2 * linux/fs/ext4/super.c
4 * Copyright (C) 1992, 1993, 1994, 1995
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Big-endian to little-endian byte-swapping/bitmaps by
19 #include <linux/module.h>
20 #include <linux/string.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
48 #include "ext4_extents.h"
49 #include "ext4_jbd2.h"
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static const char *ext4_decode_error(struct super_block *sb, int errno,
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static void ext4_write_super(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84 static void ext4_destroy_lazyinit_thread(void);
85 static void ext4_unregister_li_request(struct super_block *sb);
86 static void ext4_clear_request_list(void);
88 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
89 static struct file_system_type ext2_fs_type = {
93 .kill_sb = kill_block_super,
94 .fs_flags = FS_REQUIRES_DEV,
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
98 #define IS_EXT2_SB(sb) (0)
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 .owner = THIS_MODULE,
107 .kill_sb = kill_block_super,
108 .fs_flags = FS_REQUIRES_DEV,
110 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
112 #define IS_EXT3_SB(sb) (0)
115 static int ext4_verify_csum_type(struct super_block *sb,
116 struct ext4_super_block *es)
118 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
119 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
122 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
125 static __le32 ext4_superblock_csum(struct super_block *sb,
126 struct ext4_super_block *es)
128 struct ext4_sb_info *sbi = EXT4_SB(sb);
129 int offset = offsetof(struct ext4_super_block, s_checksum);
132 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
134 return cpu_to_le32(csum);
137 int ext4_superblock_csum_verify(struct super_block *sb,
138 struct ext4_super_block *es)
140 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
141 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
144 return es->s_checksum == ext4_superblock_csum(sb, es);
147 void ext4_superblock_csum_set(struct super_block *sb,
148 struct ext4_super_block *es)
150 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
151 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
154 es->s_checksum = ext4_superblock_csum(sb, es);
157 void *ext4_kvmalloc(size_t size, gfp_t flags)
161 ret = kmalloc(size, flags);
163 ret = __vmalloc(size, flags, PAGE_KERNEL);
167 void *ext4_kvzalloc(size_t size, gfp_t flags)
171 ret = kzalloc(size, flags);
173 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
177 void ext4_kvfree(void *ptr)
179 if (is_vmalloc_addr(ptr))
186 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
187 struct ext4_group_desc *bg)
189 return le32_to_cpu(bg->bg_block_bitmap_lo) |
190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
191 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
194 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
195 struct ext4_group_desc *bg)
197 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
199 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
202 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
203 struct ext4_group_desc *bg)
205 return le32_to_cpu(bg->bg_inode_table_lo) |
206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
207 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
210 __u32 ext4_free_group_clusters(struct super_block *sb,
211 struct ext4_group_desc *bg)
213 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
215 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
218 __u32 ext4_free_inodes_count(struct super_block *sb,
219 struct ext4_group_desc *bg)
221 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
223 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
226 __u32 ext4_used_dirs_count(struct super_block *sb,
227 struct ext4_group_desc *bg)
229 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
231 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
234 __u32 ext4_itable_unused_count(struct super_block *sb,
235 struct ext4_group_desc *bg)
237 return le16_to_cpu(bg->bg_itable_unused_lo) |
238 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
239 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
242 void ext4_block_bitmap_set(struct super_block *sb,
243 struct ext4_group_desc *bg, ext4_fsblk_t blk)
245 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
247 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
250 void ext4_inode_bitmap_set(struct super_block *sb,
251 struct ext4_group_desc *bg, ext4_fsblk_t blk)
253 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
255 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
258 void ext4_inode_table_set(struct super_block *sb,
259 struct ext4_group_desc *bg, ext4_fsblk_t blk)
261 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
263 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
266 void ext4_free_group_clusters_set(struct super_block *sb,
267 struct ext4_group_desc *bg, __u32 count)
269 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
271 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
274 void ext4_free_inodes_set(struct super_block *sb,
275 struct ext4_group_desc *bg, __u32 count)
277 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
279 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
282 void ext4_used_dirs_set(struct super_block *sb,
283 struct ext4_group_desc *bg, __u32 count)
285 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
287 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
290 void ext4_itable_unused_set(struct super_block *sb,
291 struct ext4_group_desc *bg, __u32 count)
293 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
294 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
295 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
299 /* Just increment the non-pointer handle value */
300 static handle_t *ext4_get_nojournal(void)
302 handle_t *handle = current->journal_info;
303 unsigned long ref_cnt = (unsigned long)handle;
305 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
308 handle = (handle_t *)ref_cnt;
310 current->journal_info = handle;
315 /* Decrement the non-pointer handle value */
316 static void ext4_put_nojournal(handle_t *handle)
318 unsigned long ref_cnt = (unsigned long)handle;
320 BUG_ON(ref_cnt == 0);
323 handle = (handle_t *)ref_cnt;
325 current->journal_info = handle;
329 * Wrappers for jbd2_journal_start/end.
331 * The only special thing we need to do here is to make sure that all
332 * journal_end calls result in the superblock being marked dirty, so
333 * that sync() will call the filesystem's write_super callback if
336 * To avoid j_barrier hold in userspace when a user calls freeze(),
337 * ext4 prevents a new handle from being started by s_frozen, which
338 * is in an upper layer.
340 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
345 trace_ext4_journal_start(sb, nblocks, _RET_IP_);
346 if (sb->s_flags & MS_RDONLY)
347 return ERR_PTR(-EROFS);
349 journal = EXT4_SB(sb)->s_journal;
350 handle = ext4_journal_current_handle();
353 * If a handle has been started, it should be allowed to
354 * finish, otherwise deadlock could happen between freeze
355 * and others(e.g. truncate) due to the restart of the
356 * journal handle if the filesystem is forzen and active
357 * handles are not stopped.
360 vfs_check_frozen(sb, SB_FREEZE_TRANS);
363 return ext4_get_nojournal();
365 * Special case here: if the journal has aborted behind our
366 * backs (eg. EIO in the commit thread), then we still need to
367 * take the FS itself readonly cleanly.
369 if (is_journal_aborted(journal)) {
370 ext4_abort(sb, "Detected aborted journal");
371 return ERR_PTR(-EROFS);
373 return jbd2_journal_start(journal, nblocks);
377 * The only special thing we need to do here is to make sure that all
378 * jbd2_journal_stop calls result in the superblock being marked dirty, so
379 * that sync() will call the filesystem's write_super callback if
382 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
384 struct super_block *sb;
388 if (!ext4_handle_valid(handle)) {
389 ext4_put_nojournal(handle);
392 sb = handle->h_transaction->t_journal->j_private;
394 rc = jbd2_journal_stop(handle);
399 __ext4_std_error(sb, where, line, err);
403 void ext4_journal_abort_handle(const char *caller, unsigned int line,
404 const char *err_fn, struct buffer_head *bh,
405 handle_t *handle, int err)
408 const char *errstr = ext4_decode_error(NULL, err, nbuf);
410 BUG_ON(!ext4_handle_valid(handle));
413 BUFFER_TRACE(bh, "abort");
418 if (is_handle_aborted(handle))
421 printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n",
422 caller, line, errstr, err_fn);
424 jbd2_journal_abort_handle(handle);
427 static void __save_error_info(struct super_block *sb, const char *func,
430 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
432 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
433 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
434 es->s_last_error_time = cpu_to_le32(get_seconds());
435 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
436 es->s_last_error_line = cpu_to_le32(line);
437 if (!es->s_first_error_time) {
438 es->s_first_error_time = es->s_last_error_time;
439 strncpy(es->s_first_error_func, func,
440 sizeof(es->s_first_error_func));
441 es->s_first_error_line = cpu_to_le32(line);
442 es->s_first_error_ino = es->s_last_error_ino;
443 es->s_first_error_block = es->s_last_error_block;
446 * Start the daily error reporting function if it hasn't been
449 if (!es->s_error_count)
450 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
451 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
454 static void save_error_info(struct super_block *sb, const char *func,
457 __save_error_info(sb, func, line);
458 ext4_commit_super(sb, 1);
462 * The del_gendisk() function uninitializes the disk-specific data
463 * structures, including the bdi structure, without telling anyone
464 * else. Once this happens, any attempt to call mark_buffer_dirty()
465 * (for example, by ext4_commit_super), will cause a kernel OOPS.
466 * This is a kludge to prevent these oops until we can put in a proper
467 * hook in del_gendisk() to inform the VFS and file system layers.
469 static int block_device_ejected(struct super_block *sb)
471 struct inode *bd_inode = sb->s_bdev->bd_inode;
472 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
474 return bdi->dev == NULL;
477 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
479 struct super_block *sb = journal->j_private;
480 struct ext4_sb_info *sbi = EXT4_SB(sb);
481 int error = is_journal_aborted(journal);
482 struct ext4_journal_cb_entry *jce, *tmp;
484 spin_lock(&sbi->s_md_lock);
485 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) {
486 list_del_init(&jce->jce_list);
487 spin_unlock(&sbi->s_md_lock);
488 jce->jce_func(sb, jce, error);
489 spin_lock(&sbi->s_md_lock);
491 spin_unlock(&sbi->s_md_lock);
494 /* Deal with the reporting of failure conditions on a filesystem such as
495 * inconsistencies detected or read IO failures.
497 * On ext2, we can store the error state of the filesystem in the
498 * superblock. That is not possible on ext4, because we may have other
499 * write ordering constraints on the superblock which prevent us from
500 * writing it out straight away; and given that the journal is about to
501 * be aborted, we can't rely on the current, or future, transactions to
502 * write out the superblock safely.
504 * We'll just use the jbd2_journal_abort() error code to record an error in
505 * the journal instead. On recovery, the journal will complain about
506 * that error until we've noted it down and cleared it.
509 static void ext4_handle_error(struct super_block *sb)
511 if (sb->s_flags & MS_RDONLY)
514 if (!test_opt(sb, ERRORS_CONT)) {
515 journal_t *journal = EXT4_SB(sb)->s_journal;
517 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
519 jbd2_journal_abort(journal, -EIO);
521 if (test_opt(sb, ERRORS_RO)) {
522 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
523 sb->s_flags |= MS_RDONLY;
525 if (test_opt(sb, ERRORS_PANIC))
526 panic("EXT4-fs (device %s): panic forced after error\n",
530 void __ext4_error(struct super_block *sb, const char *function,
531 unsigned int line, const char *fmt, ...)
533 struct va_format vaf;
539 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
540 sb->s_id, function, line, current->comm, &vaf);
543 ext4_handle_error(sb);
546 void ext4_error_inode(struct inode *inode, const char *function,
547 unsigned int line, ext4_fsblk_t block,
548 const char *fmt, ...)
551 struct va_format vaf;
552 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
554 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
555 es->s_last_error_block = cpu_to_le64(block);
556 save_error_info(inode->i_sb, function, line);
561 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
562 "inode #%lu: block %llu: comm %s: %pV\n",
563 inode->i_sb->s_id, function, line, inode->i_ino,
564 block, current->comm, &vaf);
566 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
567 "inode #%lu: comm %s: %pV\n",
568 inode->i_sb->s_id, function, line, inode->i_ino,
569 current->comm, &vaf);
572 ext4_handle_error(inode->i_sb);
575 void ext4_error_file(struct file *file, const char *function,
576 unsigned int line, ext4_fsblk_t block,
577 const char *fmt, ...)
580 struct va_format vaf;
581 struct ext4_super_block *es;
582 struct inode *inode = file->f_dentry->d_inode;
583 char pathname[80], *path;
585 es = EXT4_SB(inode->i_sb)->s_es;
586 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
587 save_error_info(inode->i_sb, function, line);
588 path = d_path(&(file->f_path), pathname, sizeof(pathname));
596 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
597 "block %llu: comm %s: path %s: %pV\n",
598 inode->i_sb->s_id, function, line, inode->i_ino,
599 block, current->comm, path, &vaf);
602 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
603 "comm %s: path %s: %pV\n",
604 inode->i_sb->s_id, function, line, inode->i_ino,
605 current->comm, path, &vaf);
608 ext4_handle_error(inode->i_sb);
611 static const char *ext4_decode_error(struct super_block *sb, int errno,
618 errstr = "IO failure";
621 errstr = "Out of memory";
624 if (!sb || (EXT4_SB(sb)->s_journal &&
625 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
626 errstr = "Journal has aborted";
628 errstr = "Readonly filesystem";
631 /* If the caller passed in an extra buffer for unknown
632 * errors, textualise them now. Else we just return
635 /* Check for truncated error codes... */
636 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
645 /* __ext4_std_error decodes expected errors from journaling functions
646 * automatically and invokes the appropriate error response. */
648 void __ext4_std_error(struct super_block *sb, const char *function,
649 unsigned int line, int errno)
654 /* Special case: if the error is EROFS, and we're not already
655 * inside a transaction, then there's really no point in logging
657 if (errno == -EROFS && journal_current_handle() == NULL &&
658 (sb->s_flags & MS_RDONLY))
661 errstr = ext4_decode_error(sb, errno, nbuf);
662 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
663 sb->s_id, function, line, errstr);
664 save_error_info(sb, function, line);
666 ext4_handle_error(sb);
670 * ext4_abort is a much stronger failure handler than ext4_error. The
671 * abort function may be used to deal with unrecoverable failures such
672 * as journal IO errors or ENOMEM at a critical moment in log management.
674 * We unconditionally force the filesystem into an ABORT|READONLY state,
675 * unless the error response on the fs has been set to panic in which
676 * case we take the easy way out and panic immediately.
679 void __ext4_abort(struct super_block *sb, const char *function,
680 unsigned int line, const char *fmt, ...)
684 save_error_info(sb, function, line);
686 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
692 if ((sb->s_flags & MS_RDONLY) == 0) {
693 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
694 sb->s_flags |= MS_RDONLY;
695 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
696 if (EXT4_SB(sb)->s_journal)
697 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
698 save_error_info(sb, function, line);
700 if (test_opt(sb, ERRORS_PANIC))
701 panic("EXT4-fs panic from previous error\n");
704 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
706 struct va_format vaf;
712 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
716 void __ext4_warning(struct super_block *sb, const char *function,
717 unsigned int line, const char *fmt, ...)
719 struct va_format vaf;
725 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
726 sb->s_id, function, line, &vaf);
730 void __ext4_grp_locked_error(const char *function, unsigned int line,
731 struct super_block *sb, ext4_group_t grp,
732 unsigned long ino, ext4_fsblk_t block,
733 const char *fmt, ...)
