]> Git Repo - linux.git/blob - drivers/crypto/stm32/stm32-cryp.c
Expose c0 and SW encap ICM for RDMA
[linux.git] / drivers / crypto / stm32 / stm32-cryp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) STMicroelectronics SA 2017
4  * Author: Fabien Dessenne <[email protected]>
5  * Ux500 support taken from snippets in the old Ux500 cryp driver
6  */
7
8 #include <crypto/aes.h>
9 #include <crypto/engine.h>
10 #include <crypto/internal/aead.h>
11 #include <crypto/internal/des.h>
12 #include <crypto/internal/skcipher.h>
13 #include <crypto/scatterwalk.h>
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/err.h>
17 #include <linux/iopoll.h>
18 #include <linux/interrupt.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/reset.h>
25 #include <linux/string.h>
26
27 #define DRIVER_NAME             "stm32-cryp"
28
29 /* Bit [0] encrypt / decrypt */
30 #define FLG_ENCRYPT             BIT(0)
31 /* Bit [8..1] algo & operation mode */
32 #define FLG_AES                 BIT(1)
33 #define FLG_DES                 BIT(2)
34 #define FLG_TDES                BIT(3)
35 #define FLG_ECB                 BIT(4)
36 #define FLG_CBC                 BIT(5)
37 #define FLG_CTR                 BIT(6)
38 #define FLG_GCM                 BIT(7)
39 #define FLG_CCM                 BIT(8)
40 /* Mode mask = bits [15..0] */
41 #define FLG_MODE_MASK           GENMASK(15, 0)
42 /* Bit [31..16] status  */
43
44 /* Registers */
45 #define CRYP_CR                 0x00000000
46 #define CRYP_SR                 0x00000004
47 #define CRYP_DIN                0x00000008
48 #define CRYP_DOUT               0x0000000C
49 #define CRYP_DMACR              0x00000010
50 #define CRYP_IMSCR              0x00000014
51 #define CRYP_RISR               0x00000018
52 #define CRYP_MISR               0x0000001C
53 #define CRYP_K0LR               0x00000020
54 #define CRYP_K0RR               0x00000024
55 #define CRYP_K1LR               0x00000028
56 #define CRYP_K1RR               0x0000002C
57 #define CRYP_K2LR               0x00000030
58 #define CRYP_K2RR               0x00000034
59 #define CRYP_K3LR               0x00000038
60 #define CRYP_K3RR               0x0000003C
61 #define CRYP_IV0LR              0x00000040
62 #define CRYP_IV0RR              0x00000044
63 #define CRYP_IV1LR              0x00000048
64 #define CRYP_IV1RR              0x0000004C
65 #define CRYP_CSGCMCCM0R         0x00000050
66 #define CRYP_CSGCM0R            0x00000070
67
68 #define UX500_CRYP_CR           0x00000000
69 #define UX500_CRYP_SR           0x00000004
70 #define UX500_CRYP_DIN          0x00000008
71 #define UX500_CRYP_DINSIZE      0x0000000C
72 #define UX500_CRYP_DOUT         0x00000010
73 #define UX500_CRYP_DOUSIZE      0x00000014
74 #define UX500_CRYP_DMACR        0x00000018
75 #define UX500_CRYP_IMSC         0x0000001C
76 #define UX500_CRYP_RIS          0x00000020
77 #define UX500_CRYP_MIS          0x00000024
78 #define UX500_CRYP_K1L          0x00000028
79 #define UX500_CRYP_K1R          0x0000002C
80 #define UX500_CRYP_K2L          0x00000030
81 #define UX500_CRYP_K2R          0x00000034
82 #define UX500_CRYP_K3L          0x00000038
83 #define UX500_CRYP_K3R          0x0000003C
84 #define UX500_CRYP_K4L          0x00000040
85 #define UX500_CRYP_K4R          0x00000044
86 #define UX500_CRYP_IV0L         0x00000048
87 #define UX500_CRYP_IV0R         0x0000004C
88 #define UX500_CRYP_IV1L         0x00000050
89 #define UX500_CRYP_IV1R         0x00000054
90
91 /* Registers values */
92 #define CR_DEC_NOT_ENC          0x00000004
93 #define CR_TDES_ECB             0x00000000
94 #define CR_TDES_CBC             0x00000008
95 #define CR_DES_ECB              0x00000010
96 #define CR_DES_CBC              0x00000018
97 #define CR_AES_ECB              0x00000020
98 #define CR_AES_CBC              0x00000028
99 #define CR_AES_CTR              0x00000030
100 #define CR_AES_KP               0x00000038 /* Not on Ux500 */
101 #define CR_AES_XTS              0x00000038 /* Only on Ux500 */
102 #define CR_AES_GCM              0x00080000
103 #define CR_AES_CCM              0x00080008
104 #define CR_AES_UNKNOWN          0xFFFFFFFF
105 #define CR_ALGO_MASK            0x00080038
106 #define CR_DATA32               0x00000000
107 #define CR_DATA16               0x00000040
108 #define CR_DATA8                0x00000080
109 #define CR_DATA1                0x000000C0
110 #define CR_KEY128               0x00000000
111 #define CR_KEY192               0x00000100
112 #define CR_KEY256               0x00000200
113 #define CR_KEYRDEN              0x00000400 /* Only on Ux500 */
114 #define CR_KSE                  0x00000800 /* Only on Ux500 */
115 #define CR_FFLUSH               0x00004000
116 #define CR_CRYPEN               0x00008000
117 #define CR_PH_INIT              0x00000000
118 #define CR_PH_HEADER            0x00010000
119 #define CR_PH_PAYLOAD           0x00020000
120 #define CR_PH_FINAL             0x00030000
121 #define CR_PH_MASK              0x00030000
122 #define CR_NBPBL_SHIFT          20
123
124 #define SR_BUSY                 0x00000010
125 #define SR_OFNE                 0x00000004
126
127 #define IMSCR_IN                BIT(0)
128 #define IMSCR_OUT               BIT(1)
129
130 #define MISR_IN                 BIT(0)
131 #define MISR_OUT                BIT(1)
132
133 /* Misc */
134 #define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
135 #define GCM_CTR_INIT            2
136 #define CRYP_AUTOSUSPEND_DELAY  50
137
138 struct stm32_cryp_caps {
139         bool                    aeads_support;
140         bool                    linear_aes_key;
141         bool                    kp_mode;
142         bool                    iv_protection;
143         bool                    swap_final;
144         bool                    padding_wa;
145         u32                     cr;
146         u32                     sr;
147         u32                     din;
148         u32                     dout;
149         u32                     imsc;
150         u32                     mis;
151         u32                     k1l;
152         u32                     k1r;
153         u32                     k3r;
154         u32                     iv0l;
155         u32                     iv0r;
156         u32                     iv1l;
157         u32                     iv1r;
158 };
159
160 struct stm32_cryp_ctx {
161         struct stm32_cryp       *cryp;
162         int                     keylen;
163         __be32                  key[AES_KEYSIZE_256 / sizeof(u32)];
164         unsigned long           flags;
165 };
166
167 struct stm32_cryp_reqctx {
168         unsigned long mode;
169 };
170
171 struct stm32_cryp {
172         struct list_head        list;
173         struct device           *dev;
174         void __iomem            *regs;
175         struct clk              *clk;
176         unsigned long           flags;
177         u32                     irq_status;
178         const struct stm32_cryp_caps *caps;
179         struct stm32_cryp_ctx   *ctx;
180
181         struct crypto_engine    *engine;
182
183         struct skcipher_request *req;
184         struct aead_request     *areq;
185
186         size_t                  authsize;
187         size_t                  hw_blocksize;
188
189         size_t                  payload_in;
190         size_t                  header_in;
191         size_t                  payload_out;
192
193         struct scatterlist      *out_sg;
194
195         struct scatter_walk     in_walk;
196         struct scatter_walk     out_walk;
197
198         __be32                  last_ctr[4];
199         u32                     gcm_ctr;
200 };
201
202 struct stm32_cryp_list {
203         struct list_head        dev_list;
204         spinlock_t              lock; /* protect dev_list */
205 };
206
207 static struct stm32_cryp_list cryp_list = {
208         .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
209         .lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
210 };
211
212 static inline bool is_aes(struct stm32_cryp *cryp)
213 {
214         return cryp->flags & FLG_AES;
215 }
216
217 static inline bool is_des(struct stm32_cryp *cryp)
218 {
219         return cryp->flags & FLG_DES;
220 }
221
222 static inline bool is_tdes(struct stm32_cryp *cryp)
223 {
