]> Git Repo - linux.git/blob - drivers/md/dm-integrity.c
Expose c0 and SW encap ICM for RDMA
[linux.git] / drivers / md / dm-integrity.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4  * Copyright (C) 2016-2017 Milan Broz
5  * Copyright (C) 2016-2017 Mikulas Patocka
6  *
7  * This file is released under the GPL.
8  */
9
10 #include "dm-bio-record.h"
11
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
26
27 #include "dm-audit.h"
28
29 #define DM_MSG_PREFIX "integrity"
30
31 #define DEFAULT_INTERLEAVE_SECTORS      32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT  32768
34 #define DEFAULT_BUFFER_SECTORS          128
35 #define DEFAULT_JOURNAL_WATERMARK       50
36 #define DEFAULT_SYNC_MSEC               10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS     (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38 #define MIN_LOG2_INTERLEAVE_SECTORS     3
39 #define MAX_LOG2_INTERLEAVE_SECTORS     31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
41 #define RECALC_SECTORS                  (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42 #define RECALC_WRITE_SUPER              16
43 #define BITMAP_BLOCK_SIZE               4096    /* don't change it */
44 #define BITMAP_FLUSH_INTERVAL           (10 * HZ)
45 #define DISCARD_FILLER                  0xf6
46 #define SALT_SIZE                       16
47
48 /*
49  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50  * so it should not be enabled in the official kernel
51  */
52 //#define DEBUG_PRINT
53 //#define INTERNAL_VERIFY
54
55 /*
56  * On disk structures
57  */
58
59 #define SB_MAGIC                        "integrt"
60 #define SB_VERSION_1                    1
61 #define SB_VERSION_2                    2
62 #define SB_VERSION_3                    3
63 #define SB_VERSION_4                    4
64 #define SB_VERSION_5                    5
65 #define SB_SECTORS                      8
66 #define MAX_SECTORS_PER_BLOCK           8
67
68 struct superblock {
69         __u8 magic[8];
70         __u8 version;
71         __u8 log2_interleave_sectors;
72         __le16 integrity_tag_size;
73         __le32 journal_sections;
74         __le64 provided_data_sectors;   /* userspace uses this value */
75         __le32 flags;
76         __u8 log2_sectors_per_block;
77         __u8 log2_blocks_per_bitmap_bit;
78         __u8 pad[2];
79         __le64 recalc_sector;
80         __u8 pad2[8];
81         __u8 salt[SALT_SIZE];
82 };
83
84 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
85 #define SB_FLAG_RECALCULATING           0x2
86 #define SB_FLAG_DIRTY_BITMAP            0x4
87 #define SB_FLAG_FIXED_PADDING           0x8
88 #define SB_FLAG_FIXED_HMAC              0x10
89
90 #define JOURNAL_ENTRY_ROUNDUP           8
91
92 typedef __le64 commit_id_t;
93 #define JOURNAL_MAC_PER_SECTOR          8
94
95 struct journal_entry {
96         union {
97                 struct {
98                         __le32 sector_lo;
99                         __le32 sector_hi;
100                 } s;
101                 __le64 sector;
102         } u;
103         commit_id_t last_bytes[];
104         /* __u8 tag[0]; */
105 };
106
107 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108
109 #if BITS_PER_LONG == 64
110 #define journal_entry_set_sector(je, x)         do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111 #else
112 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113 #endif
114 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
115 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
116 #define journal_entry_set_unused(je)            ((je)->u.s.sector_hi = cpu_to_le32(-1))
117 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
118 #define journal_entry_set_inprogress(je)        ((je)->u.s.sector_hi = cpu_to_le32(-2))
119
120 #define JOURNAL_BLOCK_SECTORS           8
121 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123
124 struct journal_sector {
125         struct_group(sectors,
126                 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127                 __u8 mac[JOURNAL_MAC_PER_SECTOR];
128         );
129         commit_id_t commit_id;
130 };
131
132 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133
134 #define METADATA_PADDING_SECTORS        8
135
136 #define N_COMMIT_IDS                    4
137
138 static unsigned char prev_commit_seq(unsigned char seq)
139 {
140         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141 }
142
143 static unsigned char next_commit_seq(unsigned char seq)
144 {
145         return (seq + 1) % N_COMMIT_IDS;
146 }
147
148 /*
149  * In-memory structures
150  */
151
152 struct journal_node {
153         struct rb_node node;
154         sector_t sector;
155 };
156
157 struct alg_spec {
158         char *alg_string;
159         char *key_string;
160         __u8 *key;
161         unsigned int key_size;
162 };
163
164 struct dm_integrity_c {
165         struct dm_dev *dev;
166         struct dm_dev *meta_dev;
167         unsigned int tag_size;
168         __s8 log2_tag_size;
169         sector_t start;
170         mempool_t journal_io_mempool;
171         struct dm_io_client *io;
172         struct dm_bufio_client *bufio;
173         struct workqueue_struct *metadata_wq;
174         struct superblock *sb;
175         unsigned int journal_pages;
176         unsigned int n_bitmap_blocks;
177
178         struct page_list *journal;
179         struct page_list *journal_io;
180         struct page_list *journal_xor;
181         struct page_list *recalc_bitmap;
182         struct page_list *may_write_bitmap;
183         struct bitmap_block_status *bbs;
184         unsigned int bitmap_flush_interval;
185         int synchronous_mode;
186         struct bio_list synchronous_bios;
187         struct delayed_work bitmap_flush_work;
188
189         struct crypto_skcipher *journal_crypt;
190         struct scatterlist **journal_scatterlist;
191         struct scatterlist **journal_io_scatterlist;
192         struct skcipher_request **sk_requests;
193
194         struct crypto_shash *journal_mac;
195
196         struct journal_node *journal_tree;
197         struct rb_root journal_tree_root;
198
199         sector_t provided_data_sectors;
200
201         unsigned short journal_entry_size;
202         unsigned char journal_entries_per_sector;
203         unsigned char journal_section_entries;
204         unsigned short journal_section_sectors;
205         unsigned int journal_sections;
206         unsigned int journal_entries;
207         sector_t data_device_sectors;
208         sector_t meta_device_sectors;
209         unsigned int initial_sectors;
210         unsigned int metadata_run;
211         __s8 log2_metadata_run;
212         __u8 log2_buffer_sectors;
213         __u8 sectors_per_block;
214         __u8 log2_blocks_per_bitmap_bit;
215
216         unsigned char mode;
217
218         int failed;
219
220         struct crypto_shash *internal_hash;
221
222         struct dm_target *ti;
223
224         /* these variables are locked with endio_wait.lock */
225         struct rb_root in_progress;
226         struct list_head wait_list;
227         wait_queue_head_t endio_wait;
228         struct workqueue_struct *wait_wq;
229         struct workqueue_struct *offload_wq;
230
231         unsigned char commit_seq;
232         commit_id_t commit_ids[N_COMMIT_IDS];
233
234         unsigned int committed_section;
235         unsigned int n_committed_sections;
236
237         unsigned int uncommitted_section;
238         unsigned int n_uncommitted_sections;
239
240         unsigned int free_section;
241         unsigned char free_section_entry;
242         unsigned int free_sectors;
243
244         unsigned int free_sectors_threshold;
245
246         struct workqueue_struct *commit_wq;
247         struct work_struct commit_work;
248
249         struct workqueue_struct *writer_wq;
250         struct work_struct writer_work;
251
252         struct workqueue_struct *recalc_wq;
253         struct work_struct recalc_work;
254
255         struct bio_list flush_bio_list;
256
257         unsigned long autocommit_jiffies;
258         struct timer_list autocommit_timer;
259         unsigned int autocommit_msec;
260
261         wait_queue_head_t copy_to_journal_wait;
262
263         struct completion crypto_backoff;
264
265         bool wrote_to_journal;
266         bool journal_uptodate;
267         bool just_formatted;
268         bool recalculate_flag;
269         bool reset_recalculate_flag;
270         bool discard;
271         bool fix_padding;
272         bool fix_hmac;
273         bool legacy_recalculate;
274
275         struct alg_spec internal_hash_alg;
276         struct alg_spec journal_crypt_alg;
277         struct alg_spec journal_mac_alg;
278
279         atomic64_t number_of_mismatches;
280
281         struct notifier_block reboot_notifier;
282 };
283
284 struct dm_integrity_range {
285         sector_t logical_sector;
286         sector_t n_sectors;
287         bool waiting;
288         union {
289                 struct rb_node node;
290                 struct {
291                         struct task_struct *task;
292                         struct list_head wait_entry;
293                 };
294         };
295 };
296
297 struct dm_integrity_io {
298         struct work_struct work;
299
300         struct dm_integrity_c *ic;
301         enum req_op op;
302         bool fua;
303
304         struct dm_integrity_range range;
305
306         sector_t metadata_block;
307         unsigned int metadata_offset;
308
309         atomic_t in_flight;
310         blk_status_t bi_status;
311
312         struct completion *completion;
313
314         struct dm_bio_details bio_details;
315 };
316
317 struct journal_completion {
318         struct dm_integrity_c *ic;
319         atomic_t in_flight;
320         struct completion comp;
321 };
322
323 struct journal_io {
324         struct dm_integrity_range range;
325         struct journal_completion *comp;
326 };
327
328 struct bitmap_block_status {
329         struct work_struct work;
330         struct dm_integrity_c *ic;
331         unsigned int idx;
332         unsigned long *bitmap;
333         struct bio_list bio_queue;
334         spinlock_t bio_queue_lock;
335
336 };
337
338 static struct kmem_cache *journal_io_cache;
339
340 #define JOURNAL_IO_MEMPOOL      32
341
342 #ifdef DEBUG_PRINT
343 #define DEBUG_print(x, ...)                     printk(KERN_DEBUG x, ##__VA_ARGS__)
344 #define DEBUG_bytes(bytes, len, msg, ...)       printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
345                                                        len ? ": " : "", len, bytes)
346 #else
347 #define DEBUG_print(x, ...)                     do { } while (0)
348 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
349 #endif
350
351 static void dm_integrity_prepare(struct request *rq)
352 {
353 }
354
355 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
356 {
357 }
358
359 /*
360  * DM Integrity profile, protection is performed layer above (dm-crypt)
361  */
362 static const struct blk_integrity_profile dm_integrity_profile = {
363         .name                   = "DM-DIF-EXT-TAG",
364         .generate_fn            = NULL,
365         .verify_fn              = NULL,
366         .prepare_fn             = dm_integrity_prepare,
367         .complete_fn            = dm_integrity_complete,
368 };
369
370 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
371 static void integrity_bio_wait(struct work_struct *w);
372 static void dm_integrity_dtr(struct dm_target *ti);
373
374 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
375 {
376         if (err == -EILSEQ)
377                 atomic64_inc(&ic->number_of_mismatches);
378         if (!cmpxchg(&ic->failed, 0, err))
379                 DMERR("Error on %s: %d", msg, err);
380 }
381
382 static int dm_integrity_failed(struct dm_integrity_c *ic)
383 {
384         return READ_ONCE(ic->failed);
385 }
386
387 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
388 {
389         if (ic->legacy_recalculate)
390                 return false;
391         if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
392             ic->internal_hash_alg.key || ic->journal_mac_alg.key :
393             ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
394                 return true;
395         return false;
396 }
397
398 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
399                                           unsigned int j, unsigned char seq)
400 {
401         /*
402          * Xor the number with section and sector, so that if a piece of
403          * journal is written at wrong place, it is detected.
404          */
405         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
406 }
407
408 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
409                                 sector_t *area, sector_t *offset)
410 {
411         if (!ic->meta_dev) {
412                 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
413                 *area = data_sector >> log2_interleave_sectors;
414                 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
415         } else {
416                 *area = 0;
417                 *offset = data_sector;
418         }
419 }
420
421 #define sector_to_block(ic, n)                                          \
422 do {                                                                    \
423         BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));              \
424         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
425 } while (0)
426
427 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
428                                             sector_t offset, unsigned int *metadata_offset)
429 {
430         __u64 ms;
431         unsigned int mo;
432
433         ms = area << ic->sb->log2_interleave_sectors;
434         if (likely(ic->log2_metadata_run >= 0))
435                 ms += area << ic->log2_metadata_run;
436         else
437                 ms += area * ic->metadata_run;
438         ms >>= ic->log2_buffer_sectors;
439
440         sector_to_block(ic, offset);
441
442         if (likely(ic->log2_tag_size >= 0)) {
443                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
444                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
445         } else {
446                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
447                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
448         }
449         *metadata_offset = mo;
450         return ms;
451 }
452
453 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
454 {
455         sector_t result;
456
457         if (ic->meta_dev)
458                 return offset;
459
460         result = area << ic->sb->log2_interleave_sectors;
461         if (likely(ic->log2_metadata_run >= 0))
462                 result += (area + 1) << ic->log2_metadata_run;
463         else
464                 result += (area + 1) * ic->metadata_run;
465
466         result += (sector_t)ic->initial_sectors + offset;
467         result += ic->start;
468
469         return result;
470 }
471
472 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
473 {
474         if (unlikely(*sec_ptr >= ic->journal_sections))
475                 *sec_ptr -= ic->journal_sections;
476 }
477
478 static void sb_set_version(struct dm_integrity_c *ic)
479 {
480         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
481                 ic->sb->version = SB_VERSION_5;
482         else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
483                 ic->sb->version = SB_VERSION_4;
484         else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
485                 ic->sb->version = SB_VERSION_3;
486         else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
487                 ic->sb->version = SB_VERSION_2;
488         else
489                 ic->sb->version = SB_VERSION_1;
490 }
491
492 static int sb_mac(struct dm_integrity_c *ic, bool wr)
493 {
494         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
495         int r;
496         unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
497         __u8 *sb = (__u8 *)ic->sb;
498         __u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
499
500         if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) {
501                 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
502                 return -EINVAL;
503         }
504
505         desc->tfm = ic->journal_mac;
506
507         if (likely(wr)) {
508                 r = crypto_shash_digest(desc, sb, mac - sb, mac);
509                 if (unlikely(r < 0)) {
510                         dm_integrity_io_error(ic, "crypto_shash_digest", r);
511                         return r;
512                 }
513         } else {
514                 __u8 actual_mac[HASH_MAX_DIGESTSIZE];
515
516                 r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
517                 if (unlikely(r < 0)) {
518                         dm_integrity_io_error(ic, "crypto_shash_digest", r);
519                         return r;
520                 }
521                 if (memcmp(mac, actual_mac, mac_size)) {
522                         dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
523                         dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
524                         return -EILSEQ;
525                 }
526         }
527
528         return 0;
529 }
530
531 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
532 {
533         struct dm_io_request io_req;
534         struct dm_io_region io_loc;
535         const enum req_op op = opf & REQ_OP_MASK;
536         int r;
537
538         io_req.bi_opf = opf;
539         io_req.mem.type = DM_IO_KMEM;
540         io_req.mem.ptr.addr = ic->sb;
541         io_req.notify.fn = NULL;
542         io_req.client = ic->io;
543         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
544         io_loc.sector = ic->start;
545         io_loc.count = SB_SECTORS;
546
547         if (op == REQ_OP_WRITE) {
548                 sb_set_version(ic);
549                 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
550                         r = sb_mac(ic, true);
551                         if (unlikely(r))
552                                 return r;
553                 }
554         }
555
556         r = dm_io(&io_req, 1, &io_loc, NULL);
557         if (unlikely(r))
558                 return r;
559
560         if (op == REQ_OP_READ) {
561                 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
562                         r = sb_mac(ic, false);
563                         if (unlikely(r))
564                                 return r;
565                 }
566         }
567
568         return 0;
569 }
570
571 #define BITMAP_OP_TEST_ALL_SET          0
572 #define BITMAP_OP_TEST_ALL_CLEAR        1
573 #define BITMAP_OP_SET                   2
574 #define BITMAP_OP_CLEAR                 3
575
576 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
577                             sector_t sector, sector_t n_sectors, int mode)
578 {
579         unsigned long bit, end_bit, this_end_bit, page, end_page;
580         unsigned long *data;
581
582         if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
583                 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
584                         sector,
585                         n_sectors,
586                         ic->sb->log2_sectors_per_block,
587                         ic->log2_blocks_per_bitmap_bit,
588                         mode);
589                 BUG();
590         }
591
592         if (unlikely(!n_sectors))
593                 return true;
594
595         bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
596         end_bit = (sector + n_sectors - 1) >>
597                 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
598
599         page = bit / (PAGE_SIZE * 8);
600         bit %= PAGE_SIZE * 8;
601
602         end_page = end_bit / (PAGE_SIZE * 8);
603         end_bit %= PAGE_SIZE * 8;
604
605 repeat:
606         if (page < end_page)
607                 this_end_bit = PAGE_SIZE * 8 - 1;
608         else
609                 this_end_bit = end_bit;
610
611         data = lowmem_page_address(bitmap[page].page);
612
613         if (mode == BITMAP_OP_TEST_ALL_SET) {
614                 while (bit <= this_end_bit) {
615                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
616                                 do {
617                                         if (data[bit / BITS_PER_LONG] != -1)
618                                                 return false;
619                                         bit += BITS_PER_LONG;
620                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
621                                 continue;
622                         }
623                         if (!test_bit(bit, data))
624                                 return false;
625                         bit++;
626                 }
627         } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
628                 while (bit <= this_end_bit) {
629                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
630                                 do {
631                                         if (data[bit / BITS_PER_LONG] != 0)
632                                                 return false;
633                                         bit += BITS_PER_LONG;
634                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
635                                 continue;
636                         }
637                         if (test_bit(bit, data))
638                                 return false;
639                         bit++;
640                 }
641         } else if (mode == BITMAP_OP_SET) {
642                 while (bit <= this_end_bit) {
643                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
644                                 do {
645                                         data[bit / BITS_PER_LONG] = -1;
646                                         bit += BITS_PER_LONG;
647                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
648                                 continue;
649                         }
650                         __set_bit(bit, data);
651                         bit++;
652                 }
653         } else if (mode == BITMAP_OP_CLEAR) {
654                 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
655                         clear_page(data);
656                 else {
657                         while (bit <= this_end_bit) {
658                                 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
659                                         do {
660                                                 data[bit / BITS_PER_LONG] = 0;
661                                                 bit += BITS_PER_LONG;
662                                         } while (this_end_bit >= bit + BITS_PER_LONG - 1);
663                                         continue;
664                                 }
665                                 __clear_bit(bit, data);
666                                 bit++;
667                         }
668                 }
669         } else {
670                 BUG();
671         }
672
673         if (unlikely(page < end_page)) {
674                 bit = 0;
675                 page++;
676                 goto repeat;
677         }
678
679         return true;
680 }
681
682 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
683 {
684         unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
