ON(GRO_HASH_BUCKETS >
10780                      8 * sizeof_field(struct napi_struct, gro_bitmask));
10781
10782         if (net != &init_net)
10783                 INIT_LIST_HEAD(&net->dev_base_head);
10784
10785         net->dev_name_head = netdev_create_hash();
10786         if (net->dev_name_head == NULL)
10787                 goto err_name;
10788
10789         net->dev_index_head = netdev_create_hash();
10790         if (net->dev_index_head == NULL)
10791                 goto err_idx;
10792
10793         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10794
10795         return 0;
10796
10797 err_idx:
10798         kfree(net->dev_name_head);
10799 err_name:
10800         return -ENOMEM;
10801 }
10802
10803 /**
10804  *      netdev_drivername - network driver for the device
10805  *      @dev: network device
10806  *
10807  *      Determine network driver for device.
10808  */
10809 const char *netdev_drivername(const struct net_device *dev)
10810 {
10811         const struct device_driver *driver;
10812         const struct device *parent;
10813         const char *empty = "";
10814
10815         parent = dev->dev.parent;
10816         if (!parent)
10817                 return empty;
10818
10819         driver = parent->driver;
10820         if (driver && driver->name)
10821                 return driver->name;
10822         return empty;
10823 }
10824
10825 static void __netdev_printk(const char *level, const struct net_device *dev,
10826                             struct va_format *vaf)
10827 {
10828         if (dev && dev->dev.parent) {
10829                 dev_printk_emit(level[1] - '0',
10830                                 dev->dev.parent,
10831                                 "%s %s %s%s: %pV",
10832                                 dev_driver_string(dev->dev.parent),
10833                                 dev_name(dev->dev.parent),
10834                                 netdev_name(dev), netdev_reg_state(dev),
10835                                 vaf);
10836         } else if (dev) {
10837                 printk("%s%s%s: %pV",
10838                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
10839         } else {
10840                 printk("%s(NULL net_device): %pV", level, vaf);
10841         }
10842 }
10843
10844 void netdev_printk(const char *level, const struct net_device *dev,
10845                    const char *format, ...)
10846 {
10847         struct va_format vaf;
10848         va_list args;
10849
10850         va_start(args, format);
10851
10852         vaf.fmt = format;
10853         vaf.va = &args;
10854
10855         __netdev_printk(level, dev, &vaf);
10856
10857         va_end(args);
10858 }
10859 EXPORT_SYMBOL(netdev_printk);
10860
10861 #define define_netdev_printk_level(func, level)                 \
10862 void func(const struct net_device *dev, const char *fmt, ...)   \
10863 {                                                               \
10864         struct va_format vaf;                                   \
10865         va_list args;                                           \
10866                                                                 \
10867         va_start(args, fmt);                                    \
10868                                                                 \
10869         vaf.fmt = fmt;                                          \
10870         vaf.va = &args;                                         \
10871                                                                 \
10872         __netdev_printk(level, dev, &vaf);                      \
10873                                                                 \
10874         va_end(args);                                           \
10875 }                                                               \
10876 EXPORT_SYMBOL(func);
10877
10878 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10879 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10880 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10881 define_netdev_printk_level(netdev_err, KERN_ERR);
10882 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10883 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10884 define_netdev_printk_level(netdev_info, KERN_INFO);
10885
10886 static void __net_exit netdev_exit(struct net *net)
10887 {
10888         kfree(net->dev_name_head);
10889         kfree(net->dev_index_head);
10890         if (net != &init_net)
10891                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10892 }
10893
10894 static struct pernet_operations __net_initdata netdev_net_ops = {
10895         .init = netdev_init,
10896         .exit = netdev_exit,
10897 };
10898
10899 static void __net_exit default_device_exit(struct net *net)
10900 {
10901         struct net_device *dev, *aux;
10902         /*
10903          * Push all migratable network devices back to the
10904          * initial network namespace
10905          */
10906         rtnl_lock();
10907         for_each_netdev_safe(net, dev, aux) {
10908                 int err;
10909                 char fb_name[IFNAMSIZ];
10910
10911                 /* Ignore unmoveable devices (i.e. loopback) */
10912                 if (dev->features & NETIF_F_NETNS_LOCAL)
10913                         continue;
10914
10915                 /* Leave virtual devices for the generic cleanup */
10916                 if (dev->rtnl_link_ops)
10917                         continue;
10918
10919                 /* Push remaining network devices to init_net */
10920                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10921                 if (__dev_get_by_name(&init_net, fb_name))
10922                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
10923                 err = dev_change_net_namespace(dev, &init_net, fb_name);
10924                 if (err) {
10925                         pr_emerg("%s: failed to move %s to init_net: %d\n",
10926                                  __func__, dev->name, err);
10927                         BUG();
10928                 }
10929         }
10930         rtnl_unlock();
10931 }
10932
10933 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10934 {
10935         /* Return with the rtnl_lock held when there are no network
10936          * devices unregistering in any network namespace in net_list.
