1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4 * Copyright (C) 2016-2017 Milan Broz
5 * Copyright (C) 2016-2017 Mikulas Patocka
7 * This file is released under the GPL.
10 #include "dm-bio-record.h"
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
29 #define DM_MSG_PREFIX "integrity"
31 #define DEFAULT_INTERLEAVE_SECTORS 32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
34 #define DEFAULT_BUFFER_SECTORS 128
35 #define DEFAULT_JOURNAL_WATERMARK 50
36 #define DEFAULT_SYNC_MSEC 10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38 #define MIN_LOG2_INTERLEAVE_SECTORS 3
39 #define MAX_LOG2_INTERLEAVE_SECTORS 31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
41 #define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42 #define RECALC_WRITE_SUPER 16
43 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */
44 #define BITMAP_FLUSH_INTERVAL (10 * HZ)
45 #define DISCARD_FILLER 0xf6
49 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50 * so it should not be enabled in the official kernel
53 //#define INTERNAL_VERIFY
59 #define SB_MAGIC "integrt"
60 #define SB_VERSION_1 1
61 #define SB_VERSION_2 2
62 #define SB_VERSION_3 3
63 #define SB_VERSION_4 4
64 #define SB_VERSION_5 5
66 #define MAX_SECTORS_PER_BLOCK 8
71 __u8 log2_interleave_sectors;
72 __le16 integrity_tag_size;
73 __le32 journal_sections;
74 __le64 provided_data_sectors; /* userspace uses this value */
76 __u8 log2_sectors_per_block;
77 __u8 log2_blocks_per_bitmap_bit;
84 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
85 #define SB_FLAG_RECALCULATING 0x2
86 #define SB_FLAG_DIRTY_BITMAP 0x4
87 #define SB_FLAG_FIXED_PADDING 0x8
88 #define SB_FLAG_FIXED_HMAC 0x10
90 #define JOURNAL_ENTRY_ROUNDUP 8
92 typedef __le64 commit_id_t;
93 #define JOURNAL_MAC_PER_SECTOR 8
95 struct journal_entry {
103 commit_id_t last_bytes[];
107 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
109 #if BITS_PER_LONG == 64
110 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
112 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
114 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
115 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
116 #define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1))
117 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
118 #define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2))
120 #define JOURNAL_BLOCK_SECTORS 8
121 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
124 struct journal_sector {
125 struct_group(sectors,
126 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127 __u8 mac[JOURNAL_MAC_PER_SECTOR];
129 commit_id_t commit_id;
132 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
134 #define METADATA_PADDING_SECTORS 8
136 #define N_COMMIT_IDS 4
138 static unsigned char prev_commit_seq(unsigned char seq)
140 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
143 static unsigned char next_commit_seq(unsigned char seq)
145 return (seq + 1) % N_COMMIT_IDS;
149 * In-memory structures
152 struct journal_node {
161 unsigned int key_size;
164 struct dm_integrity_c {
166 struct dm_dev *meta_dev;
167 unsigned int tag_size;
170 mempool_t journal_io_mempool;
171 struct dm_io_client *io;
172 struct dm_bufio_client *bufio;
173 struct workqueue_struct *metadata_wq;
174 struct superblock *sb;
175 unsigned int journal_pages;
176 unsigned int n_bitmap_blocks;
178 struct page_list *journal;
179 struct page_list *journal_io;
180 struct page_list *journal_xor;
181 struct page_list *recalc_bitmap;
182 struct page_list *may_write_bitmap;
183 struct bitmap_block_status *bbs;
184 unsigned int bitmap_flush_interval;
185 int synchronous_mode;
186 struct bio_list synchronous_bios;
187 struct delayed_work bitmap_flush_work;
189 struct crypto_skcipher *journal_crypt;
190 struct scatterlist **journal_scatterlist;
191 struct scatterlist **journal_io_scatterlist;
192 struct skcipher_request **sk_requests;
194 struct crypto_shash *journal_mac;
196 struct journal_node *journal_tree;
197 struct rb_root journal_tree_root;
199 sector_t provided_data_sectors;
201 unsigned short journal_entry_size;
202 unsigned char journal_entries_per_sector;
203 unsigned char journal_section_entries;
204 unsigned short journal_section_sectors;
205 unsigned int journal_sections;
206 unsigned int journal_entries;
207 sector_t data_device_sectors;
208 sector_t meta_device_sectors;
209 unsigned int initial_sectors;
210 unsigned int metadata_run;
211 __s8 log2_metadata_run;
212 __u8 log2_buffer_sectors;
213 __u8 sectors_per_block;
214 __u8 log2_blocks_per_bitmap_bit;
220 struct crypto_shash *internal_hash;
222 struct dm_target *ti;
224 /* these variables are locked with endio_wait.lock */
225 struct rb_root in_progress;
226 struct list_head wait_list;
227 wait_queue_head_t endio_wait;
228 struct workqueue_struct *wait_wq;
229 struct workqueue_struct *offload_wq;
231 unsigned char commit_seq;
232 commit_id_t commit_ids[N_COMMIT_IDS];
234 unsigned int committed_section;
235 unsigned int n_committed_sections;
237 unsigned int uncommitted_section;
238 unsigned int n_uncommitted_sections;
240 unsigned int free_section;
241 unsigned char free_section_entry;
242 unsigned int free_sectors;
244 unsigned int free_sectors_threshold;
246 struct workqueue_struct *commit_wq;
247 struct work_struct commit_work;
249 struct workqueue_struct *writer_wq;
250 struct work_struct writer_work;
252 struct workqueue_struct *recalc_wq;
253 struct work_struct recalc_work;
255 struct bio_list flush_bio_list;
257 unsigned long autocommit_jiffies;
258 struct timer_list autocommit_timer;
259 unsigned int autocommit_msec;
261 wait_queue_head_t copy_to_journal_wait;
263 struct completion crypto_backoff;
265 bool wrote_to_journal;
266 bool journal_uptodate;
268 bool recalculate_flag;
269 bool reset_recalculate_flag;
273 bool legacy_recalculate;
275 struct alg_spec internal_hash_alg;
276 struct alg_spec journal_crypt_alg;
277 struct alg_spec journal_mac_alg;
279 atomic64_t number_of_mismatches;
281 struct notifier_block reboot_notifier;
284 struct dm_integrity_range {
285 sector_t logical_sector;
291 struct task_struct *task;
292 struct list_head wait_entry;
297 struct dm_integrity_io {
298 struct work_struct work;
300 struct dm_integrity_c *ic;
304 struct dm_integrity_range range;
306 sector_t metadata_block;
307 unsigned int metadata_offset;
310 blk_status_t bi_status;
312 struct completion *completion;
314 struct dm_bio_details bio_details;
317 struct journal_completion {
318 struct dm_integrity_c *ic;
320 struct completion comp;
324 struct dm_integrity_range range;
325 struct journal_completion *comp;
328 struct bitmap_block_status {
329 struct work_struct work;
330 struct dm_integrity_c *ic;
332 unsigned long *bitmap;
333 struct bio_list bio_queue;
334 spinlock_t bio_queue_lock;
338 static struct kmem_cache *journal_io_cache;
340 #define JOURNAL_IO_MEMPOOL 32
343 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
344 #define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
345 len ? ": " : "", len, bytes)
347 #define DEBUG_print(x, ...) do { } while (0)
348 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
351 static void dm_integrity_prepare(struct request *rq)
355 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
360 * DM Integrity profile, protection is performed layer above (dm-crypt)
362 static const struct blk_integrity_profile dm_integrity_profile = {
363 .name = "DM-DIF-EXT-TAG",
366 .prepare_fn = dm_integrity_prepare,
367 .complete_fn = dm_integrity_complete,
370 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
371 static void integrity_bio_wait(struct work_struct *w);
372 static void dm_integrity_dtr(struct dm_target *ti);
374 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
377 atomic64_inc(&ic->number_of_mismatches);
378 if (!cmpxchg(&ic->failed, 0, err))
379 DMERR("Error on %s: %d", msg, err);
382 static int dm_integrity_failed(struct dm_integrity_c *ic)
384 return READ_ONCE(ic->failed);
387 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
389 if (ic->legacy_recalculate)
391 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
392 ic->internal_hash_alg.key || ic->journal_mac_alg.key :
393 ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
398 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
399 unsigned int j, unsigned char seq)
402 * Xor the number with section and sector, so that if a piece of
403 * journal is written at wrong place, it is detected.
405 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
408 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
409 sector_t *area, sector_t *offset)
412 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
413 *area = data_sector >> log2_interleave_sectors;
414 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
417 *offset = data_sector;
421 #define sector_to_block(ic, n) \
423 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \
424 (n) >>= (ic)->sb->log2_sectors_per_block; \
427 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
428 sector_t offset, unsigned int *metadata_offset)
433 ms = area << ic->sb->log2_interleave_sectors;
434 if (likely(ic->log2_metadata_run >= 0))
435 ms += area << ic->log2_metadata_run;
437 ms += area * ic->metadata_run;
438 ms >>= ic->log2_buffer_sectors;
440 sector_to_block(ic, offset);
442 if (likely(ic->log2_tag_size >= 0)) {
443 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
444 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
446 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
447 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
449 *metadata_offset = mo;
453 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
460 result = area << ic->sb->log2_interleave_sectors;
461 if (likely(ic->log2_metadata_run >= 0))
462 result += (area + 1) << ic->log2_metadata_run;
464 result += (area + 1) * ic->metadata_run;
466 result += (sector_t)ic->initial_sectors + offset;
472 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
474 if (unlikely(*sec_ptr >= ic->journal_sections))
475 *sec_ptr -= ic->journal_sections;
478 static void sb_set_version(struct dm_integrity_c *ic)
480 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
481 ic->sb->version = SB_VERSION_5;
482 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
483 ic->sb->version = SB_VERSION_4;
484 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
485 ic->sb->version = SB_VERSION_3;
486 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
487 ic->sb->version = SB_VERSION_2;
489 ic->sb->version = SB_VERSION_1;
492 static int sb_mac(struct dm_integrity_c *ic, bool wr)
494 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
496 unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
497 __u8 *sb = (__u8 *)ic->sb;
498 __u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
500 if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) {
501 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
505 desc->tfm = ic->journal_mac;
508 r = crypto_shash_digest(desc, sb, mac - sb, mac);
509 if (unlikely(r < 0)) {
510 dm_integrity_io_error(ic, "crypto_shash_digest", r);
514 __u8 actual_mac[HASH_MAX_DIGESTSIZE];
516 r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
517 if (unlikely(r < 0)) {
518 dm_integrity_io_error(ic, "crypto_shash_digest", r);
521 if (memcmp(mac, actual_mac, mac_size)) {
522 dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
523 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
531 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
533 struct dm_io_request io_req;
534 struct dm_io_region io_loc;
535 const enum req_op op = opf & REQ_OP_MASK;
539 io_req.mem.type = DM_IO_KMEM;
540 io_req.mem.ptr.addr = ic->sb;
541 io_req.notify.fn = NULL;
542 io_req.client = ic->io;
543 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
544 io_loc.sector = ic->start;
545 io_loc.count = SB_SECTORS;
547 if (op == REQ_OP_WRITE) {
549 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
550 r = sb_mac(ic, true);
556 r = dm_io(&io_req, 1, &io_loc, NULL);
560 if (op == REQ_OP_READ) {
561 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
562 r = sb_mac(ic, false);
571 #define BITMAP_OP_TEST_ALL_SET 0
572 #define BITMAP_OP_TEST_ALL_CLEAR 1
573 #define BITMAP_OP_SET 2
574 #define BITMAP_OP_CLEAR 3
576 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
577 sector_t sector, sector_t n_sectors, int mode)
579 unsigned long bit, end_bit, this_end_bit, page, end_page;
582 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
583 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
586 ic->sb->log2_sectors_per_block,
587 ic->log2_blocks_per_bitmap_bit,
592 if (unlikely(!n_sectors))
595 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
596 end_bit = (sector + n_sectors - 1) >>
597 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
599 page = bit / (PAGE_SIZE * 8);
600 bit %= PAGE_SIZE * 8;
602 end_page = end_bit / (PAGE_SIZE * 8);
603 end_bit %= PAGE_SIZE * 8;
607 this_end_bit = PAGE_SIZE * 8 - 1;
609 this_end_bit = end_bit;
611 data = lowmem_page_address(bitmap[page].page);
613 if (mode == BITMAP_OP_TEST_ALL_SET) {
614 while (bit <= this_end_bit) {
615 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
617 if (data[bit / BITS_PER_LONG] != -1)
619 bit += BITS_PER_LONG;
620 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
623 if (!test_bit(bit, data))
627 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
628 while (bit <= this_end_bit) {
629 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
631 if (data[bit / BITS_PER_LONG] != 0)
633 bit += BITS_PER_LONG;
634 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
637 if (test_bit(bit, data))
641 } else if (mode == BITMAP_OP_SET) {
642 while (bit <= this_end_bit) {
643 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
645 data[bit / BITS_PER_LONG] = -1;
646 bit += BITS_PER_LONG;
647 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
650 __set_bit(bit, data);
653 } else if (mode == BITMAP_OP_CLEAR) {
654 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
657 while (bit <= this_end_bit) {
658 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
660 data[bit / BITS_PER_LONG] = 0;
661 bit += BITS_PER_LONG;
662 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
665 __clear_bit(bit, data);
673 if (unlikely(page < end_page)) {
