2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
6 * Interactivity improvements by Mike Galbraith
9 * Various enhancements by Dmitry Adamushko.
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
16 * Scaled math optimizations by Thomas Gleixner
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
33 #include <trace/events/sched.h>
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 static unsigned int sched_nr_latency = 8;
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
96 * The exponential sliding window over which load is averaged for shares
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 #ifdef CONFIG_CFS_BANDWIDTH
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
111 * default: 5 msec, units: microseconds
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
141 * This idea comes from the SD scheduler of Con Kolivas:
143 static int get_update_sysctl_factor(void)
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
152 case SCHED_TUNABLESCALING_LINEAR:
155 case SCHED_TUNABLESCALING_LOG:
157 factor = 1 + ilog2(cpus);
164 static void update_sysctl(void)
166 unsigned int factor = get_update_sysctl_factor();
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
176 void sched_init_granularity(void)
181 #define WMULT_CONST (~0U)
182 #define WMULT_SHIFT 32
184 static void __update_inv_weight(struct load_weight *lw)
188 if (likely(lw->inv_weight))
191 w = scale_load_down(lw->weight);
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
198 lw->inv_weight = WMULT_CONST / w;
202 * delta_exec * weight / lw.weight
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
218 __update_inv_weight(lw);
220 if (unlikely(fact >> 32)) {
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
235 return mul_u64_u32_shr(delta_exec, fact, shift);
239 const struct sched_class fair_sched_class;
241 /**************************************************************
242 * CFS operations on generic schedulable entities:
245 #ifdef CONFIG_FAIR_GROUP_SCHED
247 /* cpu runqueue to which this cfs_rq is attached */
248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
253 /* An entity is a task if it doesn't "own" a runqueue */
254 #define entity_is_task(se) (!se->my_q)
256 static inline struct task_struct *task_of(struct sched_entity *se)
258 #ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
261 return container_of(se, struct task_struct, se);
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 if (!cfs_rq->on_list) {
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
307 /* We should have no load, but we need to update last_decay. */
308 update_cfs_rq_blocked_load(cfs_rq, 0);
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324 /* Do the two (enqueued) entities belong to the same group ? */
325 static inline struct cfs_rq *
326 is_same_group(struct sched_entity *se, struct sched_entity *pse)
328 if (se->cfs_rq == pse->cfs_rq)
334 static inline struct sched_entity *parent_entity(struct sched_entity *se)
340 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342 int se_depth, pse_depth;
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
351 /* First walk up until both entities are at same depth */
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
355 while (se_depth > pse_depth) {
357 *se = parent_entity(*se);
360 while (pse_depth > se_depth) {
362 *pse = parent_entity(*pse);
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
371 #else /* !CONFIG_FAIR_GROUP_SCHED */
373 static inline struct task_struct *task_of(struct sched_entity *se)
375 return container_of(se, struct task_struct, se);
378 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380 return container_of(cfs_rq, struct rq, cfs);
383 #define entity_is_task(se) 1
385 #define for_each_sched_entity(se) \
386 for (; se; se = NULL)
388 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390 return &task_rq(p)->cfs;
393 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
401 /* runqueue "owned" by this group */
402 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
407 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
411 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
415 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418 static inline struct sched_entity *parent_entity(struct sched_entity *se)
424 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
428 #endif /* CONFIG_FAIR_GROUP_SCHED */
430 static __always_inline
431 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433 /**************************************************************
434 * Scheduling class tree data structure manipulation methods:
437 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439 s64 delta = (s64)(vruntime - max_vruntime);
441 max_vruntime = vruntime;
446 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
448 s64 delta = (s64)(vruntime - min_vruntime);
450 min_vruntime = vruntime;
455 static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
458 return (s64)(a->vruntime - b->vruntime) < 0;
461 static void update_min_vruntime(struct cfs_rq *cfs_rq)
463 u64 vruntime = cfs_rq->min_vruntime;
466 vruntime = cfs_rq->curr->vruntime;
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
474 vruntime = se->vruntime;
476 vruntime = min_vruntime(vruntime, se->vruntime);
479 /* ensure we never gain time by being placed backwards. */
480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
488 * Enqueue an entity into the rb-tree:
490 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
498 * Find the right place in the rbtree:
502 entry = rb_entry(parent, struct sched_entity, run_node);
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
507 if (entity_before(se, entry)) {
508 link = &parent->rb_left;
510 link = &parent->rb_right;
516 * Maintain a cache of leftmost tree entries (it is frequently
520 cfs_rq->rb_leftmost = &se->run_node;
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
526 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
538 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540 struct rb_node *left = cfs_rq->rb_leftmost;
545 return rb_entry(left, struct sched_entity, run_node);
548 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550 struct rb_node *next = rb_next(&se->run_node);
555 return rb_entry(next, struct sched_entity, run_node);
558 #ifdef CONFIG_SCHED_DEBUG
559 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
566 return rb_entry(last, struct sched_entity, run_node);
569 /**************************************************************
570 * Scheduling class statistics methods:
573 int sched_proc_update_handler(struct ctl_table *table, int write,
574 void __user *buffer, size_t *lenp,
577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
578 int factor = get_update_sysctl_factor();
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
586 #define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
600 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602 if (unlikely(se->load.weight != NICE_0_LOAD))
603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
609 * The idea is to set a period in which each task runs once.