10937          */
10938         struct net *net;
10939         bool unregistering;
10940         DEFINE_WAIT_FUNC(wait, woken_wake_function);
10941
10942         add_wait_queue(&netdev_unregistering_wq, &wait);
10943         for (;;) {
10944                 unregistering = false;
10945                 rtnl_lock();
10946                 list_for_each_entry(net, net_list, exit_list) {
10947                         if (net->dev_unreg_count > 0) {
10948                                 unregistering = true;
10949                                 break;
10950                         }
10951                 }
10952                 if (!unregistering)
10953                         break;
10954                 __rtnl_unlock();
10955
10956                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10957         }
10958         remove_wait_queue(&netdev_unregistering_wq, &wait);
10959 }
10960
10961 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10962 {
10963         /* At exit all network devices most be removed from a network
10964          * namespace.  Do this in the reverse order of registration.
10965          * Do this across as many network namespaces as possible to
10966          * improve batching efficiency.
10967          */
10968         struct net_device *dev;
10969         struct net *net;
10970         LIST_HEAD(dev_kill_list);
10971
10972         /* To prevent network device cleanup code from dereferencing
10973          * loopback devices or network devices that have been freed
10974          * wait here for all pending unregistrations to complete,
10975          * before unregistring the loopback device and allowing the
10976          * network namespace be freed.
10977          *
10978          * The netdev todo list containing all network devices
10979          * unregistrations that happen in default_device_exit_batch
10980          * will run in the rtnl_unlock() at the end of
10981          * default_device_exit_batch.
10982          */
10983         rtnl_lock_unregistering(net_list);
10984         list_for_each_entry(net, net_list, exit_list) {
10985                 for_each_netdev_reverse(net, dev) {
10986                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10987                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10988                         else
10989                                 unregister_netdevice_queue(dev, &dev_kill_list);
10990                 }
10991         }
10992         unregister_netdevice_many(&dev_kill_list);
10993         rtnl_unlock();
10994 }
10995
10996 static struct pernet_operations __net_initdata default_device_ops = {
10997         .exit = default_device_exit,
10998         .exit_batch = default_device_exit_batch,
10999 };
11000
11001 /*
11002  *      Initialize the DEV module. At boot time this walks the device list and
11003  *      unhooks any devices that fail to initialise (normally hardware not
11004  *      present) and leaves us with a valid list of present and active devices.
11005  *
11006  */
11007
11008 /*
11009  *       This is called single threaded during boot, so no need
11010  *       to take the rtnl semaphore.
11011  */
11012 static int __init net_dev_init(void)
11013 {
11014         int i, rc = -ENOMEM;
11015
11016         BUG_ON(!dev_boot_phase);
11017
11018         if (dev_proc_init())
11019                 goto out;
11020
11021         if (netdev_kobject_init())
11022                 goto out;
11023
11024         INIT_LIST_HEAD(&ptype_all);
11025         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11026                 INIT_LIST_HEAD(&ptype_base[i]);
11027
11028         INIT_LIST_HEAD(&offload_base);
11029
11030         if (register_pernet_subsys(&netdev_net_ops))
11031                 goto out;
11032
11033         /*
11034          *      Initialise the packet receive queues.
11035          */
11036
11037         for_each_possible_cpu(i) {
11038                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11039                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11040
11041                 INIT_WORK(flush, flush_backlog);
11042
11043                 skb_queue_head_init(&sd->input_pkt_queue);
11044                 skb_queue_head_init(&sd->process_queue);
11045 #ifdef CONFIG_XFRM_OFFLOAD
11046                 skb_queue_head_init(&sd->xfrm_backlog);
11047 #endif
11048                 INIT_LIST_HEAD(&sd->poll_list);
11049                 sd->output_queue_tailp = &sd->output_queue;
11050 #ifdef CONFIG_RPS
11051                 sd->csd.func = rps_trigger_softirq;
11052                 sd->csd.info = sd;
11053                 sd->cpu = i;
11054 #endif
11055
11056                 init_gro_hash(&sd->backlog);
11057                 sd->backlog.poll = process_backlog;
11058                 sd->backlog.weight = weight_p;
11059         }
11060
11061         dev_boot_phase = 0;
11062
11063         /* The loopback device is special if any other network devices
11064          * is present in a network namespace the loopback device must
11065          * be present. Since we now dynamically allocate and free the
11066          * loopback device ensure this invariant is maintained by
11067          * keeping the loopback device as the first device on the
11068          * list of network devices.  Ensuring the loopback devices
11069          * is the first device that appears and the last network device
11070          * that disappears.
11071          */
11072         if (register_pernet_device(&loopback_net_ops))
11073                 goto out;
11074
11075         if (register_pernet_device(&default_device_ops))
11076                 goto out;
11077
11078         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11079         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11080
11081         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11082                                        NULL, dev_cpu_dead);
11083         WARN_ON(rc < 0);
11084         rc = 0;
11085 out:
11086         return rc;
11087 }
11088
11089 subsys_initcall(net_dev_init);
This page took 0.629676 seconds and 4 git commands to generate.