737 struct va_format vaf;
739 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
741 es->s_last_error_ino = cpu_to_le32(ino);
742 es->s_last_error_block = cpu_to_le64(block);
743 __save_error_info(sb, function, line);
749 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
750 sb->s_id, function, line, grp);
752 printk(KERN_CONT "inode %lu: ", ino);
754 printk(KERN_CONT "block %llu:", (unsigned long long) block);
755 printk(KERN_CONT "%pV\n", &vaf);
758 if (test_opt(sb, ERRORS_CONT)) {
759 ext4_commit_super(sb, 0);
763 ext4_unlock_group(sb, grp);
764 ext4_handle_error(sb);
766 * We only get here in the ERRORS_RO case; relocking the group
767 * may be dangerous, but nothing bad will happen since the
768 * filesystem will have already been marked read/only and the
769 * journal has been aborted. We return 1 as a hint to callers
770 * who might what to use the return value from
771 * ext4_grp_locked_error() to distinguish between the
772 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
773 * aggressively from the ext4 function in question, with a
774 * more appropriate error code.
776 ext4_lock_group(sb, grp);
780 void ext4_update_dynamic_rev(struct super_block *sb)
782 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
784 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
788 "updating to rev %d because of new feature flag, "
789 "running e2fsck is recommended",
792 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
793 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
794 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
795 /* leave es->s_feature_*compat flags alone */
796 /* es->s_uuid will be set by e2fsck if empty */
799 * The rest of the superblock fields should be zero, and if not it
800 * means they are likely already in use, so leave them alone. We
801 * can leave it up to e2fsck to clean up any inconsistencies there.
806 * Open the external journal device
808 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
810 struct block_device *bdev;
811 char b[BDEVNAME_SIZE];
813 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
819 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
820 __bdevname(dev, b), PTR_ERR(bdev));
825 * Release the journal device
827 static int ext4_blkdev_put(struct block_device *bdev)
829 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
832 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
834 struct block_device *bdev;
837 bdev = sbi->journal_bdev;
839 ret = ext4_blkdev_put(bdev);
840 sbi->journal_bdev = NULL;
845 static inline struct inode *orphan_list_entry(struct list_head *l)
847 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
850 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
854 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
855 le32_to_cpu(sbi->s_es->s_last_orphan));
857 printk(KERN_ERR "sb_info orphan list:\n");
858 list_for_each(l, &sbi->s_orphan) {
859 struct inode *inode = orphan_list_entry(l);
861 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
862 inode->i_sb->s_id, inode->i_ino, inode,
863 inode->i_mode, inode->i_nlink,
868 static void ext4_put_super(struct super_block *sb)
870 struct ext4_sb_info *sbi = EXT4_SB(sb);
871 struct ext4_super_block *es = sbi->s_es;
874 ext4_unregister_li_request(sb);
875 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
877 flush_workqueue(sbi->dio_unwritten_wq);
878 destroy_workqueue(sbi->dio_unwritten_wq);
881 if (sbi->s_journal) {
882 err = jbd2_journal_destroy(sbi->s_journal);
883 sbi->s_journal = NULL;
885 ext4_abort(sb, "Couldn't clean up the journal");
888 del_timer(&sbi->s_err_report);
889 ext4_release_system_zone(sb);
891 ext4_ext_release(sb);
892 ext4_xattr_put_super(sb);
894 if (!(sb->s_flags & MS_RDONLY)) {
895 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
896 es->s_state = cpu_to_le16(sbi->s_mount_state);
898 if (sb->s_dirt || !(sb->s_flags & MS_RDONLY))
899 ext4_commit_super(sb, 1);
902 remove_proc_entry("options", sbi->s_proc);
903 remove_proc_entry(sb->s_id, ext4_proc_root);
905 kobject_del(&sbi->s_kobj);
907 for (i = 0; i < sbi->s_gdb_count; i++)
908 brelse(sbi->s_group_desc[i]);
909 ext4_kvfree(sbi->s_group_desc);
910 ext4_kvfree(sbi->s_flex_groups);
911 percpu_counter_destroy(&sbi->s_freeclusters_counter);
912 percpu_counter_destroy(&sbi->s_freeinodes_counter);
913 percpu_counter_destroy(&sbi->s_dirs_counter);
914 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
917 for (i = 0; i < MAXQUOTAS; i++)
918 kfree(sbi->s_qf_names[i]);
921 /* Debugging code just in case the in-memory inode orphan list
922 * isn't empty. The on-disk one can be non-empty if we've
923 * detected an error and taken the fs readonly, but the
924 * in-memory list had better be clean by this point. */
925 if (!list_empty(&sbi->s_orphan))
926 dump_orphan_list(sb, sbi);
927 J_ASSERT(list_empty(&sbi->s_orphan));
929 invalidate_bdev(sb->s_bdev);
930 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
932 * Invalidate the journal device's buffers. We don't want them
933 * floating about in memory - the physical journal device may
934 * hotswapped, and it breaks the `ro-after' testing code.
936 sync_blockdev(sbi->journal_bdev);
937 invalidate_bdev(sbi->journal_bdev);
938 ext4_blkdev_remove(sbi);
941 kthread_stop(sbi->s_mmp_tsk);
942 sb->s_fs_info = NULL;
944 * Now that we are completely done shutting down the
945 * superblock, we need to actually destroy the kobject.
948 kobject_put(&sbi->s_kobj);
949 wait_for_completion(&sbi->s_kobj_unregister);
950 if (sbi->s_chksum_driver)
951 crypto_free_shash(sbi->s_chksum_driver);
952 kfree(sbi->s_blockgroup_lock);
956 static struct kmem_cache *ext4_inode_cachep;
959 * Called inside transaction, so use GFP_NOFS
961 static struct inode *ext4_alloc_inode(struct super_block *sb)
963 struct ext4_inode_info *ei;
965 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
969 ei->vfs_inode.i_version = 1;
970 ei->vfs_inode.i_data.writeback_index = 0;
971 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
972 INIT_LIST_HEAD(&ei->i_prealloc_list);
973 spin_lock_init(&ei->i_prealloc_lock);
974 ei->i_reserved_data_blocks = 0;
975 ei->i_reserved_meta_blocks = 0;
976 ei->i_allocated_meta_blocks = 0;
977 ei->i_da_metadata_calc_len = 0;
978 spin_lock_init(&(ei->i_block_reservation_lock));
980 ei->i_reserved_quota = 0;
983 INIT_LIST_HEAD(&ei->i_completed_io_list);
984 spin_lock_init(&ei->i_completed_io_lock);
985 ei->cur_aio_dio = NULL;
987 ei->i_datasync_tid = 0;
988 atomic_set(&ei->i_ioend_count, 0);
989 atomic_set(&ei->i_aiodio_unwritten, 0);
991 return &ei->vfs_inode;
994 static int ext4_drop_inode(struct inode *inode)
996 int drop = generic_drop_inode(inode);
998 trace_ext4_drop_inode(inode, drop);
1002 static void ext4_i_callback(struct rcu_head *head)
1004 struct inode *inode = container_of(head, struct inode, i_rcu);
1005 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1008 static void ext4_destroy_inode(struct inode *inode)
1010 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1011 ext4_msg(inode->i_sb, KERN_ERR,
1012 "Inode %lu (%p): orphan list check failed!",
1013 inode->i_ino, EXT4_I(inode));
1014 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1015 EXT4_I(inode), sizeof(struct ext4_inode_info),
1019 call_rcu(&inode->i_rcu, ext4_i_callback);
1022 static void init_once(void *foo)
1024 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1026 INIT_LIST_HEAD(&ei->i_orphan);
1027 #ifdef CONFIG_EXT4_FS_XATTR
1028 init_rwsem(&ei->xattr_sem);
1030 init_rwsem(&ei->i_data_sem);
1031 inode_init_once(&ei->vfs_inode);
1034 static int init_inodecache(void)
1036 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1037 sizeof(struct ext4_inode_info),
1038 0, (SLAB_RECLAIM_ACCOUNT|
1041 if (ext4_inode_cachep == NULL)
1046 static void destroy_inodecache(void)
1048 kmem_cache_destroy(ext4_inode_cachep);
1051 void ext4_clear_inode(struct inode *inode)
1053 invalidate_inode_buffers(inode);
1054 end_writeback(inode);
1056 ext4_discard_preallocations(inode);
1057 if (EXT4_I(inode)->jinode) {
1058 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1059 EXT4_I(inode)->jinode);
1060 jbd2_free_inode(EXT4_I(inode)->jinode);
1061 EXT4_I(inode)->jinode = NULL;
1065 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1066 u64 ino, u32 generation)
1068 struct inode *inode;
1070 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1071 return ERR_PTR(-ESTALE);
1072 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1073 return ERR_PTR(-ESTALE);
1075 /* iget isn't really right if the inode is currently unallocated!!
1077 * ext4_read_inode will return a bad_inode if the inode had been
1078 * deleted, so we should be safe.
1080 * Currently we don't know the generation for parent directory, so
1081 * a generation of 0 means "accept any"
1083 inode = ext4_iget(sb, ino);
1085 return ERR_CAST(inode);
1086 if (generation && inode->i_generation != generation) {
1088 return ERR_PTR(-ESTALE);
1094 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1095 int fh_len, int fh_type)
1097 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1098 ext4_nfs_get_inode);
1101 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1102 int fh_len, int fh_type)
1104 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1105 ext4_nfs_get_inode);
1109 * Try to release metadata pages (indirect blocks, directories) which are
1110 * mapped via the block device. Since these pages could have journal heads
1111 * which would prevent try_to_free_buffers() from freeing them, we must use
1112 * jbd2 layer's try_to_free_buffers() function to release them.
1114 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1117 journal_t *journal = EXT4_SB(sb)->s_journal;
1119 WARN_ON(PageChecked(page));
1120 if (!page_has_buffers(page))
1123 return jbd2_journal_try_to_free_buffers(journal, page,
1124 wait & ~__GFP_WAIT);
1125 return try_to_free_buffers(page);
1129 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1130 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1132 static int ext4_write_dquot(struct dquot *dquot);
1133 static int ext4_acquire_dquot(struct dquot *dquot);
1134 static int ext4_release_dquot(struct dquot *dquot);
1135 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1136 static int ext4_write_info(struct super_block *sb, int type);
1137 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1139 static int ext4_quota_off(struct super_block *sb, int type);
1140 static int ext4_quota_on_mount(struct super_block *sb, int type);
1141 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1142 size_t len, loff_t off);
1143 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1144 const char *data, size_t len, loff_t off);
1146 static const struct dquot_operations ext4_quota_operations = {
1147 .get_reserved_space = ext4_get_reserved_space,
1148 .write_dquot = ext4_write_dquot,
1149 .acquire_dquot = ext4_acquire_dquot,
1150 .release_dquot = ext4_release_dquot,
1151 .mark_dirty = ext4_mark_dquot_dirty,
1152 .write_info = ext4_write_info,
1153 .alloc_dquot = dquot_alloc,
1154 .destroy_dquot = dquot_destroy,
1157 static const struct quotactl_ops ext4_qctl_operations = {
1158 .quota_on = ext4_quota_on,
1159 .quota_off = ext4_quota_off,
1160 .quota_sync = dquot_quota_sync,
1161 .get_info = dquot_get_dqinfo,
1162 .set_info = dquot_set_dqinfo,
1163 .get_dqblk = dquot_get_dqblk,
1164 .set_dqblk = dquot_set_dqblk
1168 static const struct super_operations ext4_sops = {
1169 .alloc_inode = ext4_alloc_inode,
1170 .destroy_inode = ext4_destroy_inode,
1171 .write_inode = ext4_write_inode,
1172 .dirty_inode = ext4_dirty_inode,
1173 .drop_inode = ext4_drop_inode,
1174 .evict_inode = ext4_evict_inode,
1175 .put_super = ext4_put_super,
1176 .sync_fs = ext4_sync_fs,
1177 .freeze_fs = ext4_freeze,
1178 .unfreeze_fs = ext4_unfreeze,
1179 .statfs = ext4_statfs,
1180 .remount_fs = ext4_remount,
1181 .show_options = ext4_show_options,
1183 .quota_read = ext4_quota_read,
1184 .quota_write = ext4_quota_write,
1186 .bdev_try_to_free_page = bdev_try_to_free_page,
1189 static const struct super_operations ext4_nojournal_sops = {
1190 .alloc_inode = ext4_alloc_inode,
1191 .destroy_inode = ext4_destroy_inode,
1192 .write_inode = ext4_write_inode,
1193 .dirty_inode = ext4_dirty_inode,
1194 .drop_inode = ext4_drop_inode,
1195 .evict_inode = ext4_evict_inode,
1196 .write_super = ext4_write_super,
1197 .put_super = ext4_put_super,
1198 .statfs = ext4_statfs,
1199 .remount_fs = ext4_remount,
1200 .show_options = ext4_show_options,
1202 .quota_read = ext4_quota_read,
1203 .quota_write = ext4_quota_write,
1205 .bdev_try_to_free_page = bdev_try_to_free_page,
1208 static const struct export_operations ext4_export_ops = {
1209 .fh_to_dentry = ext4_fh_to_dentry,
1210 .fh_to_parent = ext4_fh_to_parent,
1211 .get_parent = ext4_get_parent,
1215 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1216 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1217 Opt_nouid32, Opt_debug, Opt_removed,
1218 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1219 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1220 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1221 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1222 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1223 Opt_data_err_abort, Opt_data_err_ignore,
1224 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1225 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1226 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1227 Opt_usrquota, Opt_grpquota, Opt_i_version,
1228 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1229 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1230 Opt_inode_readahead_blks, Opt_journal_ioprio,
1231 Opt_dioread_nolock, Opt_dioread_lock,
1232 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1235 static const match_table_t tokens = {
1236 {Opt_bsd_df, "bsddf"},
1237 {Opt_minix_df, "minixdf"},
1238 {Opt_grpid, "grpid"},
1239 {Opt_grpid, "bsdgroups"},
1240 {Opt_nogrpid, "nogrpid"},
1241 {Opt_nogrpid, "sysvgroups"},
1242 {Opt_resgid, "resgid=%u"},
1243 {Opt_resuid, "resuid=%u"},
1245 {Opt_err_cont, "errors=continue"},
1246 {Opt_err_panic, "errors=panic"},
1247 {Opt_err_ro, "errors=remount-ro"},
1248 {Opt_nouid32, "nouid32"},
1249 {Opt_debug, "debug"},
1250 {Opt_removed, "oldalloc"},
1251 {Opt_removed, "orlov"},
1252 {Opt_user_xattr, "user_xattr"},
1253 {Opt_nouser_xattr, "nouser_xattr"},
1255 {Opt_noacl, "noacl"},
1256 {Opt_noload, "norecovery"},
1257 {Opt_noload, "noload"},
1258 {Opt_removed, "nobh"},
1259 {Opt_removed, "bh"},
1260 {Opt_commit, "commit=%u"},
1261 {Opt_min_batch_time, "min_batch_time=%u"},
1262 {Opt_max_batch_time, "max_batch_time=%u"},
1263 {Opt_journal_dev, "journal_dev=%u"},
1264 {Opt_journal_checksum, "journal_checksum"},
1265 {Opt_journal_async_commit, "journal_async_commit"},
1266 {Opt_abort, "abort"},
1267 {Opt_data_journal, "data=journal"},
1268 {Opt_data_ordered, "data=ordered"},
1269 {Opt_data_writeback, "data=writeback"},
1270 {Opt_data_err_abort, "data_err=abort"},
1271 {Opt_data_err_ignore, "data_err=ignore"},
1272 {Opt_offusrjquota, "usrjquota="},
1273 {Opt_usrjquota, "usrjquota=%s"},
1274 {Opt_offgrpjquota, "grpjquota="},
1275 {Opt_grpjquota, "grpjquota=%s"},
1276 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1277 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1278 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1279 {Opt_grpquota, "grpquota"},
1280 {Opt_noquota, "noquota"},
1281 {Opt_quota, "quota"},
1282 {Opt_usrquota, "usrquota"},
1283 {Opt_barrier, "barrier=%u"},
1284 {Opt_barrier, "barrier"},
1285 {Opt_nobarrier, "nobarrier"},
1286 {Opt_i_version, "i_version"},
1287 {Opt_stripe, "stripe=%u"},
1288 {Opt_delalloc, "delalloc"},
1289 {Opt_nodelalloc, "nodelalloc"},
1290 {Opt_mblk_io_submit, "mblk_io_submit"},
1291 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1292 {Opt_block_validity, "block_validity"},
1293 {Opt_noblock_validity, "noblock_validity"},
1294 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1295 {Opt_journal_ioprio, "journal_ioprio=%u"},
1296 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1297 {Opt_auto_da_alloc, "auto_da_alloc"},
1298 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1299 {Opt_dioread_nolock, "dioread_nolock"},
1300 {Opt_dioread_lock, "dioread_lock"},
1301 {Opt_discard, "discard"},
1302 {Opt_nodiscard, "nodiscard"},
1303 {Opt_init_itable, "init_itable=%u"},
1304 {Opt_init_itable, "init_itable"},
1305 {Opt_noinit_itable, "noinit_itable"},
1306 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1307 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1308 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1309 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1310 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1314 static ext4_fsblk_t get_sb_block(void **data)
1316 ext4_fsblk_t sb_block;
1317 char *options = (char *) *data;
1319 if (!options || strncmp(options, "sb=", 3) != 0)
1320 return 1; /* Default location */
1323 /* TODO: use simple_strtoll with >32bit ext4 */
1324 sb_block = simple_strtoul(options, &options, 0);
1325 if (*options && *options != ',') {
1326 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1330 if (*options == ',')