682 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
684 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
687 for (i = 0; i < n_bitmap_pages; i++) {
688 unsigned long *dst_data = lowmem_page_address(dst[i].page);
689 unsigned long *src_data = lowmem_page_address(src[i].page);
691 copy_page(dst_data, src_data);
695 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
697 unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
698 unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
700 BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
701 return &ic->bbs[bitmap_block];
704 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
705 bool e, const char *function)
707 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
708 unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
710 if (unlikely(section >= ic->journal_sections) ||
711 unlikely(offset >= limit)) {
712 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
713 function, section, offset, ic->journal_sections, limit);
719 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
720 unsigned int *pl_index, unsigned int *pl_offset)
724 access_journal_check(ic, section, offset, false, "page_list_location");
726 sector = section * ic->journal_section_sectors + offset;
728 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
729 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
732 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
733 unsigned int section, unsigned int offset, unsigned int *n_sectors)
735 unsigned int pl_index, pl_offset;
738 page_list_location(ic, section, offset, &pl_index, &pl_offset);
741 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
743 va = lowmem_page_address(pl[pl_index].page);
745 return (struct journal_sector *)(va + pl_offset);
748 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
750 return access_page_list(ic, ic->journal, section, offset, NULL);
753 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
755 unsigned int rel_sector, offset;
756 struct journal_sector *js;
758 access_journal_check(ic, section, n, true, "access_journal_entry");
760 rel_sector = n % JOURNAL_BLOCK_SECTORS;
761 offset = n / JOURNAL_BLOCK_SECTORS;
763 js = access_journal(ic, section, rel_sector);
764 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
767 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
769 n <<= ic->sb->log2_sectors_per_block;
771 n += JOURNAL_BLOCK_SECTORS;
773 access_journal_check(ic, section, n, false, "access_journal_data");
775 return access_journal(ic, section, n);
778 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
780 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
782 unsigned int j, size;
784 desc->tfm = ic->journal_mac;
786 r = crypto_shash_init(desc);
787 if (unlikely(r < 0)) {
788 dm_integrity_io_error(ic, "crypto_shash_init", r);
792 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
795 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
796 if (unlikely(r < 0)) {
797 dm_integrity_io_error(ic, "crypto_shash_update", r);
801 section_le = cpu_to_le64(section);
802 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof(section_le));
803 if (unlikely(r < 0)) {
804 dm_integrity_io_error(ic, "crypto_shash_update", r);
809 for (j = 0; j < ic->journal_section_entries; j++) {
810 struct journal_entry *je = access_journal_entry(ic, section, j);
812 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
813 if (unlikely(r < 0)) {
814 dm_integrity_io_error(ic, "crypto_shash_update", r);
819 size = crypto_shash_digestsize(ic->journal_mac);
821 if (likely(size <= JOURNAL_MAC_SIZE)) {
822 r = crypto_shash_final(desc, result);
823 if (unlikely(r < 0)) {
824 dm_integrity_io_error(ic, "crypto_shash_final", r);
827 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
829 __u8 digest[HASH_MAX_DIGESTSIZE];
831 if (WARN_ON(size > sizeof(digest))) {
832 dm_integrity_io_error(ic, "digest_size", -EINVAL);
835 r = crypto_shash_final(desc, digest);
836 if (unlikely(r < 0)) {
837 dm_integrity_io_error(ic, "crypto_shash_final", r);
840 memcpy(result, digest, JOURNAL_MAC_SIZE);
845 memset(result, 0, JOURNAL_MAC_SIZE);
848 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
850 __u8 result[JOURNAL_MAC_SIZE];
853 if (!ic->journal_mac)
856 section_mac(ic, section, result);
858 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
859 struct journal_sector *js = access_journal(ic, section, j);
862 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
864 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
865 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
866 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
872 static void complete_journal_op(void *context)
874 struct journal_completion *comp = context;
876 BUG_ON(!atomic_read(&comp->in_flight));
877 if (likely(atomic_dec_and_test(&comp->in_flight)))
878 complete(&comp->comp);
881 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
882 unsigned int n_sections, struct journal_completion *comp)
884 struct async_submit_ctl submit;
885 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
886 unsigned int pl_index, pl_offset, section_index;
887 struct page_list *source_pl, *target_pl;
889 if (likely(encrypt)) {
890 source_pl = ic->journal;
891 target_pl = ic->journal_io;
893 source_pl = ic->journal_io;
894 target_pl = ic->journal;
897 page_list_location(ic, section, 0, &pl_index, &pl_offset);
899 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
901 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
903 section_index = pl_index;
907 struct page *src_pages[2];
908 struct page *dst_page;
910 while (unlikely(pl_index == section_index)) {
914 rw_section_mac(ic, section, true);
919 page_list_location(ic, section, 0, §ion_index, &dummy);
922 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
923 dst_page = target_pl[pl_index].page;
924 src_pages[0] = source_pl[pl_index].page;
925 src_pages[1] = ic->journal_xor[pl_index].page;
927 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
931 n_bytes -= this_step;
936 async_tx_issue_pending_all();
939 static void complete_journal_encrypt(void *data, int err)
941 struct journal_completion *comp = data;
944 if (likely(err == -EINPROGRESS)) {
945 complete(&comp->ic->crypto_backoff);
948 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
950 complete_journal_op(comp);
953 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
957 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
958 complete_journal_encrypt, comp);
960 r = crypto_skcipher_encrypt(req);
962 r = crypto_skcipher_decrypt(req);
965 if (likely(r == -EINPROGRESS))
967 if (likely(r == -EBUSY)) {
968 wait_for_completion(&comp->ic->crypto_backoff);
969 reinit_completion(&comp->ic->crypto_backoff);
972 dm_integrity_io_error(comp->ic, "encrypt", r);
976 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
977 unsigned int n_sections, struct journal_completion *comp)
979 struct scatterlist **source_sg;
980 struct scatterlist **target_sg;
982 atomic_add(2, &comp->in_flight);
984 if (likely(encrypt)) {
985 source_sg = ic->journal_scatterlist;
986 target_sg = ic->journal_io_scatterlist;
988 source_sg = ic->journal_io_scatterlist;
989 target_sg = ic->journal_scatterlist;
993 struct skcipher_request *req;
998 rw_section_mac(ic, section, true);
1000 req = ic->sk_requests[section];
1001 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1004 memcpy(iv, iv + ivsize, ivsize);
1006 req->src = source_sg[section];
1007 req->dst = target_sg[section];
1009 if (unlikely(do_crypt(encrypt, req, comp)))
1010 atomic_inc(&comp->in_flight);
1014 } while (n_sections);
1016 atomic_dec(&comp->in_flight);
1017 complete_journal_op(comp);
1020 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1021 unsigned int n_sections, struct journal_completion *comp)
1023 if (ic->journal_xor)
1024 return xor_journal(ic, encrypt, section, n_sections, comp);
1026 return crypt_journal(ic, encrypt, section, n_sections, comp);
1029 static void complete_journal_io(unsigned long error, void *context)
1031 struct journal_completion *comp = context;
1033 if (unlikely(error != 0))
1034 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1035 complete_journal_op(comp);
1038 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1039 unsigned int sector, unsigned int n_sectors,
1040 struct journal_completion *comp)
1042 struct dm_io_request io_req;
1043 struct dm_io_region io_loc;
1044 unsigned int pl_index, pl_offset;
1047 if (unlikely(dm_integrity_failed(ic))) {
1049 complete_journal_io(-1UL, comp);
1053 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1054 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1056 io_req.bi_opf = opf;
1057 io_req.mem.type = DM_IO_PAGE_LIST;
1059 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1061 io_req.mem.ptr.pl = &ic->journal[pl_index];
1062 io_req.mem.offset = pl_offset;
1063 if (likely(comp != NULL)) {
1064 io_req.notify.fn = complete_journal_io;
1065 io_req.notify.context = comp;
1067 io_req.notify.fn = NULL;
1069 io_req.client = ic->io;
1070 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1071 io_loc.sector = ic->start + SB_SECTORS + sector;
1072 io_loc.count = n_sectors;
1074 r = dm_io(&io_req, 1, &io_loc, NULL);
1076 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1077 "reading journal" : "writing journal", r);
1079 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1080 complete_journal_io(-1UL, comp);
1085 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1086 unsigned int section, unsigned int n_sections,
1087 struct journal_completion *comp)
1089 unsigned int sector, n_sectors;
1091 sector = section * ic->journal_section_sectors;
1092 n_sectors = n_sections * ic->journal_section_sectors;
1094 rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1097 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1099 struct journal_completion io_comp;
1100 struct journal_completion crypt_comp_1;
1101 struct journal_completion crypt_comp_2;
1105 init_completion(&io_comp.comp);
1107 if (commit_start + commit_sections <= ic->journal_sections) {
1108 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1109 if (ic->journal_io) {
1110 crypt_comp_1.ic = ic;
1111 init_completion(&crypt_comp_1.comp);
1112 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1113 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1114 wait_for_completion_io(&crypt_comp_1.comp);
1116 for (i = 0; i < commit_sections; i++)
1117 rw_section_mac(ic, commit_start + i, true);
1119 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1120 commit_sections, &io_comp);
1122 unsigned int to_end;
1124 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1125 to_end = ic->journal_sections - commit_start;
1126 if (ic->journal_io) {
1127 crypt_comp_1.ic = ic;
1128 init_completion(&crypt_comp_1.comp);
1129 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1130 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1131 if (try_wait_for_completion(&crypt_comp_1.comp)) {
1132 rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1133 commit_start, to_end, &io_comp);
1134 reinit_completion(&crypt_comp_1.comp);
1135 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1136 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1137 wait_for_completion_io(&crypt_comp_1.comp);
1139 crypt_comp_2.ic = ic;
1140 init_completion(&crypt_comp_2.comp);
1141 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1142 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1143 wait_for_completion_io(&crypt_comp_1.comp);
1144 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1145 wait_for_completion_io(&crypt_comp_2.comp);
1148 for (i = 0; i < to_end; i++)
1149 rw_section_mac(ic, commit_start + i, true);
1150 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1151 for (i = 0; i < commit_sections - to_end; i++)
1152 rw_section_mac(ic, i, true);
1154 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1157 wait_for_completion_io(&io_comp.comp);
1160 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1161 unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1163 struct dm_io_request io_req;
1164 struct dm_io_region io_loc;
1166 unsigned int sector, pl_index, pl_offset;
1168 BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1170 if (unlikely(dm_integrity_failed(ic))) {
1175 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1177 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1178 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1180 io_req.bi_opf = REQ_OP_WRITE;
1181 io_req.mem.type = DM_IO_PAGE_LIST;
1182 io_req.mem.ptr.pl = &ic->journal[pl_index];
1183 io_req.mem.offset = pl_offset;
1184 io_req.notify.fn = fn;
1185 io_req.notify.context = data;
1186 io_req.client = ic->io;
1187 io_loc.bdev = ic->dev->bdev;
1188 io_loc.sector = target;
1189 io_loc.count = n_sectors;
1191 r = dm_io(&io_req, 1, &io_loc, NULL);
1193 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1198 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1200 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1201 range1->logical_sector + range1->n_sectors > range2->logical_sector;
1204 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1206 struct rb_node **n = &ic->in_progress.rb_node;
1207 struct rb_node *parent;
1209 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1211 if (likely(check_waiting)) {
1212 struct dm_integrity_range *range;
1214 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1215 if (unlikely(ranges_overlap(range, new_range)))
1223 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1226 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1227 n = &range->node.rb_left;
1228 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1229 n = &range->node.rb_right;
1234 rb_link_node(&new_range->node, parent, n);
1235 rb_insert_color(&new_range->node, &ic->in_progress);
1240 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1242 rb_erase(&range->node, &ic->in_progress);
1243 while (unlikely(!list_empty(&ic->wait_list))) {
1244 struct dm_integrity_range *last_range =
1245 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1246 struct task_struct *last_range_task;
1248 last_range_task = last_range->task;
1249 list_del(&last_range->wait_entry);
1250 if (!add_new_range(ic, last_range, false)) {
1251 last_range->task = last_range_task;
1252 list_add(&last_range->wait_entry, &ic->wait_list);