224         return cryp->flags & FLG_TDES;
225 }
226
227 static inline bool is_ecb(struct stm32_cryp *cryp)
228 {
229         return cryp->flags & FLG_ECB;
230 }
231
232 static inline bool is_cbc(struct stm32_cryp *cryp)
233 {
234         return cryp->flags & FLG_CBC;
235 }
236
237 static inline bool is_ctr(struct stm32_cryp *cryp)
238 {
239         return cryp->flags & FLG_CTR;
240 }
241
242 static inline bool is_gcm(struct stm32_cryp *cryp)
243 {
244         return cryp->flags & FLG_GCM;
245 }
246
247 static inline bool is_ccm(struct stm32_cryp *cryp)
248 {
249         return cryp->flags & FLG_CCM;
250 }
251
252 static inline bool is_encrypt(struct stm32_cryp *cryp)
253 {
254         return cryp->flags & FLG_ENCRYPT;
255 }
256
257 static inline bool is_decrypt(struct stm32_cryp *cryp)
258 {
259         return !is_encrypt(cryp);
260 }
261
262 static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
263 {
264         return readl_relaxed(cryp->regs + ofst);
265 }
266
267 static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
268 {
269         writel_relaxed(val, cryp->regs + ofst);
270 }
271
272 static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
273 {
274         u32 status;
275
276         return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
277                         !(status & SR_BUSY), 10, 100000);
278 }
279
280 static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
281 {
282         writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN,
283                        cryp->regs + cryp->caps->cr);
284 }
285
286 static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
287 {
288         u32 status;
289
290         return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status,
291                         !(status & CR_CRYPEN), 10, 100000);
292 }
293
294 static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
295 {
296         u32 status;
297
298         return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
299                         status & SR_OFNE, 10, 100000);
300 }
301
302 static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp)
303 {
304         writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN,
305                        cryp->regs + cryp->caps->cr);
306 }
307
308 static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp)
309 {
310         writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN,
311                        cryp->regs + cryp->caps->cr);
312 }
313
314 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
315 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
316
317 static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
318 {
319         struct stm32_cryp *tmp, *cryp = NULL;
320
321         spin_lock_bh(&cryp_list.lock);
322         if (!ctx->cryp) {
323                 list_for_each_entry(tmp, &cryp_list.dev_list, list) {
324                         cryp = tmp;
325                         break;
326                 }
327                 ctx->cryp = cryp;
328         } else {
329                 cryp = ctx->cryp;
330         }
331
332         spin_unlock_bh(&cryp_list.lock);
333
334         return cryp;
335 }
336
337 static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
338 {
339         if (!iv)
340                 return;
341
342         stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++));
343         stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++));
344
345         if (is_aes(cryp)) {
346                 stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++));
347                 stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++));
348         }
349 }
350
351 static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
352 {
353         struct skcipher_request *req = cryp->req;
354         __be32 *tmp = (void *)req->iv;
355
356         if (!tmp)
357                 return;
358
359         if (cryp->caps->iv_protection)
360                 stm32_cryp_key_read_enable(cryp);
361
362         *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
363         *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
364
365         if (is_aes(cryp)) {
366                 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
367                 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
368         }
369
370         if (cryp->caps->iv_protection)
371                 stm32_cryp_key_read_disable(cryp);
372 }
373
374 /**
375  * ux500_swap_bits_in_byte() - mirror the bits in a byte
376  * @b: the byte to be mirrored
377  *
378  * The bits are swapped the following way:
379  *  Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
380  *  nibble 2 (n2) bits 4-7.
381  *
382  *  Nibble 1 (n1):
383  *  (The "old" (moved) bit is replaced with a zero)
384  *  1. Move bit 6 and 7, 4 positions to the left.
385  *  2. Move bit 3 and 5, 2 positions to the left.
386  *  3. Move bit 1-4, 1 position to the left.
387  *
388  *  Nibble 2 (n2):
389  *  1. Move bit 0 and 1, 4 positions to the right.
390  *  2. Move bit 2 and 4, 2 positions to the right.
391  *  3. Move bit 3-6, 1 position to the right.
392  *
393  *  Combine the two nibbles to a complete and swapped byte.
394  */
395 static inline u8 ux500_swap_bits_in_byte(u8 b)
396 {
397 #define R_SHIFT_4_MASK  0xc0 /* Bits 6 and 7, right shift 4 */
398 #define R_SHIFT_2_MASK  0x28 /* (After right shift 4) Bits 3 and 5,
399                                   right shift 2 */
400 #define R_SHIFT_1_MASK  0x1e /* (After right shift 2) Bits 1-4,
401                                   right shift 1 */
402 #define L_SHIFT_4_MASK  0x03 /* Bits 0 and 1, left shift 4 */
403 #define L_SHIFT_2_MASK  0x14 /* (After left shift 4) Bits 2 and 4,
404                                   left shift 2 */
405 #define L_SHIFT_1_MASK  0x78 /* (After left shift 1) Bits 3-6,
406                                   left shift 1 */
407
408         u8 n1;
409         u8 n2;
410
411         /* Swap most significant nibble */
412         /* Right shift 4, bits 6 and 7 */
413         n1 = ((b  & R_SHIFT_4_MASK) >> 4) | (b  & ~(R_SHIFT_4_MASK >> 4));
414         /* Right shift 2, bits 3 and 5 */
415         n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
416         /* Right shift 1, bits 1-4 */
417         n1 = (n1  & R_SHIFT_1_MASK) >> 1;
418
419         /* Swap least significant nibble */
420         /* Left shift 4, bits 0 and 1 */
421         n2 = ((b  & L_SHIFT_4_MASK) << 4) | (b  & ~(L_SHIFT_4_MASK << 4));
422         /* Left shift 2, bits 2 and 4 */
423         n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
424         /* Left shift 1, bits 3-6 */
425         n2 = (n2  & L_SHIFT_1_MASK) << 1;
426
427         return n1 | n2;
428 }
429
430 /**
431  * ux500_swizzle_key() - Shuffle around words and bits in the AES key
432  * @in: key to swizzle
433  * @out: swizzled key
434  * @len: length of key, in bytes
435  *
436  * This "key swizzling procedure" is described in the examples in the
437  * DB8500 design specification. There is no real description of why
438  * the bits have been arranged like this in the hardware.
439  */
440 static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len)
441 {
442         int i = 0;
443         int bpw = sizeof(u32);
444         int j;
445         int index = 0;
446
447         j = len - bpw;
448         while (j >= 0) {
449                 for (i = 0; i < bpw; i++) {
450                         index = len - j - bpw + i;
451                         out[j + i] =
452                                 ux500_swap_bits_in_byte(in[index]);
453                 }
454                 j -= bpw;
455         }
456 }
457
458 static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
459 {
460         unsigned int i;
461         int r_id;
462
463         if (is_des(c)) {
464                 stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0]));
465                 stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1]));
466                 return;
467         }
468
469         /*
470          * On the Ux500 the AES key is considered as a single bit sequence
471          * of 128, 192 or 256 bits length. It is written linearly into the
472          * registers from K1L and down, and need to be processed to become
473          * a proper big-endian bit sequence.