685         unsigned int i;
686
687         for (i = 0; i < n_bitmap_pages; i++) {
688                 unsigned long *dst_data = lowmem_page_address(dst[i].page);
689                 unsigned long *src_data = lowmem_page_address(src[i].page);
690
691                 copy_page(dst_data, src_data);
692         }
693 }
694
695 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
696 {
697         unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
698         unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
699
700         BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
701         return &ic->bbs[bitmap_block];
702 }
703
704 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
705                                  bool e, const char *function)
706 {
707 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
708         unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
709
710         if (unlikely(section >= ic->journal_sections) ||
711             unlikely(offset >= limit)) {
712                 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
713                        function, section, offset, ic->journal_sections, limit);
714                 BUG();
715         }
716 #endif
717 }
718
719 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
720                                unsigned int *pl_index, unsigned int *pl_offset)
721 {
722         unsigned int sector;
723
724         access_journal_check(ic, section, offset, false, "page_list_location");
725
726         sector = section * ic->journal_section_sectors + offset;
727
728         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
729         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
730 }
731
732 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
733                                                unsigned int section, unsigned int offset, unsigned int *n_sectors)
734 {
735         unsigned int pl_index, pl_offset;
736         char *va;
737
738         page_list_location(ic, section, offset, &pl_index, &pl_offset);
739
740         if (n_sectors)
741                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
742
743         va = lowmem_page_address(pl[pl_index].page);
744
745         return (struct journal_sector *)(va + pl_offset);
746 }
747
748 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
749 {
750         return access_page_list(ic, ic->journal, section, offset, NULL);
751 }
752
753 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
754 {
755         unsigned int rel_sector, offset;
756         struct journal_sector *js;
757
758         access_journal_check(ic, section, n, true, "access_journal_entry");
759
760         rel_sector = n % JOURNAL_BLOCK_SECTORS;
761         offset = n / JOURNAL_BLOCK_SECTORS;
762
763         js = access_journal(ic, section, rel_sector);
764         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
765 }
766
767 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
768 {
769         n <<= ic->sb->log2_sectors_per_block;
770
771         n += JOURNAL_BLOCK_SECTORS;
772
773         access_journal_check(ic, section, n, false, "access_journal_data");
774
775         return access_journal(ic, section, n);
776 }
777
778 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
779 {
780         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
781         int r;
782         unsigned int j, size;
783
784         desc->tfm = ic->journal_mac;
785
786         r = crypto_shash_init(desc);
787         if (unlikely(r < 0)) {
788                 dm_integrity_io_error(ic, "crypto_shash_init", r);
789                 goto err;
790         }
791
792         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
793                 __le64 section_le;
794
795                 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
796                 if (unlikely(r < 0)) {
797                         dm_integrity_io_error(ic, "crypto_shash_update", r);
798                         goto err;
799                 }
800
801                 section_le = cpu_to_le64(section);
802                 r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
803                 if (unlikely(r < 0)) {
804                         dm_integrity_io_error(ic, "crypto_shash_update", r);
805                         goto err;
806                 }
807         }
808
809         for (j = 0; j < ic->journal_section_entries; j++) {
810                 struct journal_entry *je = access_journal_entry(ic, section, j);
811
812                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
813                 if (unlikely(r < 0)) {
814                         dm_integrity_io_error(ic, "crypto_shash_update", r);
815                         goto err;
816                 }
817         }
818
819         size = crypto_shash_digestsize(ic->journal_mac);
820
821         if (likely(size <= JOURNAL_MAC_SIZE)) {
822                 r = crypto_shash_final(desc, result);
823                 if (unlikely(r < 0)) {
824                         dm_integrity_io_error(ic, "crypto_shash_final", r);
825                         goto err;
826                 }
827                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
828         } else {
829                 __u8 digest[HASH_MAX_DIGESTSIZE];
830
831                 if (WARN_ON(size > sizeof(digest))) {
832                         dm_integrity_io_error(ic, "digest_size", -EINVAL);
833                         goto err;
834                 }
835                 r = crypto_shash_final(desc, digest);
836                 if (unlikely(r < 0)) {
837                         dm_integrity_io_error(ic, "crypto_shash_final", r);
838                         goto err;
839                 }
840                 memcpy(result, digest, JOURNAL_MAC_SIZE);
841         }
842
843         return;
844 err:
845         memset(result, 0, JOURNAL_MAC_SIZE);
846 }
847
848 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
849 {
850         __u8 result[JOURNAL_MAC_SIZE];
851         unsigned int j;
852
853         if (!ic->journal_mac)
854                 return;
855
856         section_mac(ic, section, result);
857
858         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
859                 struct journal_sector *js = access_journal(ic, section, j);
860
861                 if (likely(wr))
862                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
863                 else {
864                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
865                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
866                                 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
867                         }
868                 }
869         }
870 }
871
872 static void complete_journal_op(void *context)
873 {
874         struct journal_completion *comp = context;
875
876         BUG_ON(!atomic_read(&comp->in_flight));
877         if (likely(atomic_dec_and_test(&comp->in_flight)))
878                 complete(&comp->comp);
879 }
880
881 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
882                         unsigned int n_sections, struct journal_completion *comp)
883 {
884         struct async_submit_ctl submit;
885         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
886         unsigned int pl_index, pl_offset, section_index;
887         struct page_list *source_pl, *target_pl;
888
889         if (likely(encrypt)) {
890                 source_pl = ic->journal;
891                 target_pl = ic->journal_io;
892         } else {
893                 source_pl = ic->journal_io;
894                 target_pl = ic->journal;
895         }
896
897         page_list_location(ic, section, 0, &pl_index, &pl_offset);
898
899         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
900
901         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
902
903         section_index = pl_index;
904
905         do {
906                 size_t this_step;
907                 struct page *src_pages[2];
908                 struct page *dst_page;
909
910                 while (unlikely(pl_index == section_index)) {
911                         unsigned int dummy;
912
913                         if (likely(encrypt))
914                                 rw_section_mac(ic, section, true);
915                         section++;
916                         n_sections--;
917                         if (!n_sections)
918                                 break;
919                         page_list_location(ic, section, 0, &section_index, &dummy);
920                 }
921
922                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
923                 dst_page = target_pl[pl_index].page;
924                 src_pages[0] = source_pl[pl_index].page;
925                 src_pages[1] = ic->journal_xor[pl_index].page;
926
927                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
928
929                 pl_index++;
930                 pl_offset = 0;
931                 n_bytes -= this_step;
932         } while (n_bytes);
933
934         BUG_ON(n_sections);
935
936         async_tx_issue_pending_all();
937 }
938
939 static void complete_journal_encrypt(void *data, int err)
940 {
941         struct journal_completion *comp = data;
942
943         if (unlikely(err)) {
944                 if (likely(err == -EINPROGRESS)) {
945                         complete(&comp->ic->crypto_backoff);
946                         return;
947                 }
948                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
949         }
950         complete_journal_op(comp);
951 }
952
953 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
954 {
955         int r;
956
957         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
958                                       complete_journal_encrypt, comp);
959         if (likely(encrypt))
960                 r = crypto_skcipher_encrypt(req);
961         else
962                 r = crypto_skcipher_decrypt(req);
963         if (likely(!r))
964                 return false;
965         if (likely(r == -EINPROGRESS))
966                 return true;
967         if (likely(r == -EBUSY)) {
968                 wait_for_completion(&comp->ic->crypto_backoff);
969                 reinit_completion(&comp->ic->crypto_backoff);
970                 return true;
971         }
972         dm_integrity_io_error(comp->ic, "encrypt", r);
973         return false;
974 }
975
976 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
977                           unsigned int n_sections, struct journal_completion *comp)
978 {
979         struct scatterlist **source_sg;
980         struct scatterlist **target_sg;
981
982         atomic_add(2, &comp->in_flight);
983
984         if (likely(encrypt)) {
985                 source_sg = ic->journal_scatterlist;
986                 target_sg = ic->journal_io_scatterlist;
987         } else {
988                 source_sg = ic->journal_io_scatterlist;
989                 target_sg = ic->journal_scatterlist;
990         }
991
992         do {
993                 struct skcipher_request *req;
994                 unsigned int ivsize;
995                 char *iv;
996
997                 if (likely(encrypt))
998                         rw_section_mac(ic, section, true);
999
1000                 req = ic->sk_requests[section];
1001                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1002                 iv = req->iv;
1003
1004                 memcpy(iv, iv + ivsize, ivsize);
1005
1006                 req->src = source_sg[section];
1007                 req->dst = target_sg[section];
1008
1009                 if (unlikely(do_crypt(encrypt, req, comp)))
1010                         atomic_inc(&comp->in_flight);
1011
1012                 section++;
1013                 n_sections--;
1014         } while (n_sections);
1015
1016         atomic_dec(&comp->in_flight);
1017         complete_journal_op(comp);
1018 }
1019
1020 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1021                             unsigned int n_sections, struct journal_completion *comp)
1022 {
1023         if (ic->journal_xor)
1024                 return xor_journal(ic, encrypt, section, n_sections, comp);
1025         else
1026                 return crypt_journal(ic, encrypt, section, n_sections, comp);
1027 }
1028
1029 static void complete_journal_io(unsigned long error, void *context)
1030 {
1031         struct journal_completion *comp = context;
1032
1033         if (unlikely(error != 0))
1034                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1035         complete_journal_op(comp);
1036 }
1037
1038 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1039                                unsigned int sector, unsigned int n_sectors,
1040                                struct journal_completion *comp)
1041 {
1042         struct dm_io_request io_req;
1043         struct dm_io_region io_loc;
1044         unsigned int pl_index, pl_offset;
1045         int r;
1046
1047         if (unlikely(dm_integrity_failed(ic))) {
1048                 if (comp)
1049                         complete_journal_io(-1UL, comp);
1050                 return;
1051         }
1052
1053         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1054         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1055
1056         io_req.bi_opf = opf;
1057         io_req.mem.type = DM_IO_PAGE_LIST;
1058         if (ic->journal_io)
1059                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1060         else
1061                 io_req.mem.ptr.pl = &ic->journal[pl_index];
1062         io_req.mem.offset = pl_offset;
1063         if (likely(comp != NULL)) {
1064                 io_req.notify.fn = complete_journal_io;
1065                 io_req.notify.context = comp;
1066         } else {
1067                 io_req.notify.fn = NULL;
1068         }
1069         io_req.client = ic->io;
1070         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1071         io_loc.sector = ic->start + SB_SECTORS + sector;
1072         io_loc.count = n_sectors;
1073
1074         r = dm_io(&io_req, 1, &io_loc, NULL);
1075         if (unlikely(r)) {
1076                 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1077                                       "reading journal" : "writing journal", r);
1078                 if (comp) {
1079                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1080                         complete_journal_io(-1UL, comp);
1081                 }
1082         }
1083 }
1084
1085 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1086                        unsigned int section, unsigned int n_sections,
1087                        struct journal_completion *comp)
1088 {
1089         unsigned int sector, n_sectors;
1090
1091         sector = section * ic->journal_section_sectors;
1092         n_sectors = n_sections * ic->journal_section_sectors;
1093
1094         rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1095 }
1096
1097 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1098 {
1099         struct journal_completion io_comp;
1100         struct journal_completion crypt_comp_1;
1101         struct journal_completion crypt_comp_2;
1102         unsigned int i;
1103
1104         io_comp.ic = ic;
1105         init_completion(&io_comp.comp);
1106
1107         if (commit_start + commit_sections <= ic->journal_sections) {
1108                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1109                 if (ic->journal_io) {
1110                         crypt_comp_1.ic = ic;
1111                         init_completion(&crypt_comp_1.comp);
1112                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1113                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1114                         wait_for_completion_io(&crypt_comp_1.comp);
1115                 } else {
1116                         for (i = 0; i < commit_sections; i++)
1117                                 rw_section_mac(ic, commit_start + i, true);
1118                 }
1119                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1120                            commit_sections, &io_comp);
1121         } else {
1122                 unsigned int to_end;
1123
1124                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1125                 to_end = ic->journal_sections - commit_start;
1126                 if (ic->journal_io) {
1127                         crypt_comp_1.ic = ic;
1128                         init_completion(&crypt_comp_1.comp);
1129                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1130                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1131                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
1132                                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1133                                            commit_start, to_end, &io_comp);
1134                                 reinit_completion(&crypt_comp_1.comp);
1135                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1136                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1137                                 wait_for_completion_io(&crypt_comp_1.comp);
1138                         } else {
1139                                 crypt_comp_2.ic = ic;
1140                                 init_completion(&crypt_comp_2.comp);
1141                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1142                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1143                                 wait_for_completion_io(&crypt_comp_1.comp);
1144                                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1145                                 wait_for_completion_io(&crypt_comp_2.comp);
1146                         }
1147                 } else {
1148                         for (i = 0; i < to_end; i++)
1149                                 rw_section_mac(ic, commit_start + i, true);
1150                         rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1151                         for (i = 0; i < commit_sections - to_end; i++)
1152                                 rw_section_mac(ic, i, true);
1153                 }
1154                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1155         }
1156
1157         wait_for_completion_io(&io_comp.comp);
1158 }
1159
1160 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1161                               unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1162 {
1163         struct dm_io_request io_req;
1164         struct dm_io_region io_loc;
1165         int r;
1166         unsigned int sector, pl_index, pl_offset;
1167
1168         BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1169
1170         if (unlikely(dm_integrity_failed(ic))) {
1171                 fn(-1UL, data);
1172                 return;
1173         }
1174
1175         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1176
1177         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1178         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1179
1180         io_req.bi_opf = REQ_OP_WRITE;
1181         io_req.mem.type = DM_IO_PAGE_LIST;
1182         io_req.mem.ptr.pl = &ic->journal[pl_index];
1183         io_req.mem.offset = pl_offset;
1184         io_req.notify.fn = fn;
1185         io_req.notify.context = data;
1186         io_req.client = ic->io;
1187         io_loc.bdev = ic->dev->bdev;
1188         io_loc.sector = target;
1189         io_loc.count = n_sectors;
1190
1191         r = dm_io(&io_req, 1, &io_loc, NULL);
1192         if (unlikely(r)) {
1193                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1194                 fn(-1UL, data);
1195         }
1196 }
1197
1198 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1199 {
1200         return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1201                range1->logical_sector + range1->n_sectors > range2->logical_sector;
1202 }
1203
1204 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1205 {
1206         struct rb_node **n = &ic->in_progress.rb_node;
1207         struct rb_node *parent;
1208
1209         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1210
1211         if (likely(check_waiting)) {
1212                 struct dm_integrity_range *range;
1213
1214                 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1215                         if (unlikely(ranges_overlap(range, new_range)))
1216                                 return false;
1217                 }
1218         }
1219
1220         parent = NULL;
1221
1222         while (*n) {
1223                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1224
1225                 parent = *n;
1226                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1227                         n = &range->node.rb_left;
1228                 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1229                         n = &range->node.rb_right;
1230                 else
1231                         return false;
1232         }
1233
1234         rb_link_node(&new_range->node, parent, n);
1235         rb_insert_color(&new_range->node, &ic->in_progress);
1236
1237         return true;
1238 }
1239
1240 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1241 {
1242         rb_erase(&range->node, &ic->in_progress);
1243         while (unlikely(!list_empty(&ic->wait_list))) {
1244                 struct dm_integrity_range *last_range =
1245                         list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1246                 struct task_struct *last_range_task;
1247
1248                 last_range_task = last_range->task;
1249                 list_del(&last_range->wait_entry);
1250                 if (!add_new_range(ic, last_range, false)) {
1251                         last_range->task = last_range_task;
1252                         list_add(&last_range->wait_entry, &ic->wait_list);
1253                         break;
1254                 }
1255                 last_range->waiting = false;
1256                 wake_up_process(last_range_task);
1257         }
1258 }
1259
1260 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1261 {
1262         unsigned long flags;
1263
1264         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1265         remove_range_unlocked(ic, range);
1266         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1267 }
1268
1269 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1270 {
1271         new_range->waiting = true;
1272         list_add_tail(&new_range->wait_entry, &ic->wait_list);
1273         new_range->task = current;
1274         do {
1275                 __set_current_state(TASK_UNINTERRUPTIBLE);
1276                 spin_unlock_irq(&ic->endio_wait.lock);
1277                 io_schedule();
1278                 spin_lock_irq(&ic->endio_wait.lock);
1279         } while (unlikely(new_range->waiting));
1280 }
1281
1282 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1283 {
1284         if (unlikely(!add_new_range(ic, new_range, true)))
1285                 wait_and_add_new_range(ic, new_range);
1286 }
1287
1288 static void init_journal_node(struct journal_node *node)
1289 {
1290         RB_CLEAR_NODE(&node->node);
1291         node->sector = (sector_t)-1;
1292 }
1293
1294 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1295 {
1296         struct rb_node **link;
1297         struct rb_node *parent;
1298
1299         node->sector = sector;
1300         BUG_ON(!RB_EMPTY_NODE(&node->node));
1301
1302         link = &ic->journal_tree_root.rb_node;