1255 last_range->waiting = false;
1256 wake_up_process(last_range_task);
1260 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1262 unsigned long flags;
1264 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1265 remove_range_unlocked(ic, range);
1266 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1269 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1271 new_range->waiting = true;
1272 list_add_tail(&new_range->wait_entry, &ic->wait_list);
1273 new_range->task = current;
1275 __set_current_state(TASK_UNINTERRUPTIBLE);
1276 spin_unlock_irq(&ic->endio_wait.lock);
1278 spin_lock_irq(&ic->endio_wait.lock);
1279 } while (unlikely(new_range->waiting));
1282 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1284 if (unlikely(!add_new_range(ic, new_range, true)))
1285 wait_and_add_new_range(ic, new_range);
1288 static void init_journal_node(struct journal_node *node)
1290 RB_CLEAR_NODE(&node->node);
1291 node->sector = (sector_t)-1;
1294 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1296 struct rb_node **link;
1297 struct rb_node *parent;
1299 node->sector = sector;
1300 BUG_ON(!RB_EMPTY_NODE(&node->node));
1302 link = &ic->journal_tree_root.rb_node;
1306 struct journal_node *j;
1309 j = container_of(parent, struct journal_node, node);
1310 if (sector < j->sector)
1311 link = &j->node.rb_left;
1313 link = &j->node.rb_right;
1316 rb_link_node(&node->node, parent, link);
1317 rb_insert_color(&node->node, &ic->journal_tree_root);
1320 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1322 BUG_ON(RB_EMPTY_NODE(&node->node));
1323 rb_erase(&node->node, &ic->journal_tree_root);
1324 init_journal_node(node);
1327 #define NOT_FOUND (-1U)
1329 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1331 struct rb_node *n = ic->journal_tree_root.rb_node;
1332 unsigned int found = NOT_FOUND;
1334 *next_sector = (sector_t)-1;
1336 struct journal_node *j = container_of(n, struct journal_node, node);
1338 if (sector == j->sector)
1339 found = j - ic->journal_tree;
1341 if (sector < j->sector) {
1342 *next_sector = j->sector;
1343 n = j->node.rb_left;
1345 n = j->node.rb_right;
1351 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1353 struct journal_node *node, *next_node;
1354 struct rb_node *next;
1356 if (unlikely(pos >= ic->journal_entries))
1358 node = &ic->journal_tree[pos];
1359 if (unlikely(RB_EMPTY_NODE(&node->node)))
1361 if (unlikely(node->sector != sector))
1364 next = rb_next(&node->node);
1365 if (unlikely(!next))
1368 next_node = container_of(next, struct journal_node, node);
1369 return next_node->sector != sector;
1372 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1374 struct rb_node *next;
1375 struct journal_node *next_node;
1376 unsigned int next_section;
1378 BUG_ON(RB_EMPTY_NODE(&node->node));
1380 next = rb_next(&node->node);
1381 if (unlikely(!next))
1384 next_node = container_of(next, struct journal_node, node);
1386 if (next_node->sector != node->sector)
1389 next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1390 if (next_section >= ic->committed_section &&
1391 next_section < ic->committed_section + ic->n_committed_sections)
1393 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1403 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1404 unsigned int *metadata_offset, unsigned int total_size, int op)
1406 #define MAY_BE_FILLER 1
1407 #define MAY_BE_HASH 2
1408 unsigned int hash_offset = 0;
1409 unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1412 unsigned char *data, *dp;
1413 struct dm_buffer *b;
1414 unsigned int to_copy;
1417 r = dm_integrity_failed(ic);
1421 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1423 return PTR_ERR(data);
1425 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1426 dp = data + *metadata_offset;
1427 if (op == TAG_READ) {
1428 memcpy(tag, dp, to_copy);
1429 } else if (op == TAG_WRITE) {
1430 if (memcmp(dp, tag, to_copy)) {
1431 memcpy(dp, tag, to_copy);
1432 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1435 /* e.g.: op == TAG_CMP */
1437 if (likely(is_power_of_2(ic->tag_size))) {
1438 if (unlikely(memcmp(dp, tag, to_copy)))
1439 if (unlikely(!ic->discard) ||
1440 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1448 for (i = 0; i < to_copy; i++, ts--) {
1449 if (unlikely(dp[i] != tag[i]))
1450 may_be &= ~MAY_BE_HASH;
1451 if (likely(dp[i] != DISCARD_FILLER))
1452 may_be &= ~MAY_BE_FILLER;
1454 if (unlikely(hash_offset == ic->tag_size)) {
1455 if (unlikely(!may_be)) {
1456 dm_bufio_release(b);
1460 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1465 dm_bufio_release(b);
1468 *metadata_offset += to_copy;
1469 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1470 (*metadata_block)++;
1471 *metadata_offset = 0;
1474 if (unlikely(!is_power_of_2(ic->tag_size)))
1475 hash_offset = (hash_offset + to_copy) % ic->tag_size;
1477 total_size -= to_copy;
1478 } while (unlikely(total_size));
1481 #undef MAY_BE_FILLER
1485 struct flush_request {
1486 struct dm_io_request io_req;
1487 struct dm_io_region io_reg;
1488 struct dm_integrity_c *ic;
1489 struct completion comp;
1492 static void flush_notify(unsigned long error, void *fr_)
1494 struct flush_request *fr = fr_;
1496 if (unlikely(error != 0))
1497 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1498 complete(&fr->comp);
1501 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1504 struct flush_request fr;
1509 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1510 fr.io_req.mem.type = DM_IO_KMEM,
1511 fr.io_req.mem.ptr.addr = NULL,
1512 fr.io_req.notify.fn = flush_notify,
1513 fr.io_req.notify.context = &fr;
1514 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1515 fr.io_reg.bdev = ic->dev->bdev,
1516 fr.io_reg.sector = 0,
1517 fr.io_reg.count = 0,
1519 init_completion(&fr.comp);
1520 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1524 r = dm_bufio_write_dirty_buffers(ic->bufio);
1526 dm_integrity_io_error(ic, "writing tags", r);
1529 wait_for_completion(&fr.comp);
1532 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1534 DECLARE_WAITQUEUE(wait, current);
1536 __add_wait_queue(&ic->endio_wait, &wait);
1537 __set_current_state(TASK_UNINTERRUPTIBLE);
1538 spin_unlock_irq(&ic->endio_wait.lock);
1540 spin_lock_irq(&ic->endio_wait.lock);
1541 __remove_wait_queue(&ic->endio_wait, &wait);
1544 static void autocommit_fn(struct timer_list *t)
1546 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1548 if (likely(!dm_integrity_failed(ic)))
1549 queue_work(ic->commit_wq, &ic->commit_work);
1552 static void schedule_autocommit(struct dm_integrity_c *ic)
1554 if (!timer_pending(&ic->autocommit_timer))
1555 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1558 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1561 unsigned long flags;
1563 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1564 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1565 bio_list_add(&ic->flush_bio_list, bio);
1566 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1568 queue_work(ic->commit_wq, &ic->commit_work);
1571 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1575 r = dm_integrity_failed(ic);
1576 if (unlikely(r) && !bio->bi_status)
1577 bio->bi_status = errno_to_blk_status(r);
1578 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1579 unsigned long flags;
1581 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1582 bio_list_add(&ic->synchronous_bios, bio);
1583 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1584 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1590 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1592 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1594 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1595 submit_flush_bio(ic, dio);
1600 static void dec_in_flight(struct dm_integrity_io *dio)
1602 if (atomic_dec_and_test(&dio->in_flight)) {
1603 struct dm_integrity_c *ic = dio->ic;
1606 remove_range(ic, &dio->range);
1608 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1609 schedule_autocommit(ic);
1611 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1612 if (unlikely(dio->bi_status) && !bio->bi_status)
1613 bio->bi_status = dio->bi_status;
1614 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1615 dio->range.logical_sector += dio->range.n_sectors;
1616 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1617 INIT_WORK(&dio->work, integrity_bio_wait);
1618 queue_work(ic->offload_wq, &dio->work);
1621 do_endio_flush(ic, dio);
1625 static void integrity_end_io(struct bio *bio)
1627 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1629 dm_bio_restore(&dio->bio_details, bio);
1630 if (bio->bi_integrity)
1631 bio->bi_opf |= REQ_INTEGRITY;
1633 if (dio->completion)
1634 complete(dio->completion);
1639 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1640 const char *data, char *result)
1642 __le64 sector_le = cpu_to_le64(sector);
1643 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1645 unsigned int digest_size;
1647 req->tfm = ic->internal_hash;
1649 r = crypto_shash_init(req);
1650 if (unlikely(r < 0)) {
1651 dm_integrity_io_error(ic, "crypto_shash_init", r);
1655 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1656 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1657 if (unlikely(r < 0)) {
1658 dm_integrity_io_error(ic, "crypto_shash_update", r);
1663 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof(sector_le));
1664 if (unlikely(r < 0)) {
1665 dm_integrity_io_error(ic, "crypto_shash_update", r);
1669 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1670 if (unlikely(r < 0)) {
1671 dm_integrity_io_error(ic, "crypto_shash_update", r);
1675 r = crypto_shash_final(req, result);
1676 if (unlikely(r < 0)) {
1677 dm_integrity_io_error(ic, "crypto_shash_final", r);
1681 digest_size = crypto_shash_digestsize(ic->internal_hash);
1682 if (unlikely(digest_size < ic->tag_size))
1683 memset(result + digest_size, 0, ic->tag_size - digest_size);
1688 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1689 get_random_bytes(result, ic->tag_size);
1692 static void integrity_metadata(struct work_struct *w)
1694 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1695 struct dm_integrity_c *ic = dio->ic;
1699 if (ic->internal_hash) {
1700 struct bvec_iter iter;
1702 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1703 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1705 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1706 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1708 unsigned int sectors_to_process;
1710 if (unlikely(ic->mode == 'R'))
1713 if (likely(dio->op != REQ_OP_DISCARD))
1714 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1715 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1717 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1719 checksums = checksums_onstack;
1720 if (WARN_ON(extra_space &&
1721 digest_size > sizeof(checksums_onstack))) {
1727 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1728 unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1729 unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1730 unsigned int max_blocks = max_size / ic->tag_size;
1732 memset(checksums, DISCARD_FILLER, max_size);
1735 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1737 this_step_blocks = min(this_step_blocks, max_blocks);
1738 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1739 this_step_blocks * ic->tag_size, TAG_WRITE);
1741 if (likely(checksums != checksums_onstack))
1746 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1749 if (likely(checksums != checksums_onstack))
1754 sector = dio->range.logical_sector;
1755 sectors_to_process = dio->range.n_sectors;
1757 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1759 char *mem, *checksums_ptr;
1762 mem = bvec_kmap_local(&bv);
1764 checksums_ptr = checksums;
1766 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1767 checksums_ptr += ic->tag_size;
1768 sectors_to_process -= ic->sectors_per_block;
1769 pos += ic->sectors_per_block << SECTOR_SHIFT;
1770 sector += ic->sectors_per_block;
1771 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1774 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1775 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1780 s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1781 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1784 atomic64_inc(&ic->number_of_mismatches);
1785 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1788 if (likely(checksums != checksums_onstack))
1793 if (!sectors_to_process)
1796 if (unlikely(pos < bv.bv_len)) {
1797 bv.bv_offset += pos;
1803 if (likely(checksums != checksums_onstack))
1806 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1810 struct bvec_iter iter;
1811 unsigned int data_to_process = dio->range.n_sectors;
1813 sector_to_block(ic, data_to_process);
1814 data_to_process *= ic->tag_size;
1816 bip_for_each_vec(biv, bip, iter) {
1818 unsigned int this_len;
1820 BUG_ON(PageHighMem(biv.bv_page));
1821 tag = bvec_virt(&biv);
1822 this_len = min(biv.bv_len, data_to_process);
1823 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1824 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1827 data_to_process -= this_len;
1828 if (!data_to_process)
1837 dio->bi_status = errno_to_blk_status(r);
1841 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1843 struct dm_integrity_c *ic = ti->private;
1844 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1845 struct bio_integrity_payload *bip;
1847 sector_t area, offset;
1851 dio->op = bio_op(bio);
1853 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1854 if (ti->max_io_len) {
1855 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1856 unsigned int log2_max_io_len = __fls(ti->max_io_len);
1857 sector_t start_boundary = sec >> log2_max_io_len;
1858 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1860 if (start_boundary < end_boundary) {
1861 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1863 dm_accept_partial_bio(bio, len);
1868 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1869 submit_flush_bio(ic, dio);
1870 return DM_MAPIO_SUBMITTED;
1873 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1874 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1875 if (unlikely(dio->fua)) {
1877 * Don't pass down the FUA flag because we have to flush
1878 * disk cache anyway.