474          */
475         if (is_aes(c) && c->caps->linear_aes_key) {
476                 u32 tmpkey[8];
477
478                 ux500_swizzle_key((u8 *)c->ctx->key,
479                                   (u8 *)tmpkey, c->ctx->keylen);
480
481                 r_id = c->caps->k1l;
482                 for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4)
483                         stm32_cryp_write(c, r_id, tmpkey[i]);
484
485                 return;
486         }
487
488         r_id = c->caps->k3r;
489         for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
490                 stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1]));
491 }
492
493 static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
494 {
495         if (is_aes(cryp) && is_ecb(cryp))
496                 return CR_AES_ECB;
497
498         if (is_aes(cryp) && is_cbc(cryp))
499                 return CR_AES_CBC;
500
501         if (is_aes(cryp) && is_ctr(cryp))
502                 return CR_AES_CTR;
503
504         if (is_aes(cryp) && is_gcm(cryp))
505                 return CR_AES_GCM;
506
507         if (is_aes(cryp) && is_ccm(cryp))
508                 return CR_AES_CCM;
509
510         if (is_des(cryp) && is_ecb(cryp))
511                 return CR_DES_ECB;
512
513         if (is_des(cryp) && is_cbc(cryp))
514                 return CR_DES_CBC;
515
516         if (is_tdes(cryp) && is_ecb(cryp))
517                 return CR_TDES_ECB;
518
519         if (is_tdes(cryp) && is_cbc(cryp))
520                 return CR_TDES_CBC;
521
522         dev_err(cryp->dev, "Unknown mode\n");
523         return CR_AES_UNKNOWN;
524 }
525
526 static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
527 {
528         return is_encrypt(cryp) ? cryp->areq->cryptlen :
529                                   cryp->areq->cryptlen - cryp->authsize;
530 }
531
532 static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
533 {
534         int ret;
535         __be32 iv[4];
536
537         /* Phase 1 : init */
538         memcpy(iv, cryp->areq->iv, 12);
539         iv[3] = cpu_to_be32(GCM_CTR_INIT);
540         cryp->gcm_ctr = GCM_CTR_INIT;
541         stm32_cryp_hw_write_iv(cryp, iv);
542
543         stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
544
545         /* Wait for end of processing */
546         ret = stm32_cryp_wait_enable(cryp);
547         if (ret) {
548                 dev_err(cryp->dev, "Timeout (gcm init)\n");
549                 return ret;
550         }
551
552         /* Prepare next phase */
553         if (cryp->areq->assoclen) {
554                 cfg |= CR_PH_HEADER;
555                 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
556         } else if (stm32_cryp_get_input_text_len(cryp)) {
557                 cfg |= CR_PH_PAYLOAD;
558                 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
559         }
560
561         return 0;
562 }
563
564 static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
565 {
566         u32 cfg;
567         int err;
568
569         /* Check if whole header written */
570         if (!cryp->header_in) {
571                 /* Wait for completion */
572                 err = stm32_cryp_wait_busy(cryp);
573                 if (err) {
574                         dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
575                         stm32_cryp_write(cryp, cryp->caps->imsc, 0);
576                         stm32_cryp_finish_req(cryp, err);
577                         return;
578                 }
579
580                 if (stm32_cryp_get_input_text_len(cryp)) {
581                         /* Phase 3 : payload */
582                         cfg = stm32_cryp_read(cryp, cryp->caps->cr);
583                         cfg &= ~CR_CRYPEN;
584                         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
585
586                         cfg &= ~CR_PH_MASK;
587                         cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
588                         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
589                 } else {
590                         /*
591                          * Phase 4 : tag.
592                          * Nothing to read, nothing to write, caller have to
593                          * end request
594                          */
595                 }
596         }
597 }
598
599 static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
600 {
601         size_t written;
602         size_t len;
603         u32 alen = cryp->areq->assoclen;
604         u32 block[AES_BLOCK_32] = {0};
605         u8 *b8 = (u8 *)block;
606
607         if (alen <= 65280) {
608                 /* Write first u32 of B1 */
609                 b8[0] = (alen >> 8) & 0xFF;
610                 b8[1] = alen & 0xFF;
611                 len = 2;
612         } else {
613                 /* Build the two first u32 of B1 */
614                 b8[0] = 0xFF;
615                 b8[1] = 0xFE;
616                 b8[2] = (alen & 0xFF000000) >> 24;
617                 b8[3] = (alen & 0x00FF0000) >> 16;
618                 b8[4] = (alen & 0x0000FF00) >> 8;
619                 b8[5] = alen & 0x000000FF;
620                 len = 6;
621         }
622
623         written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
624
625         scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0);
626
627         writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
628
629         cryp->header_in -= written;
630
631         stm32_crypt_gcmccm_end_header(cryp);
632 }
633
634 static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
635 {
636         int ret;
637         u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
638         u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
639         __be32 *bd;
640         u32 *d;
641         unsigned int i, textlen;
642
643         /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
644         memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
645         memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
646         iv[AES_BLOCK_SIZE - 1] = 1;
647         stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
648
649         /* Build B0 */
650         memcpy(b0, iv, AES_BLOCK_SIZE);
651
652         b0[0] |= (8 * ((cryp->authsize - 2) / 2));
653
654         if (cryp->areq->assoclen)
655                 b0[0] |= 0x40;
656
657         textlen = stm32_cryp_get_input_text_len(cryp);
658
659         b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
660         b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
661
662         /* Enable HW */
663         stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
664
665         /* Write B0 */
666         d = (u32 *)b0;
667         bd = (__be32 *)b0;
668
669         for (i = 0; i < AES_BLOCK_32; i++) {
670                 u32 xd = d[i];
671
672                 if (!cryp->caps->padding_wa)
673                         xd = be32_to_cpu(bd[i]);
674                 stm32_cryp_write(cryp, cryp->caps->din, xd);
675         }
676
677         /* Wait for end of processing */
678         ret = stm32_cryp_wait_enable(cryp);
679         if (ret) {
680                 dev_err(cryp->dev, "Timeout (ccm init)\n");
681                 return ret;
682         }
683
684         /* Prepare next phase */
685         if (cryp->areq->assoclen) {
686                 cfg |= CR_PH_HEADER | CR_CRYPEN;
687                 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
688
689                 /* Write first (special) block (may move to next phase [payload]) */
690                 stm32_cryp_write_ccm_first_header(cryp);
691         } else if (stm32_cryp_get_input_text_len(cryp)) {
692                 cfg |= CR_PH_PAYLOAD;
693                 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
694         }
695
696         return 0;
697 }
698
699 static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
700 {
701         int ret;
702         u32 cfg, hw_mode;
703
704         pm_runtime_get_sync(cryp->dev);
705
706         /* Disable interrupt */
707         stm32_cryp_write(cryp, cryp->caps->imsc, 0);
708
709         /* Set configuration */
710         cfg = CR_DATA8 | CR_FFLUSH;
711
712         switch (cryp->ctx->keylen) {
713         case AES_KEYSIZE_128:
714                 cfg |= CR_KEY128;
715                 break;
716
717         case AES_KEYSIZE_192:
718                 cfg |= CR_KEY192;
719                 break;
720
721         default:
722         case AES_KEYSIZE_256:
723                 cfg |= CR_KEY256;
724                 break;
725         }
726
727         hw_mode = stm32_cryp_get_hw_mode(cryp);
728         if (hw_mode == CR_AES_UNKNOWN)
729                 return -EINVAL;
730
731         /* AES ECB/CBC decrypt: run key preparation first */
732         if (is_decrypt(cryp) &&
733             ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
734                 /* Configure in key preparation mode */
735                 if (cryp->caps->kp_mode)
736                         stm32_cryp_write(cryp, cryp->caps->cr,
737                                 cfg | CR_AES_KP);
738                 else
739                         stm32_cryp_write(cryp,
740                                 cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE);
741
742                 /* Set key only after full configuration done */
743                 stm32_cryp_hw_write_key(cryp);
744
745                 /* Start prepare key */
746                 stm32_cryp_enable(cryp);
747                 /* Wait for end of processing */
748                 ret = stm32_cryp_wait_busy(cryp);
749                 if (ret) {
750                         dev_err(cryp->dev, "Timeout (key preparation)\n");
751                         return ret;
752                 }
753
754                 cfg |= hw_mode | CR_DEC_NOT_ENC;
755
756                 /* Apply updated config (Decrypt + algo) and flush */
757                 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
758         } else {
759                 cfg |= hw_mode;
760                 if (is_decrypt(cryp))
761                         cfg |= CR_DEC_NOT_ENC;
762
763                 /* Apply config and flush */
764                 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