1332 *data = (void *) options;
1337 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1338 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1342 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1344 struct ext4_sb_info *sbi = EXT4_SB(sb);
1347 if (sb_any_quota_loaded(sb) &&
1348 !sbi->s_qf_names[qtype]) {
1349 ext4_msg(sb, KERN_ERR,
1350 "Cannot change journaled "
1351 "quota options when quota turned on");
1354 qname = match_strdup(args);
1356 ext4_msg(sb, KERN_ERR,
1357 "Not enough memory for storing quotafile name");
1360 if (sbi->s_qf_names[qtype] &&
1361 strcmp(sbi->s_qf_names[qtype], qname)) {
1362 ext4_msg(sb, KERN_ERR,
1363 "%s quota file already specified", QTYPE2NAME(qtype));
1367 sbi->s_qf_names[qtype] = qname;
1368 if (strchr(sbi->s_qf_names[qtype], '/')) {
1369 ext4_msg(sb, KERN_ERR,
1370 "quotafile must be on filesystem root");
1371 kfree(sbi->s_qf_names[qtype]);
1372 sbi->s_qf_names[qtype] = NULL;
1379 static int clear_qf_name(struct super_block *sb, int qtype)
1382 struct ext4_sb_info *sbi = EXT4_SB(sb);
1384 if (sb_any_quota_loaded(sb) &&
1385 sbi->s_qf_names[qtype]) {
1386 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1387 " when quota turned on");
1391 * The space will be released later when all options are confirmed
1394 sbi->s_qf_names[qtype] = NULL;
1399 #define MOPT_SET 0x0001
1400 #define MOPT_CLEAR 0x0002
1401 #define MOPT_NOSUPPORT 0x0004
1402 #define MOPT_EXPLICIT 0x0008
1403 #define MOPT_CLEAR_ERR 0x0010
1404 #define MOPT_GTE0 0x0020
1407 #define MOPT_QFMT 0x0040
1409 #define MOPT_Q MOPT_NOSUPPORT
1410 #define MOPT_QFMT MOPT_NOSUPPORT
1412 #define MOPT_DATAJ 0x0080
1414 static const struct mount_opts {
1418 } ext4_mount_opts[] = {
1419 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1420 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1421 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1422 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1423 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET},
1424 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR},
1425 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1426 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1427 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET},
1428 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR},
1429 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1430 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1431 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT},
1432 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT},
1433 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET},
1434 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1435 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET},
1436 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET},
1437 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1438 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1439 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1440 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET},
1441 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR},
1442 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1443 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1444 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1445 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1446 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1447 {Opt_commit, 0, MOPT_GTE0},
1448 {Opt_max_batch_time, 0, MOPT_GTE0},
1449 {Opt_min_batch_time, 0, MOPT_GTE0},
1450 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1451 {Opt_init_itable, 0, MOPT_GTE0},
1452 {Opt_stripe, 0, MOPT_GTE0},
1453 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ},
1454 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ},
1455 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ},
1456 #ifdef CONFIG_EXT4_FS_XATTR
1457 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1458 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1460 {Opt_user_xattr, 0, MOPT_NOSUPPORT},
1461 {Opt_nouser_xattr, 0, MOPT_NOSUPPORT},
1463 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1464 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1465 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1467 {Opt_acl, 0, MOPT_NOSUPPORT},
1468 {Opt_noacl, 0, MOPT_NOSUPPORT},
1470 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1471 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1472 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1473 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1475 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1477 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1478 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1479 {Opt_usrjquota, 0, MOPT_Q},
1480 {Opt_grpjquota, 0, MOPT_Q},
1481 {Opt_offusrjquota, 0, MOPT_Q},
1482 {Opt_offgrpjquota, 0, MOPT_Q},
1483 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1484 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1485 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1489 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1490 substring_t *args, unsigned long *journal_devnum,
1491 unsigned int *journal_ioprio, int is_remount)
1493 struct ext4_sb_info *sbi = EXT4_SB(sb);
1494 const struct mount_opts *m;
1498 if (token == Opt_usrjquota)
1499 return set_qf_name(sb, USRQUOTA, &args[0]);
1500 else if (token == Opt_grpjquota)
1501 return set_qf_name(sb, GRPQUOTA, &args[0]);
1502 else if (token == Opt_offusrjquota)
1503 return clear_qf_name(sb, USRQUOTA);
1504 else if (token == Opt_offgrpjquota)
1505 return clear_qf_name(sb, GRPQUOTA);
1507 if (args->from && match_int(args, &arg))
1511 case Opt_nouser_xattr:
1512 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1515 return 1; /* handled by get_sb_block() */
1517 ext4_msg(sb, KERN_WARNING,
1518 "Ignoring removed %s option", opt);
1521 sbi->s_resuid = arg;
1524 sbi->s_resgid = arg;
1527 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1530 sb->s_flags |= MS_I_VERSION;
1532 case Opt_journal_dev:
1534 ext4_msg(sb, KERN_ERR,
1535 "Cannot specify journal on remount");
1538 *journal_devnum = arg;
1540 case Opt_journal_ioprio:
1541 if (arg < 0 || arg > 7)
1543 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1547 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1548 if (token != m->token)
1550 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1552 if (m->flags & MOPT_EXPLICIT)
1553 set_opt2(sb, EXPLICIT_DELALLOC);
1554 if (m->flags & MOPT_CLEAR_ERR)
1555 clear_opt(sb, ERRORS_MASK);
1556 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1557 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1558 "options when quota turned on");
1562 if (m->flags & MOPT_NOSUPPORT) {
1563 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1564 } else if (token == Opt_commit) {
1566 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1567 sbi->s_commit_interval = HZ * arg;
1568 } else if (token == Opt_max_batch_time) {
1570 arg = EXT4_DEF_MAX_BATCH_TIME;
1571 sbi->s_max_batch_time = arg;
1572 } else if (token == Opt_min_batch_time) {
1573 sbi->s_min_batch_time = arg;
1574 } else if (token == Opt_inode_readahead_blks) {
1575 if (arg > (1 << 30))
1577 if (arg && !is_power_of_2(arg)) {
1578 ext4_msg(sb, KERN_ERR,
1579 "EXT4-fs: inode_readahead_blks"
1580 " must be a power of 2");
1583 sbi->s_inode_readahead_blks = arg;
1584 } else if (token == Opt_init_itable) {
1585 set_opt(sb, INIT_INODE_TABLE);
1587 arg = EXT4_DEF_LI_WAIT_MULT;
1588 sbi->s_li_wait_mult = arg;
1589 } else if (token == Opt_stripe) {
1590 sbi->s_stripe = arg;
1591 } else if (m->flags & MOPT_DATAJ) {
1593 if (!sbi->s_journal)
1594 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1595 else if (test_opt(sb, DATA_FLAGS) !=
1597 ext4_msg(sb, KERN_ERR,
1598 "Cannot change data mode on remount");
1602 clear_opt(sb, DATA_FLAGS);
1603 sbi->s_mount_opt |= m->mount_opt;
1606 } else if (m->flags & MOPT_QFMT) {
1607 if (sb_any_quota_loaded(sb) &&
1608 sbi->s_jquota_fmt != m->mount_opt) {
1609 ext4_msg(sb, KERN_ERR, "Cannot "
1610 "change journaled quota options "
1611 "when quota turned on");
1614 sbi->s_jquota_fmt = m->mount_opt;
1619 if (m->flags & MOPT_CLEAR)
1621 else if (unlikely(!(m->flags & MOPT_SET))) {
1622 ext4_msg(sb, KERN_WARNING,
1623 "buggy handling of option %s", opt);
1628 sbi->s_mount_opt |= m->mount_opt;
1630 sbi->s_mount_opt &= ~m->mount_opt;
1634 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1635 "or missing value", opt);
1639 static int parse_options(char *options, struct super_block *sb,
1640 unsigned long *journal_devnum,
1641 unsigned int *journal_ioprio,
1645 struct ext4_sb_info *sbi = EXT4_SB(sb);
1648 substring_t args[MAX_OPT_ARGS];
1654 while ((p = strsep(&options, ",")) != NULL) {
1658 * Initialize args struct so we know whether arg was
1659 * found; some options take optional arguments.
1661 args[0].to = args[0].from = 0;
1662 token = match_token(p, tokens, args);
1663 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1664 journal_ioprio, is_remount) < 0)
1668 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1669 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1670 clear_opt(sb, USRQUOTA);
1672 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1673 clear_opt(sb, GRPQUOTA);
1675 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1676 ext4_msg(sb, KERN_ERR, "old and new quota "
1681 if (!sbi->s_jquota_fmt) {
1682 ext4_msg(sb, KERN_ERR, "journaled quota format "
1687 if (sbi->s_jquota_fmt) {
1688 ext4_msg(sb, KERN_ERR, "journaled quota format "
1689 "specified with no journaling "
1698 static inline void ext4_show_quota_options(struct seq_file *seq,
1699 struct super_block *sb)
1701 #if defined(CONFIG_QUOTA)
1702 struct ext4_sb_info *sbi = EXT4_SB(sb);
1704 if (sbi->s_jquota_fmt) {
1707 switch (sbi->s_jquota_fmt) {
1718 seq_printf(seq, ",jqfmt=%s", fmtname);
1721 if (sbi->s_qf_names[USRQUOTA])
1722 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1724 if (sbi->s_qf_names[GRPQUOTA])
1725 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1727 if (test_opt(sb, USRQUOTA))
1728 seq_puts(seq, ",usrquota");
1730 if (test_opt(sb, GRPQUOTA))
1731 seq_puts(seq, ",grpquota");
1735 static const char *token2str(int token)
1737 static const struct match_token *t;
1739 for (t = tokens; t->token != Opt_err; t++)
1740 if (t->token == token && !strchr(t->pattern, '='))
1747 * - it's set to a non-default value OR
1748 * - if the per-sb default is different from the global default
1750 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1753 struct ext4_sb_info *sbi = EXT4_SB(sb);
1754 struct ext4_super_block *es = sbi->s_es;
1755 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1756 const struct mount_opts *m;
1757 char sep = nodefs ? '\n' : ',';
1759 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1760 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1762 if (sbi->s_sb_block != 1)
1763 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1765 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1766 int want_set = m->flags & MOPT_SET;
1767 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1768 (m->flags & MOPT_CLEAR_ERR))
1770 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1771 continue; /* skip if same as the default */
1773 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1774 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1775 continue; /* select Opt_noFoo vs Opt_Foo */
1776 SEQ_OPTS_PRINT("%s", token2str(m->token));
1779 if (nodefs || sbi->s_resuid != EXT4_DEF_RESUID ||
1780 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1781 SEQ_OPTS_PRINT("resuid=%u", sbi->s_resuid);
1782 if (nodefs || sbi->s_resgid != EXT4_DEF_RESGID ||
1783 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1784 SEQ_OPTS_PRINT("resgid=%u", sbi->s_resgid);
1785 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1786 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1787 SEQ_OPTS_PUTS("errors=remount-ro");
1788 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1789 SEQ_OPTS_PUTS("errors=continue");
1790 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1791 SEQ_OPTS_PUTS("errors=panic");
1792 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1793 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1794 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1795 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1796 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1797 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1798 if (sb->s_flags & MS_I_VERSION)
1799 SEQ_OPTS_PUTS("i_version");
1800 if (nodefs || sbi->s_stripe)
1801 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1802 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1803 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1804 SEQ_OPTS_PUTS("data=journal");
1805 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1806 SEQ_OPTS_PUTS("data=ordered");
1807 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1808 SEQ_OPTS_PUTS("data=writeback");
1811 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1812 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1813 sbi->s_inode_readahead_blks);
1815 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1816 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1817 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1819 ext4_show_quota_options(seq, sb);
1823 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1825 return _ext4_show_options(seq, root->d_sb, 0);
1828 static int options_seq_show(struct seq_file *seq, void *offset)
1830 struct super_block *sb = seq->private;
1833 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1834 rc = _ext4_show_options(seq, sb, 1);
1835 seq_puts(seq, "\n");
1839 static int options_open_fs(struct inode *inode, struct file *file)
1841 return single_open(file, options_seq_show, PDE(inode)->data);
1844 static const struct file_operations ext4_seq_options_fops = {
1845 .owner = THIS_MODULE,
1846 .open = options_open_fs,
1848 .llseek = seq_lseek,
1849 .release = single_release,
1852 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1855 struct ext4_sb_info *sbi = EXT4_SB(sb);
1858 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1859 ext4_msg(sb, KERN_ERR, "revision level too high, "
1860 "forcing read-only mode");
1865 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1866 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1867 "running e2fsck is recommended");
1868 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1869 ext4_msg(sb, KERN_WARNING,
1870 "warning: mounting fs with errors, "
1871 "running e2fsck is recommended");
1872 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1873 le16_to_cpu(es->s_mnt_count) >=
1874 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1875 ext4_msg(sb, KERN_WARNING,
1876 "warning: maximal mount count reached, "
1877 "running e2fsck is recommended");
1878 else if (le32_to_cpu(es->s_checkinterval) &&
1879 (le32_to_cpu(es->s_lastcheck) +
1880 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1881 ext4_msg(sb, KERN_WARNING,
1882 "warning: checktime reached, "
1883 "running e2fsck is recommended");
1884 if (!sbi->s_journal)
1885 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1886 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1887 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1888 le16_add_cpu(&es->s_mnt_count, 1);
1889 es->s_mtime = cpu_to_le32(get_seconds());
1890 ext4_update_dynamic_rev(sb);
1892 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1894 ext4_commit_super(sb, 1);
1896 if (test_opt(sb, DEBUG))
1897 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1898 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1900 sbi->s_groups_count,
1901 EXT4_BLOCKS_PER_GROUP(sb),
1902 EXT4_INODES_PER_GROUP(sb),
1903 sbi->s_mount_opt, sbi->s_mount_opt2);
1905 cleancache_init_fs(sb);
1909 static int ext4_fill_flex_info(struct super_block *sb)
1911 struct ext4_sb_info *sbi = EXT4_SB(sb);
1912 struct ext4_group_desc *gdp = NULL;
1913 ext4_group_t flex_group_count;
1914 ext4_group_t flex_group;
1915 unsigned int groups_per_flex = 0;
1919 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1920 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1921 sbi->s_log_groups_per_flex = 0;
1924 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1926 /* We allocate both existing and potentially added groups */
1927 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1928 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1929 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1930 size = flex_group_count * sizeof(struct flex_groups);
1931 sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL);
1932 if (sbi->s_flex_groups == NULL) {
1933 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups",
1938 for (i = 0; i < sbi->s_groups_count; i++) {
1939 gdp = ext4_get_group_desc(sb, i, NULL);
1941 flex_group = ext4_flex_group(sbi, i);
1942 atomic_add(ext4_free_inodes_count(sb, gdp),
1943 &sbi->s_flex_groups[flex_group].free_inodes);
1944 atomic_add(ext4_free_group_clusters(sb, gdp),
1945 &sbi->s_flex_groups[flex_group].free_clusters);
1946 atomic_add(ext4_used_dirs_count(sb, gdp),