1880 bio->bi_opf &= ~REQ_FUA;
1882 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1883 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1884 dio->range.logical_sector, bio_sectors(bio),
1885 ic->provided_data_sectors);
1886 return DM_MAPIO_KILL;
1888 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1889 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1890 ic->sectors_per_block,
1891 dio->range.logical_sector, bio_sectors(bio));
1892 return DM_MAPIO_KILL;
1895 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1896 struct bvec_iter iter;
1899 bio_for_each_segment(bv, bio, iter) {
1900 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1901 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1902 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1903 return DM_MAPIO_KILL;
1908 bip = bio_integrity(bio);
1909 if (!ic->internal_hash) {
1911 unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1913 if (ic->log2_tag_size >= 0)
1914 wanted_tag_size <<= ic->log2_tag_size;
1916 wanted_tag_size *= ic->tag_size;
1917 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1918 DMERR("Invalid integrity data size %u, expected %u",
1919 bip->bip_iter.bi_size, wanted_tag_size);
1920 return DM_MAPIO_KILL;
1924 if (unlikely(bip != NULL)) {
1925 DMERR("Unexpected integrity data when using internal hash");
1926 return DM_MAPIO_KILL;
1930 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1931 return DM_MAPIO_KILL;
1933 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1934 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1935 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1937 dm_integrity_map_continue(dio, true);
1938 return DM_MAPIO_SUBMITTED;
1941 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1942 unsigned int journal_section, unsigned int journal_entry)
1944 struct dm_integrity_c *ic = dio->ic;
1945 sector_t logical_sector;
1946 unsigned int n_sectors;
1948 logical_sector = dio->range.logical_sector;
1949 n_sectors = dio->range.n_sectors;
1951 struct bio_vec bv = bio_iovec(bio);
1954 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1955 bv.bv_len = n_sectors << SECTOR_SHIFT;
1956 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1957 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1959 mem = kmap_local_page(bv.bv_page);
1960 if (likely(dio->op == REQ_OP_WRITE))
1961 flush_dcache_page(bv.bv_page);
1964 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1966 if (unlikely(dio->op == REQ_OP_READ)) {
1967 struct journal_sector *js;
1971 if (unlikely(journal_entry_is_inprogress(je))) {
1972 flush_dcache_page(bv.bv_page);
1975 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1979 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1980 js = access_journal_data(ic, journal_section, journal_entry);
1981 mem_ptr = mem + bv.bv_offset;
1984 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1985 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1987 mem_ptr += 1 << SECTOR_SHIFT;
1988 } while (++s < ic->sectors_per_block);
1989 #ifdef INTERNAL_VERIFY
1990 if (ic->internal_hash) {
1991 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1993 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1994 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1995 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1997 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
1998 bio, logical_sector, 0);
2004 if (!ic->internal_hash) {
2005 struct bio_integrity_payload *bip = bio_integrity(bio);
2006 unsigned int tag_todo = ic->tag_size;
2007 char *tag_ptr = journal_entry_tag(ic, je);
2011 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2012 unsigned int tag_now = min(biv.bv_len, tag_todo);
2015 BUG_ON(PageHighMem(biv.bv_page));
2016 tag_addr = bvec_virt(&biv);
2017 if (likely(dio->op == REQ_OP_WRITE))
2018 memcpy(tag_ptr, tag_addr, tag_now);
2020 memcpy(tag_addr, tag_ptr, tag_now);
2021 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2023 tag_todo -= tag_now;
2024 } while (unlikely(tag_todo));
2025 } else if (likely(dio->op == REQ_OP_WRITE))
2026 memset(tag_ptr, 0, tag_todo);
2029 if (likely(dio->op == REQ_OP_WRITE)) {
2030 struct journal_sector *js;
2033 js = access_journal_data(ic, journal_section, journal_entry);
2034 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2038 je->last_bytes[s] = js[s].commit_id;
2039 } while (++s < ic->sectors_per_block);
2041 if (ic->internal_hash) {
2042 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2044 if (unlikely(digest_size > ic->tag_size)) {
2045 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2047 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2048 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2050 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2053 journal_entry_set_sector(je, logical_sector);
2055 logical_sector += ic->sectors_per_block;
2058 if (unlikely(journal_entry == ic->journal_section_entries)) {
2061 wraparound_section(ic, &journal_section);
2064 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2065 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2067 if (unlikely(dio->op == REQ_OP_READ))
2068 flush_dcache_page(bv.bv_page);
2070 } while (n_sectors);
2072 if (likely(dio->op == REQ_OP_WRITE)) {
2074 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2075 wake_up(&ic->copy_to_journal_wait);
2076 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2077 queue_work(ic->commit_wq, &ic->commit_work);
2079 schedule_autocommit(ic);
2081 remove_range(ic, &dio->range);
2083 if (unlikely(bio->bi_iter.bi_size)) {
2084 sector_t area, offset;
2086 dio->range.logical_sector = logical_sector;
2087 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2088 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2095 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2097 struct dm_integrity_c *ic = dio->ic;
2098 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2099 unsigned int journal_section, journal_entry;
2100 unsigned int journal_read_pos;
2101 struct completion read_comp;
2102 bool discard_retried = false;
2103 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2105 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2106 need_sync_io = true;
2108 if (need_sync_io && from_map) {
2109 INIT_WORK(&dio->work, integrity_bio_wait);
2110 queue_work(ic->offload_wq, &dio->work);
2115 spin_lock_irq(&ic->endio_wait.lock);
2117 if (unlikely(dm_integrity_failed(ic))) {
2118 spin_unlock_irq(&ic->endio_wait.lock);
2122 dio->range.n_sectors = bio_sectors(bio);
2123 journal_read_pos = NOT_FOUND;
2124 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2125 if (dio->op == REQ_OP_WRITE) {
2126 unsigned int next_entry, i, pos;
2127 unsigned int ws, we, range_sectors;
2129 dio->range.n_sectors = min(dio->range.n_sectors,
2130 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2131 if (unlikely(!dio->range.n_sectors)) {
2133 goto offload_to_thread;
2134 sleep_on_endio_wait(ic);
2137 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2138 ic->free_sectors -= range_sectors;
2139 journal_section = ic->free_section;
2140 journal_entry = ic->free_section_entry;
2142 next_entry = ic->free_section_entry + range_sectors;
2143 ic->free_section_entry = next_entry % ic->journal_section_entries;
2144 ic->free_section += next_entry / ic->journal_section_entries;
2145 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2146 wraparound_section(ic, &ic->free_section);
2148 pos = journal_section * ic->journal_section_entries + journal_entry;
2149 ws = journal_section;
2153 struct journal_entry *je;
2155 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2157 if (unlikely(pos >= ic->journal_entries))
2160 je = access_journal_entry(ic, ws, we);
2161 BUG_ON(!journal_entry_is_unused(je));
2162 journal_entry_set_inprogress(je);
2164 if (unlikely(we == ic->journal_section_entries)) {
2167 wraparound_section(ic, &ws);
2169 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2171 spin_unlock_irq(&ic->endio_wait.lock);
2172 goto journal_read_write;
2174 sector_t next_sector;
2176 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2177 if (likely(journal_read_pos == NOT_FOUND)) {
2178 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2179 dio->range.n_sectors = next_sector - dio->range.logical_sector;
2182 unsigned int jp = journal_read_pos + 1;
2184 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2185 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2188 dio->range.n_sectors = i;
2192 if (unlikely(!add_new_range(ic, &dio->range, true))) {
2194 * We must not sleep in the request routine because it could
2195 * stall bios on current->bio_list.
2196 * So, we offload the bio to a workqueue if we have to sleep.
2200 spin_unlock_irq(&ic->endio_wait.lock);
2201 INIT_WORK(&dio->work, integrity_bio_wait);
2202 queue_work(ic->wait_wq, &dio->work);
2205 if (journal_read_pos != NOT_FOUND)
2206 dio->range.n_sectors = ic->sectors_per_block;
2207 wait_and_add_new_range(ic, &dio->range);
2209 * wait_and_add_new_range drops the spinlock, so the journal
2210 * may have been changed arbitrarily. We need to recheck.
2211 * To simplify the code, we restrict I/O size to just one block.
2213 if (journal_read_pos != NOT_FOUND) {
2214 sector_t next_sector;
2215 unsigned int new_pos;
2217 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2218 if (unlikely(new_pos != journal_read_pos)) {
2219 remove_range_unlocked(ic, &dio->range);
2224 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2225 sector_t next_sector;
2226 unsigned int new_pos;
2228 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2229 if (unlikely(new_pos != NOT_FOUND) ||
2230 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2231 remove_range_unlocked(ic, &dio->range);
2232 spin_unlock_irq(&ic->endio_wait.lock);
2233 queue_work(ic->commit_wq, &ic->commit_work);
2234 flush_workqueue(ic->commit_wq);
2235 queue_work(ic->writer_wq, &ic->writer_work);
2236 flush_workqueue(ic->writer_wq);
2237 discard_retried = true;
2241 spin_unlock_irq(&ic->endio_wait.lock);
2243 if (unlikely(journal_read_pos != NOT_FOUND)) {
2244 journal_section = journal_read_pos / ic->journal_section_entries;
2245 journal_entry = journal_read_pos % ic->journal_section_entries;
2246 goto journal_read_write;
2249 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2250 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2251 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2252 struct bitmap_block_status *bbs;
2254 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2255 spin_lock(&bbs->bio_queue_lock);
2256 bio_list_add(&bbs->bio_queue, bio);
2257 spin_unlock(&bbs->bio_queue_lock);
2258 queue_work(ic->writer_wq, &bbs->work);
2263 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2266 init_completion(&read_comp);
2267 dio->completion = &read_comp;
2269 dio->completion = NULL;
2271 dm_bio_record(&dio->bio_details, bio);
2272 bio_set_dev(bio, ic->dev->bdev);
2273 bio->bi_integrity = NULL;
2274 bio->bi_opf &= ~REQ_INTEGRITY;
2275 bio->bi_end_io = integrity_end_io;
2276 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2278 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2279 integrity_metadata(&dio->work);
2280 dm_integrity_flush_buffers(ic, false);
2282 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2283 dio->completion = NULL;
2285 submit_bio_noacct(bio);
2290 submit_bio_noacct(bio);
2293 wait_for_completion_io(&read_comp);
2294 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2295 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2297 if (ic->mode == 'B') {
2298 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2299 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2303 if (likely(!bio->bi_status))
2304 integrity_metadata(&dio->work);
2309 INIT_WORK(&dio->work, integrity_metadata);
2310 queue_work(ic->metadata_wq, &dio->work);
2316 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2319 do_endio_flush(ic, dio);
2323 static void integrity_bio_wait(struct work_struct *w)
2325 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2327 dm_integrity_map_continue(dio, false);
2330 static void pad_uncommitted(struct dm_integrity_c *ic)
2332 if (ic->free_section_entry) {
2333 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2334 ic->free_section_entry = 0;
2336 wraparound_section(ic, &ic->free_section);
2337 ic->n_uncommitted_sections++;
2339 if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2340 (ic->n_uncommitted_sections + ic->n_committed_sections) *
2341 ic->journal_section_entries + ic->free_sectors)) {
2342 DMCRIT("journal_sections %u, journal_section_entries %u, "
2343 "n_uncommitted_sections %u, n_committed_sections %u, "
2344 "journal_section_entries %u, free_sectors %u",
2345 ic->journal_sections, ic->journal_section_entries,
2346 ic->n_uncommitted_sections, ic->n_committed_sections,
2347 ic->journal_section_entries, ic->free_sectors);
2351 static void integrity_commit(struct work_struct *w)
2353 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2354 unsigned int commit_start, commit_sections;
2355 unsigned int i, j, n;
2356 struct bio *flushes;
2358 del_timer(&ic->autocommit_timer);
2360 spin_lock_irq(&ic->endio_wait.lock);
2361 flushes = bio_list_get(&ic->flush_bio_list);
2362 if (unlikely(ic->mode != 'J')) {
2363 spin_unlock_irq(&ic->endio_wait.lock);
2364 dm_integrity_flush_buffers(ic, true);
2365 goto release_flush_bios;
2368 pad_uncommitted(ic);
2369 commit_start = ic->uncommitted_section;
2370 commit_sections = ic->n_uncommitted_sections;
2371 spin_unlock_irq(&ic->endio_wait.lock);
2373 if (!commit_sections)
2374 goto release_flush_bios;
2376 ic->wrote_to_journal = true;
2379 for (n = 0; n < commit_sections; n++) {
2380 for (j = 0; j < ic->journal_section_entries; j++) {
2381 struct journal_entry *je;
2383 je = access_journal_entry(ic, i, j);
2384 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2386 for (j = 0; j < ic->journal_section_sectors; j++) {
2387 struct journal_sector *js;
2389 js = access_journal(ic, i, j);
2390 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2393 if (unlikely(i >= ic->journal_sections))
2394 ic->commit_seq = next_commit_seq(ic->commit_seq);
2395 wraparound_section(ic, &i);
2399 write_journal(ic, commit_start, commit_sections);
2401 spin_lock_irq(&ic->endio_wait.lock);
2402 ic->uncommitted_section += commit_sections;
2403 wraparound_section(ic, &ic->uncommitted_section);
2404 ic->n_uncommitted_sections -= commit_sections;
2405 ic->n_committed_sections += commit_sections;
2406 spin_unlock_irq(&ic->endio_wait.lock);
2408 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2409 queue_work(ic->writer_wq, &ic->writer_work);
2413 struct bio *next = flushes->bi_next;
2415 flushes->bi_next = NULL;
2416 do_endio(ic, flushes);
2421 static void complete_copy_from_journal(unsigned long error, void *context)
2423 struct journal_io *io = context;
2424 struct journal_completion *comp = io->comp;
2425 struct dm_integrity_c *ic = comp->ic;
2427 remove_range(ic, &io->range);
2428 mempool_free(io, &ic->journal_io_mempool);
2429 if (unlikely(error != 0))
2430 dm_integrity_io_error(ic, "copying from journal", -EIO);
2431 complete_journal_op(comp);
2434 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2435 struct journal_entry *je)
2440 js->commit_id = je->last_bytes[s];
2442 } while (++s < ic->sectors_per_block);
2445 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2446 unsigned int write_sections, bool from_replay)
2448 unsigned int i, j, n;
2449 struct journal_completion comp;
2450 struct blk_plug plug;
2452 blk_start_plug(&plug);