765
766                 /* Set key only after configuration done */
767                 stm32_cryp_hw_write_key(cryp);
768         }
769
770         switch (hw_mode) {
771         case CR_AES_GCM:
772         case CR_AES_CCM:
773                 /* Phase 1 : init */
774                 if (hw_mode == CR_AES_CCM)
775                         ret = stm32_cryp_ccm_init(cryp, cfg);
776                 else
777                         ret = stm32_cryp_gcm_init(cryp, cfg);
778
779                 if (ret)
780                         return ret;
781
782                 break;
783
784         case CR_DES_CBC:
785         case CR_TDES_CBC:
786         case CR_AES_CBC:
787         case CR_AES_CTR:
788                 stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
789                 break;
790
791         default:
792                 break;
793         }
794
795         /* Enable now */
796         stm32_cryp_enable(cryp);
797
798         return 0;
799 }
800
801 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
802 {
803         if (!err && (is_gcm(cryp) || is_ccm(cryp)))
804                 /* Phase 4 : output tag */
805                 err = stm32_cryp_read_auth_tag(cryp);
806
807         if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
808                 stm32_cryp_get_iv(cryp);
809
810         pm_runtime_mark_last_busy(cryp->dev);
811         pm_runtime_put_autosuspend(cryp->dev);
812
813         if (is_gcm(cryp) || is_ccm(cryp))
814                 crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
815         else
816                 crypto_finalize_skcipher_request(cryp->engine, cryp->req,
817                                                    err);
818 }
819
820 static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
821 {
822         /* Enable interrupt and let the IRQ handler do everything */
823         stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT);
824
825         return 0;
826 }
827
828 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
829
830 static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
831 {
832         crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
833
834         return 0;
835 }
836
837 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
838
839 static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
840 {
841         tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
842
843         return 0;
844 }
845
846 static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
847 {
848         struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
849                         crypto_skcipher_reqtfm(req));
850         struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
851         struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
852
853         if (!cryp)
854                 return -ENODEV;
855
856         rctx->mode = mode;
857
858         return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
859 }
860
861 static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
862 {
863         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
864         struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
865         struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
866
867         if (!cryp)
868                 return -ENODEV;
869
870         rctx->mode = mode;
871
872         return crypto_transfer_aead_request_to_engine(cryp->engine, req);
873 }
874
875 static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
876                              unsigned int keylen)
877 {
878         struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
879
880         memcpy(ctx->key, key, keylen);
881         ctx->keylen = keylen;
882
883         return 0;
884 }
885
886 static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
887                                  unsigned int keylen)
888 {
889         if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
890             keylen != AES_KEYSIZE_256)
891                 return -EINVAL;
892         else
893                 return stm32_cryp_setkey(tfm, key, keylen);
894 }
895
896 static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
897                                  unsigned int keylen)
898 {
899         return verify_skcipher_des_key(tfm, key) ?:
900                stm32_cryp_setkey(tfm, key, keylen);
901 }
902
903 static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
904                                   unsigned int keylen)
905 {
906         return verify_skcipher_des3_key(tfm, key) ?:
907                stm32_cryp_setkey(tfm, key, keylen);
908 }
909
910 static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
911                                       unsigned int keylen)
912 {
913         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
914
915         if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
916             keylen != AES_KEYSIZE_256)
917                 return -EINVAL;
918
919         memcpy(ctx->key, key, keylen);
920         ctx->keylen = keylen;
921
922         return 0;
923 }
924
925 static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
926                                           unsigned int authsize)
927 {
928         switch (authsize) {
929         case 4:
930         case 8:
931         case 12:
932         case 13:
933         case 14:
934         case 15:
935         case 16:
936                 break;
937         default:
938                 return -EINVAL;
939         }
940
941         return 0;
942 }
943
944 static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
945                                           unsigned int authsize)
946 {
947         switch (authsize) {
948         case 4:
949         case 6:
950         case 8:
951         case 10:
952         case 12:
953         case 14:
954         case 16:
955                 break;
956         default:
957                 return -EINVAL;
958         }
959
960         return 0;
961 }
962
963 static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
964 {
965         if (req->cryptlen % AES_BLOCK_SIZE)
966                 return -EINVAL;
967
968         if (req->cryptlen == 0)
969                 return 0;
970
971         return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
972 }
973
974 static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
975 {
976         if (req->cryptlen % AES_BLOCK_SIZE)
977                 return -EINVAL;
978
979         if (req->cryptlen == 0)
980                 return 0;
981
982         return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
983 }
984
985 static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
986 {
987         if (req->cryptlen % AES_BLOCK_SIZE)
988                 return -EINVAL;
989
990         if (req->cryptlen == 0)
991                 return 0;
992
993         return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
994 }
995
996 static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
997 {
998         if (req->cryptlen % AES_BLOCK_SIZE)
999                 return -EINVAL;
1000
1001         if (req->cryptlen == 0)
1002                 return 0;
1003
1004         return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
1005 }
1006
1007 static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
1008 {
1009         if (req->cryptlen == 0)
1010                 return 0;
1011
1012         return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
1013 }
1014
1015 static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
1016 {
1017         if (req->cryptlen == 0)
1018                 return 0;
1019
1020         return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
1021 }
1022
1023 static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
1024 {
1025         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
1026 }
1027
1028 static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
1029 {
1030         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
1031 }
1032
1033 static inline int crypto_ccm_check_iv(const u8 *iv)
1034 {
1035         /* 2 <= L <= 8, so 1 <= L' <= 7. */
1036         if (iv[0] < 1 || iv[0] > 7)
1037                 return -EINVAL;
1038
1039         return 0;
1040 }
1041
1042 static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
1043 {
1044         int err;
1045
1046         err = crypto_ccm_check_iv(req->iv);
1047         if (err)
1048                 return err;
1049
1050         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
1051 }
1052
1053 static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
1054 {
1055         int err;
1056
1057         err = crypto_ccm_check_iv(req->iv);
1058         if (err)
1059                 return err;
1060
1061         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
1062 }
1063
1064 static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
1065 {
1066         if (req->cryptlen % DES_BLOCK_SIZE)
1067                 return -EINVAL;
1068
1069         if (req->cryptlen == 0)
1070                 return 0;
1071
1072         return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
1073 }
1074
1075 static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
1076 {
1077         if (req->cryptlen % DES_BLOCK_SIZE)
1078                 return -EINVAL;
1079
1080         if (req->cryptlen == 0)
1081                 return 0;
1082
1083         return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
1084 }
1085
1086 static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
1087 {
1088         if (req->cryptlen % DES_BLOCK_SIZE)
1089                 return -EINVAL;
1090
1091         if (req->cryptlen == 0)
1092                 return 0;
1093
1094         return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
1095 }
1096
1097 static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
1098 {
1099         if (req->cryptlen % DES_BLOCK_SIZE)
1100                 return -EINVAL;
1101
1102         if (req->cryptlen == 0)
1103                 return 0;
1104
1105         return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
1106 }
1107
1108 static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
1109 {
1110         if (req->cryptlen % DES_BLOCK_SIZE)
1111                 return -EINVAL;