1303         parent = NULL;
1304
1305         while (*link) {
1306                 struct journal_node *j;
1307
1308                 parent = *link;
1309                 j = container_of(parent, struct journal_node, node);
1310                 if (sector < j->sector)
1311                         link = &j->node.rb_left;
1312                 else
1313                         link = &j->node.rb_right;
1314         }
1315
1316         rb_link_node(&node->node, parent, link);
1317         rb_insert_color(&node->node, &ic->journal_tree_root);
1318 }
1319
1320 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1321 {
1322         BUG_ON(RB_EMPTY_NODE(&node->node));
1323         rb_erase(&node->node, &ic->journal_tree_root);
1324         init_journal_node(node);
1325 }
1326
1327 #define NOT_FOUND       (-1U)
1328
1329 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1330 {
1331         struct rb_node *n = ic->journal_tree_root.rb_node;
1332         unsigned int found = NOT_FOUND;
1333
1334         *next_sector = (sector_t)-1;
1335         while (n) {
1336                 struct journal_node *j = container_of(n, struct journal_node, node);
1337
1338                 if (sector == j->sector)
1339                         found = j - ic->journal_tree;
1340
1341                 if (sector < j->sector) {
1342                         *next_sector = j->sector;
1343                         n = j->node.rb_left;
1344                 } else
1345                         n = j->node.rb_right;
1346         }
1347
1348         return found;
1349 }
1350
1351 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1352 {
1353         struct journal_node *node, *next_node;
1354         struct rb_node *next;
1355
1356         if (unlikely(pos >= ic->journal_entries))
1357                 return false;
1358         node = &ic->journal_tree[pos];
1359         if (unlikely(RB_EMPTY_NODE(&node->node)))
1360                 return false;
1361         if (unlikely(node->sector != sector))
1362                 return false;
1363
1364         next = rb_next(&node->node);
1365         if (unlikely(!next))
1366                 return true;
1367
1368         next_node = container_of(next, struct journal_node, node);
1369         return next_node->sector != sector;
1370 }
1371
1372 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1373 {
1374         struct rb_node *next;
1375         struct journal_node *next_node;
1376         unsigned int next_section;
1377
1378         BUG_ON(RB_EMPTY_NODE(&node->node));
1379
1380         next = rb_next(&node->node);
1381         if (unlikely(!next))
1382                 return false;
1383
1384         next_node = container_of(next, struct journal_node, node);
1385
1386         if (next_node->sector != node->sector)
1387                 return false;
1388
1389         next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1390         if (next_section >= ic->committed_section &&
1391             next_section < ic->committed_section + ic->n_committed_sections)
1392                 return true;
1393         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1394                 return true;
1395
1396         return false;
1397 }
1398
1399 #define TAG_READ        0
1400 #define TAG_WRITE       1
1401 #define TAG_CMP         2
1402
1403 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1404                                unsigned int *metadata_offset, unsigned int total_size, int op)
1405 {
1406 #define MAY_BE_FILLER           1
1407 #define MAY_BE_HASH             2
1408         unsigned int hash_offset = 0;
1409         unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1410
1411         do {
1412                 unsigned char *data, *dp;
1413                 struct dm_buffer *b;
1414                 unsigned int to_copy;
1415                 int r;
1416
1417                 r = dm_integrity_failed(ic);
1418                 if (unlikely(r))
1419                         return r;
1420
1421                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1422                 if (IS_ERR(data))
1423                         return PTR_ERR(data);
1424
1425                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1426                 dp = data + *metadata_offset;
1427                 if (op == TAG_READ) {
1428                         memcpy(tag, dp, to_copy);
1429                 } else if (op == TAG_WRITE) {
1430                         if (memcmp(dp, tag, to_copy)) {
1431                                 memcpy(dp, tag, to_copy);
1432                                 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1433                         }
1434                 } else {
1435                         /* e.g.: op == TAG_CMP */
1436
1437                         if (likely(is_power_of_2(ic->tag_size))) {
1438                                 if (unlikely(memcmp(dp, tag, to_copy)))
1439                                         if (unlikely(!ic->discard) ||
1440                                             unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1441                                                 goto thorough_test;
1442                                 }
1443                         } else {
1444                                 unsigned int i, ts;
1445 thorough_test:
1446                                 ts = total_size;
1447
1448                                 for (i = 0; i < to_copy; i++, ts--) {
1449                                         if (unlikely(dp[i] != tag[i]))
1450                                                 may_be &= ~MAY_BE_HASH;
1451                                         if (likely(dp[i] != DISCARD_FILLER))
1452                                                 may_be &= ~MAY_BE_FILLER;
1453                                         hash_offset++;
1454                                         if (unlikely(hash_offset == ic->tag_size)) {
1455                                                 if (unlikely(!may_be)) {
1456                                                         dm_bufio_release(b);
1457                                                         return ts;
1458                                                 }
1459                                                 hash_offset = 0;
1460                                                 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1461                                         }
1462                                 }
1463                         }
1464                 }
1465                 dm_bufio_release(b);
1466
1467                 tag += to_copy;
1468                 *metadata_offset += to_copy;
1469                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1470                         (*metadata_block)++;
1471                         *metadata_offset = 0;
1472                 }
1473
1474                 if (unlikely(!is_power_of_2(ic->tag_size)))
1475                         hash_offset = (hash_offset + to_copy) % ic->tag_size;
1476
1477                 total_size -= to_copy;
1478         } while (unlikely(total_size));
1479
1480         return 0;
1481 #undef MAY_BE_FILLER
1482 #undef MAY_BE_HASH
1483 }
1484
1485 struct flush_request {
1486         struct dm_io_request io_req;
1487         struct dm_io_region io_reg;
1488         struct dm_integrity_c *ic;
1489         struct completion comp;
1490 };
1491
1492 static void flush_notify(unsigned long error, void *fr_)
1493 {
1494         struct flush_request *fr = fr_;
1495
1496         if (unlikely(error != 0))
1497                 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1498         complete(&fr->comp);
1499 }
1500
1501 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1502 {
1503         int r;
1504         struct flush_request fr;
1505
1506         if (!ic->meta_dev)
1507                 flush_data = false;
1508         if (flush_data) {
1509                 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1510                 fr.io_req.mem.type = DM_IO_KMEM,
1511                 fr.io_req.mem.ptr.addr = NULL,
1512                 fr.io_req.notify.fn = flush_notify,
1513                 fr.io_req.notify.context = &fr;
1514                 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1515                 fr.io_reg.bdev = ic->dev->bdev,
1516                 fr.io_reg.sector = 0,
1517                 fr.io_reg.count = 0,
1518                 fr.ic = ic;
1519                 init_completion(&fr.comp);
1520                 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1521                 BUG_ON(r);
1522         }
1523
1524         r = dm_bufio_write_dirty_buffers(ic->bufio);
1525         if (unlikely(r))
1526                 dm_integrity_io_error(ic, "writing tags", r);
1527
1528         if (flush_data)
1529                 wait_for_completion(&fr.comp);
1530 }
1531
1532 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1533 {
1534         DECLARE_WAITQUEUE(wait, current);
1535
1536         __add_wait_queue(&ic->endio_wait, &wait);
1537         __set_current_state(TASK_UNINTERRUPTIBLE);
1538         spin_unlock_irq(&ic->endio_wait.lock);
1539         io_schedule();
1540         spin_lock_irq(&ic->endio_wait.lock);
1541         __remove_wait_queue(&ic->endio_wait, &wait);
1542 }
1543
1544 static void autocommit_fn(struct timer_list *t)
1545 {
1546         struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1547
1548         if (likely(!dm_integrity_failed(ic)))
1549                 queue_work(ic->commit_wq, &ic->commit_work);
1550 }
1551
1552 static void schedule_autocommit(struct dm_integrity_c *ic)
1553 {
1554         if (!timer_pending(&ic->autocommit_timer))
1555                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1556 }
1557
1558 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1559 {
1560         struct bio *bio;
1561         unsigned long flags;
1562
1563         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1564         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1565         bio_list_add(&ic->flush_bio_list, bio);
1566         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1567
1568         queue_work(ic->commit_wq, &ic->commit_work);
1569 }
1570
1571 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1572 {
1573         int r;
1574
1575         r = dm_integrity_failed(ic);
1576         if (unlikely(r) && !bio->bi_status)
1577                 bio->bi_status = errno_to_blk_status(r);
1578         if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1579                 unsigned long flags;
1580
1581                 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1582                 bio_list_add(&ic->synchronous_bios, bio);
1583                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1584                 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1585                 return;
1586         }
1587         bio_endio(bio);
1588 }
1589
1590 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1591 {
1592         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1593
1594         if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1595                 submit_flush_bio(ic, dio);
1596         else
1597                 do_endio(ic, bio);
1598 }
1599
1600 static void dec_in_flight(struct dm_integrity_io *dio)
1601 {
1602         if (atomic_dec_and_test(&dio->in_flight)) {
1603                 struct dm_integrity_c *ic = dio->ic;
1604                 struct bio *bio;
1605
1606                 remove_range(ic, &dio->range);
1607
1608                 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1609                         schedule_autocommit(ic);
1610
1611                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1612                 if (unlikely(dio->bi_status) && !bio->bi_status)
1613                         bio->bi_status = dio->bi_status;
1614                 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1615                         dio->range.logical_sector += dio->range.n_sectors;
1616                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1617                         INIT_WORK(&dio->work, integrity_bio_wait);
1618                         queue_work(ic->offload_wq, &dio->work);
1619                         return;
1620                 }
1621                 do_endio_flush(ic, dio);
1622         }
1623 }
1624
1625 static void integrity_end_io(struct bio *bio)
1626 {
1627         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1628
1629         dm_bio_restore(&dio->bio_details, bio);
1630         if (bio->bi_integrity)
1631                 bio->bi_opf |= REQ_INTEGRITY;
1632
1633         if (dio->completion)
1634                 complete(dio->completion);
1635
1636         dec_in_flight(dio);
1637 }
1638
1639 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1640                                       const char *data, char *result)
1641 {
1642         __le64 sector_le = cpu_to_le64(sector);
1643         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1644         int r;
1645         unsigned int digest_size;
1646
1647         req->tfm = ic->internal_hash;
1648
1649         r = crypto_shash_init(req);
1650         if (unlikely(r < 0)) {
1651                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1652                 goto failed;
1653         }
1654
1655         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1656                 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1657                 if (unlikely(r < 0)) {
1658                         dm_integrity_io_error(ic, "crypto_shash_update", r);
1659                         goto failed;
1660                 }
1661         }
1662
1663         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1664         if (unlikely(r < 0)) {
1665                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1666                 goto failed;
1667         }
1668
1669         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1670         if (unlikely(r < 0)) {
1671                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1672                 goto failed;
1673         }
1674
1675         r = crypto_shash_final(req, result);
1676         if (unlikely(r < 0)) {
1677                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1678                 goto failed;
1679         }
1680
1681         digest_size = crypto_shash_digestsize(ic->internal_hash);
1682         if (unlikely(digest_size < ic->tag_size))
1683                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1684
1685         return;
1686
1687 failed:
1688         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1689         get_random_bytes(result, ic->tag_size);
1690 }
1691
1692 static void integrity_metadata(struct work_struct *w)
1693 {
1694         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1695         struct dm_integrity_c *ic = dio->ic;
1696
1697         int r;
1698
1699         if (ic->internal_hash) {
1700                 struct bvec_iter iter;
1701                 struct bio_vec bv;
1702                 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1703                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1704                 char *checksums;
1705                 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1706                 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1707                 sector_t sector;
1708                 unsigned int sectors_to_process;
1709
1710                 if (unlikely(ic->mode == 'R'))
1711                         goto skip_io;
1712
1713                 if (likely(dio->op != REQ_OP_DISCARD))
1714                         checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1715                                             GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1716                 else
1717                         checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1718                 if (!checksums) {
1719                         checksums = checksums_onstack;
1720                         if (WARN_ON(extra_space &&
1721                                     digest_size > sizeof(checksums_onstack))) {
1722                                 r = -EINVAL;
1723                                 goto error;
1724                         }
1725                 }
1726
1727                 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1728                         unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1729                         unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1730                         unsigned int max_blocks = max_size / ic->tag_size;
1731
1732                         memset(checksums, DISCARD_FILLER, max_size);
1733
1734                         while (bi_size) {
1735                                 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1736
1737                                 this_step_blocks = min(this_step_blocks, max_blocks);
1738                                 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1739                                                         this_step_blocks * ic->tag_size, TAG_WRITE);
1740                                 if (unlikely(r)) {
1741                                         if (likely(checksums != checksums_onstack))
1742                                                 kfree(checksums);
1743                                         goto error;
1744                                 }
1745
1746                                 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1747                         }
1748
1749                         if (likely(checksums != checksums_onstack))
1750                                 kfree(checksums);
1751                         goto skip_io;
1752                 }
1753
1754                 sector = dio->range.logical_sector;
1755                 sectors_to_process = dio->range.n_sectors;
1756
1757                 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1758                         unsigned int pos;
1759                         char *mem, *checksums_ptr;
1760
1761 again:
1762                         mem = bvec_kmap_local(&bv);
1763                         pos = 0;
1764                         checksums_ptr = checksums;
1765                         do {
1766                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1767                                 checksums_ptr += ic->tag_size;
1768                                 sectors_to_process -= ic->sectors_per_block;
1769                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1770                                 sector += ic->sectors_per_block;
1771                         } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1772                         kunmap_local(mem);
1773
1774                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1775                                                 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1776                         if (unlikely(r)) {
1777                                 if (r > 0) {
1778                                         sector_t s;
1779
1780                                         s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1781                                         DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1782                                                     bio->bi_bdev, s);
1783                                         r = -EILSEQ;
1784                                         atomic64_inc(&ic->number_of_mismatches);
1785                                         dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1786                                                          bio, s, 0);
1787                                 }
1788                                 if (likely(checksums != checksums_onstack))
1789                                         kfree(checksums);
1790                                 goto error;
1791                         }
1792
1793                         if (!sectors_to_process)
1794                                 break;
1795
1796                         if (unlikely(pos < bv.bv_len)) {
1797                                 bv.bv_offset += pos;
1798                                 bv.bv_len -= pos;
1799                                 goto again;
1800                         }
1801                 }
1802
1803                 if (likely(checksums != checksums_onstack))
1804                         kfree(checksums);
1805         } else {
1806                 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1807
1808                 if (bip) {
1809                         struct bio_vec biv;
1810                         struct bvec_iter iter;
1811                         unsigned int data_to_process = dio->range.n_sectors;
1812
1813                         sector_to_block(ic, data_to_process);
1814                         data_to_process *= ic->tag_size;
1815
1816                         bip_for_each_vec(biv, bip, iter) {
1817                                 unsigned char *tag;
1818                                 unsigned int this_len;
1819
1820                                 BUG_ON(PageHighMem(biv.bv_page));
1821                                 tag = bvec_virt(&biv);
1822                                 this_len = min(biv.bv_len, data_to_process);
1823                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1824                                                         this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1825                                 if (unlikely(r))
1826                                         goto error;
1827                                 data_to_process -= this_len;
1828                                 if (!data_to_process)
1829                                         break;
1830                         }
1831                 }
1832         }
1833 skip_io:
1834         dec_in_flight(dio);
1835         return;
1836 error:
1837         dio->bi_status = errno_to_blk_status(r);
1838         dec_in_flight(dio);
1839 }
1840
1841 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1842 {
1843         struct dm_integrity_c *ic = ti->private;
1844         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1845         struct bio_integrity_payload *bip;
1846
1847         sector_t area, offset;
1848
1849         dio->ic = ic;
1850         dio->bi_status = 0;
1851         dio->op = bio_op(bio);
1852
1853         if (unlikely(dio->op == REQ_OP_DISCARD)) {
1854                 if (ti->max_io_len) {
1855                         sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1856                         unsigned int log2_max_io_len = __fls(ti->max_io_len);
1857                         sector_t start_boundary = sec >> log2_max_io_len;
1858                         sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1859
1860                         if (start_boundary < end_boundary) {
1861                                 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1862
1863                                 dm_accept_partial_bio(bio, len);
1864                         }
1865                 }
1866         }
1867
1868         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1869                 submit_flush_bio(ic, dio);
1870                 return DM_MAPIO_SUBMITTED;
1871         }
1872
1873         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1874         dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1875         if (unlikely(dio->fua)) {
1876                 /*
1877                  * Don't pass down the FUA flag because we have to flush
1878                  * disk cache anyway.