2455 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2456 init_completion(&comp.comp);
2459 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2460 #ifndef INTERNAL_VERIFY
2461 if (unlikely(from_replay))
2463 rw_section_mac(ic, i, false);
2464 for (j = 0; j < ic->journal_section_entries; j++) {
2465 struct journal_entry *je = access_journal_entry(ic, i, j);
2466 sector_t sec, area, offset;
2467 unsigned int k, l, next_loop;
2468 sector_t metadata_block;
2469 unsigned int metadata_offset;
2470 struct journal_io *io;
2472 if (journal_entry_is_unused(je))
2474 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2475 sec = journal_entry_get_sector(je);
2476 if (unlikely(from_replay)) {
2477 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2478 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2479 sec &= ~(sector_t)(ic->sectors_per_block - 1);
2481 if (unlikely(sec >= ic->provided_data_sectors)) {
2482 journal_entry_set_unused(je);
2486 get_area_and_offset(ic, sec, &area, &offset);
2487 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2488 for (k = j + 1; k < ic->journal_section_entries; k++) {
2489 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2490 sector_t sec2, area2, offset2;
2492 if (journal_entry_is_unused(je2))
2494 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2495 sec2 = journal_entry_get_sector(je2);
2496 if (unlikely(sec2 >= ic->provided_data_sectors))
2498 get_area_and_offset(ic, sec2, &area2, &offset2);
2499 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2501 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2505 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2507 io->range.logical_sector = sec;
2508 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2510 spin_lock_irq(&ic->endio_wait.lock);
2511 add_new_range_and_wait(ic, &io->range);
2513 if (likely(!from_replay)) {
2514 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2516 /* don't write if there is newer committed sector */
2517 while (j < k && find_newer_committed_node(ic, §ion_node[j])) {
2518 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2520 journal_entry_set_unused(je2);
2521 remove_journal_node(ic, §ion_node[j]);
2523 sec += ic->sectors_per_block;
2524 offset += ic->sectors_per_block;
2526 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) {
2527 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2529 journal_entry_set_unused(je2);
2530 remove_journal_node(ic, §ion_node[k - 1]);
2534 remove_range_unlocked(ic, &io->range);
2535 spin_unlock_irq(&ic->endio_wait.lock);
2536 mempool_free(io, &ic->journal_io_mempool);
2539 for (l = j; l < k; l++)
2540 remove_journal_node(ic, §ion_node[l]);
2542 spin_unlock_irq(&ic->endio_wait.lock);
2544 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2545 for (l = j; l < k; l++) {
2547 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2550 #ifndef INTERNAL_VERIFY
2551 unlikely(from_replay) &&
2553 ic->internal_hash) {
2554 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2556 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2557 (char *)access_journal_data(ic, i, l), test_tag);
2558 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2559 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2560 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2564 journal_entry_set_unused(je2);
2565 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2566 ic->tag_size, TAG_WRITE);
2568 dm_integrity_io_error(ic, "reading tags", r);
2571 atomic_inc(&comp.in_flight);
2572 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2573 (k - j) << ic->sb->log2_sectors_per_block,
2574 get_data_sector(ic, area, offset),
2575 complete_copy_from_journal, io);
2581 dm_bufio_write_dirty_buffers_async(ic->bufio);
2583 blk_finish_plug(&plug);
2585 complete_journal_op(&comp);
2586 wait_for_completion_io(&comp.comp);
2588 dm_integrity_flush_buffers(ic, true);
2591 static void integrity_writer(struct work_struct *w)
2593 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2594 unsigned int write_start, write_sections;
2595 unsigned int prev_free_sectors;
2597 spin_lock_irq(&ic->endio_wait.lock);
2598 write_start = ic->committed_section;
2599 write_sections = ic->n_committed_sections;
2600 spin_unlock_irq(&ic->endio_wait.lock);
2602 if (!write_sections)
2605 do_journal_write(ic, write_start, write_sections, false);
2607 spin_lock_irq(&ic->endio_wait.lock);
2609 ic->committed_section += write_sections;
2610 wraparound_section(ic, &ic->committed_section);
2611 ic->n_committed_sections -= write_sections;
2613 prev_free_sectors = ic->free_sectors;
2614 ic->free_sectors += write_sections * ic->journal_section_entries;
2615 if (unlikely(!prev_free_sectors))
2616 wake_up_locked(&ic->endio_wait);
2618 spin_unlock_irq(&ic->endio_wait.lock);
2621 static void recalc_write_super(struct dm_integrity_c *ic)
2625 dm_integrity_flush_buffers(ic, false);
2626 if (dm_integrity_failed(ic))
2629 r = sync_rw_sb(ic, REQ_OP_WRITE);
2631 dm_integrity_io_error(ic, "writing superblock", r);
2634 static void integrity_recalc(struct work_struct *w)
2636 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2637 size_t recalc_tags_size;
2638 u8 *recalc_buffer = NULL;
2639 u8 *recalc_tags = NULL;
2640 struct dm_integrity_range range;
2641 struct dm_io_request io_req;
2642 struct dm_io_region io_loc;
2643 sector_t area, offset;
2644 sector_t metadata_block;
2645 unsigned int metadata_offset;
2646 sector_t logical_sector, n_sectors;
2650 unsigned int super_counter = 0;
2651 unsigned recalc_sectors = RECALC_SECTORS;
2654 recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2655 if (!recalc_buffer) {
2657 recalc_sectors >>= 1;
2658 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2660 DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2663 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2664 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2665 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2666 recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2668 vfree(recalc_buffer);
2669 recalc_buffer = NULL;
2673 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2675 spin_lock_irq(&ic->endio_wait.lock);
2679 if (unlikely(dm_post_suspending(ic->ti)))
2682 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2683 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2684 if (ic->mode == 'B') {
2685 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2686 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2687 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2692 get_area_and_offset(ic, range.logical_sector, &area, &offset);
2693 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2695 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2697 add_new_range_and_wait(ic, &range);
2698 spin_unlock_irq(&ic->endio_wait.lock);
2699 logical_sector = range.logical_sector;
2700 n_sectors = range.n_sectors;
2702 if (ic->mode == 'B') {
2703 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2704 goto advance_and_next;
2706 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2707 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2708 logical_sector += ic->sectors_per_block;
2709 n_sectors -= ic->sectors_per_block;
2712 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2713 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2714 n_sectors -= ic->sectors_per_block;
2717 get_area_and_offset(ic, logical_sector, &area, &offset);
2720 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2722 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2723 recalc_write_super(ic);
2724 if (ic->mode == 'B')
2725 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2730 if (unlikely(dm_integrity_failed(ic)))
2733 io_req.bi_opf = REQ_OP_READ;
2734 io_req.mem.type = DM_IO_VMA;
2735 io_req.mem.ptr.addr = recalc_buffer;
2736 io_req.notify.fn = NULL;
2737 io_req.client = ic->io;
2738 io_loc.bdev = ic->dev->bdev;
2739 io_loc.sector = get_data_sector(ic, area, offset);
2740 io_loc.count = n_sectors;
2742 r = dm_io(&io_req, 1, &io_loc, NULL);
2744 dm_integrity_io_error(ic, "reading data", r);
2749 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2750 integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2754 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2756 r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2758 dm_integrity_io_error(ic, "writing tags", r);
2762 if (ic->mode == 'B') {
2763 sector_t start, end;
2765 start = (range.logical_sector >>
2766 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2767 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2768 end = ((range.logical_sector + range.n_sectors) >>
2769 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2770 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2771 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2777 spin_lock_irq(&ic->endio_wait.lock);
2778 remove_range_unlocked(ic, &range);
2779 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2783 remove_range(ic, &range);
2787 spin_unlock_irq(&ic->endio_wait.lock);
2789 recalc_write_super(ic);
2792 vfree(recalc_buffer);
2793 kvfree(recalc_tags);
2796 static void bitmap_block_work(struct work_struct *w)
2798 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2799 struct dm_integrity_c *ic = bbs->ic;
2801 struct bio_list bio_queue;
2802 struct bio_list waiting;
2804 bio_list_init(&waiting);
2806 spin_lock(&bbs->bio_queue_lock);
2807 bio_queue = bbs->bio_queue;
2808 bio_list_init(&bbs->bio_queue);
2809 spin_unlock(&bbs->bio_queue_lock);
2811 while ((bio = bio_list_pop(&bio_queue))) {
2812 struct dm_integrity_io *dio;
2814 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2816 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2817 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2818 remove_range(ic, &dio->range);
2819 INIT_WORK(&dio->work, integrity_bio_wait);
2820 queue_work(ic->offload_wq, &dio->work);
2822 block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2823 dio->range.n_sectors, BITMAP_OP_SET);
2824 bio_list_add(&waiting, bio);
2828 if (bio_list_empty(&waiting))
2831 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2832 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2833 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2835 while ((bio = bio_list_pop(&waiting))) {
2836 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2838 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2839 dio->range.n_sectors, BITMAP_OP_SET);
2841 remove_range(ic, &dio->range);
2842 INIT_WORK(&dio->work, integrity_bio_wait);
2843 queue_work(ic->offload_wq, &dio->work);
2846 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2849 static void bitmap_flush_work(struct work_struct *work)
2851 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2852 struct dm_integrity_range range;
2853 unsigned long limit;
2856 dm_integrity_flush_buffers(ic, false);
2858 range.logical_sector = 0;
2859 range.n_sectors = ic->provided_data_sectors;
2861 spin_lock_irq(&ic->endio_wait.lock);
2862 add_new_range_and_wait(ic, &range);
2863 spin_unlock_irq(&ic->endio_wait.lock);
2865 dm_integrity_flush_buffers(ic, true);
2867 limit = ic->provided_data_sectors;
2868 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2869 limit = le64_to_cpu(ic->sb->recalc_sector)
2870 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2871 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2873 /*DEBUG_print("zeroing journal\n");*/
2874 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2875 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2877 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2878 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2880 spin_lock_irq(&ic->endio_wait.lock);
2881 remove_range_unlocked(ic, &range);
2882 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2884 spin_unlock_irq(&ic->endio_wait.lock);
2885 spin_lock_irq(&ic->endio_wait.lock);
2887 spin_unlock_irq(&ic->endio_wait.lock);
2891 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2892 unsigned int n_sections, unsigned char commit_seq)
2894 unsigned int i, j, n;
2899 for (n = 0; n < n_sections; n++) {
2900 i = start_section + n;
2901 wraparound_section(ic, &i);
2902 for (j = 0; j < ic->journal_section_sectors; j++) {
2903 struct journal_sector *js = access_journal(ic, i, j);
2905 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2906 memset(&js->sectors, 0, sizeof(js->sectors));
2907 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2909 for (j = 0; j < ic->journal_section_entries; j++) {
2910 struct journal_entry *je = access_journal_entry(ic, i, j);
2912 journal_entry_set_unused(je);
2916 write_journal(ic, start_section, n_sections);
2919 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2923 for (k = 0; k < N_COMMIT_IDS; k++) {
2924 if (dm_integrity_commit_id(ic, i, j, k) == id)
2927 dm_integrity_io_error(ic, "journal commit id", -EIO);
2931 static void replay_journal(struct dm_integrity_c *ic)
2934 bool used_commit_ids[N_COMMIT_IDS];
2935 unsigned int max_commit_id_sections[N_COMMIT_IDS];
2936 unsigned int write_start, write_sections;
2937 unsigned int continue_section;
2939 unsigned char unused, last_used, want_commit_seq;
2941 if (ic->mode == 'R')
2944 if (ic->journal_uptodate)
2950 if (!ic->just_formatted) {
2951 DEBUG_print("reading journal\n");
2952 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
2954 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2955 if (ic->journal_io) {
2956 struct journal_completion crypt_comp;
2959 init_completion(&crypt_comp.comp);
2960 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2961 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2962 wait_for_completion(&crypt_comp.comp);
2964 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2967 if (dm_integrity_failed(ic))
2970 journal_empty = true;
2971 memset(used_commit_ids, 0, sizeof(used_commit_ids));
2972 memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
2973 for (i = 0; i < ic->journal_sections; i++) {
2974 for (j = 0; j < ic->journal_section_sectors; j++) {
2976 struct journal_sector *js = access_journal(ic, i, j);
2978 k = find_commit_seq(ic, i, j, js->commit_id);
2981 used_commit_ids[k] = true;
2982 max_commit_id_sections[k] = i;
2984 if (journal_empty) {
2985 for (j = 0; j < ic->journal_section_entries; j++) {
2986 struct journal_entry *je = access_journal_entry(ic, i, j);
2988 if (!journal_entry_is_unused(je)) {
2989 journal_empty = false;
2996 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2997 unused = N_COMMIT_IDS - 1;
2998 while (unused && !used_commit_ids[unused - 1])
3001 for (unused = 0; unused < N_COMMIT_IDS; unused++)
3002 if (!used_commit_ids[unused])
3004 if (unused == N_COMMIT_IDS) {
3005 dm_integrity_io_error(ic, "journal commit ids", -EIO);
3009 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3010 unused, used_commit_ids[0], used_commit_ids[1],
3011 used_commit_ids[2], used_commit_ids[3]);
3013 last_used = prev_commit_seq(unused);
3014 want_commit_seq = prev_commit_seq(last_used);
3016 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3017 journal_empty = true;
3019 write_start = max_commit_id_sections[last_used] + 1;
3020 if (unlikely(write_start >= ic->journal_sections))
3021 want_commit_seq = next_commit_seq(want_commit_seq);
3022 wraparound_section(ic, &write_start);
3025 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3026 for (j = 0; j < ic->journal_section_sectors; j++) {
3027 struct journal_sector *js = access_journal(ic, i, j);
3029 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3031 * This could be caused by crash during writing.