1947 &sbi->s_flex_groups[flex_group].used_dirs);
1955 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1956 struct ext4_group_desc *gdp)
1960 if (sbi->s_es->s_feature_ro_compat &
1961 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1962 int offset = offsetof(struct ext4_group_desc, bg_checksum);
1963 __le32 le_group = cpu_to_le32(block_group);
1965 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1966 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1967 crc = crc16(crc, (__u8 *)gdp, offset);
1968 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1969 /* for checksum of struct ext4_group_desc do the rest...*/
1970 if ((sbi->s_es->s_feature_incompat &
1971 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1972 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1973 crc = crc16(crc, (__u8 *)gdp + offset,
1974 le16_to_cpu(sbi->s_es->s_desc_size) -
1978 return cpu_to_le16(crc);
1981 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1982 struct ext4_group_desc *gdp)
1984 if ((sbi->s_es->s_feature_ro_compat &
1985 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1986 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1992 /* Called at mount-time, super-block is locked */
1993 static int ext4_check_descriptors(struct super_block *sb,
1994 ext4_group_t *first_not_zeroed)
1996 struct ext4_sb_info *sbi = EXT4_SB(sb);
1997 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
1998 ext4_fsblk_t last_block;
1999 ext4_fsblk_t block_bitmap;
2000 ext4_fsblk_t inode_bitmap;
2001 ext4_fsblk_t inode_table;
2002 int flexbg_flag = 0;
2003 ext4_group_t i, grp = sbi->s_groups_count;
2005 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2008 ext4_debug("Checking group descriptors");
2010 for (i = 0; i < sbi->s_groups_count; i++) {
2011 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2013 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2014 last_block = ext4_blocks_count(sbi->s_es) - 1;
2016 last_block = first_block +
2017 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2019 if ((grp == sbi->s_groups_count) &&
2020 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2023 block_bitmap = ext4_block_bitmap(sb, gdp);
2024 if (block_bitmap < first_block || block_bitmap > last_block) {
2025 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2026 "Block bitmap for group %u not in group "
2027 "(block %llu)!", i, block_bitmap);
2030 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2031 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2032 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2033 "Inode bitmap for group %u not in group "
2034 "(block %llu)!", i, inode_bitmap);
2037 inode_table = ext4_inode_table(sb, gdp);
2038 if (inode_table < first_block ||
2039 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2040 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2041 "Inode table for group %u not in group "
2042 "(block %llu)!", i, inode_table);
2045 ext4_lock_group(sb, i);
2046 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2047 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2048 "Checksum for group %u failed (%u!=%u)",
2049 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2050 gdp)), le16_to_cpu(gdp->bg_checksum));
2051 if (!(sb->s_flags & MS_RDONLY)) {
2052 ext4_unlock_group(sb, i);
2056 ext4_unlock_group(sb, i);
2058 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2060 if (NULL != first_not_zeroed)
2061 *first_not_zeroed = grp;
2063 ext4_free_blocks_count_set(sbi->s_es,
2064 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2065 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2069 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2070 * the superblock) which were deleted from all directories, but held open by
2071 * a process at the time of a crash. We walk the list and try to delete these
2072 * inodes at recovery time (only with a read-write filesystem).
2074 * In order to keep the orphan inode chain consistent during traversal (in
2075 * case of crash during recovery), we link each inode into the superblock
2076 * orphan list_head and handle it the same way as an inode deletion during
2077 * normal operation (which journals the operations for us).
2079 * We only do an iget() and an iput() on each inode, which is very safe if we
2080 * accidentally point at an in-use or already deleted inode. The worst that
2081 * can happen in this case is that we get a "bit already cleared" message from
2082 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2083 * e2fsck was run on this filesystem, and it must have already done the orphan
2084 * inode cleanup for us, so we can safely abort without any further action.
2086 static void ext4_orphan_cleanup(struct super_block *sb,
2087 struct ext4_super_block *es)
2089 unsigned int s_flags = sb->s_flags;
2090 int nr_orphans = 0, nr_truncates = 0;
2094 if (!es->s_last_orphan) {
2095 jbd_debug(4, "no orphan inodes to clean up\n");
2099 if (bdev_read_only(sb->s_bdev)) {
2100 ext4_msg(sb, KERN_ERR, "write access "
2101 "unavailable, skipping orphan cleanup");
2105 /* Check if feature set would not allow a r/w mount */
2106 if (!ext4_feature_set_ok(sb, 0)) {
2107 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2108 "unknown ROCOMPAT features");
2112 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2113 if (es->s_last_orphan)
2114 jbd_debug(1, "Errors on filesystem, "
2115 "clearing orphan list.\n");
2116 es->s_last_orphan = 0;
2117 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2121 if (s_flags & MS_RDONLY) {
2122 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2123 sb->s_flags &= ~MS_RDONLY;
2126 /* Needed for iput() to work correctly and not trash data */
2127 sb->s_flags |= MS_ACTIVE;
2128 /* Turn on quotas so that they are updated correctly */
2129 for (i = 0; i < MAXQUOTAS; i++) {
2130 if (EXT4_SB(sb)->s_qf_names[i]) {
2131 int ret = ext4_quota_on_mount(sb, i);
2133 ext4_msg(sb, KERN_ERR,
2134 "Cannot turn on journaled "
2135 "quota: error %d", ret);
2140 while (es->s_last_orphan) {
2141 struct inode *inode;
2143 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2144 if (IS_ERR(inode)) {
2145 es->s_last_orphan = 0;
2149 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2150 dquot_initialize(inode);
2151 if (inode->i_nlink) {
2152 ext4_msg(sb, KERN_DEBUG,
2153 "%s: truncating inode %lu to %lld bytes",
2154 __func__, inode->i_ino, inode->i_size);
2155 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2156 inode->i_ino, inode->i_size);
2157 ext4_truncate(inode);
2160 ext4_msg(sb, KERN_DEBUG,
2161 "%s: deleting unreferenced inode %lu",
2162 __func__, inode->i_ino);
2163 jbd_debug(2, "deleting unreferenced inode %lu\n",
2167 iput(inode); /* The delete magic happens here! */
2170 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2173 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2174 PLURAL(nr_orphans));
2176 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2177 PLURAL(nr_truncates));
2179 /* Turn quotas off */
2180 for (i = 0; i < MAXQUOTAS; i++) {
2181 if (sb_dqopt(sb)->files[i])
2182 dquot_quota_off(sb, i);
2185 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2189 * Maximal extent format file size.
2190 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2191 * extent format containers, within a sector_t, and within i_blocks
2192 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2193 * so that won't be a limiting factor.
2195 * However there is other limiting factor. We do store extents in the form
2196 * of starting block and length, hence the resulting length of the extent
2197 * covering maximum file size must fit into on-disk format containers as
2198 * well. Given that length is always by 1 unit bigger than max unit (because
2199 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2201 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2203 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2206 loff_t upper_limit = MAX_LFS_FILESIZE;
2208 /* small i_blocks in vfs inode? */
2209 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2211 * CONFIG_LBDAF is not enabled implies the inode
2212 * i_block represent total blocks in 512 bytes
2213 * 32 == size of vfs inode i_blocks * 8
2215 upper_limit = (1LL << 32) - 1;
2217 /* total blocks in file system block size */
2218 upper_limit >>= (blkbits - 9);
2219 upper_limit <<= blkbits;
2223 * 32-bit extent-start container, ee_block. We lower the maxbytes
2224 * by one fs block, so ee_len can cover the extent of maximum file
2227 res = (1LL << 32) - 1;
2230 /* Sanity check against vm- & vfs- imposed limits */
2231 if (res > upper_limit)
2238 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2239 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2240 * We need to be 1 filesystem block less than the 2^48 sector limit.
2242 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2244 loff_t res = EXT4_NDIR_BLOCKS;
2247 /* This is calculated to be the largest file size for a dense, block
2248 * mapped file such that the file's total number of 512-byte sectors,
2249 * including data and all indirect blocks, does not exceed (2^48 - 1).
2251 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2252 * number of 512-byte sectors of the file.
2255 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2257 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2258 * the inode i_block field represents total file blocks in
2259 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2261 upper_limit = (1LL << 32) - 1;
2263 /* total blocks in file system block size */
2264 upper_limit >>= (bits - 9);
2268 * We use 48 bit ext4_inode i_blocks
2269 * With EXT4_HUGE_FILE_FL set the i_blocks
2270 * represent total number of blocks in
2271 * file system block size
2273 upper_limit = (1LL << 48) - 1;
2277 /* indirect blocks */
2279 /* double indirect blocks */
2280 meta_blocks += 1 + (1LL << (bits-2));
2281 /* tripple indirect blocks */
2282 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2284 upper_limit -= meta_blocks;
2285 upper_limit <<= bits;
2287 res += 1LL << (bits-2);
2288 res += 1LL << (2*(bits-2));
2289 res += 1LL << (3*(bits-2));
2291 if (res > upper_limit)
2294 if (res > MAX_LFS_FILESIZE)
2295 res = MAX_LFS_FILESIZE;
2300 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2301 ext4_fsblk_t logical_sb_block, int nr)
2303 struct ext4_sb_info *sbi = EXT4_SB(sb);
2304 ext4_group_t bg, first_meta_bg;
2307 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2309 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2311 return logical_sb_block + nr + 1;
2312 bg = sbi->s_desc_per_block * nr;
2313 if (ext4_bg_has_super(sb, bg))
2316 return (has_super + ext4_group_first_block_no(sb, bg));
2320 * ext4_get_stripe_size: Get the stripe size.
2321 * @sbi: In memory super block info
2323 * If we have specified it via mount option, then
2324 * use the mount option value. If the value specified at mount time is
2325 * greater than the blocks per group use the super block value.
2326 * If the super block value is greater than blocks per group return 0.
2327 * Allocator needs it be less than blocks per group.
2330 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2332 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2333 unsigned long stripe_width =
2334 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2337 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2338 ret = sbi->s_stripe;
2339 else if (stripe_width <= sbi->s_blocks_per_group)
2341 else if (stride <= sbi->s_blocks_per_group)
2347 * If the stripe width is 1, this makes no sense and
2348 * we set it to 0 to turn off stripe handling code.
2359 struct attribute attr;
2360 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2361 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2362 const char *, size_t);
2366 static int parse_strtoul(const char *buf,
2367 unsigned long max, unsigned long *value)
2371 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2372 endp = skip_spaces(endp);
2373 if (*endp || *value > max)
2379 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2380 struct ext4_sb_info *sbi,
2383 return snprintf(buf, PAGE_SIZE, "%llu\n",
2385 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2388 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2389 struct ext4_sb_info *sbi, char *buf)
2391 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2393 if (!sb->s_bdev->bd_part)
2394 return snprintf(buf, PAGE_SIZE, "0\n");
2395 return snprintf(buf, PAGE_SIZE, "%lu\n",
2396 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2397 sbi->s_sectors_written_start) >> 1);
2400 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2401 struct ext4_sb_info *sbi, char *buf)
2403 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2405 if (!sb->s_bdev->bd_part)
2406 return snprintf(buf, PAGE_SIZE, "0\n");
2407 return snprintf(buf, PAGE_SIZE, "%llu\n",
2408 (unsigned long long)(sbi->s_kbytes_written +
2409 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2410 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2413 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2414 struct ext4_sb_info *sbi,
2415 const char *buf, size_t count)
2419 if (parse_strtoul(buf, 0x40000000, &t))
2422 if (t && !is_power_of_2(t))
2425 sbi->s_inode_readahead_blks = t;
2429 static ssize_t sbi_ui_show(struct ext4_attr *a,
2430 struct ext4_sb_info *sbi, char *buf)
2432 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2434 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2437 static ssize_t sbi_ui_store(struct ext4_attr *a,
2438 struct ext4_sb_info *sbi,
2439 const char *buf, size_t count)
2441 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2444 if (parse_strtoul(buf, 0xffffffff, &t))
2450 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2451 static struct ext4_attr ext4_attr_##_name = { \
2452 .attr = {.name = __stringify(_name), .mode = _mode }, \
2455 .offset = offsetof(struct ext4_sb_info, _elname), \
2457 #define EXT4_ATTR(name, mode, show, store) \
2458 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2460 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2461 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2462 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2463 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2464 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2465 #define ATTR_LIST(name) &ext4_attr_##name.attr
2467 EXT4_RO_ATTR(delayed_allocation_blocks);
2468 EXT4_RO_ATTR(session_write_kbytes);
2469 EXT4_RO_ATTR(lifetime_write_kbytes);
2470 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2471 inode_readahead_blks_store, s_inode_readahead_blks);
2472 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2473 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2474 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2475 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2476 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2477 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2478 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2479 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2481 static struct attribute *ext4_attrs[] = {
2482 ATTR_LIST(delayed_allocation_blocks),
2483 ATTR_LIST(session_write_kbytes),
2484 ATTR_LIST(lifetime_write_kbytes),
2485 ATTR_LIST(inode_readahead_blks),
2486 ATTR_LIST(inode_goal),
2487 ATTR_LIST(mb_stats),
2488 ATTR_LIST(mb_max_to_scan),
2489 ATTR_LIST(mb_min_to_scan),
2490 ATTR_LIST(mb_order2_req),
2491 ATTR_LIST(mb_stream_req),
2492 ATTR_LIST(mb_group_prealloc),
2493 ATTR_LIST(max_writeback_mb_bump),
2497 /* Features this copy of ext4 supports */
2498 EXT4_INFO_ATTR(lazy_itable_init);
2499 EXT4_INFO_ATTR(batched_discard);
2501 static struct attribute *ext4_feat_attrs[] = {
2502 ATTR_LIST(lazy_itable_init),
2503 ATTR_LIST(batched_discard),
2507 static ssize_t ext4_attr_show(struct kobject *kobj,
2508 struct attribute *attr, char *buf)
2510 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2512 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2514 return a->show ? a->show(a, sbi, buf) : 0;
2517 static ssize_t ext4_attr_store(struct kobject *kobj,
2518 struct attribute *attr,
2519 const char *buf, size_t len)
2521 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2523 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2525 return a->store ? a->store(a, sbi, buf, len) : 0;
2528 static void ext4_sb_release(struct kobject *kobj)
2530 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2532 complete(&sbi->s_kobj_unregister);
2535 static const struct sysfs_ops ext4_attr_ops = {
2536 .show = ext4_attr_show,
2537 .store = ext4_attr_store,
2540 static struct kobj_type ext4_ktype = {
2541 .default_attrs = ext4_attrs,
2542 .sysfs_ops = &ext4_attr_ops,
2543 .release = ext4_sb_release,
2546 static void ext4_feat_release(struct kobject *kobj)
2548 complete(&ext4_feat->f_kobj_unregister);
2551 static struct kobj_type ext4_feat_ktype = {
2552 .default_attrs = ext4_feat_attrs,
2553 .sysfs_ops = &ext4_attr_ops,
2554 .release = ext4_feat_release,
2558 * Check whether this filesystem can be mounted based on
2559 * the features present and the RDONLY/RDWR mount requested.