1112
1113         if (req->cryptlen == 0)
1114                 return 0;
1115
1116         return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
1117 }
1118
1119 static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
1120 {
1121         if (req->cryptlen % DES_BLOCK_SIZE)
1122                 return -EINVAL;
1123
1124         if (req->cryptlen == 0)
1125                 return 0;
1126
1127         return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
1128 }
1129
1130 static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
1131 {
1132         if (req->cryptlen % DES_BLOCK_SIZE)
1133                 return -EINVAL;
1134
1135         if (req->cryptlen == 0)
1136                 return 0;
1137
1138         return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
1139 }
1140
1141 static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
1142 {
1143         if (req->cryptlen % DES_BLOCK_SIZE)
1144                 return -EINVAL;
1145
1146         if (req->cryptlen == 0)
1147                 return 0;
1148
1149         return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
1150 }
1151
1152 static int stm32_cryp_prepare_req(struct skcipher_request *req,
1153                                   struct aead_request *areq)
1154 {
1155         struct stm32_cryp_ctx *ctx;
1156         struct stm32_cryp *cryp;
1157         struct stm32_cryp_reqctx *rctx;
1158         struct scatterlist *in_sg;
1159         int ret;
1160
1161         if (!req && !areq)
1162                 return -EINVAL;
1163
1164         ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
1165                     crypto_aead_ctx(crypto_aead_reqtfm(areq));
1166
1167         cryp = ctx->cryp;
1168
1169         rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
1170         rctx->mode &= FLG_MODE_MASK;
1171
1172         ctx->cryp = cryp;
1173
1174         cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
1175         cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
1176         cryp->ctx = ctx;
1177
1178         if (req) {
1179                 cryp->req = req;
1180                 cryp->areq = NULL;
1181                 cryp->header_in = 0;
1182                 cryp->payload_in = req->cryptlen;
1183                 cryp->payload_out = req->cryptlen;
1184                 cryp->authsize = 0;
1185         } else {
1186                 /*
1187                  * Length of input and output data:
1188                  * Encryption case:
1189                  *  INPUT  = AssocData   ||     PlainText
1190                  *          <- assoclen ->  <- cryptlen ->
1191                  *
1192                  *  OUTPUT = AssocData    ||   CipherText   ||      AuthTag
1193                  *          <- assoclen ->  <-- cryptlen -->  <- authsize ->
1194                  *
1195                  * Decryption case:
1196                  *  INPUT  =  AssocData     ||    CipherTex   ||       AuthTag
1197                  *          <- assoclen --->  <---------- cryptlen ---------->
1198                  *
1199                  *  OUTPUT = AssocData    ||               PlainText
1200                  *          <- assoclen ->  <- cryptlen - authsize ->
1201                  */
1202                 cryp->areq = areq;
1203                 cryp->req = NULL;
1204                 cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
1205                 if (is_encrypt(cryp)) {
1206                         cryp->payload_in = areq->cryptlen;
1207                         cryp->header_in = areq->assoclen;
1208                         cryp->payload_out = areq->cryptlen;
1209                 } else {
1210                         cryp->payload_in = areq->cryptlen - cryp->authsize;
1211                         cryp->header_in = areq->assoclen;
1212                         cryp->payload_out = cryp->payload_in;
1213                 }
1214         }
1215
1216         in_sg = req ? req->src : areq->src;
1217         scatterwalk_start(&cryp->in_walk, in_sg);
1218
1219         cryp->out_sg = req ? req->dst : areq->dst;
1220         scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1221
1222         if (is_gcm(cryp) || is_ccm(cryp)) {
1223                 /* In output, jump after assoc data */
1224                 scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2);
1225         }
1226
1227         if (is_ctr(cryp))
1228                 memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
1229
1230         ret = stm32_cryp_hw_init(cryp);
1231         return ret;
1232 }
1233
1234 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1235 {
1236         struct skcipher_request *req = container_of(areq,
1237                                                       struct skcipher_request,
1238                                                       base);
1239         struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1240                         crypto_skcipher_reqtfm(req));
1241         struct stm32_cryp *cryp = ctx->cryp;
1242
1243         if (!cryp)
1244                 return -ENODEV;
1245
1246         return stm32_cryp_prepare_req(req, NULL) ?:
1247                stm32_cryp_cpu_start(cryp);
1248 }
1249
1250 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1251 {
1252         struct aead_request *req = container_of(areq, struct aead_request,
1253                                                 base);
1254         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1255         struct stm32_cryp *cryp = ctx->cryp;
1256         int err;
1257
1258         if (!cryp)
1259                 return -ENODEV;
1260
1261         err = stm32_cryp_prepare_req(NULL, req);
1262         if (err)
1263                 return err;
1264
1265         if (unlikely(!cryp->payload_in && !cryp->header_in)) {
1266                 /* No input data to process: get tag and finish */
1267                 stm32_cryp_finish_req(cryp, 0);
1268                 return 0;
1269         }
1270
1271         return stm32_cryp_cpu_start(cryp);
1272 }
1273
1274 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1275 {
1276         u32 cfg, size_bit;
1277         unsigned int i;
1278         int ret = 0;
1279
1280         /* Update Config */
1281         cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1282
1283         cfg &= ~CR_PH_MASK;
1284         cfg |= CR_PH_FINAL;
1285         cfg &= ~CR_DEC_NOT_ENC;
1286         cfg |= CR_CRYPEN;
1287
1288         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1289
1290         if (is_gcm(cryp)) {
1291                 /* GCM: write aad and payload size (in bits) */
1292                 size_bit = cryp->areq->assoclen * 8;
1293                 if (cryp->caps->swap_final)
1294                         size_bit = (__force u32)cpu_to_be32(size_bit);
1295
1296                 stm32_cryp_write(cryp, cryp->caps->din, 0);
1297                 stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1298
1299                 size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1300                                 cryp->areq->cryptlen - cryp->authsize;
1301                 size_bit *= 8;
1302                 if (cryp->caps->swap_final)
1303                         size_bit = (__force u32)cpu_to_be32(size_bit);
1304
1305                 stm32_cryp_write(cryp, cryp->caps->din, 0);
1306                 stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1307         } else {
1308                 /* CCM: write CTR0 */
1309                 u32 iv32[AES_BLOCK_32];
1310                 u8 *iv = (u8 *)iv32;
1311                 __be32 *biv = (__be32 *)iv32;
1312
1313                 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1314                 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1315
1316                 for (i = 0; i < AES_BLOCK_32; i++) {
1317                         u32 xiv = iv32[i];
1318
1319                         if (!cryp->caps->padding_wa)
1320                                 xiv = be32_to_cpu(biv[i]);
1321                         stm32_cryp_write(cryp, cryp->caps->din, xiv);
1322                 }
1323         }
1324
1325         /* Wait for output data */
1326         ret = stm32_cryp_wait_output(cryp);
1327         if (ret) {
1328                 dev_err(cryp->dev, "Timeout (read tag)\n");
1329                 return ret;
1330         }
1331
1332         if (is_encrypt(cryp)) {
1333                 u32 out_tag[AES_BLOCK_32];
1334
1335                 /* Get and write tag */
1336                 readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
1337                 scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1);
1338         } else {
1339                 /* Get and check tag */
1340                 u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1341
1342                 scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0);
1343                 readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
1344
1345                 if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1346                         ret = -EBADMSG;
1347         }
1348
1349         /* Disable cryp */
1350         cfg &= ~CR_CRYPEN;
1351         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1352
1353         return ret;
1354 }
1355
1356 static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1357 {
1358         u32 cr;
1359
1360         if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
1361                 /*
1362                  * In this case, we need to increment manually the ctr counter,
1363                  * as HW doesn't handle the U32 carry.
1364                  */
1365                 crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
1366
1367                 cr = stm32_cryp_read(cryp, cryp->caps->cr);
1368                 stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN);
1369
1370                 stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
1371
1372                 stm32_cryp_write(cryp, cryp->caps->cr, cr);
1373         }
1374
1375         /* The IV registers are BE  */
1376         cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
1377         cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
1378         cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