3032 * We won't replay the inconsistent part of the
3035 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3036 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3041 if (unlikely(i >= ic->journal_sections))
3042 want_commit_seq = next_commit_seq(want_commit_seq);
3043 wraparound_section(ic, &i);
3047 if (!journal_empty) {
3048 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3049 write_sections, write_start, want_commit_seq);
3050 do_journal_write(ic, write_start, write_sections, true);
3053 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3054 continue_section = write_start;
3055 ic->commit_seq = want_commit_seq;
3056 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3059 unsigned char erase_seq;
3062 DEBUG_print("clearing journal\n");
3064 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3066 init_journal(ic, s, 1, erase_seq);
3068 wraparound_section(ic, &s);
3069 if (ic->journal_sections >= 2) {
3070 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3071 s += ic->journal_sections - 2;
3072 wraparound_section(ic, &s);
3073 init_journal(ic, s, 1, erase_seq);
3076 continue_section = 0;
3077 ic->commit_seq = next_commit_seq(erase_seq);
3080 ic->committed_section = continue_section;
3081 ic->n_committed_sections = 0;
3083 ic->uncommitted_section = continue_section;
3084 ic->n_uncommitted_sections = 0;
3086 ic->free_section = continue_section;
3087 ic->free_section_entry = 0;
3088 ic->free_sectors = ic->journal_entries;
3090 ic->journal_tree_root = RB_ROOT;
3091 for (i = 0; i < ic->journal_entries; i++)
3092 init_journal_node(&ic->journal_tree[i]);
3095 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3097 DEBUG_print("%s\n", __func__);
3099 if (ic->mode == 'B') {
3100 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3101 ic->synchronous_mode = 1;
3103 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3104 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3105 flush_workqueue(ic->commit_wq);
3109 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3111 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3113 DEBUG_print("%s\n", __func__);
3115 dm_integrity_enter_synchronous_mode(ic);
3120 static void dm_integrity_postsuspend(struct dm_target *ti)
3122 struct dm_integrity_c *ic = ti->private;
3125 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3127 del_timer_sync(&ic->autocommit_timer);
3130 drain_workqueue(ic->recalc_wq);
3132 if (ic->mode == 'B')
3133 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3135 queue_work(ic->commit_wq, &ic->commit_work);
3136 drain_workqueue(ic->commit_wq);
3138 if (ic->mode == 'J') {
3139 queue_work(ic->writer_wq, &ic->writer_work);
3140 drain_workqueue(ic->writer_wq);
3141 dm_integrity_flush_buffers(ic, true);
3142 if (ic->wrote_to_journal) {
3143 init_journal(ic, ic->free_section,
3144 ic->journal_sections - ic->free_section, ic->commit_seq);
3145 if (ic->free_section) {
3146 init_journal(ic, 0, ic->free_section,
3147 next_commit_seq(ic->commit_seq));
3152 if (ic->mode == 'B') {
3153 dm_integrity_flush_buffers(ic, true);
3155 /* set to 0 to test bitmap replay code */
3156 init_journal(ic, 0, ic->journal_sections, 0);
3157 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3158 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3160 dm_integrity_io_error(ic, "writing superblock", r);
3164 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3166 ic->journal_uptodate = true;
3169 static void dm_integrity_resume(struct dm_target *ti)
3171 struct dm_integrity_c *ic = ti->private;
3172 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3175 DEBUG_print("resume\n");
3177 ic->wrote_to_journal = false;
3179 if (ic->provided_data_sectors != old_provided_data_sectors) {
3180 if (ic->provided_data_sectors > old_provided_data_sectors &&
3182 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3183 rw_journal_sectors(ic, REQ_OP_READ, 0,
3184 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3185 block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3186 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3187 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3188 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3191 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3192 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3194 dm_integrity_io_error(ic, "writing superblock", r);
3197 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3198 DEBUG_print("resume dirty_bitmap\n");
3199 rw_journal_sectors(ic, REQ_OP_READ, 0,
3200 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3201 if (ic->mode == 'B') {
3202 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3203 !ic->reset_recalculate_flag) {
3204 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3205 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3206 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3207 BITMAP_OP_TEST_ALL_CLEAR)) {
3208 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3209 ic->sb->recalc_sector = cpu_to_le64(0);
3212 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3213 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3214 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3215 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3216 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3217 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3218 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3219 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3220 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3221 ic->sb->recalc_sector = cpu_to_le64(0);
3224 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3225 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3226 ic->reset_recalculate_flag) {
3227 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3228 ic->sb->recalc_sector = cpu_to_le64(0);
3230 init_journal(ic, 0, ic->journal_sections, 0);
3232 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3234 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3236 dm_integrity_io_error(ic, "writing superblock", r);
3239 if (ic->reset_recalculate_flag) {
3240 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3241 ic->sb->recalc_sector = cpu_to_le64(0);
3243 if (ic->mode == 'B') {
3244 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3245 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3246 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3248 dm_integrity_io_error(ic, "writing superblock", r);
3250 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3251 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3252 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3253 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3254 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3255 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3256 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3257 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3258 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3259 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3260 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3262 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3263 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3267 DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3268 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3269 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3271 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3272 if (recalc_pos < ic->provided_data_sectors) {
3273 queue_work(ic->recalc_wq, &ic->recalc_work);
3274 } else if (recalc_pos > ic->provided_data_sectors) {
3275 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3276 recalc_write_super(ic);
3280 ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3281 ic->reboot_notifier.next = NULL;
3282 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
3283 WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3286 /* set to 1 to stress test synchronous mode */
3287 dm_integrity_enter_synchronous_mode(ic);
3291 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3292 unsigned int status_flags, char *result, unsigned int maxlen)
3294 struct dm_integrity_c *ic = ti->private;
3295 unsigned int arg_count;
3299 case STATUSTYPE_INFO:
3301 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3302 ic->provided_data_sectors);
3303 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3304 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3309 case STATUSTYPE_TABLE: {
3310 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3312 watermark_percentage += ic->journal_entries / 2;
3313 do_div(watermark_percentage, ic->journal_entries);
3315 arg_count += !!ic->meta_dev;
3316 arg_count += ic->sectors_per_block != 1;
3317 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3318 arg_count += ic->reset_recalculate_flag;
3319 arg_count += ic->discard;
3320 arg_count += ic->mode == 'J';
3321 arg_count += ic->mode == 'J';
3322 arg_count += ic->mode == 'B';
3323 arg_count += ic->mode == 'B';
3324 arg_count += !!ic->internal_hash_alg.alg_string;
3325 arg_count += !!ic->journal_crypt_alg.alg_string;
3326 arg_count += !!ic->journal_mac_alg.alg_string;
3327 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3328 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3329 arg_count += ic->legacy_recalculate;
3330 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3331 ic->tag_size, ic->mode, arg_count);
3333 DMEMIT(" meta_device:%s", ic->meta_dev->name);
3334 if (ic->sectors_per_block != 1)
3335 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3336 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3337 DMEMIT(" recalculate");
3338 if (ic->reset_recalculate_flag)
3339 DMEMIT(" reset_recalculate");
3341 DMEMIT(" allow_discards");
3342 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3343 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3344 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3345 if (ic->mode == 'J') {
3346 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3347 DMEMIT(" commit_time:%u", ic->autocommit_msec);
3349 if (ic->mode == 'B') {
3350 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3351 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3353 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3354 DMEMIT(" fix_padding");
3355 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3356 DMEMIT(" fix_hmac");
3357 if (ic->legacy_recalculate)
3358 DMEMIT(" legacy_recalculate");
3360 #define EMIT_ALG(a, n) \
3362 if (ic->a.alg_string) { \
3363 DMEMIT(" %s:%s", n, ic->a.alg_string); \
3364 if (ic->a.key_string) \
3365 DMEMIT(":%s", ic->a.key_string);\
3368 EMIT_ALG(internal_hash_alg, "internal_hash");
3369 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3370 EMIT_ALG(journal_mac_alg, "journal_mac");
3373 case STATUSTYPE_IMA:
3374 DMEMIT_TARGET_NAME_VERSION(ti->type);
3375 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3376 ic->dev->name, ic->start, ic->tag_size, ic->mode);
3379 DMEMIT(",meta_device=%s", ic->meta_dev->name);
3380 if (ic->sectors_per_block != 1)
3381 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3383 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3385 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3386 DMEMIT(",fix_padding=%c",
3387 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3388 DMEMIT(",fix_hmac=%c",
3389 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3390 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3392 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3393 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3394 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3400 static int dm_integrity_iterate_devices(struct dm_target *ti,
3401 iterate_devices_callout_fn fn, void *data)
3403 struct dm_integrity_c *ic = ti->private;
3406 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3408 return fn(ti, ic->dev, 0, ti->len, data);
3411 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3413 struct dm_integrity_c *ic = ti->private;
3415 if (ic->sectors_per_block > 1) {
3416 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3417 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3418 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3419 limits->dma_alignment = limits->logical_block_size - 1;
3423 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3425 unsigned int sector_space = JOURNAL_SECTOR_DATA;
3427 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3428 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3429 JOURNAL_ENTRY_ROUNDUP);
3431 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3432 sector_space -= JOURNAL_MAC_PER_SECTOR;
3433 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3434 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3435 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3436 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3439 static int calculate_device_limits(struct dm_integrity_c *ic)
3441 __u64 initial_sectors;
3443 calculate_journal_section_size(ic);
3444 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3445 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3447 ic->initial_sectors = initial_sectors;
3449 if (!ic->meta_dev) {
3450 sector_t last_sector, last_area, last_offset;
3452 /* we have to maintain excessive padding for compatibility with existing volumes */
3453 __u64 metadata_run_padding =
3454 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3455 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3456 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3458 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3459 metadata_run_padding) >> SECTOR_SHIFT;
3460 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3461 ic->log2_metadata_run = __ffs(ic->metadata_run);
3463 ic->log2_metadata_run = -1;
3465 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3466 last_sector = get_data_sector(ic, last_area, last_offset);
3467 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3470 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3472 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3473 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3474 meta_size <<= ic->log2_buffer_sectors;
3475 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3476 ic->initial_sectors + meta_size > ic->meta_device_sectors)
3478 ic->metadata_run = 1;