2560 * Returns 1 if this filesystem can be mounted as requested,
2561 * 0 if it cannot be.
2563 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2565 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2566 ext4_msg(sb, KERN_ERR,
2567 "Couldn't mount because of "
2568 "unsupported optional features (%x)",
2569 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2570 ~EXT4_FEATURE_INCOMPAT_SUPP));
2577 /* Check that feature set is OK for a read-write mount */
2578 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2579 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2580 "unsupported optional features (%x)",
2581 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2582 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2586 * Large file size enabled file system can only be mounted
2587 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2589 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2590 if (sizeof(blkcnt_t) < sizeof(u64)) {
2591 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2592 "cannot be mounted RDWR without "
2597 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2598 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2599 ext4_msg(sb, KERN_ERR,
2600 "Can't support bigalloc feature without "
2601 "extents feature\n");
2608 * This function is called once a day if we have errors logged
2609 * on the file system
2611 static void print_daily_error_info(unsigned long arg)
2613 struct super_block *sb = (struct super_block *) arg;
2614 struct ext4_sb_info *sbi;
2615 struct ext4_super_block *es;
2620 if (es->s_error_count)
2621 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2622 le32_to_cpu(es->s_error_count));
2623 if (es->s_first_error_time) {
2624 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2625 sb->s_id, le32_to_cpu(es->s_first_error_time),
2626 (int) sizeof(es->s_first_error_func),
2627 es->s_first_error_func,
2628 le32_to_cpu(es->s_first_error_line));
2629 if (es->s_first_error_ino)
2630 printk(": inode %u",
2631 le32_to_cpu(es->s_first_error_ino));
2632 if (es->s_first_error_block)
2633 printk(": block %llu", (unsigned long long)
2634 le64_to_cpu(es->s_first_error_block));
2637 if (es->s_last_error_time) {
2638 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2639 sb->s_id, le32_to_cpu(es->s_last_error_time),
2640 (int) sizeof(es->s_last_error_func),
2641 es->s_last_error_func,
2642 le32_to_cpu(es->s_last_error_line));
2643 if (es->s_last_error_ino)
2644 printk(": inode %u",
2645 le32_to_cpu(es->s_last_error_ino));
2646 if (es->s_last_error_block)
2647 printk(": block %llu", (unsigned long long)
2648 le64_to_cpu(es->s_last_error_block));
2651 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2654 /* Find next suitable group and run ext4_init_inode_table */
2655 static int ext4_run_li_request(struct ext4_li_request *elr)
2657 struct ext4_group_desc *gdp = NULL;
2658 ext4_group_t group, ngroups;
2659 struct super_block *sb;
2660 unsigned long timeout = 0;
2664 ngroups = EXT4_SB(sb)->s_groups_count;
2666 for (group = elr->lr_next_group; group < ngroups; group++) {
2667 gdp = ext4_get_group_desc(sb, group, NULL);
2673 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2677 if (group == ngroups)
2682 ret = ext4_init_inode_table(sb, group,
2683 elr->lr_timeout ? 0 : 1);
2684 if (elr->lr_timeout == 0) {
2685 timeout = (jiffies - timeout) *
2686 elr->lr_sbi->s_li_wait_mult;
2687 elr->lr_timeout = timeout;
2689 elr->lr_next_sched = jiffies + elr->lr_timeout;
2690 elr->lr_next_group = group + 1;
2697 * Remove lr_request from the list_request and free the
2698 * request structure. Should be called with li_list_mtx held
2700 static void ext4_remove_li_request(struct ext4_li_request *elr)
2702 struct ext4_sb_info *sbi;
2709 list_del(&elr->lr_request);
2710 sbi->s_li_request = NULL;
2714 static void ext4_unregister_li_request(struct super_block *sb)
2716 mutex_lock(&ext4_li_mtx);
2717 if (!ext4_li_info) {
2718 mutex_unlock(&ext4_li_mtx);
2722 mutex_lock(&ext4_li_info->li_list_mtx);
2723 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2724 mutex_unlock(&ext4_li_info->li_list_mtx);
2725 mutex_unlock(&ext4_li_mtx);
2728 static struct task_struct *ext4_lazyinit_task;
2731 * This is the function where ext4lazyinit thread lives. It walks
2732 * through the request list searching for next scheduled filesystem.
2733 * When such a fs is found, run the lazy initialization request
2734 * (ext4_rn_li_request) and keep track of the time spend in this
2735 * function. Based on that time we compute next schedule time of
2736 * the request. When walking through the list is complete, compute
2737 * next waking time and put itself into sleep.
2739 static int ext4_lazyinit_thread(void *arg)
2741 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2742 struct list_head *pos, *n;
2743 struct ext4_li_request *elr;
2744 unsigned long next_wakeup, cur;
2746 BUG_ON(NULL == eli);
2750 next_wakeup = MAX_JIFFY_OFFSET;
2752 mutex_lock(&eli->li_list_mtx);
2753 if (list_empty(&eli->li_request_list)) {
2754 mutex_unlock(&eli->li_list_mtx);
2758 list_for_each_safe(pos, n, &eli->li_request_list) {
2759 elr = list_entry(pos, struct ext4_li_request,
2762 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2763 if (ext4_run_li_request(elr) != 0) {
2764 /* error, remove the lazy_init job */
2765 ext4_remove_li_request(elr);
2770 if (time_before(elr->lr_next_sched, next_wakeup))
2771 next_wakeup = elr->lr_next_sched;
2773 mutex_unlock(&eli->li_list_mtx);
2778 if ((time_after_eq(cur, next_wakeup)) ||
2779 (MAX_JIFFY_OFFSET == next_wakeup)) {
2784 schedule_timeout_interruptible(next_wakeup - cur);
2786 if (kthread_should_stop()) {
2787 ext4_clear_request_list();
2794 * It looks like the request list is empty, but we need
2795 * to check it under the li_list_mtx lock, to prevent any
2796 * additions into it, and of course we should lock ext4_li_mtx
2797 * to atomically free the list and ext4_li_info, because at
2798 * this point another ext4 filesystem could be registering
2801 mutex_lock(&ext4_li_mtx);
2802 mutex_lock(&eli->li_list_mtx);
2803 if (!list_empty(&eli->li_request_list)) {
2804 mutex_unlock(&eli->li_list_mtx);
2805 mutex_unlock(&ext4_li_mtx);
2808 mutex_unlock(&eli->li_list_mtx);
2809 kfree(ext4_li_info);
2810 ext4_li_info = NULL;
2811 mutex_unlock(&ext4_li_mtx);
2816 static void ext4_clear_request_list(void)
2818 struct list_head *pos, *n;
2819 struct ext4_li_request *elr;
2821 mutex_lock(&ext4_li_info->li_list_mtx);
2822 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2823 elr = list_entry(pos, struct ext4_li_request,
2825 ext4_remove_li_request(elr);
2827 mutex_unlock(&ext4_li_info->li_list_mtx);
2830 static int ext4_run_lazyinit_thread(void)
2832 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2833 ext4_li_info, "ext4lazyinit");
2834 if (IS_ERR(ext4_lazyinit_task)) {
2835 int err = PTR_ERR(ext4_lazyinit_task);
2836 ext4_clear_request_list();
2837 kfree(ext4_li_info);
2838 ext4_li_info = NULL;
2839 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2840 "initialization thread\n",
2844 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2849 * Check whether it make sense to run itable init. thread or not.
2850 * If there is at least one uninitialized inode table, return
2851 * corresponding group number, else the loop goes through all
2852 * groups and return total number of groups.
2854 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2856 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2857 struct ext4_group_desc *gdp = NULL;
2859 for (group = 0; group < ngroups; group++) {
2860 gdp = ext4_get_group_desc(sb, group, NULL);
2864 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2871 static int ext4_li_info_new(void)
2873 struct ext4_lazy_init *eli = NULL;
2875 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2879 INIT_LIST_HEAD(&eli->li_request_list);
2880 mutex_init(&eli->li_list_mtx);
2882 eli->li_state |= EXT4_LAZYINIT_QUIT;
2889 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2892 struct ext4_sb_info *sbi = EXT4_SB(sb);
2893 struct ext4_li_request *elr;
2896 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2902 elr->lr_next_group = start;
2905 * Randomize first schedule time of the request to
2906 * spread the inode table initialization requests
2909 get_random_bytes(&rnd, sizeof(rnd));
2910 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2911 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2916 static int ext4_register_li_request(struct super_block *sb,
2917 ext4_group_t first_not_zeroed)
2919 struct ext4_sb_info *sbi = EXT4_SB(sb);
2920 struct ext4_li_request *elr;
2921 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2924 if (sbi->s_li_request != NULL) {
2926 * Reset timeout so it can be computed again, because
2927 * s_li_wait_mult might have changed.
2929 sbi->s_li_request->lr_timeout = 0;
2933 if (first_not_zeroed == ngroups ||
2934 (sb->s_flags & MS_RDONLY) ||
2935 !test_opt(sb, INIT_INODE_TABLE))
2938 elr = ext4_li_request_new(sb, first_not_zeroed);
2942 mutex_lock(&ext4_li_mtx);
2944 if (NULL == ext4_li_info) {
2945 ret = ext4_li_info_new();
2950 mutex_lock(&ext4_li_info->li_list_mtx);
2951 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2952 mutex_unlock(&ext4_li_info->li_list_mtx);
2954 sbi->s_li_request = elr;
2956 * set elr to NULL here since it has been inserted to
2957 * the request_list and the removal and free of it is
2958 * handled by ext4_clear_request_list from now on.
2962 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2963 ret = ext4_run_lazyinit_thread();
2968 mutex_unlock(&ext4_li_mtx);
2975 * We do not need to lock anything since this is called on
2978 static void ext4_destroy_lazyinit_thread(void)
2981 * If thread exited earlier
2982 * there's nothing to be done.
2984 if (!ext4_li_info || !ext4_lazyinit_task)
2987 kthread_stop(ext4_lazyinit_task);
2990 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
2992 char *orig_data = kstrdup(data, GFP_KERNEL);
2993 struct buffer_head *bh;
2994 struct ext4_super_block *es = NULL;
2995 struct ext4_sb_info *sbi;
2997 ext4_fsblk_t sb_block = get_sb_block(&data);
2998 ext4_fsblk_t logical_sb_block;
2999 unsigned long offset = 0;
3000 unsigned long journal_devnum = 0;
3001 unsigned long def_mount_opts;
3006 int blocksize, clustersize;
3007 unsigned int db_count;
3009 int needs_recovery, has_huge_files, has_bigalloc;
3012 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3013 ext4_group_t first_not_zeroed;
3015 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3019 sbi->s_blockgroup_lock =
3020 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3021 if (!sbi->s_blockgroup_lock) {
3025 sb->s_fs_info = sbi;
3026 sbi->s_mount_opt = 0;
3027 sbi->s_resuid = EXT4_DEF_RESUID;
3028 sbi->s_resgid = EXT4_DEF_RESGID;
3029 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3030 sbi->s_sb_block = sb_block;
3031 if (sb->s_bdev->bd_part)
3032 sbi->s_sectors_written_start =
3033 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3035 /* Cleanup superblock name */
3036 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3040 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3042 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3047 * The ext4 superblock will not be buffer aligned for other than 1kB
3048 * block sizes. We need to calculate the offset from buffer start.