611 * When there are too many tasks (sched_nr_latency) we have to stretch
612 * this period because otherwise the slices get too small.
614 * p = (nr <= nl) ? l : l*nr/nl
616 static u64 __sched_period(unsigned long nr_running)
618 u64 period = sysctl_sched_latency;
619 unsigned long nr_latency = sched_nr_latency;
621 if (unlikely(nr_running > nr_latency)) {
622 period = sysctl_sched_min_granularity;
623 period *= nr_running;
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
635 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639 for_each_sched_entity(se) {
640 struct load_weight *load;
641 struct load_weight lw;
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
646 if (unlikely(!se->on_rq)) {
649 update_load_add(&lw, se->load.weight);
652 slice = __calc_delta(slice, se->load.weight, load);
658 * We calculate the vruntime slice of a to-be-inserted task.
662 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
668 static unsigned long task_h_load(struct task_struct *p);
670 static inline void __update_task_entity_contrib(struct sched_entity *se);
672 /* Give new task start runnable values to heavy its load in infant time */
673 void init_task_runnable_average(struct task_struct *p)
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
684 void init_task_runnable_average(struct task_struct *p)
690 * Update the current task's runtime statistics.
692 static void update_curr(struct cfs_rq *cfs_rq)
694 struct sched_entity *curr = cfs_rq->curr;
695 u64 now = rq_clock_task(rq_of(cfs_rq));
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
705 curr->exec_start = now;
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
720 cpuacct_charge(curtask, delta_exec);
721 account_group_exec_runtime(curtask, delta_exec);
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
728 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
734 * Task is being enqueued - update stats:
736 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
742 if (se != cfs_rq->curr)
743 update_stats_wait_start(cfs_rq, se);
747 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
754 #ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
760 schedstat_set(se->statistics.wait_start, 0);
764 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
767 * Mark the end of the wait period if dequeueing a
770 if (se != cfs_rq->curr)
771 update_stats_wait_end(cfs_rq, se);
775 * We are picking a new current task - update its stats:
778 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
781 * We are starting a new run period:
783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
786 /**************************************************
787 * Scheduling class queueing methods:
790 #ifdef CONFIG_NUMA_BALANCING
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
796 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
799 /* Portion of address space to scan in MB */
800 unsigned int sysctl_numa_balancing_scan_size = 256;
802 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803 unsigned int sysctl_numa_balancing_scan_delay = 1000;
805 static unsigned int task_nr_scan_windows(struct task_struct *p)
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
824 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825 #define MAX_SCAN_WINDOW 2560
827 static unsigned int task_scan_min(struct task_struct *p)
829 unsigned int scan, floor;
830 unsigned int windows = 1;
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
840 static unsigned int task_scan_max(struct task_struct *p)
842 unsigned int smin = task_scan_min(p);
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
850 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
856 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
865 spinlock_t lock; /* nr_tasks, tasks */
868 struct list_head task_list;
871 nodemask_t active_nodes;
872 unsigned long total_faults;
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
878 unsigned long *faults_cpu;
879 unsigned long faults[0];
882 /* Shared or private faults. */
883 #define NR_NUMA_HINT_FAULT_TYPES 2
885 /* Memory and CPU locality */
886 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
888 /* Averaged statistics, and temporary buffers. */
889 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
891 pid_t task_numa_group_id(struct task_struct *p)
893 return p->numa_group ? p->numa_group->gid : 0;
896 static inline int task_faults_idx(int nid, int priv)
898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
901 static inline unsigned long task_faults(struct task_struct *p, int nid)
903 if (!p->numa_faults_memory)
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
910 static inline unsigned long group_faults(struct task_struct *p, int nid)
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
919 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
931 static inline unsigned long task_weight(struct task_struct *p, int nid)
933 unsigned long total_faults;
935 if (!p->numa_faults_memory)
938 total_faults = p->total_numa_faults;
943 return 1000 * task_faults(p, nid) / total_faults;
946 static inline unsigned long group_weight(struct task_struct *p, int nid)