3479 ic->log2_metadata_run = 0;
3485 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3487 if (!ic->meta_dev) {
3490 ic->provided_data_sectors = 0;
3491 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3492 __u64 prev_data_sectors = ic->provided_data_sectors;
3494 ic->provided_data_sectors |= (sector_t)1 << test_bit;
3495 if (calculate_device_limits(ic))
3496 ic->provided_data_sectors = prev_data_sectors;
3499 ic->provided_data_sectors = ic->data_device_sectors;
3500 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3504 static int initialize_superblock(struct dm_integrity_c *ic,
3505 unsigned int journal_sectors, unsigned int interleave_sectors)
3507 unsigned int journal_sections;
3510 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3511 memcpy(ic->sb->magic, SB_MAGIC, 8);
3512 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3513 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3514 if (ic->journal_mac_alg.alg_string)
3515 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3517 calculate_journal_section_size(ic);
3518 journal_sections = journal_sectors / ic->journal_section_sectors;
3519 if (!journal_sections)
3520 journal_sections = 1;
3522 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3523 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3524 get_random_bytes(ic->sb->salt, SALT_SIZE);
3527 if (!ic->meta_dev) {
3528 if (ic->fix_padding)
3529 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3530 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3531 if (!interleave_sectors)
3532 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3533 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3534 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3535 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3537 get_provided_data_sectors(ic);
3538 if (!ic->provided_data_sectors)
3541 ic->sb->log2_interleave_sectors = 0;
3543 get_provided_data_sectors(ic);
3544 if (!ic->provided_data_sectors)
3548 ic->sb->journal_sections = cpu_to_le32(0);
3549 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3550 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3551 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3553 if (test_journal_sections > journal_sections)
3555 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3556 if (calculate_device_limits(ic))
3557 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3560 if (!le32_to_cpu(ic->sb->journal_sections)) {
3561 if (ic->log2_buffer_sectors > 3) {
3562 ic->log2_buffer_sectors--;
3563 goto try_smaller_buffer;
3569 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3576 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3578 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3579 struct blk_integrity bi;
3581 memset(&bi, 0, sizeof(bi));
3582 bi.profile = &dm_integrity_profile;
3583 bi.tuple_size = ic->tag_size;
3584 bi.tag_size = bi.tuple_size;
3585 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3587 blk_integrity_register(disk, &bi);
3588 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3591 static void dm_integrity_free_page_list(struct page_list *pl)
3597 for (i = 0; pl[i].page; i++)
3598 __free_page(pl[i].page);
3602 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3604 struct page_list *pl;
3607 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3611 for (i = 0; i < n_pages; i++) {
3612 pl[i].page = alloc_page(GFP_KERNEL);
3614 dm_integrity_free_page_list(pl);
3618 pl[i - 1].next = &pl[i];
3626 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3630 for (i = 0; i < ic->journal_sections; i++)
3635 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3636 struct page_list *pl)
3638 struct scatterlist **sl;
3641 sl = kvmalloc_array(ic->journal_sections,
3642 sizeof(struct scatterlist *),
3643 GFP_KERNEL | __GFP_ZERO);
3647 for (i = 0; i < ic->journal_sections; i++) {
3648 struct scatterlist *s;
3649 unsigned int start_index, start_offset;
3650 unsigned int end_index, end_offset;
3651 unsigned int n_pages;
3654 page_list_location(ic, i, 0, &start_index, &start_offset);
3655 page_list_location(ic, i, ic->journal_section_sectors - 1,
3656 &end_index, &end_offset);
3658 n_pages = (end_index - start_index + 1);
3660 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3663 dm_integrity_free_journal_scatterlist(ic, sl);
3667 sg_init_table(s, n_pages);
3668 for (idx = start_index; idx <= end_index; idx++) {
3669 char *va = lowmem_page_address(pl[idx].page);
3670 unsigned int start = 0, end = PAGE_SIZE;
3672 if (idx == start_index)
3673 start = start_offset;
3674 if (idx == end_index)
3675 end = end_offset + (1 << SECTOR_SHIFT);
3676 sg_set_buf(&s[idx - start_index], va + start, end - start);
3685 static void free_alg(struct alg_spec *a)
3687 kfree_sensitive(a->alg_string);
3688 kfree_sensitive(a->key);
3689 memset(a, 0, sizeof(*a));
3692 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3698 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3702 k = strchr(a->alg_string, ':');
3705 a->key_string = k + 1;
3706 if (strlen(a->key_string) & 1)
3709 a->key_size = strlen(a->key_string) / 2;
3710 a->key = kmalloc(a->key_size, GFP_KERNEL);
3713 if (hex2bin(a->key, a->key_string, a->key_size))
3719 *error = error_inval;
3722 *error = "Out of memory for an argument";
3726 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3727 char *error_alg, char *error_key)
3731 if (a->alg_string) {
3732 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3733 if (IS_ERR(*hash)) {
3741 r = crypto_shash_setkey(*hash, a->key, a->key_size);
3746 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3755 static int create_journal(struct dm_integrity_c *ic, char **error)
3759 __u64 journal_pages, journal_desc_size, journal_tree_size;
3760 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3761 struct skcipher_request *req = NULL;
3763 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3764 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3765 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3766 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3768 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3769 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3770 journal_desc_size = journal_pages * sizeof(struct page_list);
3771 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3772 *error = "Journal doesn't fit into memory";
3776 ic->journal_pages = journal_pages;
3778 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3780 *error = "Could not allocate memory for journal";
3784 if (ic->journal_crypt_alg.alg_string) {
3785 unsigned int ivsize, blocksize;
3786 struct journal_completion comp;
3789 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3790 if (IS_ERR(ic->journal_crypt)) {
3791 *error = "Invalid journal cipher";
3792 r = PTR_ERR(ic->journal_crypt);
3793 ic->journal_crypt = NULL;
3796 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3797 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3799 if (ic->journal_crypt_alg.key) {
3800 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3801 ic->journal_crypt_alg.key_size);
3803 *error = "Error setting encryption key";
3807 DEBUG_print("cipher %s, block size %u iv size %u\n",
3808 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3810 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3811 if (!ic->journal_io) {
3812 *error = "Could not allocate memory for journal io";
3817 if (blocksize == 1) {
3818 struct scatterlist *sg;
3820 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3822 *error = "Could not allocate crypt request";
3827 crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3829 *error = "Could not allocate iv";
3834 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3835 if (!ic->journal_xor) {
3836 *error = "Could not allocate memory for journal xor";
3841 sg = kvmalloc_array(ic->journal_pages + 1,
3842 sizeof(struct scatterlist),
3845 *error = "Unable to allocate sg list";
3849 sg_init_table(sg, ic->journal_pages + 1);
3850 for (i = 0; i < ic->journal_pages; i++) {
3851 char *va = lowmem_page_address(ic->journal_xor[i].page);
3854 sg_set_buf(&sg[i], va, PAGE_SIZE);
3856 sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3858 skcipher_request_set_crypt(req, sg, sg,
3859 PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3860 init_completion(&comp.comp);
3861 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3862 if (do_crypt(true, req, &comp))
3863 wait_for_completion(&comp.comp);
3865 r = dm_integrity_failed(ic);
3867 *error = "Unable to encrypt journal";
3870 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3872 crypto_free_skcipher(ic->journal_crypt);
3873 ic->journal_crypt = NULL;
3875 unsigned int crypt_len = roundup(ivsize, blocksize);
3877 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3879 *error = "Could not allocate crypt request";
3884 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3886 *error = "Could not allocate iv";
3891 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3893 *error = "Unable to allocate crypt data";
3898 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3899 if (!ic->journal_scatterlist) {
3900 *error = "Unable to allocate sg list";
3904 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3905 if (!ic->journal_io_scatterlist) {
3906 *error = "Unable to allocate sg list";
3910 ic->sk_requests = kvmalloc_array(ic->journal_sections,
3911 sizeof(struct skcipher_request *),
3912 GFP_KERNEL | __GFP_ZERO);
3913 if (!ic->sk_requests) {
3914 *error = "Unable to allocate sk requests";
3918 for (i = 0; i < ic->journal_sections; i++) {
3919 struct scatterlist sg;
3920 struct skcipher_request *section_req;
3921 __le32 section_le = cpu_to_le32(i);
3923 memset(crypt_iv, 0x00, ivsize);
3924 memset(crypt_data, 0x00, crypt_len);
3925 memcpy(crypt_data, §ion_le, min_t(size_t, crypt_len, sizeof(section_le)));
3927 sg_init_one(&sg, crypt_data, crypt_len);
3928 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3929 init_completion(&comp.comp);
3930 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3931 if (do_crypt(true, req, &comp))
3932 wait_for_completion(&comp.comp);
3934 r = dm_integrity_failed(ic);
3936 *error = "Unable to generate iv";
3940 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3942 *error = "Unable to allocate crypt request";
3946 section_req->iv = kmalloc_array(ivsize, 2,
3948 if (!section_req->iv) {
3949 skcipher_request_free(section_req);
3950 *error = "Unable to allocate iv";
3954 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3955 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3956 ic->sk_requests[i] = section_req;
3957 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3962 for (i = 0; i < N_COMMIT_IDS; i++) {
3966 for (j = 0; j < i; j++) {
3967 if (ic->commit_ids[j] == ic->commit_ids[i]) {
3968 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3969 goto retest_commit_id;
3972 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3975 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3976 if (journal_tree_size > ULONG_MAX) {
3977 *error = "Journal doesn't fit into memory";
3981 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3982 if (!ic->journal_tree) {
3983 *error = "Could not allocate memory for journal tree";
3989 skcipher_request_free(req);
3995 * Construct a integrity mapping
3999 * offset from the start of the device
4001 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4002 * number of optional arguments
4003 * optional arguments:
4005 * interleave_sectors
4012 * bitmap_flush_interval
4018 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4020 struct dm_integrity_c *ic;
4023 unsigned int extra_args;
4024 struct dm_arg_set as;
4025 static const struct dm_arg _args[] = {
4026 {0, 18, "Invalid number of feature args"},
4028 unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4029 bool should_write_sb;
4031 unsigned long long start;
4032 __s8 log2_sectors_per_bitmap_bit = -1;
4033 __s8 log2_blocks_per_bitmap_bit;
4034 __u64 bits_in_journal;
4035 __u64 n_bitmap_bits;
4037 #define DIRECT_ARGUMENTS 4
4039 if (argc <= DIRECT_ARGUMENTS) {
4040 ti->error = "Invalid argument count";
4044 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4046 ti->error = "Cannot allocate integrity context";
4050 ti->per_io_data_size = sizeof(struct dm_integrity_io);
4053 ic->in_progress = RB_ROOT;
4054 INIT_LIST_HEAD(&ic->wait_list);
4055 init_waitqueue_head(&ic->endio_wait);
4056 bio_list_init(&ic->flush_bio_list);
4057 init_waitqueue_head(&ic->copy_to_journal_wait);
4058 init_completion(&ic->crypto_backoff);
4059 atomic64_set(&ic->number_of_mismatches, 0);
4060 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4062 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4064 ti->error = "Device lookup failed";
4068 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4069 ti->error = "Invalid starting offset";
4075 if (strcmp(argv[2], "-")) {
4076 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4077 ti->error = "Invalid tag size";
4083 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4084 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4085 ic->mode = argv[3][0];
4087 ti->error = "Invalid mode (expecting J, B, D, R)";
4092 journal_sectors = 0;
4093 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4094 buffer_sectors = DEFAULT_BUFFER_SECTORS;
4095 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4096 sync_msec = DEFAULT_SYNC_MSEC;
4097 ic->sectors_per_block = 1;
4099 as.argc = argc - DIRECT_ARGUMENTS;
4100 as.argv = argv + DIRECT_ARGUMENTS;
4101 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4105 while (extra_args--) {
4106 const char *opt_string;
4108 unsigned long long llval;
4110 opt_string = dm_shift_arg(&as);
4113 ti->error = "Not enough feature arguments";
4116 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4117 journal_sectors = val ? val : 1;
4118 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4119 interleave_sectors = val;
4120 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4121 buffer_sectors = val;
4122 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4123 journal_watermark = val;
4124 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4126 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4128 dm_put_device(ti, ic->meta_dev);
4129 ic->meta_dev = NULL;