3050 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3051 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3052 offset = do_div(logical_sb_block, blocksize);
3054 logical_sb_block = sb_block;
3057 if (!(bh = sb_bread(sb, logical_sb_block))) {
3058 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3062 * Note: s_es must be initialized as soon as possible because
3063 * some ext4 macro-instructions depend on its value
3065 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3067 sb->s_magic = le16_to_cpu(es->s_magic);
3068 if (sb->s_magic != EXT4_SUPER_MAGIC)
3070 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3072 /* Check for a known checksum algorithm */
3073 if (!ext4_verify_csum_type(sb, es)) {
3074 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3075 "unknown checksum algorithm.");
3080 /* Load the checksum driver */
3081 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3082 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3083 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3084 if (IS_ERR(sbi->s_chksum_driver)) {
3085 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3086 ret = PTR_ERR(sbi->s_chksum_driver);
3087 sbi->s_chksum_driver = NULL;
3092 /* Check superblock checksum */
3093 if (!ext4_superblock_csum_verify(sb, es)) {
3094 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3095 "invalid superblock checksum. Run e2fsck?");
3100 /* Precompute checksum seed for all metadata */
3101 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3102 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3103 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3104 sizeof(es->s_uuid));
3106 /* Set defaults before we parse the mount options */
3107 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3108 set_opt(sb, INIT_INODE_TABLE);
3109 if (def_mount_opts & EXT4_DEFM_DEBUG)
3111 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3113 if (def_mount_opts & EXT4_DEFM_UID16)
3114 set_opt(sb, NO_UID32);
3115 /* xattr user namespace & acls are now defaulted on */
3116 #ifdef CONFIG_EXT4_FS_XATTR
3117 set_opt(sb, XATTR_USER);
3119 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3120 set_opt(sb, POSIX_ACL);
3122 set_opt(sb, MBLK_IO_SUBMIT);
3123 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3124 set_opt(sb, JOURNAL_DATA);
3125 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3126 set_opt(sb, ORDERED_DATA);
3127 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3128 set_opt(sb, WRITEBACK_DATA);
3130 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3131 set_opt(sb, ERRORS_PANIC);
3132 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3133 set_opt(sb, ERRORS_CONT);
3135 set_opt(sb, ERRORS_RO);
3136 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3137 set_opt(sb, BLOCK_VALIDITY);
3138 if (def_mount_opts & EXT4_DEFM_DISCARD)
3139 set_opt(sb, DISCARD);
3141 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3142 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3143 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3144 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3145 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3147 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3148 set_opt(sb, BARRIER);
3151 * enable delayed allocation by default
3152 * Use -o nodelalloc to turn it off
3154 if (!IS_EXT3_SB(sb) &&
3155 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3156 set_opt(sb, DELALLOC);
3159 * set default s_li_wait_mult for lazyinit, for the case there is
3160 * no mount option specified.
3162 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3164 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3165 &journal_devnum, &journal_ioprio, 0)) {
3166 ext4_msg(sb, KERN_WARNING,
3167 "failed to parse options in superblock: %s",
3168 sbi->s_es->s_mount_opts);
3170 sbi->s_def_mount_opt = sbi->s_mount_opt;
3171 if (!parse_options((char *) data, sb, &journal_devnum,
3172 &journal_ioprio, 0))
3175 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3176 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3177 "with data=journal disables delayed "
3178 "allocation and O_DIRECT support!\n");
3179 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3180 ext4_msg(sb, KERN_ERR, "can't mount with "
3181 "both data=journal and delalloc");
3184 if (test_opt(sb, DIOREAD_NOLOCK)) {
3185 ext4_msg(sb, KERN_ERR, "can't mount with "
3186 "both data=journal and delalloc");
3189 if (test_opt(sb, DELALLOC))
3190 clear_opt(sb, DELALLOC);
3193 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3194 if (test_opt(sb, DIOREAD_NOLOCK)) {
3195 if (blocksize < PAGE_SIZE) {
3196 ext4_msg(sb, KERN_ERR, "can't mount with "
3197 "dioread_nolock if block size != PAGE_SIZE");
3202 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3203 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3205 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3206 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3207 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3208 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3209 ext4_msg(sb, KERN_WARNING,
3210 "feature flags set on rev 0 fs, "
3211 "running e2fsck is recommended");
3213 if (IS_EXT2_SB(sb)) {
3214 if (ext2_feature_set_ok(sb))
3215 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3216 "using the ext4 subsystem");
3218 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3219 "to feature incompatibilities");
3224 if (IS_EXT3_SB(sb)) {
3225 if (ext3_feature_set_ok(sb))
3226 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3227 "using the ext4 subsystem");
3229 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3230 "to feature incompatibilities");
3236 * Check feature flags regardless of the revision level, since we
3237 * previously didn't change the revision level when setting the flags,
3238 * so there is a chance incompat flags are set on a rev 0 filesystem.
3240 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3243 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3244 blocksize > EXT4_MAX_BLOCK_SIZE) {
3245 ext4_msg(sb, KERN_ERR,
3246 "Unsupported filesystem blocksize %d", blocksize);
3250 if (sb->s_blocksize != blocksize) {
3251 /* Validate the filesystem blocksize */
3252 if (!sb_set_blocksize(sb, blocksize)) {
3253 ext4_msg(sb, KERN_ERR, "bad block size %d",
3259 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3260 offset = do_div(logical_sb_block, blocksize);
3261 bh = sb_bread(sb, logical_sb_block);
3263 ext4_msg(sb, KERN_ERR,
3264 "Can't read superblock on 2nd try");
3267 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3269 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3270 ext4_msg(sb, KERN_ERR,
3271 "Magic mismatch, very weird!");
3276 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3277 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3278 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3280 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3282 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3283 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3284 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3286 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3287 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3288 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3289 (!is_power_of_2(sbi->s_inode_size)) ||
3290 (sbi->s_inode_size > blocksize)) {
3291 ext4_msg(sb, KERN_ERR,
3292 "unsupported inode size: %d",
3296 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3297 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3300 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3301 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3302 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3303 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3304 !is_power_of_2(sbi->s_desc_size)) {
3305 ext4_msg(sb, KERN_ERR,
3306 "unsupported descriptor size %lu",
3311 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3313 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3314 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3315 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3318 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3319 if (sbi->s_inodes_per_block == 0)
3321 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3322 sbi->s_inodes_per_block;
3323 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3325 sbi->s_mount_state = le16_to_cpu(es->s_state);
3326 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3327 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3329 for (i = 0; i < 4; i++)
3330 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3331 sbi->s_def_hash_version = es->s_def_hash_version;
3332 i = le32_to_cpu(es->s_flags);
3333 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3334 sbi->s_hash_unsigned = 3;
3335 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3336 #ifdef __CHAR_UNSIGNED__
3337 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3338 sbi->s_hash_unsigned = 3;
3340 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3344 /* Handle clustersize */
3345 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3346 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3347 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3349 if (clustersize < blocksize) {
3350 ext4_msg(sb, KERN_ERR,
3351 "cluster size (%d) smaller than "
3352 "block size (%d)", clustersize, blocksize);
3355 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3356 le32_to_cpu(es->s_log_block_size);
3357 sbi->s_clusters_per_group =
3358 le32_to_cpu(es->s_clusters_per_group);
3359 if (sbi->s_clusters_per_group > blocksize * 8) {
3360 ext4_msg(sb, KERN_ERR,
3361 "#clusters per group too big: %lu",
3362 sbi->s_clusters_per_group);
3365 if (sbi->s_blocks_per_group !=
3366 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3367 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3368 "clusters per group (%lu) inconsistent",
3369 sbi->s_blocks_per_group,
3370 sbi->s_clusters_per_group);
3374 if (clustersize != blocksize) {
3375 ext4_warning(sb, "fragment/cluster size (%d) != "
3376 "block size (%d)", clustersize,
3378 clustersize = blocksize;
3380 if (sbi->s_blocks_per_group > blocksize * 8) {
3381 ext4_msg(sb, KERN_ERR,
3382 "#blocks per group too big: %lu",
3383 sbi->s_blocks_per_group);
3386 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3387 sbi->s_cluster_bits = 0;
3389 sbi->s_cluster_ratio = clustersize / blocksize;
3391 if (sbi->s_inodes_per_group > blocksize * 8) {
3392 ext4_msg(sb, KERN_ERR,
3393 "#inodes per group too big: %lu",
3394 sbi->s_inodes_per_group);
3399 * Test whether we have more sectors than will fit in sector_t,
3400 * and whether the max offset is addressable by the page cache.
3402 err = generic_check_addressable(sb->s_blocksize_bits,
3403 ext4_blocks_count(es));
3405 ext4_msg(sb, KERN_ERR, "filesystem"
3406 " too large to mount safely on this system");
3407 if (sizeof(sector_t) < 8)
3408 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3413 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3416 /* check blocks count against device size */
3417 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3418 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3419 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3420 "exceeds size of device (%llu blocks)",
3421 ext4_blocks_count(es), blocks_count);
3426 * It makes no sense for the first data block to be beyond the end
3427 * of the filesystem.
3429 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3430 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3431 "block %u is beyond end of filesystem (%llu)",
3432 le32_to_cpu(es->s_first_data_block),
3433 ext4_blocks_count(es));
3436 blocks_count = (ext4_blocks_count(es) -
3437 le32_to_cpu(es->s_first_data_block) +
3438 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3439 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3440 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3441 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3442 "(block count %llu, first data block %u, "
3443 "blocks per group %lu)", sbi->s_groups_count,
3444 ext4_blocks_count(es),
3445 le32_to_cpu(es->s_first_data_block),
3446 EXT4_BLOCKS_PER_GROUP(sb));
3449 sbi->s_groups_count = blocks_count;
3450 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3451 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3452 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3453 EXT4_DESC_PER_BLOCK(sb);
3454 sbi->s_group_desc = ext4_kvmalloc(db_count *
3455 sizeof(struct buffer_head *),
3457 if (sbi->s_group_desc == NULL) {
3458 ext4_msg(sb, KERN_ERR, "not enough memory");
3463 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3466 proc_create_data("options", S_IRUGO, sbi->s_proc,
3467 &ext4_seq_options_fops, sb);
3469 bgl_lock_init(sbi->s_blockgroup_lock);
3471 for (i = 0; i < db_count; i++) {
3472 block = descriptor_loc(sb, logical_sb_block, i);
3473 sbi->s_group_desc[i] = sb_bread(sb, block);
3474 if (!sbi->s_group_desc[i]) {
3475 ext4_msg(sb, KERN_ERR,
3476 "can't read group descriptor %d", i);
3481 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3482 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3485 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3486 if (!ext4_fill_flex_info(sb)) {
3487 ext4_msg(sb, KERN_ERR,
3488 "unable to initialize "
3489 "flex_bg meta info!");
3493 sbi->s_gdb_count = db_count;
3494 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3495 spin_lock_init(&sbi->s_next_gen_lock);
3497 init_timer(&sbi->s_err_report);
3498 sbi->s_err_report.function = print_daily_error_info;
3499 sbi->s_err_report.data = (unsigned long) sb;
3501 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3502 ext4_count_free_clusters(sb));
3504 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3505 ext4_count_free_inodes(sb));
3508 err = percpu_counter_init(&sbi->s_dirs_counter,
3509 ext4_count_dirs(sb));
3512 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3515 ext4_msg(sb, KERN_ERR, "insufficient memory");
3519 sbi->s_stripe = ext4_get_stripe_size(sbi);
3520 sbi->s_max_writeback_mb_bump = 128;
3523 * set up enough so that it can read an inode
3525 if (!test_opt(sb, NOLOAD) &&
3526 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3527 sb->s_op = &ext4_sops;
3529 sb->s_op = &ext4_nojournal_sops;
3530 sb->s_export_op = &ext4_export_ops;
3531 sb->s_xattr = ext4_xattr_handlers;
3533 sb->s_qcop = &ext4_qctl_operations;
3534 sb->dq_op = &ext4_quota_operations;
3536 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3538 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3539 mutex_init(&sbi->s_orphan_lock);
3540 sbi->s_resize_flags = 0;
3544 needs_recovery = (es->s_last_orphan != 0 ||
3545 EXT4_HAS_INCOMPAT_FEATURE(sb,
3546 EXT4_FEATURE_INCOMPAT_RECOVER));
3548 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3549 !(sb->s_flags & MS_RDONLY))
3550 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3554 * The first inode we look at is the journal inode. Don't try
3555 * root first: it may be modified in the journal!
3557 if (!test_opt(sb, NOLOAD) &&
3558 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3559 if (ext4_load_journal(sb, es, journal_devnum))
3561 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3562 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3563 ext4_msg(sb, KERN_ERR, "required journal recovery "
3564 "suppressed and not mounted read-only");
3565 goto failed_mount_wq;
3567 clear_opt(sb, DATA_FLAGS);
3568 sbi->s_journal = NULL;
3573 if (ext4_blocks_count(es) > 0xffffffffULL &&
3574 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3575 JBD2_FEATURE_INCOMPAT_64BIT)) {
3576 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3577 goto failed_mount_wq;
3580 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3581 jbd2_journal_set_features(sbi->s_journal,
3582 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3583 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3584 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3585 jbd2_journal_set_features(sbi->s_journal,
3586 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3587 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3588 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3590 jbd2_journal_clear_features(sbi->s_journal,
3591 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3592 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3595 /* We have now updated the journal if required, so we can
3596 * validate the data journaling mode. */
3597 switch (test_opt(sb, DATA_FLAGS)) {
3599 /* No mode set, assume a default based on the journal
3600 * capabilities: ORDERED_DATA if the journal can
3601 * cope, else JOURNAL_DATA
3603 if (jbd2_journal_check_available_features
3604 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3605 set_opt(sb, ORDERED_DATA);
3607 set_opt(sb, JOURNAL_DATA);
3610 case EXT4_MOUNT_ORDERED_DATA:
3611 case EXT4_MOUNT_WRITEBACK_DATA:
3612 if (!jbd2_journal_check_available_features
3613 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3614 ext4_msg(sb, KERN_ERR, "Journal does not support "
3615 "requested data journaling mode");
3616 goto failed_mount_wq;
3621 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3623 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3626 * The journal may have updated the bg summary counts, so we
3627 * need to update the global counters.
3629 percpu_counter_set(&sbi->s_freeclusters_counter,
3630 ext4_count_free_clusters(sb));
3631 percpu_counter_set(&sbi->s_freeinodes_counter,
3632 ext4_count_free_inodes(sb));
3633 percpu_counter_set(&sbi->s_dirs_counter,
3634 ext4_count_dirs(sb));
3635 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3639 * The maximum number of concurrent works can be high and
3640 * concurrency isn't really necessary. Limit it to 1.
3642 EXT4_SB(sb)->dio_unwritten_wq =
3643 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3644 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3645 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3646 goto failed_mount_wq;
3650 * The jbd2_journal_load will have done any necessary log recovery,
3651 * so we can safely mount the rest of the filesystem now.