1879                  */
1880                 bio->bi_opf &= ~REQ_FUA;
1881         }
1882         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1883                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1884                       dio->range.logical_sector, bio_sectors(bio),
1885                       ic->provided_data_sectors);
1886                 return DM_MAPIO_KILL;
1887         }
1888         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1889                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1890                       ic->sectors_per_block,
1891                       dio->range.logical_sector, bio_sectors(bio));
1892                 return DM_MAPIO_KILL;
1893         }
1894
1895         if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1896                 struct bvec_iter iter;
1897                 struct bio_vec bv;
1898
1899                 bio_for_each_segment(bv, bio, iter) {
1900                         if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1901                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1902                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1903                                 return DM_MAPIO_KILL;
1904                         }
1905                 }
1906         }
1907
1908         bip = bio_integrity(bio);
1909         if (!ic->internal_hash) {
1910                 if (bip) {
1911                         unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1912
1913                         if (ic->log2_tag_size >= 0)
1914                                 wanted_tag_size <<= ic->log2_tag_size;
1915                         else
1916                                 wanted_tag_size *= ic->tag_size;
1917                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1918                                 DMERR("Invalid integrity data size %u, expected %u",
1919                                       bip->bip_iter.bi_size, wanted_tag_size);
1920                                 return DM_MAPIO_KILL;
1921                         }
1922                 }
1923         } else {
1924                 if (unlikely(bip != NULL)) {
1925                         DMERR("Unexpected integrity data when using internal hash");
1926                         return DM_MAPIO_KILL;
1927                 }
1928         }
1929
1930         if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1931                 return DM_MAPIO_KILL;
1932
1933         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1934         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1935         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1936
1937         dm_integrity_map_continue(dio, true);
1938         return DM_MAPIO_SUBMITTED;
1939 }
1940
1941 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1942                                  unsigned int journal_section, unsigned int journal_entry)
1943 {
1944         struct dm_integrity_c *ic = dio->ic;
1945         sector_t logical_sector;
1946         unsigned int n_sectors;
1947
1948         logical_sector = dio->range.logical_sector;
1949         n_sectors = dio->range.n_sectors;
1950         do {
1951                 struct bio_vec bv = bio_iovec(bio);
1952                 char *mem;
1953
1954                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1955                         bv.bv_len = n_sectors << SECTOR_SHIFT;
1956                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1957                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1958 retry_kmap:
1959                 mem = kmap_local_page(bv.bv_page);
1960                 if (likely(dio->op == REQ_OP_WRITE))
1961                         flush_dcache_page(bv.bv_page);
1962
1963                 do {
1964                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1965
1966                         if (unlikely(dio->op == REQ_OP_READ)) {
1967                                 struct journal_sector *js;
1968                                 char *mem_ptr;
1969                                 unsigned int s;
1970
1971                                 if (unlikely(journal_entry_is_inprogress(je))) {
1972                                         flush_dcache_page(bv.bv_page);
1973                                         kunmap_local(mem);
1974
1975                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1976                                         goto retry_kmap;
1977                                 }
1978                                 smp_rmb();
1979                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1980                                 js = access_journal_data(ic, journal_section, journal_entry);
1981                                 mem_ptr = mem + bv.bv_offset;
1982                                 s = 0;
1983                                 do {
1984                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1985                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1986                                         js++;
1987                                         mem_ptr += 1 << SECTOR_SHIFT;
1988                                 } while (++s < ic->sectors_per_block);
1989 #ifdef INTERNAL_VERIFY
1990                                 if (ic->internal_hash) {
1991                                         char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1992
1993                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1994                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1995                                                 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1996                                                             logical_sector);
1997                                                 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
1998                                                                  bio, logical_sector, 0);
1999                                         }
2000                                 }
2001 #endif
2002                         }
2003
2004                         if (!ic->internal_hash) {
2005                                 struct bio_integrity_payload *bip = bio_integrity(bio);
2006                                 unsigned int tag_todo = ic->tag_size;
2007                                 char *tag_ptr = journal_entry_tag(ic, je);
2008
2009                                 if (bip) {
2010                                         do {
2011                                                 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2012                                                 unsigned int tag_now = min(biv.bv_len, tag_todo);
2013                                                 char *tag_addr;
2014
2015                                                 BUG_ON(PageHighMem(biv.bv_page));
2016                                                 tag_addr = bvec_virt(&biv);
2017                                                 if (likely(dio->op == REQ_OP_WRITE))
2018                                                         memcpy(tag_ptr, tag_addr, tag_now);
2019                                                 else
2020                                                         memcpy(tag_addr, tag_ptr, tag_now);
2021                                                 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2022                                                 tag_ptr += tag_now;
2023                                                 tag_todo -= tag_now;
2024                                         } while (unlikely(tag_todo));
2025                                 } else if (likely(dio->op == REQ_OP_WRITE))
2026                                         memset(tag_ptr, 0, tag_todo);
2027                         }
2028
2029                         if (likely(dio->op == REQ_OP_WRITE)) {
2030                                 struct journal_sector *js;
2031                                 unsigned int s;
2032
2033                                 js = access_journal_data(ic, journal_section, journal_entry);
2034                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2035
2036                                 s = 0;
2037                                 do {
2038                                         je->last_bytes[s] = js[s].commit_id;
2039                                 } while (++s < ic->sectors_per_block);
2040
2041                                 if (ic->internal_hash) {
2042                                         unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2043
2044                                         if (unlikely(digest_size > ic->tag_size)) {
2045                                                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2046
2047                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2048                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2049                                         } else
2050                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2051                                 }
2052
2053                                 journal_entry_set_sector(je, logical_sector);
2054                         }
2055                         logical_sector += ic->sectors_per_block;
2056
2057                         journal_entry++;
2058                         if (unlikely(journal_entry == ic->journal_section_entries)) {
2059                                 journal_entry = 0;
2060                                 journal_section++;
2061                                 wraparound_section(ic, &journal_section);
2062                         }
2063
2064                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2065                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2066
2067                 if (unlikely(dio->op == REQ_OP_READ))
2068                         flush_dcache_page(bv.bv_page);
2069                 kunmap_local(mem);
2070         } while (n_sectors);
2071
2072         if (likely(dio->op == REQ_OP_WRITE)) {
2073                 smp_mb();
2074                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2075                         wake_up(&ic->copy_to_journal_wait);
2076                 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2077                         queue_work(ic->commit_wq, &ic->commit_work);
2078                 else
2079                         schedule_autocommit(ic);
2080         } else
2081                 remove_range(ic, &dio->range);
2082
2083         if (unlikely(bio->bi_iter.bi_size)) {
2084                 sector_t area, offset;
2085
2086                 dio->range.logical_sector = logical_sector;
2087                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2088                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2089                 return true;
2090         }
2091
2092         return false;
2093 }
2094
2095 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2096 {
2097         struct dm_integrity_c *ic = dio->ic;
2098         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2099         unsigned int journal_section, journal_entry;
2100         unsigned int journal_read_pos;
2101         struct completion read_comp;
2102         bool discard_retried = false;
2103         bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2104
2105         if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2106                 need_sync_io = true;
2107
2108         if (need_sync_io && from_map) {
2109                 INIT_WORK(&dio->work, integrity_bio_wait);
2110                 queue_work(ic->offload_wq, &dio->work);
2111                 return;
2112         }
2113
2114 lock_retry:
2115         spin_lock_irq(&ic->endio_wait.lock);
2116 retry:
2117         if (unlikely(dm_integrity_failed(ic))) {
2118                 spin_unlock_irq(&ic->endio_wait.lock);
2119                 do_endio(ic, bio);
2120                 return;
2121         }
2122         dio->range.n_sectors = bio_sectors(bio);
2123         journal_read_pos = NOT_FOUND;
2124         if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2125                 if (dio->op == REQ_OP_WRITE) {
2126                         unsigned int next_entry, i, pos;
2127                         unsigned int ws, we, range_sectors;
2128
2129                         dio->range.n_sectors = min(dio->range.n_sectors,
2130                                                    (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2131                         if (unlikely(!dio->range.n_sectors)) {
2132                                 if (from_map)
2133                                         goto offload_to_thread;
2134                                 sleep_on_endio_wait(ic);
2135                                 goto retry;
2136                         }
2137                         range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2138                         ic->free_sectors -= range_sectors;
2139                         journal_section = ic->free_section;
2140                         journal_entry = ic->free_section_entry;
2141
2142                         next_entry = ic->free_section_entry + range_sectors;
2143                         ic->free_section_entry = next_entry % ic->journal_section_entries;
2144                         ic->free_section += next_entry / ic->journal_section_entries;
2145                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2146                         wraparound_section(ic, &ic->free_section);
2147
2148                         pos = journal_section * ic->journal_section_entries + journal_entry;
2149                         ws = journal_section;
2150                         we = journal_entry;
2151                         i = 0;
2152                         do {
2153                                 struct journal_entry *je;
2154
2155                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2156                                 pos++;
2157                                 if (unlikely(pos >= ic->journal_entries))
2158                                         pos = 0;
2159
2160                                 je = access_journal_entry(ic, ws, we);
2161                                 BUG_ON(!journal_entry_is_unused(je));
2162                                 journal_entry_set_inprogress(je);
2163                                 we++;
2164                                 if (unlikely(we == ic->journal_section_entries)) {
2165                                         we = 0;
2166                                         ws++;
2167                                         wraparound_section(ic, &ws);
2168                                 }
2169                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2170
2171                         spin_unlock_irq(&ic->endio_wait.lock);
2172                         goto journal_read_write;
2173                 } else {
2174                         sector_t next_sector;
2175
2176                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2177                         if (likely(journal_read_pos == NOT_FOUND)) {
2178                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2179                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
2180                         } else {
2181                                 unsigned int i;
2182                                 unsigned int jp = journal_read_pos + 1;
2183
2184                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2185                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2186                                                 break;
2187                                 }
2188                                 dio->range.n_sectors = i;
2189                         }
2190                 }
2191         }
2192         if (unlikely(!add_new_range(ic, &dio->range, true))) {
2193                 /*
2194                  * We must not sleep in the request routine because it could
2195                  * stall bios on current->bio_list.
2196                  * So, we offload the bio to a workqueue if we have to sleep.
2197                  */
2198                 if (from_map) {
2199 offload_to_thread:
2200                         spin_unlock_irq(&ic->endio_wait.lock);
2201                         INIT_WORK(&dio->work, integrity_bio_wait);
2202                         queue_work(ic->wait_wq, &dio->work);
2203                         return;
2204                 }
2205                 if (journal_read_pos != NOT_FOUND)
2206                         dio->range.n_sectors = ic->sectors_per_block;
2207                 wait_and_add_new_range(ic, &dio->range);
2208                 /*
2209                  * wait_and_add_new_range drops the spinlock, so the journal
2210                  * may have been changed arbitrarily. We need to recheck.
2211                  * To simplify the code, we restrict I/O size to just one block.
2212                  */
2213                 if (journal_read_pos != NOT_FOUND) {
2214                         sector_t next_sector;
2215                         unsigned int new_pos;
2216
2217                         new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2218                         if (unlikely(new_pos != journal_read_pos)) {
2219                                 remove_range_unlocked(ic, &dio->range);
2220                                 goto retry;
2221                         }
2222                 }
2223         }
2224         if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2225                 sector_t next_sector;
2226                 unsigned int new_pos;
2227
2228                 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2229                 if (unlikely(new_pos != NOT_FOUND) ||
2230                     unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2231                         remove_range_unlocked(ic, &dio->range);
2232                         spin_unlock_irq(&ic->endio_wait.lock);
2233                         queue_work(ic->commit_wq, &ic->commit_work);
2234                         flush_workqueue(ic->commit_wq);
2235                         queue_work(ic->writer_wq, &ic->writer_work);
2236                         flush_workqueue(ic->writer_wq);
2237                         discard_retried = true;
2238                         goto lock_retry;
2239                 }
2240         }
2241         spin_unlock_irq(&ic->endio_wait.lock);
2242
2243         if (unlikely(journal_read_pos != NOT_FOUND)) {
2244                 journal_section = journal_read_pos / ic->journal_section_entries;
2245                 journal_entry = journal_read_pos % ic->journal_section_entries;
2246                 goto journal_read_write;
2247         }
2248
2249         if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2250                 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2251                                      dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2252                         struct bitmap_block_status *bbs;
2253
2254                         bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2255                         spin_lock(&bbs->bio_queue_lock);
2256                         bio_list_add(&bbs->bio_queue, bio);
2257                         spin_unlock(&bbs->bio_queue_lock);
2258                         queue_work(ic->writer_wq, &bbs->work);
2259                         return;
2260                 }
2261         }
2262
2263         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2264
2265         if (need_sync_io) {
2266                 init_completion(&read_comp);
2267                 dio->completion = &read_comp;
2268         } else
2269                 dio->completion = NULL;
2270
2271         dm_bio_record(&dio->bio_details, bio);
2272         bio_set_dev(bio, ic->dev->bdev);
2273         bio->bi_integrity = NULL;
2274         bio->bi_opf &= ~REQ_INTEGRITY;
2275         bio->bi_end_io = integrity_end_io;
2276         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2277
2278         if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2279                 integrity_metadata(&dio->work);
2280                 dm_integrity_flush_buffers(ic, false);
2281
2282                 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2283                 dio->completion = NULL;
2284
2285                 submit_bio_noacct(bio);
2286
2287                 return;
2288         }
2289
2290         submit_bio_noacct(bio);
2291
2292         if (need_sync_io) {
2293                 wait_for_completion_io(&read_comp);
2294                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2295                     dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2296                         goto skip_check;
2297                 if (ic->mode == 'B') {
2298                         if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2299                                              dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2300                                 goto skip_check;
2301                 }
2302
2303                 if (likely(!bio->bi_status))
2304                         integrity_metadata(&dio->work);
2305                 else
2306 skip_check:
2307                         dec_in_flight(dio);
2308         } else {
2309                 INIT_WORK(&dio->work, integrity_metadata);
2310                 queue_work(ic->metadata_wq, &dio->work);
2311         }
2312
2313         return;
2314
2315 journal_read_write:
2316         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2317                 goto lock_retry;
2318
2319         do_endio_flush(ic, dio);
2320 }
2321
2322
2323 static void integrity_bio_wait(struct work_struct *w)
2324 {
2325         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2326
2327         dm_integrity_map_continue(dio, false);
2328 }
2329
2330 static void pad_uncommitted(struct dm_integrity_c *ic)
2331 {
2332         if (ic->free_section_entry) {
2333                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2334                 ic->free_section_entry = 0;
2335                 ic->free_section++;
2336                 wraparound_section(ic, &ic->free_section);
2337                 ic->n_uncommitted_sections++;
2338         }
2339         if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2340                     (ic->n_uncommitted_sections + ic->n_committed_sections) *
2341                     ic->journal_section_entries + ic->free_sectors)) {
2342                 DMCRIT("journal_sections %u, journal_section_entries %u, "
2343                        "n_uncommitted_sections %u, n_committed_sections %u, "
2344                        "journal_section_entries %u, free_sectors %u",
2345                        ic->journal_sections, ic->journal_section_entries,
2346                        ic->n_uncommitted_sections, ic->n_committed_sections,
2347                        ic->journal_section_entries, ic->free_sectors);
2348         }
2349 }
2350
2351 static void integrity_commit(struct work_struct *w)
2352 {
2353         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2354         unsigned int commit_start, commit_sections;
2355         unsigned int i, j, n;
2356         struct bio *flushes;
2357
2358         del_timer(&ic->autocommit_timer);
2359
2360         spin_lock_irq(&ic->endio_wait.lock);
2361         flushes = bio_list_get(&ic->flush_bio_list);
2362         if (unlikely(ic->mode != 'J')) {
2363                 spin_unlock_irq(&ic->endio_wait.lock);
2364                 dm_integrity_flush_buffers(ic, true);
2365                 goto release_flush_bios;
2366         }
2367
2368         pad_uncommitted(ic);
2369         commit_start = ic->uncommitted_section;
2370         commit_sections = ic->n_uncommitted_sections;
2371         spin_unlock_irq(&ic->endio_wait.lock);
2372
2373         if (!commit_sections)
2374                 goto release_flush_bios;
2375
2376         ic->wrote_to_journal = true;
2377
2378         i = commit_start;
2379         for (n = 0; n < commit_sections; n++) {
2380                 for (j = 0; j < ic->journal_section_entries; j++) {
2381                         struct journal_entry *je;
2382
2383                         je = access_journal_entry(ic, i, j);
2384                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2385                 }
2386                 for (j = 0; j < ic->journal_section_sectors; j++) {
2387                         struct journal_sector *js;
2388
2389                         js = access_journal(ic, i, j);
2390                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2391                 }
2392                 i++;
2393                 if (unlikely(i >= ic->journal_sections))
2394                         ic->commit_seq = next_commit_seq(ic->commit_seq);
2395                 wraparound_section(ic, &i);
2396         }
2397         smp_rmb();
2398
2399         write_journal(ic, commit_start, commit_sections);
2400
2401         spin_lock_irq(&ic->endio_wait.lock);
2402         ic->uncommitted_section += commit_sections;
2403         wraparound_section(ic, &ic->uncommitted_section);
2404         ic->n_uncommitted_sections -= commit_sections;
2405         ic->n_committed_sections += commit_sections;
2406         spin_unlock_irq(&ic->endio_wait.lock);
2407
2408         if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2409                 queue_work(ic->writer_wq, &ic->writer_work);
2410
2411 release_flush_bios:
2412         while (flushes) {
2413                 struct bio *next = flushes->bi_next;
2414
2415                 flushes->bi_next = NULL;
2416                 do_endio(ic, flushes);
2417                 flushes = next;
2418         }
2419 }
2420
2421 static void complete_copy_from_journal(unsigned long error, void *context)
2422 {
2423         struct journal_io *io = context;
2424         struct journal_completion *comp = io->comp;
2425         struct dm_integrity_c *ic = comp->ic;
2426
2427         remove_range(ic, &io->range);
2428         mempool_free(io, &ic->journal_io_mempool);