1379         cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
1380 }
1381
1382 static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1383 {
1384         u32 block[AES_BLOCK_32];
1385
1386         readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1387         scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1388                                                              cryp->payload_out), 1);
1389         cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1390                                    cryp->payload_out);
1391 }
1392
1393 static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1394 {
1395         u32 block[AES_BLOCK_32] = {0};
1396
1397         scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
1398                                                             cryp->payload_in), 0);
1399         writesl(cryp->regs + cryp->caps->din, block, cryp->hw_blocksize / sizeof(u32));
1400         cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
1401 }
1402
1403 static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1404 {
1405         int err;
1406         u32 cfg, block[AES_BLOCK_32] = {0};
1407         unsigned int i;
1408
1409         /* 'Special workaround' procedure described in the datasheet */
1410
1411         /* a) disable ip */
1412         stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1413         cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1414         cfg &= ~CR_CRYPEN;
1415         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1416
1417         /* b) Update IV1R */
1418         stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2);
1419
1420         /* c) change mode to CTR */
1421         cfg &= ~CR_ALGO_MASK;
1422         cfg |= CR_AES_CTR;
1423         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1424
1425         /* a) enable IP */
1426         cfg |= CR_CRYPEN;
1427         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1428
1429         /* b) pad and write the last block */
1430         stm32_cryp_irq_write_block(cryp);
1431         /* wait end of process */
1432         err = stm32_cryp_wait_output(cryp);
1433         if (err) {
1434                 dev_err(cryp->dev, "Timeout (write gcm last data)\n");
1435                 return stm32_cryp_finish_req(cryp, err);
1436         }
1437
1438         /* c) get and store encrypted data */
1439         /*
1440          * Same code as stm32_cryp_irq_read_data(), but we want to store
1441          * block value
1442          */
1443         readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1444
1445         scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1446                                                              cryp->payload_out), 1);
1447         cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1448                                    cryp->payload_out);
1449
1450         /* d) change mode back to AES GCM */
1451         cfg &= ~CR_ALGO_MASK;
1452         cfg |= CR_AES_GCM;
1453         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1454
1455         /* e) change phase to Final */
1456         cfg &= ~CR_PH_MASK;
1457         cfg |= CR_PH_FINAL;
1458         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1459
1460         /* f) write padded data */
1461         writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
1462
1463         /* g) Empty fifo out */
1464         err = stm32_cryp_wait_output(cryp);
1465         if (err) {
1466                 dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
1467                 return stm32_cryp_finish_req(cryp, err);
1468         }
1469
1470         for (i = 0; i < AES_BLOCK_32; i++)
1471                 stm32_cryp_read(cryp, cryp->caps->dout);
1472
1473         /* h) run the he normal Final phase */
1474         stm32_cryp_finish_req(cryp, 0);
1475 }
1476
1477 static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1478 {
1479         u32 cfg;
1480
1481         /* disable ip, set NPBLB and reneable ip */
1482         cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1483         cfg &= ~CR_CRYPEN;
1484         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1485
1486         cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
1487         cfg |= CR_CRYPEN;
1488         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1489 }
1490
1491 static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1492 {
1493         int err = 0;
1494         u32 cfg, iv1tmp;
1495         u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
1496         u32 block[AES_BLOCK_32] = {0};
1497         unsigned int i;
1498
1499         /* 'Special workaround' procedure described in the datasheet */
1500
1501         /* a) disable ip */
1502         stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1503
1504         cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1505         cfg &= ~CR_CRYPEN;
1506         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1507
1508         /* b) get IV1 from CRYP_CSGCMCCM7 */
1509         iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1510
1511         /* c) Load CRYP_CSGCMCCMxR */
1512         for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1513                 cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1514
1515         /* d) Write IV1R */
1516         stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp);
1517
1518         /* e) change mode to CTR */
1519         cfg &= ~CR_ALGO_MASK;
1520         cfg |= CR_AES_CTR;
1521         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1522
1523         /* a) enable IP */
1524         cfg |= CR_CRYPEN;
1525         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1526
1527         /* b) pad and write the last block */
1528         stm32_cryp_irq_write_block(cryp);
1529         /* wait end of process */
1530         err = stm32_cryp_wait_output(cryp);
1531         if (err) {
1532                 dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1533                 return stm32_cryp_finish_req(cryp, err);
1534         }
1535
1536         /* c) get and store decrypted data */
1537         /*
1538          * Same code as stm32_cryp_irq_read_data(), but we want to store
1539          * block value
1540          */
1541         readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1542
1543         scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1544                                                              cryp->payload_out), 1);
1545         cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
1546
1547         /* d) Load again CRYP_CSGCMCCMxR */
1548         for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1549                 cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1550
1551         /* e) change mode back to AES CCM */
1552         cfg &= ~CR_ALGO_MASK;
1553         cfg |= CR_AES_CCM;
1554         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1555
1556         /* f) change phase to header */
1557         cfg &= ~CR_PH_MASK;
1558         cfg |= CR_PH_HEADER;
1559         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1560
1561         /* g) XOR and write padded data */
1562         for (i = 0; i < ARRAY_SIZE(block); i++) {
1563                 block[i] ^= cstmp1[i];
1564                 block[i] ^= cstmp2[i];
1565                 stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1566         }
1567
1568         /* h) wait for completion */
1569         err = stm32_cryp_wait_busy(cryp);
1570         if (err)
1571                 dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1572
1573         /* i) run the he normal Final phase */
1574         stm32_cryp_finish_req(cryp, err);
1575 }
1576
1577 static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1578 {
1579         if (unlikely(!cryp->payload_in)) {
1580                 dev_warn(cryp->dev, "No more data to process\n");
1581                 return;
1582         }
1583
1584         if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
1585                      (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1586                      is_encrypt(cryp))) {
1587                 /* Padding for AES GCM encryption */
1588                 if (cryp->caps->padding_wa) {
1589                         /* Special case 1 */
1590                         stm32_cryp_irq_write_gcm_padded_data(cryp);
1591                         return;
1592                 }
1593
1594                 /* Setting padding bytes (NBBLB) */
1595                 stm32_cryp_irq_set_npblb(cryp);
1596         }
1597
1598         if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
1599                      (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1600                      is_decrypt(cryp))) {
1601                 /* Padding for AES CCM decryption */
1602                 if (cryp->caps->padding_wa) {
1603                         /* Special case 2 */
1604                         stm32_cryp_irq_write_ccm_padded_data(cryp);
1605                         return;
1606                 }
1607
1608                 /* Setting padding bytes (NBBLB) */
1609                 stm32_cryp_irq_set_npblb(cryp);
1610         }
1611
1612         if (is_aes(cryp) && is_ctr(cryp))
1613                 stm32_cryp_check_ctr_counter(cryp);
1614
1615         stm32_cryp_irq_write_block(cryp);
1616 }
1617
1618 static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
1619 {
1620         u32 block[AES_BLOCK_32] = {0};
1621         size_t written;
1622
1623         written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
1624
1625         scatterwalk_copychunks(block, &cryp->in_walk, written, 0);
1626
1627         writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
1628
1629         cryp->header_in -= written;
1630
1631         stm32_crypt_gcmccm_end_header(cryp);
1632 }
1633
1634 static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1635 {
1636         struct stm32_cryp *cryp = arg;
1637         u32 ph;
1638         u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc);
1639
1640         if (cryp->irq_status & MISR_OUT)
1641                 /* Output FIFO IRQ: read data */
1642                 stm32_cryp_irq_read_data(cryp);