948 if (!p->numa_group || !p->numa_group->total_faults)
951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
954 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
989 /* A shared fault, but p->numa_group has not been set up yet. */
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
997 if (!node_isset(dst_nid, ng->active_nodes))
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1004 if (!node_isset(src_nid, ng->active_nodes))
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1017 static unsigned long weighted_cpuload(const int cpu);
1018 static unsigned long source_load(int cpu, int type);
1019 static unsigned long target_load(int cpu, int type);
1020 static unsigned long power_of(int cpu);
1021 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1023 /* Cached statistics for all CPUs within a node */
1025 unsigned long nr_running;
1028 /* Total compute capacity of CPUs on a node */
1029 unsigned long power;
1031 /* Approximate capacity in terms of runnable tasks on a node */
1032 unsigned long capacity;
1037 * XXX borrowed from update_sg_lb_stats
1039 static void update_numa_stats(struct numa_stats *ns, int nid)
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
1049 ns->power += power_of(cpu);
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1059 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1065 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1066 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1067 ns->has_capacity = (ns->nr_running < ns->capacity);
1070 struct task_numa_env {
1071 struct task_struct *p;
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
1076 struct numa_stats src_stats, dst_stats;
1080 struct task_struct *best_task;
1085 static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1089 put_task_struct(env->best_task);
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1099 * This checks if the overall compute and NUMA accesses of the system would
1100 * be improved if the source tasks was migrated to the target dst_cpu taking
1101 * into account that it might be best if task running on the dst_cpu should
1102 * be exchanged with the source task
1104 static void task_numa_compare(struct task_numa_env *env,
1105 long taskimp, long groupimp)
1107 struct rq *src_rq = cpu_rq(env->src_cpu);
1108 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1109 struct task_struct *cur;
1110 long dst_load, src_load;
1112 long imp = (groupimp > 0) ? groupimp : taskimp;
1115 cur = ACCESS_ONCE(dst_rq->curr);
1116 if (cur->pid == 0) /* idle */
1120 * "imp" is the fault differential for the source task between the
1121 * source and destination node. Calculate the total differential for
1122 * the source task and potential destination task. The more negative
1123 * the value is, the more rmeote accesses that would be expected to
1124 * be incurred if the tasks were swapped.
1127 /* Skip this swap candidate if cannot move to the source cpu */
1128 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1132 * If dst and source tasks are in the same NUMA group, or not
1133 * in any group then look only at task weights.
1135 if (cur->numa_group == env->p->numa_group) {
1136 imp = taskimp + task_weight(cur, env->src_nid) -
1137 task_weight(cur, env->dst_nid);
1139 * Add some hysteresis to prevent swapping the
1140 * tasks within a group over tiny differences.
1142 if (cur->numa_group)
1146 * Compare the group weights. If a task is all by
1147 * itself (not part of a group), use the task weight
1150 if (env->p->numa_group)
1155 if (cur->numa_group)
1156 imp += group_weight(cur, env->src_nid) -
1157 group_weight(cur, env->dst_nid);
1159 imp += task_weight(cur, env->src_nid) -
1160 task_weight(cur, env->dst_nid);
1164 if (imp < env->best_imp)
1168 /* Is there capacity at our destination? */
1169 if (env->src_stats.has_capacity &&
1170 !env->dst_stats.has_capacity)
1176 /* Balance doesn't matter much if we're running a task per cpu */
1177 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1181 * In the overloaded case, try and keep the load balanced.
1184 dst_load = env->dst_stats.load;
1185 src_load = env->src_stats.load;
1187 /* XXX missing power terms */
1188 load = task_h_load(env->p);
1193 load = task_h_load(cur);
1198 /* make src_load the smaller */
1199 if (dst_load < src_load)
1200 swap(dst_load, src_load);
1202 if (src_load * env->imbalance_pct < dst_load * 100)
1206 task_numa_assign(env, cur, imp);
1211 static void task_numa_find_cpu(struct task_numa_env *env,
1212 long taskimp, long groupimp)
1216 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1217 /* Skip this CPU if the source task cannot migrate */
1218 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1222 task_numa_compare(env, taskimp, groupimp);
1226 static int task_numa_migrate(struct task_struct *p)
1228 struct task_numa_env env = {
1231 .src_cpu = task_cpu(p),
1232 .src_nid = task_node(p),
1234 .imbalance_pct = 112,
1240 struct sched_domain *sd;
1241 unsigned long taskweight, groupweight;
1243 long taskimp, groupimp;
1246 * Pick the lowest SD_NUMA domain, as that would have the smallest
1247 * imbalance and would be the first to start moving tasks about.