2429         if (unlikely(error != 0))
2430                 dm_integrity_io_error(ic, "copying from journal", -EIO);
2431         complete_journal_op(comp);
2432 }
2433
2434 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2435                                struct journal_entry *je)
2436 {
2437         unsigned int s = 0;
2438
2439         do {
2440                 js->commit_id = je->last_bytes[s];
2441                 js++;
2442         } while (++s < ic->sectors_per_block);
2443 }
2444
2445 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2446                              unsigned int write_sections, bool from_replay)
2447 {
2448         unsigned int i, j, n;
2449         struct journal_completion comp;
2450         struct blk_plug plug;
2451
2452         blk_start_plug(&plug);
2453
2454         comp.ic = ic;
2455         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2456         init_completion(&comp.comp);
2457
2458         i = write_start;
2459         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2460 #ifndef INTERNAL_VERIFY
2461                 if (unlikely(from_replay))
2462 #endif
2463                         rw_section_mac(ic, i, false);
2464                 for (j = 0; j < ic->journal_section_entries; j++) {
2465                         struct journal_entry *je = access_journal_entry(ic, i, j);
2466                         sector_t sec, area, offset;
2467                         unsigned int k, l, next_loop;
2468                         sector_t metadata_block;
2469                         unsigned int metadata_offset;
2470                         struct journal_io *io;
2471
2472                         if (journal_entry_is_unused(je))
2473                                 continue;
2474                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2475                         sec = journal_entry_get_sector(je);
2476                         if (unlikely(from_replay)) {
2477                                 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2478                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2479                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
2480                                 }
2481                                 if (unlikely(sec >= ic->provided_data_sectors)) {
2482                                         journal_entry_set_unused(je);
2483                                         continue;
2484                                 }
2485                         }
2486                         get_area_and_offset(ic, sec, &area, &offset);
2487                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2488                         for (k = j + 1; k < ic->journal_section_entries; k++) {
2489                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2490                                 sector_t sec2, area2, offset2;
2491
2492                                 if (journal_entry_is_unused(je2))
2493                                         break;
2494                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2495                                 sec2 = journal_entry_get_sector(je2);
2496                                 if (unlikely(sec2 >= ic->provided_data_sectors))
2497                                         break;
2498                                 get_area_and_offset(ic, sec2, &area2, &offset2);
2499                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2500                                         break;
2501                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2502                         }
2503                         next_loop = k - 1;
2504
2505                         io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2506                         io->comp = &comp;
2507                         io->range.logical_sector = sec;
2508                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2509
2510                         spin_lock_irq(&ic->endio_wait.lock);
2511                         add_new_range_and_wait(ic, &io->range);
2512
2513                         if (likely(!from_replay)) {
2514                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2515
2516                                 /* don't write if there is newer committed sector */
2517                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2518                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
2519
2520                                         journal_entry_set_unused(je2);
2521                                         remove_journal_node(ic, &section_node[j]);
2522                                         j++;
2523                                         sec += ic->sectors_per_block;
2524                                         offset += ic->sectors_per_block;
2525                                 }
2526                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2527                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2528
2529                                         journal_entry_set_unused(je2);
2530                                         remove_journal_node(ic, &section_node[k - 1]);
2531                                         k--;
2532                                 }
2533                                 if (j == k) {
2534                                         remove_range_unlocked(ic, &io->range);
2535                                         spin_unlock_irq(&ic->endio_wait.lock);
2536                                         mempool_free(io, &ic->journal_io_mempool);
2537                                         goto skip_io;
2538                                 }
2539                                 for (l = j; l < k; l++)
2540                                         remove_journal_node(ic, &section_node[l]);
2541                         }
2542                         spin_unlock_irq(&ic->endio_wait.lock);
2543
2544                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2545                         for (l = j; l < k; l++) {
2546                                 int r;
2547                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2548
2549                                 if (
2550 #ifndef INTERNAL_VERIFY
2551                                     unlikely(from_replay) &&
2552 #endif
2553                                     ic->internal_hash) {
2554                                         char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2555
2556                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2557                                                                   (char *)access_journal_data(ic, i, l), test_tag);
2558                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2559                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2560                                                 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2561                                         }
2562                                 }
2563
2564                                 journal_entry_set_unused(je2);
2565                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2566                                                         ic->tag_size, TAG_WRITE);
2567                                 if (unlikely(r))
2568                                         dm_integrity_io_error(ic, "reading tags", r);
2569                         }
2570
2571                         atomic_inc(&comp.in_flight);
2572                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2573                                           (k - j) << ic->sb->log2_sectors_per_block,
2574                                           get_data_sector(ic, area, offset),
2575                                           complete_copy_from_journal, io);
2576 skip_io:
2577                         j = next_loop;
2578                 }
2579         }
2580
2581         dm_bufio_write_dirty_buffers_async(ic->bufio);
2582
2583         blk_finish_plug(&plug);
2584
2585         complete_journal_op(&comp);
2586         wait_for_completion_io(&comp.comp);
2587
2588         dm_integrity_flush_buffers(ic, true);
2589 }
2590
2591 static void integrity_writer(struct work_struct *w)
2592 {
2593         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2594         unsigned int write_start, write_sections;
2595         unsigned int prev_free_sectors;
2596
2597         spin_lock_irq(&ic->endio_wait.lock);
2598         write_start = ic->committed_section;
2599         write_sections = ic->n_committed_sections;
2600         spin_unlock_irq(&ic->endio_wait.lock);
2601
2602         if (!write_sections)
2603                 return;
2604
2605         do_journal_write(ic, write_start, write_sections, false);
2606
2607         spin_lock_irq(&ic->endio_wait.lock);
2608
2609         ic->committed_section += write_sections;
2610         wraparound_section(ic, &ic->committed_section);
2611         ic->n_committed_sections -= write_sections;
2612
2613         prev_free_sectors = ic->free_sectors;
2614         ic->free_sectors += write_sections * ic->journal_section_entries;
2615         if (unlikely(!prev_free_sectors))
2616                 wake_up_locked(&ic->endio_wait);
2617
2618         spin_unlock_irq(&ic->endio_wait.lock);
2619 }
2620
2621 static void recalc_write_super(struct dm_integrity_c *ic)
2622 {
2623         int r;
2624
2625         dm_integrity_flush_buffers(ic, false);
2626         if (dm_integrity_failed(ic))
2627                 return;
2628
2629         r = sync_rw_sb(ic, REQ_OP_WRITE);
2630         if (unlikely(r))
2631                 dm_integrity_io_error(ic, "writing superblock", r);
2632 }
2633
2634 static void integrity_recalc(struct work_struct *w)
2635 {
2636         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2637         size_t recalc_tags_size;
2638         u8 *recalc_buffer = NULL;
2639         u8 *recalc_tags = NULL;
2640         struct dm_integrity_range range;
2641         struct dm_io_request io_req;
2642         struct dm_io_region io_loc;
2643         sector_t area, offset;
2644         sector_t metadata_block;
2645         unsigned int metadata_offset;
2646         sector_t logical_sector, n_sectors;
2647         __u8 *t;
2648         unsigned int i;
2649         int r;
2650         unsigned int super_counter = 0;
2651         unsigned recalc_sectors = RECALC_SECTORS;
2652
2653 retry:
2654         recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2655         if (!recalc_buffer) {
2656 oom:
2657                 recalc_sectors >>= 1;
2658                 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2659                         goto retry;
2660                 DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2661                 goto free_ret;
2662         }
2663         recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2664         if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2665                 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2666         recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2667         if (!recalc_tags) {
2668                 vfree(recalc_buffer);
2669                 recalc_buffer = NULL;
2670                 goto oom;
2671         }
2672
2673         DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2674
2675         spin_lock_irq(&ic->endio_wait.lock);
2676
2677 next_chunk:
2678
2679         if (unlikely(dm_post_suspending(ic->ti)))
2680                 goto unlock_ret;
2681
2682         range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2683         if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2684                 if (ic->mode == 'B') {
2685                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2686                         DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2687                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2688                 }
2689                 goto unlock_ret;
2690         }
2691
2692         get_area_and_offset(ic, range.logical_sector, &area, &offset);
2693         range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2694         if (!ic->meta_dev)
2695                 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2696
2697         add_new_range_and_wait(ic, &range);
2698         spin_unlock_irq(&ic->endio_wait.lock);
2699         logical_sector = range.logical_sector;
2700         n_sectors = range.n_sectors;
2701
2702         if (ic->mode == 'B') {
2703                 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2704                         goto advance_and_next;
2705
2706                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2707                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2708                         logical_sector += ic->sectors_per_block;
2709                         n_sectors -= ic->sectors_per_block;
2710                         cond_resched();
2711                 }
2712                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2713                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2714                         n_sectors -= ic->sectors_per_block;
2715                         cond_resched();
2716                 }
2717                 get_area_and_offset(ic, logical_sector, &area, &offset);
2718         }
2719
2720         DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2721
2722         if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2723                 recalc_write_super(ic);
2724                 if (ic->mode == 'B')
2725                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2726
2727                 super_counter = 0;
2728         }
2729
2730         if (unlikely(dm_integrity_failed(ic)))
2731                 goto err;
2732
2733         io_req.bi_opf = REQ_OP_READ;
2734         io_req.mem.type = DM_IO_VMA;
2735         io_req.mem.ptr.addr = recalc_buffer;
2736         io_req.notify.fn = NULL;
2737         io_req.client = ic->io;
2738         io_loc.bdev = ic->dev->bdev;
2739         io_loc.sector = get_data_sector(ic, area, offset);
2740         io_loc.count = n_sectors;
2741
2742         r = dm_io(&io_req, 1, &io_loc, NULL);
2743         if (unlikely(r)) {
2744                 dm_integrity_io_error(ic, "reading data", r);
2745                 goto err;
2746         }
2747
2748         t = recalc_tags;
2749         for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2750                 integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2751                 t += ic->tag_size;
2752         }
2753
2754         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2755
2756         r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2757         if (unlikely(r)) {
2758                 dm_integrity_io_error(ic, "writing tags", r);
2759                 goto err;
2760         }
2761
2762         if (ic->mode == 'B') {
2763                 sector_t start, end;
2764
2765                 start = (range.logical_sector >>
2766                          (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2767                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2768                 end = ((range.logical_sector + range.n_sectors) >>
2769                        (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2770                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2771                 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2772         }
2773
2774 advance_and_next:
2775         cond_resched();
2776
2777         spin_lock_irq(&ic->endio_wait.lock);
2778         remove_range_unlocked(ic, &range);
2779         ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2780         goto next_chunk;
2781
2782 err:
2783         remove_range(ic, &range);
2784         goto free_ret;
2785
2786 unlock_ret:
2787         spin_unlock_irq(&ic->endio_wait.lock);
2788
2789         recalc_write_super(ic);
2790
2791 free_ret:
2792         vfree(recalc_buffer);
2793         kvfree(recalc_tags);
2794 }
2795
2796 static void bitmap_block_work(struct work_struct *w)
2797 {
2798         struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2799         struct dm_integrity_c *ic = bbs->ic;
2800         struct bio *bio;
2801         struct bio_list bio_queue;
2802         struct bio_list waiting;
2803
2804         bio_list_init(&waiting);
2805
2806         spin_lock(&bbs->bio_queue_lock);
2807         bio_queue = bbs->bio_queue;
2808         bio_list_init(&bbs->bio_queue);
2809         spin_unlock(&bbs->bio_queue_lock);
2810
2811         while ((bio = bio_list_pop(&bio_queue))) {
2812                 struct dm_integrity_io *dio;
2813
2814                 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2815
2816                 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2817                                     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2818                         remove_range(ic, &dio->range);
2819                         INIT_WORK(&dio->work, integrity_bio_wait);
2820                         queue_work(ic->offload_wq, &dio->work);
2821                 } else {
2822                         block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2823                                         dio->range.n_sectors, BITMAP_OP_SET);
2824                         bio_list_add(&waiting, bio);
2825                 }
2826         }
2827
2828         if (bio_list_empty(&waiting))
2829                 return;
2830
2831         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2832                            bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2833                            BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2834
2835         while ((bio = bio_list_pop(&waiting))) {
2836                 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2837
2838                 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2839                                 dio->range.n_sectors, BITMAP_OP_SET);
2840
2841                 remove_range(ic, &dio->range);
2842                 INIT_WORK(&dio->work, integrity_bio_wait);
2843                 queue_work(ic->offload_wq, &dio->work);
2844         }
2845
2846         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2847 }
2848
2849 static void bitmap_flush_work(struct work_struct *work)
2850 {
2851         struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2852         struct dm_integrity_range range;
2853         unsigned long limit;
2854         struct bio *bio;
2855
2856         dm_integrity_flush_buffers(ic, false);
2857
2858         range.logical_sector = 0;
2859         range.n_sectors = ic->provided_data_sectors;
2860
2861         spin_lock_irq(&ic->endio_wait.lock);
2862         add_new_range_and_wait(ic, &range);
2863         spin_unlock_irq(&ic->endio_wait.lock);
2864
2865         dm_integrity_flush_buffers(ic, true);
2866
2867         limit = ic->provided_data_sectors;
2868         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2869                 limit = le64_to_cpu(ic->sb->recalc_sector)
2870                         >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2871                         << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2872         }
2873         /*DEBUG_print("zeroing journal\n");*/
2874         block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2875         block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2876
2877         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2878                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2879
2880         spin_lock_irq(&ic->endio_wait.lock);
2881         remove_range_unlocked(ic, &range);
2882         while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2883                 bio_endio(bio);
2884                 spin_unlock_irq(&ic->endio_wait.lock);
2885                 spin_lock_irq(&ic->endio_wait.lock);
2886         }
2887         spin_unlock_irq(&ic->endio_wait.lock);
2888 }
2889
2890
2891 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2892                          unsigned int n_sections, unsigned char commit_seq)
2893 {
2894         unsigned int i, j, n;
2895
2896         if (!n_sections)
2897                 return;
2898
2899         for (n = 0; n < n_sections; n++) {
2900                 i = start_section + n;
2901                 wraparound_section(ic, &i);
2902                 for (j = 0; j < ic->journal_section_sectors; j++) {
2903                         struct journal_sector *js = access_journal(ic, i, j);
2904
2905                         BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2906                         memset(&js->sectors, 0, sizeof(js->sectors));
2907                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2908                 }
2909                 for (j = 0; j < ic->journal_section_entries; j++) {
2910                         struct journal_entry *je = access_journal_entry(ic, i, j);
2911
2912                         journal_entry_set_unused(je);
2913                 }
2914         }
2915
2916         write_journal(ic, start_section, n_sections);
2917 }
2918
2919 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2920 {
2921         unsigned char k;
2922
2923         for (k = 0; k < N_COMMIT_IDS; k++) {
2924                 if (dm_integrity_commit_id(ic, i, j, k) == id)
2925                         return k;
2926         }
2927         dm_integrity_io_error(ic, "journal commit id", -EIO);
2928         return -EIO;
2929 }
2930
2931 static void replay_journal(struct dm_integrity_c *ic)
2932 {
2933         unsigned int i, j;
2934         bool used_commit_ids[N_COMMIT_IDS];
2935         unsigned int max_commit_id_sections[N_COMMIT_IDS];
2936         unsigned int write_start, write_sections;
2937         unsigned int continue_section;
2938         bool journal_empty;
2939         unsigned char unused, last_used, want_commit_seq;
2940
2941         if (ic->mode == 'R')
2942                 return;
2943
2944         if (ic->journal_uptodate)
2945                 return;
2946
2947         last_used = 0;
2948         write_start = 0;
2949
2950         if (!ic->just_formatted) {
2951                 DEBUG_print("reading journal\n");
2952                 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
2953                 if (ic->journal_io)
2954                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2955                 if (ic->journal_io) {
2956                         struct journal_completion crypt_comp;
2957
2958                         crypt_comp.ic = ic;
2959                         init_completion(&crypt_comp.comp);
2960                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2961                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2962                         wait_for_completion(&crypt_comp.comp);
2963                 }
2964                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2965         }
2966
2967         if (dm_integrity_failed(ic))
2968                 goto clear_journal;
2969
2970         journal_empty = true;
2971         memset(used_commit_ids, 0, sizeof(used_commit_ids));
2972         memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
2973         for (i = 0; i < ic->journal_sections; i++) {
2974                 for (j = 0; j < ic->journal_section_sectors; j++) {
2975                         int k;
2976                         struct journal_sector *js = access_journal(ic, i, j);
2977
2978                         k = find_commit_seq(ic, i, j, js->commit_id);
2979                         if (k < 0)
2980                                 goto clear_journal;
2981                         used_commit_ids[k] = true;
2982                         max_commit_id_sections[k] = i;
2983                 }
2984                 if (journal_empty) {
2985                         for (j = 0; j < ic->journal_section_entries; j++) {
2986                                 struct journal_entry *je = access_journal_entry(ic, i, j);
2987
2988                                 if (!journal_entry_is_unused(je)) {
2989                                         journal_empty = false;
2990                                         break;
2991                                 }
2992                         }
2993                 }
2994         }
2995
2996         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2997                 unused = N_COMMIT_IDS - 1;
2998                 while (unused && !used_commit_ids[unused - 1])
2999                         unused--;
3000         } else {
3001                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
3002                         if (!used_commit_ids[unused])
3003                                 break;
3004                 if (unused == N_COMMIT_IDS) {
3005                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
3006                         goto clear_journal;
3007                 }
3008         }
3009         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3010                     unused, used_commit_ids[0], used_commit_ids[1],
3011                     used_commit_ids[2], used_commit_ids[3]);
3012
3013         last_used = prev_commit_seq(unused);
3014         want_commit_seq = prev_commit_seq(last_used);
3015
3016         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3017                 journal_empty = true;
3018
3019         write_start = max_commit_id_sections[last_used] + 1;
3020         if (unlikely(write_start >= ic->journal_sections))
3021                 want_commit_seq = next_commit_seq(want_commit_seq);
3022         wraparound_section(ic, &write_start);
3023
3024         i = write_start;
3025         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3026                 for (j = 0; j < ic->journal_section_sectors; j++) {
3027                         struct journal_sector *js = access_journal(ic, i, j);
3028
3029                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3030                                 /*
3031                                  * This could be caused by crash during writing.