1643
1644         if (cryp->irq_status & MISR_IN) {
1645                 if (is_gcm(cryp) || is_ccm(cryp)) {
1646                         ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK;
1647                         if (unlikely(ph == CR_PH_HEADER))
1648                                 /* Write Header */
1649                                 stm32_cryp_irq_write_gcmccm_header(cryp);
1650                         else
1651                                 /* Input FIFO IRQ: write data */
1652                                 stm32_cryp_irq_write_data(cryp);
1653                         if (is_gcm(cryp))
1654                                 cryp->gcm_ctr++;
1655                 } else {
1656                         /* Input FIFO IRQ: write data */
1657                         stm32_cryp_irq_write_data(cryp);
1658                 }
1659         }
1660
1661         /* Mask useless interrupts */
1662         if (!cryp->payload_in && !cryp->header_in)
1663                 it_mask &= ~IMSCR_IN;
1664         if (!cryp->payload_out)
1665                 it_mask &= ~IMSCR_OUT;
1666         stm32_cryp_write(cryp, cryp->caps->imsc, it_mask);
1667
1668         if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out)
1669                 stm32_cryp_finish_req(cryp, 0);
1670
1671         return IRQ_HANDLED;
1672 }
1673
1674 static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1675 {
1676         struct stm32_cryp *cryp = arg;
1677
1678         cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis);
1679
1680         return IRQ_WAKE_THREAD;
1681 }
1682
1683 static struct skcipher_engine_alg crypto_algs[] = {
1684 {
1685         .base = {
1686                 .base.cra_name          = "ecb(aes)",
1687                 .base.cra_driver_name   = "stm32-ecb-aes",
1688                 .base.cra_priority      = 200,
1689                 .base.cra_flags         = CRYPTO_ALG_ASYNC,
1690                 .base.cra_blocksize     = AES_BLOCK_SIZE,
1691                 .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1692                 .base.cra_alignmask     = 0,
1693                 .base.cra_module        = THIS_MODULE,
1694
1695                 .init                   = stm32_cryp_init_tfm,
1696                 .min_keysize            = AES_MIN_KEY_SIZE,
1697                 .max_keysize            = AES_MAX_KEY_SIZE,
1698                 .setkey                 = stm32_cryp_aes_setkey,
1699                 .encrypt                = stm32_cryp_aes_ecb_encrypt,
1700                 .decrypt                = stm32_cryp_aes_ecb_decrypt,
1701         },
1702         .op = {
1703                 .do_one_request = stm32_cryp_cipher_one_req,
1704         },
1705 },
1706 {
1707         .base = {
1708                 .base.cra_name          = "cbc(aes)",
1709                 .base.cra_driver_name   = "stm32-cbc-aes",
1710                 .base.cra_priority      = 200,
1711                 .base.cra_flags         = CRYPTO_ALG_ASYNC,
1712                 .base.cra_blocksize     = AES_BLOCK_SIZE,
1713                 .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1714                 .base.cra_alignmask     = 0,
1715                 .base.cra_module        = THIS_MODULE,
1716
1717                 .init                   = stm32_cryp_init_tfm,
1718                 .min_keysize            = AES_MIN_KEY_SIZE,
1719                 .max_keysize            = AES_MAX_KEY_SIZE,
1720                 .ivsize                 = AES_BLOCK_SIZE,
1721                 .setkey                 = stm32_cryp_aes_setkey,
1722                 .encrypt                = stm32_cryp_aes_cbc_encrypt,
1723                 .decrypt                = stm32_cryp_aes_cbc_decrypt,
1724         },
1725         .op = {
1726                 .do_one_request = stm32_cryp_cipher_one_req,
1727         },
1728 },
1729 {
1730         .base = {
1731                 .base.cra_name          = "ctr(aes)",
1732                 .base.cra_driver_name   = "stm32-ctr-aes",
1733                 .base.cra_priority      = 200,
1734                 .base.cra_flags         = CRYPTO_ALG_ASYNC,
1735                 .base.cra_blocksize     = 1,
1736                 .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1737                 .base.cra_alignmask     = 0,
1738                 .base.cra_module        = THIS_MODULE,
1739
1740                 .init                   = stm32_cryp_init_tfm,
1741                 .min_keysize            = AES_MIN_KEY_SIZE,
1742                 .max_keysize            = AES_MAX_KEY_SIZE,
1743                 .ivsize                 = AES_BLOCK_SIZE,
1744                 .setkey                 = stm32_cryp_aes_setkey,
1745                 .encrypt                = stm32_cryp_aes_ctr_encrypt,
1746                 .decrypt                = stm32_cryp_aes_ctr_decrypt,
1747         },
1748         .op = {
1749                 .do_one_request = stm32_cryp_cipher_one_req,
1750         },
1751 },
1752 {
1753         .base = {
1754                 .base.cra_name          = "ecb(des)",
1755                 .base.cra_driver_name   = "stm32-ecb-des",
1756                 .base.cra_priority      = 200,
1757                 .base.cra_flags         = CRYPTO_ALG_ASYNC,
1758                 .base.cra_blocksize     = DES_BLOCK_SIZE,
1759                 .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1760                 .base.cra_alignmask     = 0,
1761                 .base.cra_module        = THIS_MODULE,
1762
1763                 .init                   = stm32_cryp_init_tfm,
1764                 .min_keysize            = DES_BLOCK_SIZE,
1765                 .max_keysize            = DES_BLOCK_SIZE,
1766                 .setkey                 = stm32_cryp_des_setkey,
1767                 .encrypt                = stm32_cryp_des_ecb_encrypt,
1768                 .decrypt                = stm32_cryp_des_ecb_decrypt,
1769         },
1770         .op = {
1771                 .do_one_request = stm32_cryp_cipher_one_req,
1772         },
1773 },
1774 {
1775         .base = {
1776                 .base.cra_name          = "cbc(des)",
1777                 .base.cra_driver_name   = "stm32-cbc-des",
1778                 .base.cra_priority      = 200,
1779                 .base.cra_flags         = CRYPTO_ALG_ASYNC,
1780                 .base.cra_blocksize     = DES_BLOCK_SIZE,
1781                 .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1782                 .base.cra_alignmask     = 0,
1783                 .base.cra_module        = THIS_MODULE,
1784
1785                 .init                   = stm32_cryp_init_tfm,
1786                 .min_keysize            = DES_BLOCK_SIZE,
1787                 .max_keysize            = DES_BLOCK_SIZE,
1788                 .ivsize                 = DES_BLOCK_SIZE,
1789                 .setkey                 = stm32_cryp_des_setkey,
1790                 .encrypt                = stm32_cryp_des_cbc_encrypt,
1791                 .decrypt                = stm32_cryp_des_cbc_decrypt,
1792         },
1793         .op = {
1794                 .do_one_request = stm32_cryp_cipher_one_req,
1795         },
1796 },
1797 {
1798         .base = {
1799                 .base.cra_name          = "ecb(des3_ede)",
1800                 .base.cra_driver_name   = "stm32-ecb-des3",
1801                 .base.cra_priority      = 200,
1802                 .base.cra_flags         = CRYPTO_ALG_ASYNC,
1803                 .base.cra_blocksize     = DES_BLOCK_SIZE,
1804                 .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1805                 .base.cra_alignmask     = 0,
1806                 .base.cra_module        = THIS_MODULE,
1807
1808                 .init                   = stm32_cryp_init_tfm,
1809                 .min_keysize            = 3 * DES_BLOCK_SIZE,
1810                 .max_keysize            = 3 * DES_BLOCK_SIZE,
1811                 .setkey                 = stm32_cryp_tdes_setkey,
1812                 .encrypt                = stm32_cryp_tdes_ecb_encrypt,
1813                 .decrypt                = stm32_cryp_tdes_ecb_decrypt,
1814         },
1815         .op = {
1816                 .do_one_request = stm32_cryp_cipher_one_req,
1817         },
1818 },
1819 {
1820         .base = {
1821                 .base.cra_name          = "cbc(des3_ede)",
1822                 .base.cra_driver_name   = "stm32-cbc-des3",
1823                 .base.cra_priority      = 200,
1824                 .base.cra_flags         = CRYPTO_ALG_ASYNC,
1825                 .base.cra_blocksize     = DES_BLOCK_SIZE,
1826                 .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1827                 .base.cra_alignmask     = 0,
1828                 .base.cra_module        = THIS_MODULE,
1829
1830                 .init                   = stm32_cryp_init_tfm,
1831                 .min_keysize            = 3 * DES_BLOCK_SIZE,
1832                 .max_keysize            = 3 * DES_BLOCK_SIZE,
1833                 .ivsize                 = DES_BLOCK_SIZE,
1834                 .setkey                 = stm32_cryp_tdes_setkey,
1835                 .encrypt                = stm32_cryp_tdes_cbc_encrypt,
1836                 .decrypt                = stm32_cryp_tdes_cbc_decrypt,
1837         },
1838         .op = {
1839                 .do_one_request = stm32_cryp_cipher_one_req,
1840         },
1841 },
1842 };
1843
1844 static struct aead_engine_alg aead_algs[] = {
1845 {
1846         .base.setkey            = stm32_cryp_aes_aead_setkey,
1847         .base.setauthsize       = stm32_cryp_aes_gcm_setauthsize,
1848         .base.encrypt           = stm32_cryp_aes_gcm_encrypt,
1849         .base.decrypt           = stm32_cryp_aes_gcm_decrypt,
1850         .base.init              = stm32_cryp_aes_aead_init,
1851         .base.ivsize            = 12,
1852         .base.maxauthsize       = AES_BLOCK_SIZE,
1853
1854         .base.base = {
1855                 .cra_name               = "gcm(aes)",
1856                 .cra_driver_name        = "stm32-gcm-aes",
1857                 .cra_priority           = 200,
1858                 .cra_flags              = CRYPTO_ALG_ASYNC,
1859                 .cra_blocksize          = 1,