4131 r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4132 dm_table_get_mode(ti->table), &ic->meta_dev);
4134 ti->error = "Device lookup failed";
4137 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4138 if (val < 1 << SECTOR_SHIFT ||
4139 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4140 (val & (val - 1))) {
4142 ti->error = "Invalid block_size argument";
4145 ic->sectors_per_block = val >> SECTOR_SHIFT;
4146 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4147 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4148 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4149 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4151 ti->error = "Invalid bitmap_flush_interval argument";
4154 ic->bitmap_flush_interval = msecs_to_jiffies(val);
4155 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4156 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4157 "Invalid internal_hash argument");
4160 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4161 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4162 "Invalid journal_crypt argument");
4165 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4166 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4167 "Invalid journal_mac argument");
4170 } else if (!strcmp(opt_string, "recalculate")) {
4171 ic->recalculate_flag = true;
4172 } else if (!strcmp(opt_string, "reset_recalculate")) {
4173 ic->recalculate_flag = true;
4174 ic->reset_recalculate_flag = true;
4175 } else if (!strcmp(opt_string, "allow_discards")) {
4177 } else if (!strcmp(opt_string, "fix_padding")) {
4178 ic->fix_padding = true;
4179 } else if (!strcmp(opt_string, "fix_hmac")) {
4180 ic->fix_hmac = true;
4181 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4182 ic->legacy_recalculate = true;
4185 ti->error = "Invalid argument";
4190 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4192 ic->meta_device_sectors = ic->data_device_sectors;
4194 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4196 if (!journal_sectors) {
4197 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4198 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4201 if (!buffer_sectors)
4203 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4205 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4206 "Invalid internal hash", "Error setting internal hash key");
4210 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4211 "Invalid journal mac", "Error setting journal mac key");
4215 if (!ic->tag_size) {
4216 if (!ic->internal_hash) {
4217 ti->error = "Unknown tag size";
4221 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4223 if (ic->tag_size > MAX_TAG_SIZE) {
4224 ti->error = "Too big tag size";
4228 if (!(ic->tag_size & (ic->tag_size - 1)))
4229 ic->log2_tag_size = __ffs(ic->tag_size);
4231 ic->log2_tag_size = -1;
4233 if (ic->mode == 'B' && !ic->internal_hash) {
4235 ti->error = "Bitmap mode can be only used with internal hash";
4239 if (ic->discard && !ic->internal_hash) {
4241 ti->error = "Discard can be only used with internal hash";
4245 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4246 ic->autocommit_msec = sync_msec;
4247 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4249 ic->io = dm_io_client_create();
4250 if (IS_ERR(ic->io)) {
4251 r = PTR_ERR(ic->io);
4253 ti->error = "Cannot allocate dm io";
4257 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4259 ti->error = "Cannot allocate mempool";
4263 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4264 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4265 if (!ic->metadata_wq) {
4266 ti->error = "Cannot allocate workqueue";
4272 * If this workqueue weren't ordered, it would cause bio reordering
4273 * and reduced performance.
4275 ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4277 ti->error = "Cannot allocate workqueue";
4282 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4283 METADATA_WORKQUEUE_MAX_ACTIVE);
4284 if (!ic->offload_wq) {
4285 ti->error = "Cannot allocate workqueue";
4290 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4291 if (!ic->commit_wq) {
4292 ti->error = "Cannot allocate workqueue";
4296 INIT_WORK(&ic->commit_work, integrity_commit);
4298 if (ic->mode == 'J' || ic->mode == 'B') {
4299 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4300 if (!ic->writer_wq) {
4301 ti->error = "Cannot allocate workqueue";
4305 INIT_WORK(&ic->writer_work, integrity_writer);
4308 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4311 ti->error = "Cannot allocate superblock area";
4315 r = sync_rw_sb(ic, REQ_OP_READ);
4317 ti->error = "Error reading superblock";
4320 should_write_sb = false;
4321 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4322 if (ic->mode != 'R') {
4323 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4325 ti->error = "The device is not initialized";
4330 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4332 ti->error = "Could not initialize superblock";
4335 if (ic->mode != 'R')
4336 should_write_sb = true;
4339 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4341 ti->error = "Unknown version";
4344 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4346 ti->error = "Tag size doesn't match the information in superblock";
4349 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4351 ti->error = "Block size doesn't match the information in superblock";
4354 if (!le32_to_cpu(ic->sb->journal_sections)) {
4356 ti->error = "Corrupted superblock, journal_sections is 0";
4359 /* make sure that ti->max_io_len doesn't overflow */
4360 if (!ic->meta_dev) {
4361 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4362 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4364 ti->error = "Invalid interleave_sectors in the superblock";
4368 if (ic->sb->log2_interleave_sectors) {
4370 ti->error = "Invalid interleave_sectors in the superblock";
4374 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4376 ti->error = "Journal mac mismatch";
4380 get_provided_data_sectors(ic);
4381 if (!ic->provided_data_sectors) {
4383 ti->error = "The device is too small";
4388 r = calculate_device_limits(ic);
4391 if (ic->log2_buffer_sectors > 3) {
4392 ic->log2_buffer_sectors--;
4393 goto try_smaller_buffer;
4396 ti->error = "The device is too small";
4400 if (log2_sectors_per_bitmap_bit < 0)
4401 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4402 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4403 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4405 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4406 if (bits_in_journal > UINT_MAX)
4407 bits_in_journal = UINT_MAX;
4408 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4409 log2_sectors_per_bitmap_bit++;
4411 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4412 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4413 if (should_write_sb)
4414 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4416 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4417 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4418 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4421 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4423 if (ti->len > ic->provided_data_sectors) {
4425 ti->error = "Not enough provided sectors for requested mapping size";
4430 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4432 do_div(threshold, 100);
4433 ic->free_sectors_threshold = threshold;
4435 DEBUG_print("initialized:\n");
4436 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4437 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
4438 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4439 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
4440 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
4441 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4442 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
4443 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4444 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4445 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
4446 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
4447 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
4448 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4449 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4450 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal);
4452 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4453 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4454 ic->sb->recalc_sector = cpu_to_le64(0);
4457 if (ic->internal_hash) {
4458 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4459 if (!ic->recalc_wq) {
4460 ti->error = "Cannot allocate workqueue";
4464 INIT_WORK(&ic->recalc_work, integrity_recalc);
4466 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4467 ti->error = "Recalculate can only be specified with internal_hash";
4473 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4474 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4475 dm_integrity_disable_recalculate(ic)) {
4476 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4481 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4482 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4483 if (IS_ERR(ic->bufio)) {
4484 r = PTR_ERR(ic->bufio);
4485 ti->error = "Cannot initialize dm-bufio";
4489 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4491 if (ic->mode != 'R') {
4492 r = create_journal(ic, &ti->error);
4498 if (ic->mode == 'B') {
4500 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4502 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4503 if (!ic->recalc_bitmap) {
4507 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4508 if (!ic->may_write_bitmap) {
4512 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4517 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4518 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4519 struct bitmap_block_status *bbs = &ic->bbs[i];
4520 unsigned int sector, pl_index, pl_offset;
4522 INIT_WORK(&bbs->work, bitmap_block_work);
4525 bio_list_init(&bbs->bio_queue);
4526 spin_lock_init(&bbs->bio_queue_lock);
4528 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4529 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4530 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4532 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4536 if (should_write_sb) {
4537 init_journal(ic, 0, ic->journal_sections, 0);
4538 r = dm_integrity_failed(ic);
4540 ti->error = "Error initializing journal";
4543 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4545 ti->error = "Error initializing superblock";
4548 ic->just_formatted = true;
4551 if (!ic->meta_dev) {
4552 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4556 if (ic->mode == 'B') {
4557 unsigned int max_io_len;
4559 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4561 max_io_len = 1U << 31;
4562 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4563 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4564 r = dm_set_target_max_io_len(ti, max_io_len);
4570 if (!ic->internal_hash)
4571 dm_integrity_set(ti, ic);
4573 ti->num_flush_bios = 1;
4574 ti->flush_supported = true;
4576 ti->num_discard_bios = 1;
4578 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4582 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4583 dm_integrity_dtr(ti);
4587 static void dm_integrity_dtr(struct dm_target *ti)
4589 struct dm_integrity_c *ic = ti->private;
4591 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4592 BUG_ON(!list_empty(&ic->wait_list));
4594 if (ic->mode == 'B')
4595 cancel_delayed_work_sync(&ic->bitmap_flush_work);
4596 if (ic->metadata_wq)
4597 destroy_workqueue(ic->metadata_wq);
4599 destroy_workqueue(ic->wait_wq);
4601 destroy_workqueue(ic->offload_wq);
4603 destroy_workqueue(ic->commit_wq);
4605 destroy_workqueue(ic->writer_wq);
4607 destroy_workqueue(ic->recalc_wq);
4610 dm_bufio_client_destroy(ic->bufio);
4611 mempool_exit(&ic->journal_io_mempool);
4613 dm_io_client_destroy(ic->io);
4615 dm_put_device(ti, ic->dev);
4617 dm_put_device(ti, ic->meta_dev);
4618 dm_integrity_free_page_list(ic->journal);
4619 dm_integrity_free_page_list(ic->journal_io);
4620 dm_integrity_free_page_list(ic->journal_xor);
4621 dm_integrity_free_page_list(ic->recalc_bitmap);
4622 dm_integrity_free_page_list(ic->may_write_bitmap);
4623 if (ic->journal_scatterlist)
4624 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4625 if (ic->journal_io_scatterlist)
4626 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4627 if (ic->sk_requests) {
4630 for (i = 0; i < ic->journal_sections; i++) {
4631 struct skcipher_request *req;
4633 req = ic->sk_requests[i];
4635 kfree_sensitive(req->iv);
4636 skcipher_request_free(req);
4639 kvfree(ic->sk_requests);
4641 kvfree(ic->journal_tree);
4643 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4645 if (ic->internal_hash)
4646 crypto_free_shash(ic->internal_hash);
4647 free_alg(&ic->internal_hash_alg);
4649 if (ic->journal_crypt)
4650 crypto_free_skcipher(ic->journal_crypt);
4651 free_alg(&ic->journal_crypt_alg);
4653 if (ic->journal_mac)
4654 crypto_free_shash(ic->journal_mac);
4655 free_alg(&ic->journal_mac_alg);
4658 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4661 static struct target_type integrity_target = {
4662 .name = "integrity",
4663 .version = {1, 10, 0},
4664 .module = THIS_MODULE,
4665 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4666 .ctr = dm_integrity_ctr,
4667 .dtr = dm_integrity_dtr,
4668 .map = dm_integrity_map,
4669 .postsuspend = dm_integrity_postsuspend,
4670 .resume = dm_integrity_resume,
4671 .status = dm_integrity_status,
4672 .iterate_devices = dm_integrity_iterate_devices,
4673 .io_hints = dm_integrity_io_hints,
4676 static int __init dm_integrity_init(void)
4680 journal_io_cache = kmem_cache_create("integrity_journal_io",
4681 sizeof(struct journal_io), 0, 0, NULL);
4682 if (!journal_io_cache) {
4683 DMERR("can't allocate journal io cache");
4687 r = dm_register_target(&integrity_target);
4689 kmem_cache_destroy(journal_io_cache);
4696 static void __exit dm_integrity_exit(void)
4698 dm_unregister_target(&integrity_target);
4699 kmem_cache_destroy(journal_io_cache);
4702 module_init(dm_integrity_init);
4703 module_exit(dm_integrity_exit);
4705 MODULE_AUTHOR("Milan Broz");
4706 MODULE_AUTHOR("Mikulas Patocka");
4707 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4708 MODULE_LICENSE("GPL");