3032                                  * We won't replay the inconsistent part of the
3033                                  * journal.
3034                                  */
3035                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3036                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3037                                 goto brk;
3038                         }
3039                 }
3040                 i++;
3041                 if (unlikely(i >= ic->journal_sections))
3042                         want_commit_seq = next_commit_seq(want_commit_seq);
3043                 wraparound_section(ic, &i);
3044         }
3045 brk:
3046
3047         if (!journal_empty) {
3048                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3049                             write_sections, write_start, want_commit_seq);
3050                 do_journal_write(ic, write_start, write_sections, true);
3051         }
3052
3053         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3054                 continue_section = write_start;
3055                 ic->commit_seq = want_commit_seq;
3056                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3057         } else {
3058                 unsigned int s;
3059                 unsigned char erase_seq;
3060
3061 clear_journal:
3062                 DEBUG_print("clearing journal\n");
3063
3064                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3065                 s = write_start;
3066                 init_journal(ic, s, 1, erase_seq);
3067                 s++;
3068                 wraparound_section(ic, &s);
3069                 if (ic->journal_sections >= 2) {
3070                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3071                         s += ic->journal_sections - 2;
3072                         wraparound_section(ic, &s);
3073                         init_journal(ic, s, 1, erase_seq);
3074                 }
3075
3076                 continue_section = 0;
3077                 ic->commit_seq = next_commit_seq(erase_seq);
3078         }
3079
3080         ic->committed_section = continue_section;
3081         ic->n_committed_sections = 0;
3082
3083         ic->uncommitted_section = continue_section;
3084         ic->n_uncommitted_sections = 0;
3085
3086         ic->free_section = continue_section;
3087         ic->free_section_entry = 0;
3088         ic->free_sectors = ic->journal_entries;
3089
3090         ic->journal_tree_root = RB_ROOT;
3091         for (i = 0; i < ic->journal_entries; i++)
3092                 init_journal_node(&ic->journal_tree[i]);
3093 }
3094
3095 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3096 {
3097         DEBUG_print("%s\n", __func__);
3098
3099         if (ic->mode == 'B') {
3100                 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3101                 ic->synchronous_mode = 1;
3102
3103                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3104                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3105                 flush_workqueue(ic->commit_wq);
3106         }
3107 }
3108
3109 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3110 {
3111         struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3112
3113         DEBUG_print("%s\n", __func__);
3114
3115         dm_integrity_enter_synchronous_mode(ic);
3116
3117         return NOTIFY_DONE;
3118 }
3119
3120 static void dm_integrity_postsuspend(struct dm_target *ti)
3121 {
3122         struct dm_integrity_c *ic = ti->private;
3123         int r;
3124
3125         WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3126
3127         del_timer_sync(&ic->autocommit_timer);
3128
3129         if (ic->recalc_wq)
3130                 drain_workqueue(ic->recalc_wq);
3131
3132         if (ic->mode == 'B')
3133                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3134
3135         queue_work(ic->commit_wq, &ic->commit_work);
3136         drain_workqueue(ic->commit_wq);
3137
3138         if (ic->mode == 'J') {
3139                 queue_work(ic->writer_wq, &ic->writer_work);
3140                 drain_workqueue(ic->writer_wq);
3141                 dm_integrity_flush_buffers(ic, true);
3142                 if (ic->wrote_to_journal) {
3143                         init_journal(ic, ic->free_section,
3144                                      ic->journal_sections - ic->free_section, ic->commit_seq);
3145                         if (ic->free_section) {
3146                                 init_journal(ic, 0, ic->free_section,
3147                                              next_commit_seq(ic->commit_seq));
3148                         }
3149                 }
3150         }
3151
3152         if (ic->mode == 'B') {
3153                 dm_integrity_flush_buffers(ic, true);
3154 #if 1
3155                 /* set to 0 to test bitmap replay code */
3156                 init_journal(ic, 0, ic->journal_sections, 0);
3157                 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3158                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3159                 if (unlikely(r))
3160                         dm_integrity_io_error(ic, "writing superblock", r);
3161 #endif
3162         }
3163
3164         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3165
3166         ic->journal_uptodate = true;
3167 }
3168
3169 static void dm_integrity_resume(struct dm_target *ti)
3170 {
3171         struct dm_integrity_c *ic = ti->private;
3172         __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3173         int r;
3174
3175         DEBUG_print("resume\n");
3176
3177         ic->wrote_to_journal = false;
3178
3179         if (ic->provided_data_sectors != old_provided_data_sectors) {
3180                 if (ic->provided_data_sectors > old_provided_data_sectors &&
3181                     ic->mode == 'B' &&
3182                     ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3183                         rw_journal_sectors(ic, REQ_OP_READ, 0,
3184                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3185                         block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3186                                         ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3187                         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3188                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3189                 }
3190
3191                 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3192                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3193                 if (unlikely(r))
3194                         dm_integrity_io_error(ic, "writing superblock", r);
3195         }
3196
3197         if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3198                 DEBUG_print("resume dirty_bitmap\n");
3199                 rw_journal_sectors(ic, REQ_OP_READ, 0,
3200                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3201                 if (ic->mode == 'B') {
3202                         if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3203                             !ic->reset_recalculate_flag) {
3204                                 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3205                                 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3206                                 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3207                                                      BITMAP_OP_TEST_ALL_CLEAR)) {
3208                                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3209                                         ic->sb->recalc_sector = cpu_to_le64(0);
3210                                 }
3211                         } else {
3212                                 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3213                                             ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3214                                 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3215                                 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3216                                 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3217                                 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3218                                 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3219                                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3220                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3221                                 ic->sb->recalc_sector = cpu_to_le64(0);
3222                         }
3223                 } else {
3224                         if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3225                               block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3226                             ic->reset_recalculate_flag) {
3227                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3228                                 ic->sb->recalc_sector = cpu_to_le64(0);
3229                         }
3230                         init_journal(ic, 0, ic->journal_sections, 0);
3231                         replay_journal(ic);
3232                         ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3233                 }
3234                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3235                 if (unlikely(r))
3236                         dm_integrity_io_error(ic, "writing superblock", r);
3237         } else {
3238                 replay_journal(ic);
3239                 if (ic->reset_recalculate_flag) {
3240                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3241                         ic->sb->recalc_sector = cpu_to_le64(0);
3242                 }
3243                 if (ic->mode == 'B') {
3244                         ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3245                         ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3246                         r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3247                         if (unlikely(r))
3248                                 dm_integrity_io_error(ic, "writing superblock", r);
3249
3250                         block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3251                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3252                         block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3253                         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3254                             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3255                                 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3256                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3257                                 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3258                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3259                                 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3260                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3261                         }
3262                         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3263                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3264                 }
3265         }
3266
3267         DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3268         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3269                 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3270
3271                 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3272                 if (recalc_pos < ic->provided_data_sectors) {
3273                         queue_work(ic->recalc_wq, &ic->recalc_work);
3274                 } else if (recalc_pos > ic->provided_data_sectors) {
3275                         ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3276                         recalc_write_super(ic);
3277                 }
3278         }
3279
3280         ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3281         ic->reboot_notifier.next = NULL;
3282         ic->reboot_notifier.priority = INT_MAX - 1;     /* be notified after md and before hardware drivers */
3283         WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3284
3285 #if 0
3286         /* set to 1 to stress test synchronous mode */
3287         dm_integrity_enter_synchronous_mode(ic);
3288 #endif
3289 }
3290
3291 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3292                                 unsigned int status_flags, char *result, unsigned int maxlen)
3293 {
3294         struct dm_integrity_c *ic = ti->private;
3295         unsigned int arg_count;
3296         size_t sz = 0;
3297
3298         switch (type) {
3299         case STATUSTYPE_INFO:
3300                 DMEMIT("%llu %llu",
3301                         (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3302                         ic->provided_data_sectors);
3303                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3304                         DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3305                 else
3306                         DMEMIT(" -");
3307                 break;
3308
3309         case STATUSTYPE_TABLE: {
3310                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3311
3312                 watermark_percentage += ic->journal_entries / 2;
3313                 do_div(watermark_percentage, ic->journal_entries);
3314                 arg_count = 3;
3315                 arg_count += !!ic->meta_dev;
3316                 arg_count += ic->sectors_per_block != 1;
3317                 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3318                 arg_count += ic->reset_recalculate_flag;
3319                 arg_count += ic->discard;
3320                 arg_count += ic->mode == 'J';
3321                 arg_count += ic->mode == 'J';
3322                 arg_count += ic->mode == 'B';
3323                 arg_count += ic->mode == 'B';
3324                 arg_count += !!ic->internal_hash_alg.alg_string;
3325                 arg_count += !!ic->journal_crypt_alg.alg_string;
3326                 arg_count += !!ic->journal_mac_alg.alg_string;
3327                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3328                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3329                 arg_count += ic->legacy_recalculate;
3330                 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3331                        ic->tag_size, ic->mode, arg_count);
3332                 if (ic->meta_dev)
3333                         DMEMIT(" meta_device:%s", ic->meta_dev->name);
3334                 if (ic->sectors_per_block != 1)
3335                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3336                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3337                         DMEMIT(" recalculate");
3338                 if (ic->reset_recalculate_flag)
3339                         DMEMIT(" reset_recalculate");
3340                 if (ic->discard)
3341                         DMEMIT(" allow_discards");
3342                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3343                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3344                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3345                 if (ic->mode == 'J') {
3346                         DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3347                         DMEMIT(" commit_time:%u", ic->autocommit_msec);
3348                 }
3349                 if (ic->mode == 'B') {
3350                         DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3351                         DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3352                 }
3353                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3354                         DMEMIT(" fix_padding");
3355                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3356                         DMEMIT(" fix_hmac");
3357                 if (ic->legacy_recalculate)
3358                         DMEMIT(" legacy_recalculate");
3359
3360 #define EMIT_ALG(a, n)                                                  \
3361                 do {                                                    \
3362                         if (ic->a.alg_string) {                         \
3363                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
3364                                 if (ic->a.key_string)                   \
3365                                         DMEMIT(":%s", ic->a.key_string);\
3366                         }                                               \
3367                 } while (0)
3368                 EMIT_ALG(internal_hash_alg, "internal_hash");
3369                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3370                 EMIT_ALG(journal_mac_alg, "journal_mac");
3371                 break;
3372         }
3373         case STATUSTYPE_IMA:
3374                 DMEMIT_TARGET_NAME_VERSION(ti->type);
3375                 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3376                         ic->dev->name, ic->start, ic->tag_size, ic->mode);
3377
3378                 if (ic->meta_dev)
3379                         DMEMIT(",meta_device=%s", ic->meta_dev->name);
3380                 if (ic->sectors_per_block != 1)
3381                         DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3382
3383                 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3384                        'y' : 'n');
3385                 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3386                 DMEMIT(",fix_padding=%c",
3387                        ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3388                 DMEMIT(",fix_hmac=%c",
3389                        ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3390                 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3391
3392                 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3393                 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3394                 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3395                 DMEMIT(";");
3396                 break;
3397         }
3398 }
3399
3400 static int dm_integrity_iterate_devices(struct dm_target *ti,
3401                                         iterate_devices_callout_fn fn, void *data)
3402 {
3403         struct dm_integrity_c *ic = ti->private;
3404
3405         if (!ic->meta_dev)
3406                 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3407         else
3408                 return fn(ti, ic->dev, 0, ti->len, data);
3409 }
3410
3411 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3412 {
3413         struct dm_integrity_c *ic = ti->private;
3414
3415         if (ic->sectors_per_block > 1) {
3416                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3417                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3418                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3419                 limits->dma_alignment = limits->logical_block_size - 1;
3420         }
3421 }
3422
3423 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3424 {
3425         unsigned int sector_space = JOURNAL_SECTOR_DATA;
3426
3427         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3428         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3429                                          JOURNAL_ENTRY_ROUNDUP);
3430
3431         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3432                 sector_space -= JOURNAL_MAC_PER_SECTOR;
3433         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3434         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3435         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3436         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3437 }
3438
3439 static int calculate_device_limits(struct dm_integrity_c *ic)
3440 {
3441         __u64 initial_sectors;
3442
3443         calculate_journal_section_size(ic);
3444         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3445         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3446                 return -EINVAL;
3447         ic->initial_sectors = initial_sectors;
3448
3449         if (!ic->meta_dev) {
3450                 sector_t last_sector, last_area, last_offset;
3451
3452                 /* we have to maintain excessive padding for compatibility with existing volumes */
3453                 __u64 metadata_run_padding =
3454                         ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3455                         (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3456                         (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3457
3458                 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3459                                             metadata_run_padding) >> SECTOR_SHIFT;
3460                 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3461                         ic->log2_metadata_run = __ffs(ic->metadata_run);
3462                 else
3463                         ic->log2_metadata_run = -1;
3464
3465                 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3466                 last_sector = get_data_sector(ic, last_area, last_offset);
3467                 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3468                         return -EINVAL;
3469         } else {
3470                 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3471
3472                 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3473                                 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3474                 meta_size <<= ic->log2_buffer_sectors;
3475                 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3476                     ic->initial_sectors + meta_size > ic->meta_device_sectors)
3477                         return -EINVAL;
3478                 ic->metadata_run = 1;
3479                 ic->log2_metadata_run = 0;
3480         }
3481
3482         return 0;
3483 }
3484
3485 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3486 {
3487         if (!ic->meta_dev) {
3488                 int test_bit;
3489
3490                 ic->provided_data_sectors = 0;
3491                 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3492                         __u64 prev_data_sectors = ic->provided_data_sectors;
3493
3494                         ic->provided_data_sectors |= (sector_t)1 << test_bit;
3495                         if (calculate_device_limits(ic))
3496                                 ic->provided_data_sectors = prev_data_sectors;
3497                 }
3498         } else {
3499                 ic->provided_data_sectors = ic->data_device_sectors;
3500                 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3501         }
3502 }
3503
3504 static int initialize_superblock(struct dm_integrity_c *ic,
3505                                  unsigned int journal_sectors, unsigned int interleave_sectors)
3506 {
3507         unsigned int journal_sections;
3508         int test_bit;
3509
3510         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3511         memcpy(ic->sb->magic, SB_MAGIC, 8);
3512         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3513         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3514         if (ic->journal_mac_alg.alg_string)
3515                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3516
3517         calculate_journal_section_size(ic);
3518         journal_sections = journal_sectors / ic->journal_section_sectors;
3519         if (!journal_sections)
3520                 journal_sections = 1;
3521
3522         if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3523                 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3524                 get_random_bytes(ic->sb->salt, SALT_SIZE);
3525         }
3526
3527         if (!ic->meta_dev) {
3528                 if (ic->fix_padding)
3529                         ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3530                 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3531                 if (!interleave_sectors)
3532                         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3533                 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3534                 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3535                 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3536
3537                 get_provided_data_sectors(ic);
3538                 if (!ic->provided_data_sectors)
3539                         return -EINVAL;
3540         } else {
3541                 ic->sb->log2_interleave_sectors = 0;
3542
3543                 get_provided_data_sectors(ic);
3544                 if (!ic->provided_data_sectors)
3545                         return -EINVAL;
3546
3547 try_smaller_buffer:
3548                 ic->sb->journal_sections = cpu_to_le32(0);
3549                 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3550                         __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3551                         __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3552
3553                         if (test_journal_sections > journal_sections)
3554                                 continue;
3555                         ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3556                         if (calculate_device_limits(ic))
3557                                 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3558
3559                 }
3560                 if (!le32_to_cpu(ic->sb->journal_sections)) {
3561                         if (ic->log2_buffer_sectors > 3) {
3562                                 ic->log2_buffer_sectors--;
3563                                 goto try_smaller_buffer;
3564                         }
3565                         return -EINVAL;
3566                 }
3567         }
3568
3569         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3570
3571         sb_set_version(ic);
3572
3573         return 0;
3574 }
3575
3576 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3577 {
3578         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3579         struct blk_integrity bi;
3580
3581         memset(&bi, 0, sizeof(bi));
3582         bi.profile = &dm_integrity_profile;
3583         bi.tuple_size = ic->tag_size;
3584         bi.tag_size = bi.tuple_size;
3585         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3586
3587         blk_integrity_register(disk, &bi);
3588         blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3589 }
3590
3591 static void dm_integrity_free_page_list(struct page_list *pl)
3592 {
3593         unsigned int i;
3594
3595         if (!pl)
3596                 return;
3597         for (i = 0; pl[i].page; i++)
3598                 __free_page(pl[i].page);
3599         kvfree(pl);
3600 }
3601
3602 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3603 {
3604         struct page_list *pl;
3605         unsigned int i;
3606
3607         pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3608         if (!pl)
3609                 return NULL;
3610
3611         for (i = 0; i < n_pages; i++) {
3612                 pl[i].page = alloc_page(GFP_KERNEL);
3613                 if (!pl[i].page) {
3614                         dm_integrity_free_page_list(pl);
3615                         return NULL;
3616                 }
3617                 if (i)
3618                         pl[i - 1].next = &pl[i];
3619         }
3620         pl[i].page = NULL;
3621         pl[i].next = NULL;
3622
3623         return pl;
3624 }
3625
3626 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3627 {
3628         unsigned int i;
3629
3630         for (i = 0; i < ic->journal_sections; i++)
3631                 kvfree(sl[i]);
3632         kvfree(sl);
3633 }
3634
3635 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3636                                                                    struct page_list *pl)
3637 {