3654 root = ext4_iget(sb, EXT4_ROOT_INO);
3656 ext4_msg(sb, KERN_ERR, "get root inode failed");
3657 ret = PTR_ERR(root);
3661 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3662 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3666 sb->s_root = d_make_root(root);
3668 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3673 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3675 /* determine the minimum size of new large inodes, if present */
3676 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3677 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3678 EXT4_GOOD_OLD_INODE_SIZE;
3679 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3680 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3681 if (sbi->s_want_extra_isize <
3682 le16_to_cpu(es->s_want_extra_isize))
3683 sbi->s_want_extra_isize =
3684 le16_to_cpu(es->s_want_extra_isize);
3685 if (sbi->s_want_extra_isize <
3686 le16_to_cpu(es->s_min_extra_isize))
3687 sbi->s_want_extra_isize =
3688 le16_to_cpu(es->s_min_extra_isize);
3691 /* Check if enough inode space is available */
3692 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3693 sbi->s_inode_size) {
3694 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3695 EXT4_GOOD_OLD_INODE_SIZE;
3696 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3700 err = ext4_setup_system_zone(sb);
3702 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3704 goto failed_mount4a;
3708 err = ext4_mb_init(sb, needs_recovery);
3710 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3715 err = ext4_register_li_request(sb, first_not_zeroed);
3719 sbi->s_kobj.kset = ext4_kset;
3720 init_completion(&sbi->s_kobj_unregister);
3721 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3726 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3727 ext4_orphan_cleanup(sb, es);
3728 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3729 if (needs_recovery) {
3730 ext4_msg(sb, KERN_INFO, "recovery complete");
3731 ext4_mark_recovery_complete(sb, es);
3733 if (EXT4_SB(sb)->s_journal) {
3734 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3735 descr = " journalled data mode";
3736 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3737 descr = " ordered data mode";
3739 descr = " writeback data mode";
3741 descr = "out journal";
3743 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3744 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3745 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3747 if (es->s_error_count)
3748 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3755 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3759 ext4_unregister_li_request(sb);
3761 ext4_mb_release(sb);
3763 ext4_ext_release(sb);
3764 ext4_release_system_zone(sb);
3769 ext4_msg(sb, KERN_ERR, "mount failed");
3770 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3772 if (sbi->s_journal) {
3773 jbd2_journal_destroy(sbi->s_journal);
3774 sbi->s_journal = NULL;
3777 del_timer(&sbi->s_err_report);
3778 if (sbi->s_flex_groups)
3779 ext4_kvfree(sbi->s_flex_groups);
3780 percpu_counter_destroy(&sbi->s_freeclusters_counter);
3781 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3782 percpu_counter_destroy(&sbi->s_dirs_counter);
3783 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
3785 kthread_stop(sbi->s_mmp_tsk);
3787 for (i = 0; i < db_count; i++)
3788 brelse(sbi->s_group_desc[i]);
3789 ext4_kvfree(sbi->s_group_desc);
3791 if (sbi->s_chksum_driver)
3792 crypto_free_shash(sbi->s_chksum_driver);
3794 remove_proc_entry("options", sbi->s_proc);
3795 remove_proc_entry(sb->s_id, ext4_proc_root);
3798 for (i = 0; i < MAXQUOTAS; i++)
3799 kfree(sbi->s_qf_names[i]);
3801 ext4_blkdev_remove(sbi);
3804 sb->s_fs_info = NULL;
3805 kfree(sbi->s_blockgroup_lock);
3813 * Setup any per-fs journal parameters now. We'll do this both on
3814 * initial mount, once the journal has been initialised but before we've
3815 * done any recovery; and again on any subsequent remount.
3817 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3819 struct ext4_sb_info *sbi = EXT4_SB(sb);
3821 journal->j_commit_interval = sbi->s_commit_interval;
3822 journal->j_min_batch_time = sbi->s_min_batch_time;
3823 journal->j_max_batch_time = sbi->s_max_batch_time;
3825 write_lock(&journal->j_state_lock);
3826 if (test_opt(sb, BARRIER))
3827 journal->j_flags |= JBD2_BARRIER;
3829 journal->j_flags &= ~JBD2_BARRIER;
3830 if (test_opt(sb, DATA_ERR_ABORT))
3831 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3833 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3834 write_unlock(&journal->j_state_lock);
3837 static journal_t *ext4_get_journal(struct super_block *sb,
3838 unsigned int journal_inum)
3840 struct inode *journal_inode;
3843 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3845 /* First, test for the existence of a valid inode on disk. Bad
3846 * things happen if we iget() an unused inode, as the subsequent
3847 * iput() will try to delete it. */
3849 journal_inode = ext4_iget(sb, journal_inum);
3850 if (IS_ERR(journal_inode)) {
3851 ext4_msg(sb, KERN_ERR, "no journal found");
3854 if (!journal_inode->i_nlink) {
3855 make_bad_inode(journal_inode);
3856 iput(journal_inode);
3857 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3861 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3862 journal_inode, journal_inode->i_size);
3863 if (!S_ISREG(journal_inode->i_mode)) {
3864 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3865 iput(journal_inode);
3869 journal = jbd2_journal_init_inode(journal_inode);
3871 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3872 iput(journal_inode);
3875 journal->j_private = sb;
3876 ext4_init_journal_params(sb, journal);
3880 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3883 struct buffer_head *bh;
3887 int hblock, blocksize;
3888 ext4_fsblk_t sb_block;
3889 unsigned long offset;
3890 struct ext4_super_block *es;
3891 struct block_device *bdev;
3893 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3895 bdev = ext4_blkdev_get(j_dev, sb);
3899 blocksize = sb->s_blocksize;
3900 hblock = bdev_logical_block_size(bdev);
3901 if (blocksize < hblock) {
3902 ext4_msg(sb, KERN_ERR,
3903 "blocksize too small for journal device");
3907 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3908 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3909 set_blocksize(bdev, blocksize);
3910 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3911 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3912 "external journal");
3916 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3917 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3918 !(le32_to_cpu(es->s_feature_incompat) &
3919 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3920 ext4_msg(sb, KERN_ERR, "external journal has "
3926 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3927 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3932 len = ext4_blocks_count(es);
3933 start = sb_block + 1;
3934 brelse(bh); /* we're done with the superblock */
3936 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3937 start, len, blocksize);
3939 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3942 journal->j_private = sb;
3943 ll_rw_block(READ, 1, &journal->j_sb_buffer);
3944 wait_on_buffer(journal->j_sb_buffer);
3945 if (!buffer_uptodate(journal->j_sb_buffer)) {
3946 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3949 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3950 ext4_msg(sb, KERN_ERR, "External journal has more than one "
3951 "user (unsupported) - %d",
3952 be32_to_cpu(journal->j_superblock->s_nr_users));
3955 EXT4_SB(sb)->journal_bdev = bdev;
3956 ext4_init_journal_params(sb, journal);
3960 jbd2_journal_destroy(journal);
3962 ext4_blkdev_put(bdev);
3966 static int ext4_load_journal(struct super_block *sb,
3967 struct ext4_super_block *es,
3968 unsigned long journal_devnum)
3971 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3974 int really_read_only;
3976 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3978 if (journal_devnum &&
3979 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3980 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3981 "numbers have changed");
3982 journal_dev = new_decode_dev(journal_devnum);
3984 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3986 really_read_only = bdev_read_only(sb->s_bdev);
3989 * Are we loading a blank journal or performing recovery after a
3990 * crash? For recovery, we need to check in advance whether we
3991 * can get read-write access to the device.
3993 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3994 if (sb->s_flags & MS_RDONLY) {
3995 ext4_msg(sb, KERN_INFO, "INFO: recovery "
3996 "required on readonly filesystem");
3997 if (really_read_only) {
3998 ext4_msg(sb, KERN_ERR, "write access "
3999 "unavailable, cannot proceed");
4002 ext4_msg(sb, KERN_INFO, "write access will "
4003 "be enabled during recovery");
4007 if (journal_inum && journal_dev) {
4008 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4009 "and inode journals!");
4014 if (!(journal = ext4_get_journal(sb, journal_inum)))
4017 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4021 if (!(journal->j_flags & JBD2_BARRIER))
4022 ext4_msg(sb, KERN_INFO, "barriers disabled");
4024 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4025 err = jbd2_journal_wipe(journal, !really_read_only);
4027 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4029 memcpy(save, ((char *) es) +
4030 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4031 err = jbd2_journal_load(journal);
4033 memcpy(((char *) es) + EXT4_S_ERR_START,
4034 save, EXT4_S_ERR_LEN);
4039 ext4_msg(sb, KERN_ERR, "error loading journal");
4040 jbd2_journal_destroy(journal);
4044 EXT4_SB(sb)->s_journal = journal;
4045 ext4_clear_journal_err(sb, es);
4047 if (!really_read_only && journal_devnum &&
4048 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4049 es->s_journal_dev = cpu_to_le32(journal_devnum);
4051 /* Make sure we flush the recovery flag to disk. */
4052 ext4_commit_super(sb, 1);
4058 static int ext4_commit_super(struct super_block *sb, int sync)
4060 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4061 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4064 if (!sbh || block_device_ejected(sb))
4066 if (buffer_write_io_error(sbh)) {
4068 * Oh, dear. A previous attempt to write the
4069 * superblock failed. This could happen because the
4070 * USB device was yanked out. Or it could happen to
4071 * be a transient write error and maybe the block will
4072 * be remapped. Nothing we can do but to retry the
4073 * write and hope for the best.
4075 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4076 "superblock detected");
4077 clear_buffer_write_io_error(sbh);
4078 set_buffer_uptodate(sbh);
4081 * If the file system is mounted read-only, don't update the
4082 * superblock write time. This avoids updating the superblock
4083 * write time when we are mounting the root file system
4084 * read/only but we need to replay the journal; at that point,
4085 * for people who are east of GMT and who make their clock
4086 * tick in localtime for Windows bug-for-bug compatibility,
4087 * the clock is set in the future, and this will cause e2fsck
4088 * to complain and force a full file system check.
4090 if (!(sb->s_flags & MS_RDONLY))
4091 es->s_wtime = cpu_to_le32(get_seconds());
4092 if (sb->s_bdev->bd_part)
4093 es->s_kbytes_written =
4094 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4095 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4096 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4098 es->s_kbytes_written =
4099 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4100 ext4_free_blocks_count_set(es,
4101 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4102 &EXT4_SB(sb)->s_freeclusters_counter)));
4103 es->s_free_inodes_count =
4104 cpu_to_le32(percpu_counter_sum_positive(
4105 &EXT4_SB(sb)->s_freeinodes_counter));
4107 BUFFER_TRACE(sbh, "marking dirty");
4108 ext4_superblock_csum_set(sb, es);
4109 mark_buffer_dirty(sbh);
4111 error = sync_dirty_buffer(sbh);
4115 error = buffer_write_io_error(sbh);
4117 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4119 clear_buffer_write_io_error(sbh);
4120 set_buffer_uptodate(sbh);
4127 * Have we just finished recovery? If so, and if we are mounting (or
4128 * remounting) the filesystem readonly, then we will end up with a
4129 * consistent fs on disk. Record that fact.
4131 static void ext4_mark_recovery_complete(struct super_block *sb,
4132 struct ext4_super_block *es)
4134 journal_t *journal = EXT4_SB(sb)->s_journal;
4136 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4137 BUG_ON(journal != NULL);
4140 jbd2_journal_lock_updates(journal);
4141 if (jbd2_journal_flush(journal) < 0)
4144 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4145 sb->s_flags & MS_RDONLY) {
4146 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4147 ext4_commit_super(sb, 1);
4151 jbd2_journal_unlock_updates(journal);
4155 * If we are mounting (or read-write remounting) a filesystem whose journal
4156 * has recorded an error from a previous lifetime, move that error to the
4157 * main filesystem now.
4159 static void ext4_clear_journal_err(struct super_block *sb,
4160 struct ext4_super_block *es)
4166 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4168 journal = EXT4_SB(sb)->s_journal;
4171 * Now check for any error status which may have been recorded in the
4172 * journal by a prior ext4_error() or ext4_abort()
4175 j_errno = jbd2_journal_errno(journal);
4179 errstr = ext4_decode_error(sb, j_errno, nbuf);
4180 ext4_warning(sb, "Filesystem error recorded "
4181 "from previous mount: %s", errstr);
4182 ext4_warning(sb, "Marking fs in need of filesystem check.");
4184 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4185 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4186 ext4_commit_super(sb, 1);
4188 jbd2_journal_clear_err(journal);
4193 * Force the running and committing transactions to commit,
4194 * and wait on the commit.
4196 int ext4_force_commit(struct super_block *sb)
4201 if (sb->s_flags & MS_RDONLY)
4204 journal = EXT4_SB(sb)->s_journal;
4206 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4207 ret = ext4_journal_force_commit(journal);
4213 static void ext4_write_super(struct super_block *sb)
4216 ext4_commit_super(sb, 1);
4220 static int ext4_sync_fs(struct super_block *sb, int wait)
4224 struct ext4_sb_info *sbi = EXT4_SB(sb);
4226 trace_ext4_sync_fs(sb, wait);
4227 flush_workqueue(sbi->dio_unwritten_wq);
4228 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4230 jbd2_log_wait_commit(sbi->s_journal, target);
4236 * LVM calls this function before a (read-only) snapshot is created. This
4237 * gives us a chance to flush the journal completely and mark the fs clean.
4239 * Note that only this function cannot bring a filesystem to be in a clean
4240 * state independently, because ext4 prevents a new handle from being started
4241 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from
4244 static int ext4_freeze(struct super_block *sb)
4249 if (sb->s_flags & MS_RDONLY)
4252 journal = EXT4_SB(sb)->s_journal;
4254 /* Now we set up the journal barrier. */
4255 jbd2_journal_lock_updates(journal);
4258 * Don't clear the needs_recovery flag if we failed to flush
4261 error = jbd2_journal_flush(journal);
4265 /* Journal blocked and flushed, clear needs_recovery flag. */
4266 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4267 error = ext4_commit_super(sb, 1);
4269 /* we rely on s_frozen to stop further updates */
4270 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4275 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4276 * flag here, even though the filesystem is not technically dirty yet.
4278 static int ext4_unfreeze(struct super_block *sb)
4280 if (sb->s_flags & MS_RDONLY)
4284 /* Reset the needs_recovery flag before the fs is unlocked. */
4285 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4286 ext4_commit_super(sb, 1);
4292 * Structure to save mount options for ext4_remount's benefit
4294 struct ext4_mount_options {
4295 unsigned long s_mount_opt;
4296 unsigned long s_mount_opt2;
4299 unsigned long s_commit_interval;
4300 u32 s_min_batch_time, s_max_batch_time;
4303 char *s_qf_names[MAXQUOTAS];
4307 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4309 struct ext4_super_block *es;
4310 struct ext4_sb_info *sbi = EXT4_SB(sb);
4311 unsigned long old_sb_flags;
4312 struct ext4_mount_options old_opts;
4313 int enable_quota = 0;
4315 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4320 char *orig_data = kstrdup(data, GFP_KERNEL);
4322 /* Store the original options */
4324 old_sb_flags = sb->s_flags;
4325 old_opts.s_mount_opt = sbi->s_mount_opt;
4326 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4327 old_opts.s_resuid = sbi->s_resuid;
4328 old_opts.s_resgid = sbi->s_resgid;
4329 old_opts.s_commit_interval = sbi->s_commit_interval;
4330 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4331 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4333 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4334 for (i = 0; i < MAXQUOTAS; i++)
4335 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4337 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4338 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4341 * Allow the "check" option to be passed as a remount option.
4343 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4348 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4349 ext4_abort(sb, "Abort forced by user");
4351 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4352 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4356 if (sbi->s_journal) {
4357 ext4_init_journal_params(sb, sbi->s_journal);
4358 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4361 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4362 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4367 if (*flags & MS_RDONLY) {
4368 err = dquot_suspend(sb, -1);
4373 * First of all, the unconditional stuff we have to do
4374 * to disable replay of the journal when we next remount
4376 sb->s_flags |= MS_RDONLY;
4379 * OK, test if we are remounting a valid rw partition
4380 * readonly, and if so set the rdonly flag and then
4381 * mark the partition as valid again.