1860                 .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1861                 .cra_alignmask          = 0,
1862                 .cra_module             = THIS_MODULE,
1863         },
1864         .op = {
1865                 .do_one_request = stm32_cryp_aead_one_req,
1866         },
1867 },
1868 {
1869         .base.setkey            = stm32_cryp_aes_aead_setkey,
1870         .base.setauthsize       = stm32_cryp_aes_ccm_setauthsize,
1871         .base.encrypt           = stm32_cryp_aes_ccm_encrypt,
1872         .base.decrypt           = stm32_cryp_aes_ccm_decrypt,
1873         .base.init              = stm32_cryp_aes_aead_init,
1874         .base.ivsize            = AES_BLOCK_SIZE,
1875         .base.maxauthsize       = AES_BLOCK_SIZE,
1876
1877         .base.base = {
1878                 .cra_name               = "ccm(aes)",
1879                 .cra_driver_name        = "stm32-ccm-aes",
1880                 .cra_priority           = 200,
1881                 .cra_flags              = CRYPTO_ALG_ASYNC,
1882                 .cra_blocksize          = 1,
1883                 .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1884                 .cra_alignmask          = 0,
1885                 .cra_module             = THIS_MODULE,
1886         },
1887         .op = {
1888                 .do_one_request = stm32_cryp_aead_one_req,
1889         },
1890 },
1891 };
1892
1893 static const struct stm32_cryp_caps ux500_data = {
1894         .aeads_support = false,
1895         .linear_aes_key = true,
1896         .kp_mode = false,
1897         .iv_protection = true,
1898         .swap_final = true,
1899         .padding_wa = true,
1900         .cr = UX500_CRYP_CR,
1901         .sr = UX500_CRYP_SR,
1902         .din = UX500_CRYP_DIN,
1903         .dout = UX500_CRYP_DOUT,
1904         .imsc = UX500_CRYP_IMSC,
1905         .mis = UX500_CRYP_MIS,
1906         .k1l = UX500_CRYP_K1L,
1907         .k1r = UX500_CRYP_K1R,
1908         .k3r = UX500_CRYP_K3R,
1909         .iv0l = UX500_CRYP_IV0L,
1910         .iv0r = UX500_CRYP_IV0R,
1911         .iv1l = UX500_CRYP_IV1L,
1912         .iv1r = UX500_CRYP_IV1R,
1913 };
1914
1915 static const struct stm32_cryp_caps f7_data = {
1916         .aeads_support = true,
1917         .linear_aes_key = false,
1918         .kp_mode = true,
1919         .iv_protection = false,
1920         .swap_final = true,
1921         .padding_wa = true,
1922         .cr = CRYP_CR,
1923         .sr = CRYP_SR,
1924         .din = CRYP_DIN,
1925         .dout = CRYP_DOUT,
1926         .imsc = CRYP_IMSCR,
1927         .mis = CRYP_MISR,
1928         .k1l = CRYP_K1LR,
1929         .k1r = CRYP_K1RR,
1930         .k3r = CRYP_K3RR,
1931         .iv0l = CRYP_IV0LR,
1932         .iv0r = CRYP_IV0RR,
1933         .iv1l = CRYP_IV1LR,
1934         .iv1r = CRYP_IV1RR,
1935 };
1936
1937 static const struct stm32_cryp_caps mp1_data = {
1938         .aeads_support = true,
1939         .linear_aes_key = false,
1940         .kp_mode = true,
1941         .iv_protection = false,
1942         .swap_final = false,
1943         .padding_wa = false,
1944         .cr = CRYP_CR,
1945         .sr = CRYP_SR,
1946         .din = CRYP_DIN,
1947         .dout = CRYP_DOUT,
1948         .imsc = CRYP_IMSCR,
1949         .mis = CRYP_MISR,
1950         .k1l = CRYP_K1LR,
1951         .k1r = CRYP_K1RR,
1952         .k3r = CRYP_K3RR,
1953         .iv0l = CRYP_IV0LR,
1954         .iv0r = CRYP_IV0RR,
1955         .iv1l = CRYP_IV1LR,
1956         .iv1r = CRYP_IV1RR,
1957 };
1958
1959 static const struct of_device_id stm32_dt_ids[] = {
1960         { .compatible = "stericsson,ux500-cryp", .data = &ux500_data},
1961         { .compatible = "st,stm32f756-cryp", .data = &f7_data},
1962         { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1963         {},
1964 };
1965 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1966
1967 static int stm32_cryp_probe(struct platform_device *pdev)
1968 {
1969         struct device *dev = &pdev->dev;
1970         struct stm32_cryp *cryp;
1971         struct reset_control *rst;
1972         int irq, ret;
1973
1974         cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1975         if (!cryp)
1976                 return -ENOMEM;
1977
1978         cryp->caps = of_device_get_match_data(dev);
1979         if (!cryp->caps)
1980                 return -ENODEV;
1981
1982         cryp->dev = dev;
1983
1984         cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1985         if (IS_ERR(cryp->regs))
1986                 return PTR_ERR(cryp->regs);
1987
1988         irq = platform_get_irq(pdev, 0);
1989         if (irq < 0)
1990                 return irq;
1991
1992         ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1993                                         stm32_cryp_irq_thread, IRQF_ONESHOT,
1994                                         dev_name(dev), cryp);
1995         if (ret) {
1996                 dev_err(dev, "Cannot grab IRQ\n");
1997                 return ret;
1998         }
1999
2000         cryp->clk = devm_clk_get(dev, NULL);
2001         if (IS_ERR(cryp->clk)) {
2002                 dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
2003
2004                 return PTR_ERR(cryp->clk);
2005         }
2006
2007         ret = clk_prepare_enable(cryp->clk);
2008         if (ret) {
2009                 dev_err(cryp->dev, "Failed to enable clock\n");
2010                 return ret;
2011         }
2012
2013         pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
2014         pm_runtime_use_autosuspend(dev);
2015
2016         pm_runtime_get_noresume(dev);
2017         pm_runtime_set_active(dev);
2018         pm_runtime_enable(dev);
2019
2020         rst = devm_reset_control_get(dev, NULL);
2021         if (IS_ERR(rst)) {
2022                 ret = PTR_ERR(rst);
2023                 if (ret == -EPROBE_DEFER)
2024                         goto err_rst;
2025         } else {
2026                 reset_control_assert(rst);
2027                 udelay(2);
2028                 reset_control_deassert(rst);
2029         }
2030
2031         platform_set_drvdata(pdev, cryp);
2032
2033         spin_lock(&cryp_list.lock);
2034         list_add(&cryp->list, &cryp_list.dev_list);
2035         spin_unlock(&cryp_list.lock);
2036
2037         /* Initialize crypto engine */
2038         cryp->engine = crypto_engine_alloc_init(dev, 1);
2039         if (!cryp->engine) {
2040                 dev_err(dev, "Could not init crypto engine\n");
2041                 ret = -ENOMEM;
2042                 goto err_engine1;
2043         }
2044
2045         ret = crypto_engine_start(cryp->engine);
2046         if (ret) {
2047                 dev_err(dev, "Could not start crypto engine\n");
2048                 goto err_engine2;
2049         }
2050
2051         ret = crypto_engine_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2052         if (ret) {
2053                 dev_err(dev, "Could not register algs\n");
2054                 goto err_algs;
2055         }
2056
2057         if (cryp->caps->aeads_support) {
2058                 ret = crypto_engine_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2059                 if (ret)
2060                         goto err_aead_algs;
2061         }
2062
2063         dev_info(dev, "Initialized\n");
2064
2065         pm_runtime_put_sync(dev);
2066
2067         return 0;
2068
2069 err_aead_algs:
2070         crypto_engine_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2071 err_algs:
2072 err_engine2:
2073         crypto_engine_exit(cryp->engine);
2074 err_engine1:
2075         spin_lock(&cryp_list.lock);
2076         list_del(&cryp->list);
2077         spin_unlock(&cryp_list.lock);
2078 err_rst:
2079         pm_runtime_disable(dev);
2080         pm_runtime_put_noidle(dev);
2081
2082         clk_disable_unprepare(cryp->clk);
2083
2084         return ret;
2085 }
2086
2087 static void stm32_cryp_remove(struct platform_device *pdev)
2088 {
2089         struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2090         int ret;
2091
2092         ret = pm_runtime_get_sync(cryp->dev);
2093
2094         if (cryp->caps->aeads_support)
2095                 crypto_engine_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2096         crypto_engine_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2097
2098         crypto_engine_exit(cryp->engine);
2099
2100         spin_lock(&cryp_list.lock);
2101         list_del(&cryp->list);
2102         spin_unlock(&cryp_list.lock);
2103
2104         pm_runtime_disable(cryp->dev);
2105         pm_runtime_put_noidle(cryp->dev);
2106
2107         if (ret >= 0)
2108                 clk_disable_unprepare(cryp->clk);
2109 }
2110
2111 #ifdef CONFIG_PM
2112 static int stm32_cryp_runtime_suspend(struct device *dev)
2113 {
2114         struct stm32_cryp *cryp = dev_get_drvdata(dev);
2115
2116         clk_disable_unprepare(cryp->clk);
2117
2118         return 0;
2119 }
2120
2121 static int stm32_cryp_runtime_resume(struct device *dev)
2122 {
2123         struct stm32_cryp *cryp = dev_get_drvdata(dev);
2124         int ret;
2125
2126         ret = clk_prepare_enable(cryp->clk);
2127         if (ret) {
2128                 dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2129                 return ret;
2130         }
2131
2132         return 0;
2133 }
2134 #endif
2135
2136 static const struct dev_pm_ops stm32_cryp_pm_ops = {
2137         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2138                                 pm_runtime_force_resume)
2139         SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2140                            stm32_cryp_runtime_resume, NULL)
2141 };
2142
2143 static struct platform_driver stm32_cryp_driver = {
2144         .probe  = stm32_cryp_probe,
2145         .remove_new = stm32_cryp_remove,
2146         .driver = {
2147                 .name           = DRIVER_NAME,
2148                 .pm             = &stm32_cryp_pm_ops,
2149                 .of_match_table = stm32_dt_ids,
2150         },
2151 };
2152
2153 module_platform_driver(stm32_cryp_driver);
2154
2155 MODULE_AUTHOR("Fabien Dessenne <[email protected]>");
2156 MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2157 MODULE_LICENSE("GPL");
This page took 0.16723 seconds and 4 git commands to generate.