3638         struct scatterlist **sl;
3639         unsigned int i;
3640
3641         sl = kvmalloc_array(ic->journal_sections,
3642                             sizeof(struct scatterlist *),
3643                             GFP_KERNEL | __GFP_ZERO);
3644         if (!sl)
3645                 return NULL;
3646
3647         for (i = 0; i < ic->journal_sections; i++) {
3648                 struct scatterlist *s;
3649                 unsigned int start_index, start_offset;
3650                 unsigned int end_index, end_offset;
3651                 unsigned int n_pages;
3652                 unsigned int idx;
3653
3654                 page_list_location(ic, i, 0, &start_index, &start_offset);
3655                 page_list_location(ic, i, ic->journal_section_sectors - 1,
3656                                    &end_index, &end_offset);
3657
3658                 n_pages = (end_index - start_index + 1);
3659
3660                 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3661                                    GFP_KERNEL);
3662                 if (!s) {
3663                         dm_integrity_free_journal_scatterlist(ic, sl);
3664                         return NULL;
3665                 }
3666
3667                 sg_init_table(s, n_pages);
3668                 for (idx = start_index; idx <= end_index; idx++) {
3669                         char *va = lowmem_page_address(pl[idx].page);
3670                         unsigned int start = 0, end = PAGE_SIZE;
3671
3672                         if (idx == start_index)
3673                                 start = start_offset;
3674                         if (idx == end_index)
3675                                 end = end_offset + (1 << SECTOR_SHIFT);
3676                         sg_set_buf(&s[idx - start_index], va + start, end - start);
3677                 }
3678
3679                 sl[i] = s;
3680         }
3681
3682         return sl;
3683 }
3684
3685 static void free_alg(struct alg_spec *a)
3686 {
3687         kfree_sensitive(a->alg_string);
3688         kfree_sensitive(a->key);
3689         memset(a, 0, sizeof(*a));
3690 }
3691
3692 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3693 {
3694         char *k;
3695
3696         free_alg(a);
3697
3698         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3699         if (!a->alg_string)
3700                 goto nomem;
3701
3702         k = strchr(a->alg_string, ':');
3703         if (k) {
3704                 *k = 0;
3705                 a->key_string = k + 1;
3706                 if (strlen(a->key_string) & 1)
3707                         goto inval;
3708
3709                 a->key_size = strlen(a->key_string) / 2;
3710                 a->key = kmalloc(a->key_size, GFP_KERNEL);
3711                 if (!a->key)
3712                         goto nomem;
3713                 if (hex2bin(a->key, a->key_string, a->key_size))
3714                         goto inval;
3715         }
3716
3717         return 0;
3718 inval:
3719         *error = error_inval;
3720         return -EINVAL;
3721 nomem:
3722         *error = "Out of memory for an argument";
3723         return -ENOMEM;
3724 }
3725
3726 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3727                    char *error_alg, char *error_key)
3728 {
3729         int r;
3730
3731         if (a->alg_string) {
3732                 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3733                 if (IS_ERR(*hash)) {
3734                         *error = error_alg;
3735                         r = PTR_ERR(*hash);
3736                         *hash = NULL;
3737                         return r;
3738                 }
3739
3740                 if (a->key) {
3741                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
3742                         if (r) {
3743                                 *error = error_key;
3744                                 return r;
3745                         }
3746                 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3747                         *error = error_key;
3748                         return -ENOKEY;
3749                 }
3750         }
3751
3752         return 0;
3753 }
3754
3755 static int create_journal(struct dm_integrity_c *ic, char **error)
3756 {
3757         int r = 0;
3758         unsigned int i;
3759         __u64 journal_pages, journal_desc_size, journal_tree_size;
3760         unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3761         struct skcipher_request *req = NULL;
3762
3763         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3764         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3765         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3766         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3767
3768         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3769                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3770         journal_desc_size = journal_pages * sizeof(struct page_list);
3771         if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3772                 *error = "Journal doesn't fit into memory";
3773                 r = -ENOMEM;
3774                 goto bad;
3775         }
3776         ic->journal_pages = journal_pages;
3777
3778         ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3779         if (!ic->journal) {
3780                 *error = "Could not allocate memory for journal";
3781                 r = -ENOMEM;
3782                 goto bad;
3783         }
3784         if (ic->journal_crypt_alg.alg_string) {
3785                 unsigned int ivsize, blocksize;
3786                 struct journal_completion comp;
3787
3788                 comp.ic = ic;
3789                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3790                 if (IS_ERR(ic->journal_crypt)) {
3791                         *error = "Invalid journal cipher";
3792                         r = PTR_ERR(ic->journal_crypt);
3793                         ic->journal_crypt = NULL;
3794                         goto bad;
3795                 }
3796                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3797                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3798
3799                 if (ic->journal_crypt_alg.key) {
3800                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3801                                                    ic->journal_crypt_alg.key_size);
3802                         if (r) {
3803                                 *error = "Error setting encryption key";
3804                                 goto bad;
3805                         }
3806                 }
3807                 DEBUG_print("cipher %s, block size %u iv size %u\n",
3808                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3809
3810                 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3811                 if (!ic->journal_io) {
3812                         *error = "Could not allocate memory for journal io";
3813                         r = -ENOMEM;
3814                         goto bad;
3815                 }
3816
3817                 if (blocksize == 1) {
3818                         struct scatterlist *sg;
3819
3820                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3821                         if (!req) {
3822                                 *error = "Could not allocate crypt request";
3823                                 r = -ENOMEM;
3824                                 goto bad;
3825                         }
3826
3827                         crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3828                         if (!crypt_iv) {
3829                                 *error = "Could not allocate iv";
3830                                 r = -ENOMEM;
3831                                 goto bad;
3832                         }
3833
3834                         ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3835                         if (!ic->journal_xor) {
3836                                 *error = "Could not allocate memory for journal xor";
3837                                 r = -ENOMEM;
3838                                 goto bad;
3839                         }
3840
3841                         sg = kvmalloc_array(ic->journal_pages + 1,
3842                                             sizeof(struct scatterlist),
3843                                             GFP_KERNEL);
3844                         if (!sg) {
3845                                 *error = "Unable to allocate sg list";
3846                                 r = -ENOMEM;
3847                                 goto bad;
3848                         }
3849                         sg_init_table(sg, ic->journal_pages + 1);
3850                         for (i = 0; i < ic->journal_pages; i++) {
3851                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
3852
3853                                 clear_page(va);
3854                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
3855                         }
3856                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3857
3858                         skcipher_request_set_crypt(req, sg, sg,
3859                                                    PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3860                         init_completion(&comp.comp);
3861                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3862                         if (do_crypt(true, req, &comp))
3863                                 wait_for_completion(&comp.comp);
3864                         kvfree(sg);
3865                         r = dm_integrity_failed(ic);
3866                         if (r) {
3867                                 *error = "Unable to encrypt journal";
3868                                 goto bad;
3869                         }
3870                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3871
3872                         crypto_free_skcipher(ic->journal_crypt);
3873                         ic->journal_crypt = NULL;
3874                 } else {
3875                         unsigned int crypt_len = roundup(ivsize, blocksize);
3876
3877                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3878                         if (!req) {
3879                                 *error = "Could not allocate crypt request";
3880                                 r = -ENOMEM;
3881                                 goto bad;
3882                         }
3883
3884                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3885                         if (!crypt_iv) {
3886                                 *error = "Could not allocate iv";
3887                                 r = -ENOMEM;
3888                                 goto bad;
3889                         }
3890
3891                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3892                         if (!crypt_data) {
3893                                 *error = "Unable to allocate crypt data";
3894                                 r = -ENOMEM;
3895                                 goto bad;
3896                         }
3897
3898                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3899                         if (!ic->journal_scatterlist) {
3900                                 *error = "Unable to allocate sg list";
3901                                 r = -ENOMEM;
3902                                 goto bad;
3903                         }
3904                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3905                         if (!ic->journal_io_scatterlist) {
3906                                 *error = "Unable to allocate sg list";
3907                                 r = -ENOMEM;
3908                                 goto bad;
3909                         }
3910                         ic->sk_requests = kvmalloc_array(ic->journal_sections,
3911                                                          sizeof(struct skcipher_request *),
3912                                                          GFP_KERNEL | __GFP_ZERO);
3913                         if (!ic->sk_requests) {
3914                                 *error = "Unable to allocate sk requests";
3915                                 r = -ENOMEM;
3916                                 goto bad;
3917                         }
3918                         for (i = 0; i < ic->journal_sections; i++) {
3919                                 struct scatterlist sg;
3920                                 struct skcipher_request *section_req;
3921                                 __le32 section_le = cpu_to_le32(i);
3922
3923                                 memset(crypt_iv, 0x00, ivsize);
3924                                 memset(crypt_data, 0x00, crypt_len);
3925                                 memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
3926
3927                                 sg_init_one(&sg, crypt_data, crypt_len);
3928                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3929                                 init_completion(&comp.comp);
3930                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3931                                 if (do_crypt(true, req, &comp))
3932                                         wait_for_completion(&comp.comp);
3933
3934                                 r = dm_integrity_failed(ic);
3935                                 if (r) {
3936                                         *error = "Unable to generate iv";
3937                                         goto bad;
3938                                 }
3939
3940                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3941                                 if (!section_req) {
3942                                         *error = "Unable to allocate crypt request";
3943                                         r = -ENOMEM;
3944                                         goto bad;
3945                                 }
3946                                 section_req->iv = kmalloc_array(ivsize, 2,
3947                                                                 GFP_KERNEL);
3948                                 if (!section_req->iv) {
3949                                         skcipher_request_free(section_req);
3950                                         *error = "Unable to allocate iv";
3951                                         r = -ENOMEM;
3952                                         goto bad;
3953                                 }
3954                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3955                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3956                                 ic->sk_requests[i] = section_req;
3957                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3958                         }
3959                 }
3960         }
3961
3962         for (i = 0; i < N_COMMIT_IDS; i++) {
3963                 unsigned int j;
3964
3965 retest_commit_id:
3966                 for (j = 0; j < i; j++) {
3967                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
3968                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3969                                 goto retest_commit_id;
3970                         }
3971                 }
3972                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3973         }
3974
3975         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3976         if (journal_tree_size > ULONG_MAX) {
3977                 *error = "Journal doesn't fit into memory";
3978                 r = -ENOMEM;
3979                 goto bad;
3980         }
3981         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3982         if (!ic->journal_tree) {
3983                 *error = "Could not allocate memory for journal tree";
3984                 r = -ENOMEM;
3985         }
3986 bad:
3987         kfree(crypt_data);
3988         kfree(crypt_iv);
3989         skcipher_request_free(req);
3990
3991         return r;
3992 }
3993
3994 /*
3995  * Construct a integrity mapping
3996  *
3997  * Arguments:
3998  *      device
3999  *      offset from the start of the device
4000  *      tag size
4001  *      D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4002  *      number of optional arguments
4003  *      optional arguments:
4004  *              journal_sectors
4005  *              interleave_sectors
4006  *              buffer_sectors
4007  *              journal_watermark
4008  *              commit_time
4009  *              meta_device
4010  *              block_size
4011  *              sectors_per_bit
4012  *              bitmap_flush_interval
4013  *              internal_hash
4014  *              journal_crypt
4015  *              journal_mac
4016  *              recalculate
4017  */
4018 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4019 {
4020         struct dm_integrity_c *ic;
4021         char dummy;
4022         int r;
4023         unsigned int extra_args;
4024         struct dm_arg_set as;
4025         static const struct dm_arg _args[] = {
4026                 {0, 18, "Invalid number of feature args"},
4027         };
4028         unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4029         bool should_write_sb;
4030         __u64 threshold;
4031         unsigned long long start;
4032         __s8 log2_sectors_per_bitmap_bit = -1;
4033         __s8 log2_blocks_per_bitmap_bit;
4034         __u64 bits_in_journal;
4035         __u64 n_bitmap_bits;
4036
4037 #define DIRECT_ARGUMENTS        4
4038
4039         if (argc <= DIRECT_ARGUMENTS) {
4040                 ti->error = "Invalid argument count";
4041                 return -EINVAL;
4042         }
4043
4044         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4045         if (!ic) {
4046                 ti->error = "Cannot allocate integrity context";
4047                 return -ENOMEM;
4048         }
4049         ti->private = ic;
4050         ti->per_io_data_size = sizeof(struct dm_integrity_io);
4051         ic->ti = ti;
4052
4053         ic->in_progress = RB_ROOT;
4054         INIT_LIST_HEAD(&ic->wait_list);
4055         init_waitqueue_head(&ic->endio_wait);
4056         bio_list_init(&ic->flush_bio_list);
4057         init_waitqueue_head(&ic->copy_to_journal_wait);
4058         init_completion(&ic->crypto_backoff);
4059         atomic64_set(&ic->number_of_mismatches, 0);
4060         ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4061
4062         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4063         if (r) {
4064                 ti->error = "Device lookup failed";
4065                 goto bad;
4066         }
4067
4068         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4069                 ti->error = "Invalid starting offset";
4070                 r = -EINVAL;
4071                 goto bad;
4072         }
4073         ic->start = start;
4074
4075         if (strcmp(argv[2], "-")) {
4076                 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4077                         ti->error = "Invalid tag size";
4078                         r = -EINVAL;
4079                         goto bad;
4080                 }
4081         }
4082
4083         if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4084             !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4085                 ic->mode = argv[3][0];
4086         } else {
4087                 ti->error = "Invalid mode (expecting J, B, D, R)";
4088                 r = -EINVAL;
4089                 goto bad;
4090         }
4091
4092         journal_sectors = 0;
4093         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4094         buffer_sectors = DEFAULT_BUFFER_SECTORS;
4095         journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4096         sync_msec = DEFAULT_SYNC_MSEC;
4097         ic->sectors_per_block = 1;
4098
4099         as.argc = argc - DIRECT_ARGUMENTS;
4100         as.argv = argv + DIRECT_ARGUMENTS;
4101         r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4102         if (r)
4103                 goto bad;
4104
4105         while (extra_args--) {
4106                 const char *opt_string;
4107                 unsigned int val;
4108                 unsigned long long llval;
4109
4110                 opt_string = dm_shift_arg(&as);
4111                 if (!opt_string) {
4112                         r = -EINVAL;
4113                         ti->error = "Not enough feature arguments";
4114                         goto bad;
4115                 }
4116                 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4117                         journal_sectors = val ? val : 1;
4118                 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4119                         interleave_sectors = val;
4120                 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4121                         buffer_sectors = val;
4122                 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4123                         journal_watermark = val;
4124                 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4125                         sync_msec = val;
4126                 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4127                         if (ic->meta_dev) {
4128                                 dm_put_device(ti, ic->meta_dev);
4129                                 ic->meta_dev = NULL;
4130                         }
4131                         r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4132                                           dm_table_get_mode(ti->table), &ic->meta_dev);
4133                         if (r) {
4134                                 ti->error = "Device lookup failed";
4135                                 goto bad;
4136                         }
4137                 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4138                         if (val < 1 << SECTOR_SHIFT ||
4139                             val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4140                             (val & (val - 1))) {
4141                                 r = -EINVAL;
4142                                 ti->error = "Invalid block_size argument";
4143                                 goto bad;
4144                         }
4145                         ic->sectors_per_block = val >> SECTOR_SHIFT;
4146                 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4147                         log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4148                 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4149                         if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4150                                 r = -EINVAL;
4151                                 ti->error = "Invalid bitmap_flush_interval argument";
4152                                 goto bad;
4153                         }
4154                         ic->bitmap_flush_interval = msecs_to_jiffies(val);
4155                 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4156                         r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4157                                             "Invalid internal_hash argument");
4158                         if (r)
4159                                 goto bad;
4160                 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4161                         r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4162                                             "Invalid journal_crypt argument");
4163                         if (r)
4164                                 goto bad;
4165                 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4166                         r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4167                                             "Invalid journal_mac argument");
4168                         if (r)
4169                                 goto bad;
4170                 } else if (!strcmp(opt_string, "recalculate")) {
4171                         ic->recalculate_flag = true;
4172                 } else if (!strcmp(opt_string, "reset_recalculate")) {
4173                         ic->recalculate_flag = true;
4174                         ic->reset_recalculate_flag = true;
4175                 } else if (!strcmp(opt_string, "allow_discards")) {
4176                         ic->discard = true;
4177                 } else if (!strcmp(opt_string, "fix_padding")) {
4178                         ic->fix_padding = true;
4179                 } else if (!strcmp(opt_string, "fix_hmac")) {
4180                         ic->fix_hmac = true;
4181                 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4182                         ic->legacy_recalculate = true;
4183                 } else {
4184                         r = -EINVAL;
4185                         ti->error = "Invalid argument";
4186                         goto bad;
4187                 }
4188         }
4189
4190         ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4191         if (!ic->meta_dev)
4192                 ic->meta_device_sectors = ic->data_device_sectors;
4193         else
4194                 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4195
4196         if (!journal_sectors) {
4197                 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4198                                       ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4199         }
4200
4201         if (!buffer_sectors)
4202                 buffer_sectors = 1;
4203         ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4204
4205         r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4206                     "Invalid internal hash", "Error setting internal hash key");
4207         if (r)
4208                 goto bad;
4209
4210         r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4211                     "Invalid journal mac", "Error setting journal mac key");
4212         if (r)
4213                 goto bad;
4214
4215         if (!ic->tag_size) {
4216                 if (!ic->internal_hash) {
4217                         ti->error = "Unknown tag size";
4218                         r = -EINVAL;
4219                         goto bad;
4220                 }
4221                 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4222         }
4223         if (ic->tag_size > MAX_TAG_SIZE) {
4224                 ti->error = "Too big tag size";
4225                 r = -EINVAL;
4226                 goto bad;
4227         }
4228         if (!(ic->tag_size & (ic->tag_size - 1)))
4229                 ic->log2_tag_size = __ffs(ic->tag_size);
4230         else
4231                 ic->log2_tag_size = -1;
4232
4233         if (ic->mode == 'B' && !ic->internal_hash) {
4234                 r = -EINVAL;
4235                 ti->error = "Bitmap mode can be only used with internal hash";
4236                 goto bad;
4237         }
4238
4239         if (ic->discard && !ic->internal_hash) {
4240                 r = -EINVAL;
4241                 ti->error = "Discard can be only used with internal hash";
4242                 goto bad;
4243         }
4244
4245         ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4246         ic->autocommit_msec = sync_msec;
4247         timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4248
4249         ic->io = dm_io_client_create();
4250         if (IS_ERR(ic->io)) {
4251                 r = PTR_ERR(ic->io);
4252                 ic->io = NULL;
4253                 ti->error = "Cannot allocate dm io";
4254                 goto bad;
4255         }
4256
4257         r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4258         if (r) {
4259                 ti->error = "Cannot allocate mempool";
4260                 goto bad;
4261         }
4262
4263         ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4264                                           WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4265         if (!ic->metadata_wq) {
4266                 ti->error = "Cannot allocate workqueue";
4267                 r = -ENOMEM;
4268                 goto bad;
4269         }
4270
4271         /*
4272          * If this workqueue weren't ordered, it would cause bio reordering
4273          * and reduced performance.