4383 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4384 (sbi->s_mount_state & EXT4_VALID_FS))
4385 es->s_state = cpu_to_le16(sbi->s_mount_state);
4388 ext4_mark_recovery_complete(sb, es);
4390 /* Make sure we can mount this feature set readwrite */
4391 if (!ext4_feature_set_ok(sb, 0)) {
4396 * Make sure the group descriptor checksums
4397 * are sane. If they aren't, refuse to remount r/w.
4399 for (g = 0; g < sbi->s_groups_count; g++) {
4400 struct ext4_group_desc *gdp =
4401 ext4_get_group_desc(sb, g, NULL);
4403 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4404 ext4_msg(sb, KERN_ERR,
4405 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4406 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4407 le16_to_cpu(gdp->bg_checksum));
4414 * If we have an unprocessed orphan list hanging
4415 * around from a previously readonly bdev mount,
4416 * require a full umount/remount for now.
4418 if (es->s_last_orphan) {
4419 ext4_msg(sb, KERN_WARNING, "Couldn't "
4420 "remount RDWR because of unprocessed "
4421 "orphan inode list. Please "
4422 "umount/remount instead");
4428 * Mounting a RDONLY partition read-write, so reread
4429 * and store the current valid flag. (It may have
4430 * been changed by e2fsck since we originally mounted
4434 ext4_clear_journal_err(sb, es);
4435 sbi->s_mount_state = le16_to_cpu(es->s_state);
4436 if (!ext4_setup_super(sb, es, 0))
4437 sb->s_flags &= ~MS_RDONLY;
4438 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4439 EXT4_FEATURE_INCOMPAT_MMP))
4440 if (ext4_multi_mount_protect(sb,
4441 le64_to_cpu(es->s_mmp_block))) {
4450 * Reinitialize lazy itable initialization thread based on
4453 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4454 ext4_unregister_li_request(sb);
4456 ext4_group_t first_not_zeroed;
4457 first_not_zeroed = ext4_has_uninit_itable(sb);
4458 ext4_register_li_request(sb, first_not_zeroed);
4461 ext4_setup_system_zone(sb);
4462 if (sbi->s_journal == NULL)
4463 ext4_commit_super(sb, 1);
4466 /* Release old quota file names */
4467 for (i = 0; i < MAXQUOTAS; i++)
4468 if (old_opts.s_qf_names[i] &&
4469 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4470 kfree(old_opts.s_qf_names[i]);
4474 dquot_resume(sb, -1);
4476 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4481 sb->s_flags = old_sb_flags;
4482 sbi->s_mount_opt = old_opts.s_mount_opt;
4483 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4484 sbi->s_resuid = old_opts.s_resuid;
4485 sbi->s_resgid = old_opts.s_resgid;
4486 sbi->s_commit_interval = old_opts.s_commit_interval;
4487 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4488 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4490 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4491 for (i = 0; i < MAXQUOTAS; i++) {
4492 if (sbi->s_qf_names[i] &&
4493 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4494 kfree(sbi->s_qf_names[i]);
4495 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4504 * Note: calculating the overhead so we can be compatible with
4505 * historical BSD practice is quite difficult in the face of
4506 * clusters/bigalloc. This is because multiple metadata blocks from
4507 * different block group can end up in the same allocation cluster.
4508 * Calculating the exact overhead in the face of clustered allocation
4509 * requires either O(all block bitmaps) in memory or O(number of block
4510 * groups**2) in time. We will still calculate the superblock for
4511 * older file systems --- and if we come across with a bigalloc file
4512 * system with zero in s_overhead_clusters the estimate will be close to
4513 * correct especially for very large cluster sizes --- but for newer
4514 * file systems, it's better to calculate this figure once at mkfs
4515 * time, and store it in the superblock. If the superblock value is
4516 * present (even for non-bigalloc file systems), we will use it.
4518 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4520 struct super_block *sb = dentry->d_sb;
4521 struct ext4_sb_info *sbi = EXT4_SB(sb);
4522 struct ext4_super_block *es = sbi->s_es;
4523 struct ext4_group_desc *gdp;
4527 if (test_opt(sb, MINIX_DF)) {
4528 sbi->s_overhead_last = 0;
4529 } else if (es->s_overhead_clusters) {
4530 sbi->s_overhead_last = le32_to_cpu(es->s_overhead_clusters);
4531 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4532 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4533 ext4_fsblk_t overhead = 0;
4536 * Compute the overhead (FS structures). This is constant
4537 * for a given filesystem unless the number of block groups
4538 * changes so we cache the previous value until it does.
4542 * All of the blocks before first_data_block are
4545 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4548 * Add the overhead found in each block group
4550 for (i = 0; i < ngroups; i++) {
4551 gdp = ext4_get_group_desc(sb, i, NULL);
4552 overhead += ext4_num_overhead_clusters(sb, i, gdp);
4555 sbi->s_overhead_last = overhead;
4557 sbi->s_blocks_last = ext4_blocks_count(es);
4560 buf->f_type = EXT4_SUPER_MAGIC;
4561 buf->f_bsize = sb->s_blocksize;
4562 buf->f_blocks = (ext4_blocks_count(es) -
4563 EXT4_C2B(sbi, sbi->s_overhead_last));
4564 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4565 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4566 /* prevent underflow in case that few free space is available */
4567 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4568 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4569 if (buf->f_bfree < ext4_r_blocks_count(es))
4571 buf->f_files = le32_to_cpu(es->s_inodes_count);
4572 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4573 buf->f_namelen = EXT4_NAME_LEN;
4574 fsid = le64_to_cpup((void *)es->s_uuid) ^
4575 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4576 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4577 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4582 /* Helper function for writing quotas on sync - we need to start transaction
4583 * before quota file is locked for write. Otherwise the are possible deadlocks:
4584 * Process 1 Process 2
4585 * ext4_create() quota_sync()
4586 * jbd2_journal_start() write_dquot()
4587 * dquot_initialize() down(dqio_mutex)
4588 * down(dqio_mutex) jbd2_journal_start()
4594 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4596 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4599 static int ext4_write_dquot(struct dquot *dquot)
4603 struct inode *inode;
4605 inode = dquot_to_inode(dquot);
4606 handle = ext4_journal_start(inode,
4607 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4609 return PTR_ERR(handle);
4610 ret = dquot_commit(dquot);
4611 err = ext4_journal_stop(handle);
4617 static int ext4_acquire_dquot(struct dquot *dquot)
4622 handle = ext4_journal_start(dquot_to_inode(dquot),
4623 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4625 return PTR_ERR(handle);
4626 ret = dquot_acquire(dquot);
4627 err = ext4_journal_stop(handle);
4633 static int ext4_release_dquot(struct dquot *dquot)
4638 handle = ext4_journal_start(dquot_to_inode(dquot),
4639 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4640 if (IS_ERR(handle)) {
4641 /* Release dquot anyway to avoid endless cycle in dqput() */
4642 dquot_release(dquot);
4643 return PTR_ERR(handle);
4645 ret = dquot_release(dquot);
4646 err = ext4_journal_stop(handle);
4652 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4654 /* Are we journaling quotas? */
4655 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4656 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4657 dquot_mark_dquot_dirty(dquot);
4658 return ext4_write_dquot(dquot);
4660 return dquot_mark_dquot_dirty(dquot);
4664 static int ext4_write_info(struct super_block *sb, int type)
4669 /* Data block + inode block */
4670 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4672 return PTR_ERR(handle);
4673 ret = dquot_commit_info(sb, type);
4674 err = ext4_journal_stop(handle);
4681 * Turn on quotas during mount time - we need to find
4682 * the quota file and such...
4684 static int ext4_quota_on_mount(struct super_block *sb, int type)
4686 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4687 EXT4_SB(sb)->s_jquota_fmt, type);
4691 * Standard function to be called on quota_on
4693 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4698 if (!test_opt(sb, QUOTA))
4701 /* Quotafile not on the same filesystem? */
4702 if (path->dentry->d_sb != sb)
4704 /* Journaling quota? */
4705 if (EXT4_SB(sb)->s_qf_names[type]) {
4706 /* Quotafile not in fs root? */
4707 if (path->dentry->d_parent != sb->s_root)
4708 ext4_msg(sb, KERN_WARNING,
4709 "Quota file not on filesystem root. "
4710 "Journaled quota will not work");
4714 * When we journal data on quota file, we have to flush journal to see
4715 * all updates to the file when we bypass pagecache...
4717 if (EXT4_SB(sb)->s_journal &&
4718 ext4_should_journal_data(path->dentry->d_inode)) {
4720 * We don't need to lock updates but journal_flush() could
4721 * otherwise be livelocked...
4723 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4724 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4725 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4730 return dquot_quota_on(sb, type, format_id, path);
4733 static int ext4_quota_off(struct super_block *sb, int type)
4735 struct inode *inode = sb_dqopt(sb)->files[type];
4738 /* Force all delayed allocation blocks to be allocated.
4739 * Caller already holds s_umount sem */
4740 if (test_opt(sb, DELALLOC))
4741 sync_filesystem(sb);
4746 /* Update modification times of quota files when userspace can
4747 * start looking at them */
4748 handle = ext4_journal_start(inode, 1);
4751 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4752 ext4_mark_inode_dirty(handle, inode);
4753 ext4_journal_stop(handle);
4756 return dquot_quota_off(sb, type);
4759 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4760 * acquiring the locks... As quota files are never truncated and quota code
4761 * itself serializes the operations (and no one else should touch the files)
4762 * we don't have to be afraid of races */
4763 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4764 size_t len, loff_t off)
4766 struct inode *inode = sb_dqopt(sb)->files[type];
4767 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4769 int offset = off & (sb->s_blocksize - 1);
4772 struct buffer_head *bh;
4773 loff_t i_size = i_size_read(inode);
4777 if (off+len > i_size)
4780 while (toread > 0) {
4781 tocopy = sb->s_blocksize - offset < toread ?
4782 sb->s_blocksize - offset : toread;
4783 bh = ext4_bread(NULL, inode, blk, 0, &err);
4786 if (!bh) /* A hole? */
4787 memset(data, 0, tocopy);
4789 memcpy(data, bh->b_data+offset, tocopy);
4799 /* Write to quotafile (we know the transaction is already started and has
4800 * enough credits) */
4801 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4802 const char *data, size_t len, loff_t off)
4804 struct inode *inode = sb_dqopt(sb)->files[type];
4805 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4807 int offset = off & (sb->s_blocksize - 1);
4808 struct buffer_head *bh;
4809 handle_t *handle = journal_current_handle();
4811 if (EXT4_SB(sb)->s_journal && !handle) {
4812 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4813 " cancelled because transaction is not started",
4814 (unsigned long long)off, (unsigned long long)len);
4818 * Since we account only one data block in transaction credits,
4819 * then it is impossible to cross a block boundary.
4821 if (sb->s_blocksize - offset < len) {
4822 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4823 " cancelled because not block aligned",
4824 (unsigned long long)off, (unsigned long long)len);
4828 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4829 bh = ext4_bread(handle, inode, blk, 1, &err);
4832 err = ext4_journal_get_write_access(handle, bh);
4838 memcpy(bh->b_data+offset, data, len);
4839 flush_dcache_page(bh->b_page);
4841 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4845 mutex_unlock(&inode->i_mutex);
4848 if (inode->i_size < off + len) {
4849 i_size_write(inode, off + len);
4850 EXT4_I(inode)->i_disksize = inode->i_size;
4851 ext4_mark_inode_dirty(handle, inode);
4853 mutex_unlock(&inode->i_mutex);
4859 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4860 const char *dev_name, void *data)
4862 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4865 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4866 static inline void register_as_ext2(void)
4868 int err = register_filesystem(&ext2_fs_type);
4871 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4874 static inline void unregister_as_ext2(void)
4876 unregister_filesystem(&ext2_fs_type);
4879 static inline int ext2_feature_set_ok(struct super_block *sb)
4881 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
4883 if (sb->s_flags & MS_RDONLY)
4885 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
4889 MODULE_ALIAS("ext2");
4891 static inline void register_as_ext2(void) { }
4892 static inline void unregister_as_ext2(void) { }
4893 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
4896 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4897 static inline void register_as_ext3(void)
4899 int err = register_filesystem(&ext3_fs_type);
4902 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4905 static inline void unregister_as_ext3(void)
4907 unregister_filesystem(&ext3_fs_type);
4910 static inline int ext3_feature_set_ok(struct super_block *sb)
4912 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
4914 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
4916 if (sb->s_flags & MS_RDONLY)
4918 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
4922 MODULE_ALIAS("ext3");
4924 static inline void register_as_ext3(void) { }
4925 static inline void unregister_as_ext3(void) { }
4926 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
4929 static struct file_system_type ext4_fs_type = {
4930 .owner = THIS_MODULE,
4932 .mount = ext4_mount,
4933 .kill_sb = kill_block_super,
4934 .fs_flags = FS_REQUIRES_DEV,
4937 static int __init ext4_init_feat_adverts(void)
4939 struct ext4_features *ef;
4942 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4946 ef->f_kobj.kset = ext4_kset;
4947 init_completion(&ef->f_kobj_unregister);
4948 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4961 static void ext4_exit_feat_adverts(void)
4963 kobject_put(&ext4_feat->f_kobj);
4964 wait_for_completion(&ext4_feat->f_kobj_unregister);
4968 /* Shared across all ext4 file systems */
4969 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
4970 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
4972 static int __init ext4_init_fs(void)
4976 ext4_li_info = NULL;
4977 mutex_init(&ext4_li_mtx);
4979 ext4_check_flag_values();
4981 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
4982 mutex_init(&ext4__aio_mutex[i]);
4983 init_waitqueue_head(&ext4__ioend_wq[i]);
4986 err = ext4_init_pageio();
4989 err = ext4_init_system_zone();
4992 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4995 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4997 err = ext4_init_feat_adverts();
5001 err = ext4_init_mballoc();
5005 err = ext4_init_xattr();
5008 err = init_inodecache();
5013 err = register_filesystem(&ext4_fs_type);
5019 unregister_as_ext2();
5020 unregister_as_ext3();
5021 destroy_inodecache();
5025 ext4_exit_mballoc();
5027 ext4_exit_feat_adverts();
5030 remove_proc_entry("fs/ext4", NULL);
5031 kset_unregister(ext4_kset);
5033 ext4_exit_system_zone();
5039 static void __exit ext4_exit_fs(void)
5041 ext4_destroy_lazyinit_thread();
5042 unregister_as_ext2();
5043 unregister_as_ext3();
5044 unregister_filesystem(&ext4_fs_type);
5045 destroy_inodecache();
5047 ext4_exit_mballoc();
5048 ext4_exit_feat_adverts();
5049 remove_proc_entry("fs/ext4", NULL);
5050 kset_unregister(ext4_kset);
5051 ext4_exit_system_zone();
5055 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5056 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5057 MODULE_LICENSE("GPL");
5058 module_init(ext4_init_fs)
5059 module_exit(ext4_exit_fs)