4274          */
4275         ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4276         if (!ic->wait_wq) {
4277                 ti->error = "Cannot allocate workqueue";
4278                 r = -ENOMEM;
4279                 goto bad;
4280         }
4281
4282         ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4283                                           METADATA_WORKQUEUE_MAX_ACTIVE);
4284         if (!ic->offload_wq) {
4285                 ti->error = "Cannot allocate workqueue";
4286                 r = -ENOMEM;
4287                 goto bad;
4288         }
4289
4290         ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4291         if (!ic->commit_wq) {
4292                 ti->error = "Cannot allocate workqueue";
4293                 r = -ENOMEM;
4294                 goto bad;
4295         }
4296         INIT_WORK(&ic->commit_work, integrity_commit);
4297
4298         if (ic->mode == 'J' || ic->mode == 'B') {
4299                 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4300                 if (!ic->writer_wq) {
4301                         ti->error = "Cannot allocate workqueue";
4302                         r = -ENOMEM;
4303                         goto bad;
4304                 }
4305                 INIT_WORK(&ic->writer_work, integrity_writer);
4306         }
4307
4308         ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4309         if (!ic->sb) {
4310                 r = -ENOMEM;
4311                 ti->error = "Cannot allocate superblock area";
4312                 goto bad;
4313         }
4314
4315         r = sync_rw_sb(ic, REQ_OP_READ);
4316         if (r) {
4317                 ti->error = "Error reading superblock";
4318                 goto bad;
4319         }
4320         should_write_sb = false;
4321         if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4322                 if (ic->mode != 'R') {
4323                         if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4324                                 r = -EINVAL;
4325                                 ti->error = "The device is not initialized";
4326                                 goto bad;
4327                         }
4328                 }
4329
4330                 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4331                 if (r) {
4332                         ti->error = "Could not initialize superblock";
4333                         goto bad;
4334                 }
4335                 if (ic->mode != 'R')
4336                         should_write_sb = true;
4337         }
4338
4339         if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4340                 r = -EINVAL;
4341                 ti->error = "Unknown version";
4342                 goto bad;
4343         }
4344         if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4345                 r = -EINVAL;
4346                 ti->error = "Tag size doesn't match the information in superblock";
4347                 goto bad;
4348         }
4349         if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4350                 r = -EINVAL;
4351                 ti->error = "Block size doesn't match the information in superblock";
4352                 goto bad;
4353         }
4354         if (!le32_to_cpu(ic->sb->journal_sections)) {
4355                 r = -EINVAL;
4356                 ti->error = "Corrupted superblock, journal_sections is 0";
4357                 goto bad;
4358         }
4359         /* make sure that ti->max_io_len doesn't overflow */
4360         if (!ic->meta_dev) {
4361                 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4362                     ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4363                         r = -EINVAL;
4364                         ti->error = "Invalid interleave_sectors in the superblock";
4365                         goto bad;
4366                 }
4367         } else {
4368                 if (ic->sb->log2_interleave_sectors) {
4369                         r = -EINVAL;
4370                         ti->error = "Invalid interleave_sectors in the superblock";
4371                         goto bad;
4372                 }
4373         }
4374         if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4375                 r = -EINVAL;
4376                 ti->error = "Journal mac mismatch";
4377                 goto bad;
4378         }
4379
4380         get_provided_data_sectors(ic);
4381         if (!ic->provided_data_sectors) {
4382                 r = -EINVAL;
4383                 ti->error = "The device is too small";
4384                 goto bad;
4385         }
4386
4387 try_smaller_buffer:
4388         r = calculate_device_limits(ic);
4389         if (r) {
4390                 if (ic->meta_dev) {
4391                         if (ic->log2_buffer_sectors > 3) {
4392                                 ic->log2_buffer_sectors--;
4393                                 goto try_smaller_buffer;
4394                         }
4395                 }
4396                 ti->error = "The device is too small";
4397                 goto bad;
4398         }
4399
4400         if (log2_sectors_per_bitmap_bit < 0)
4401                 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4402         if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4403                 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4404
4405         bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4406         if (bits_in_journal > UINT_MAX)
4407                 bits_in_journal = UINT_MAX;
4408         while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4409                 log2_sectors_per_bitmap_bit++;
4410
4411         log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4412         ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4413         if (should_write_sb)
4414                 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4415
4416         n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4417                                 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4418         ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4419
4420         if (!ic->meta_dev)
4421                 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4422
4423         if (ti->len > ic->provided_data_sectors) {
4424                 r = -EINVAL;
4425                 ti->error = "Not enough provided sectors for requested mapping size";
4426                 goto bad;
4427         }
4428
4429
4430         threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4431         threshold += 50;
4432         do_div(threshold, 100);
4433         ic->free_sectors_threshold = threshold;
4434
4435         DEBUG_print("initialized:\n");
4436         DEBUG_print("   integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4437         DEBUG_print("   journal_entry_size %u\n", ic->journal_entry_size);
4438         DEBUG_print("   journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4439         DEBUG_print("   journal_section_entries %u\n", ic->journal_section_entries);
4440         DEBUG_print("   journal_section_sectors %u\n", ic->journal_section_sectors);
4441         DEBUG_print("   journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4442         DEBUG_print("   journal_entries %u\n", ic->journal_entries);
4443         DEBUG_print("   log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4444         DEBUG_print("   data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4445         DEBUG_print("   initial_sectors 0x%x\n", ic->initial_sectors);
4446         DEBUG_print("   metadata_run 0x%x\n", ic->metadata_run);
4447         DEBUG_print("   log2_metadata_run %d\n", ic->log2_metadata_run);
4448         DEBUG_print("   provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4449         DEBUG_print("   log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4450         DEBUG_print("   bits_in_journal %llu\n", bits_in_journal);
4451
4452         if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4453                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4454                 ic->sb->recalc_sector = cpu_to_le64(0);
4455         }
4456
4457         if (ic->internal_hash) {
4458                 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4459                 if (!ic->recalc_wq) {
4460                         ti->error = "Cannot allocate workqueue";
4461                         r = -ENOMEM;
4462                         goto bad;
4463                 }
4464                 INIT_WORK(&ic->recalc_work, integrity_recalc);
4465         } else {
4466                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4467                         ti->error = "Recalculate can only be specified with internal_hash";
4468                         r = -EINVAL;
4469                         goto bad;
4470                 }
4471         }
4472
4473         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4474             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4475             dm_integrity_disable_recalculate(ic)) {
4476                 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4477                 r = -EOPNOTSUPP;
4478                 goto bad;
4479         }
4480
4481         ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4482                         1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4483         if (IS_ERR(ic->bufio)) {
4484                 r = PTR_ERR(ic->bufio);
4485                 ti->error = "Cannot initialize dm-bufio";
4486                 ic->bufio = NULL;
4487                 goto bad;
4488         }
4489         dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4490
4491         if (ic->mode != 'R') {
4492                 r = create_journal(ic, &ti->error);
4493                 if (r)
4494                         goto bad;
4495
4496         }
4497
4498         if (ic->mode == 'B') {
4499                 unsigned int i;
4500                 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4501
4502                 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4503                 if (!ic->recalc_bitmap) {
4504                         r = -ENOMEM;
4505                         goto bad;
4506                 }
4507                 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4508                 if (!ic->may_write_bitmap) {
4509                         r = -ENOMEM;
4510                         goto bad;
4511                 }
4512                 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4513                 if (!ic->bbs) {
4514                         r = -ENOMEM;
4515                         goto bad;
4516                 }
4517                 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4518                 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4519                         struct bitmap_block_status *bbs = &ic->bbs[i];
4520                         unsigned int sector, pl_index, pl_offset;
4521
4522                         INIT_WORK(&bbs->work, bitmap_block_work);
4523                         bbs->ic = ic;
4524                         bbs->idx = i;
4525                         bio_list_init(&bbs->bio_queue);
4526                         spin_lock_init(&bbs->bio_queue_lock);
4527
4528                         sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4529                         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4530                         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4531
4532                         bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4533                 }
4534         }
4535
4536         if (should_write_sb) {
4537                 init_journal(ic, 0, ic->journal_sections, 0);
4538                 r = dm_integrity_failed(ic);
4539                 if (unlikely(r)) {
4540                         ti->error = "Error initializing journal";
4541                         goto bad;
4542                 }
4543                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4544                 if (r) {
4545                         ti->error = "Error initializing superblock";
4546                         goto bad;
4547                 }
4548                 ic->just_formatted = true;
4549         }
4550
4551         if (!ic->meta_dev) {
4552                 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4553                 if (r)
4554                         goto bad;
4555         }
4556         if (ic->mode == 'B') {
4557                 unsigned int max_io_len;
4558
4559                 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4560                 if (!max_io_len)
4561                         max_io_len = 1U << 31;
4562                 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4563                 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4564                         r = dm_set_target_max_io_len(ti, max_io_len);
4565                         if (r)
4566                                 goto bad;
4567                 }
4568         }
4569
4570         if (!ic->internal_hash)
4571                 dm_integrity_set(ti, ic);
4572
4573         ti->num_flush_bios = 1;
4574         ti->flush_supported = true;
4575         if (ic->discard)
4576                 ti->num_discard_bios = 1;
4577
4578         dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4579         return 0;
4580
4581 bad:
4582         dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4583         dm_integrity_dtr(ti);
4584         return r;
4585 }
4586
4587 static void dm_integrity_dtr(struct dm_target *ti)
4588 {
4589         struct dm_integrity_c *ic = ti->private;
4590
4591         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4592         BUG_ON(!list_empty(&ic->wait_list));
4593
4594         if (ic->mode == 'B')
4595                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
4596         if (ic->metadata_wq)
4597                 destroy_workqueue(ic->metadata_wq);
4598         if (ic->wait_wq)
4599                 destroy_workqueue(ic->wait_wq);
4600         if (ic->offload_wq)
4601                 destroy_workqueue(ic->offload_wq);
4602         if (ic->commit_wq)
4603                 destroy_workqueue(ic->commit_wq);
4604         if (ic->writer_wq)
4605                 destroy_workqueue(ic->writer_wq);
4606         if (ic->recalc_wq)
4607                 destroy_workqueue(ic->recalc_wq);
4608         kvfree(ic->bbs);
4609         if (ic->bufio)
4610                 dm_bufio_client_destroy(ic->bufio);
4611         mempool_exit(&ic->journal_io_mempool);
4612         if (ic->io)
4613                 dm_io_client_destroy(ic->io);
4614         if (ic->dev)
4615                 dm_put_device(ti, ic->dev);
4616         if (ic->meta_dev)
4617                 dm_put_device(ti, ic->meta_dev);
4618         dm_integrity_free_page_list(ic->journal);
4619         dm_integrity_free_page_list(ic->journal_io);
4620         dm_integrity_free_page_list(ic->journal_xor);
4621         dm_integrity_free_page_list(ic->recalc_bitmap);
4622         dm_integrity_free_page_list(ic->may_write_bitmap);
4623         if (ic->journal_scatterlist)
4624                 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4625         if (ic->journal_io_scatterlist)
4626                 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4627         if (ic->sk_requests) {
4628                 unsigned int i;
4629
4630                 for (i = 0; i < ic->journal_sections; i++) {
4631                         struct skcipher_request *req;
4632
4633                         req = ic->sk_requests[i];
4634                         if (req) {
4635                                 kfree_sensitive(req->iv);
4636                                 skcipher_request_free(req);
4637                         }
4638                 }
4639                 kvfree(ic->sk_requests);
4640         }
4641         kvfree(ic->journal_tree);
4642         if (ic->sb)
4643                 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4644
4645         if (ic->internal_hash)
4646                 crypto_free_shash(ic->internal_hash);
4647         free_alg(&ic->internal_hash_alg);
4648
4649         if (ic->journal_crypt)
4650                 crypto_free_skcipher(ic->journal_crypt);
4651         free_alg(&ic->journal_crypt_alg);
4652
4653         if (ic->journal_mac)
4654                 crypto_free_shash(ic->journal_mac);
4655         free_alg(&ic->journal_mac_alg);
4656
4657         kfree(ic);
4658         dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4659 }
4660
4661 static struct target_type integrity_target = {
4662         .name                   = "integrity",
4663         .version                = {1, 10, 0},
4664         .module                 = THIS_MODULE,
4665         .features               = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4666         .ctr                    = dm_integrity_ctr,
4667         .dtr                    = dm_integrity_dtr,
4668         .map                    = dm_integrity_map,
4669         .postsuspend            = dm_integrity_postsuspend,
4670         .resume                 = dm_integrity_resume,
4671         .status                 = dm_integrity_status,
4672         .iterate_devices        = dm_integrity_iterate_devices,
4673         .io_hints               = dm_integrity_io_hints,
4674 };
4675
4676 static int __init dm_integrity_init(void)
4677 {
4678         int r;
4679
4680         journal_io_cache = kmem_cache_create("integrity_journal_io",
4681                                              sizeof(struct journal_io), 0, 0, NULL);
4682         if (!journal_io_cache) {
4683                 DMERR("can't allocate journal io cache");
4684                 return -ENOMEM;
4685         }
4686
4687         r = dm_register_target(&integrity_target);
4688         if (r < 0) {
4689                 kmem_cache_destroy(journal_io_cache);
4690                 return r;
4691         }
4692
4693         return 0;
4694 }
4695
4696 static void __exit dm_integrity_exit(void)
4697 {
4698         dm_unregister_target(&integrity_target);
4699         kmem_cache_destroy(journal_io_cache);
4700 }
4701
4702 module_init(dm_integrity_init);
4703 module_exit(dm_integrity_exit);
4704
4705 MODULE_AUTHOR("Milan Broz");
4706 MODULE_AUTHOR("Mikulas Patocka");
4707 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4708 MODULE_LICENSE("GPL");
This page took 0.367472 seconds and 4 git commands to generate.