1249 * And we want to avoid any moving of tasks about, as that would create
1250 * random movement of tasks -- counter the numa conditions we're trying
1254 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1256 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1260 * Cpusets can break the scheduler domain tree into smaller
1261 * balance domains, some of which do not cross NUMA boundaries.
1262 * Tasks that are "trapped" in such domains cannot be migrated
1263 * elsewhere, so there is no point in (re)trying.
1265 if (unlikely(!sd)) {
1266 p->numa_preferred_nid = task_node(p);
1270 taskweight = task_weight(p, env.src_nid);
1271 groupweight = group_weight(p, env.src_nid);
1272 update_numa_stats(&env.src_stats, env.src_nid);
1273 env.dst_nid = p->numa_preferred_nid;
1274 taskimp = task_weight(p, env.dst_nid) - taskweight;
1275 groupimp = group_weight(p, env.dst_nid) - groupweight;
1276 update_numa_stats(&env.dst_stats, env.dst_nid);
1278 /* If the preferred nid has capacity, try to use it. */
1279 if (env.dst_stats.has_capacity)
1280 task_numa_find_cpu(&env, taskimp, groupimp);
1282 /* No space available on the preferred nid. Look elsewhere. */
1283 if (env.best_cpu == -1) {
1284 for_each_online_node(nid) {
1285 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1288 /* Only consider nodes where both task and groups benefit */
1289 taskimp = task_weight(p, nid) - taskweight;
1290 groupimp = group_weight(p, nid) - groupweight;
1291 if (taskimp < 0 && groupimp < 0)
1295 update_numa_stats(&env.dst_stats, env.dst_nid);
1296 task_numa_find_cpu(&env, taskimp, groupimp);
1300 /* No better CPU than the current one was found. */
1301 if (env.best_cpu == -1)
1304 sched_setnuma(p, env.dst_nid);
1307 * Reset the scan period if the task is being rescheduled on an
1308 * alternative node to recheck if the tasks is now properly placed.
1310 p->numa_scan_period = task_scan_min(p);
1312 if (env.best_task == NULL) {
1313 ret = migrate_task_to(p, env.best_cpu);
1315 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1319 ret = migrate_swap(p, env.best_task);
1321 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1322 put_task_struct(env.best_task);
1326 /* Attempt to migrate a task to a CPU on the preferred node. */
1327 static void numa_migrate_preferred(struct task_struct *p)
1329 /* This task has no NUMA fault statistics yet */
1330 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1333 /* Periodically retry migrating the task to the preferred node */
1334 p->numa_migrate_retry = jiffies + HZ;
1336 /* Success if task is already running on preferred CPU */
1337 if (task_node(p) == p->numa_preferred_nid)
1340 /* Otherwise, try migrate to a CPU on the preferred node */
1341 task_numa_migrate(p);
1345 * Find the nodes on which the workload is actively running. We do this by
1346 * tracking the nodes from which NUMA hinting faults are triggered. This can
1347 * be different from the set of nodes where the workload's memory is currently
1350 * The bitmask is used to make smarter decisions on when to do NUMA page
1351 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1352 * are added when they cause over 6/16 of the maximum number of faults, but
1353 * only removed when they drop below 3/16.
1355 static void update_numa_active_node_mask(struct numa_group *numa_group)
1357 unsigned long faults, max_faults = 0;
1360 for_each_online_node(nid) {
1361 faults = group_faults_cpu(numa_group, nid);
1362 if (faults > max_faults)
1363 max_faults = faults;
1366 for_each_online_node(nid) {
1367 faults = group_faults_cpu(numa_group, nid);
1368 if (!node_isset(nid, numa_group->active_nodes)) {
1369 if (faults > max_faults * 6 / 16)
1370 node_set(nid, numa_group->active_nodes);
1371 } else if (faults < max_faults * 3 / 16)
1372 node_clear(nid, numa_group->active_nodes);
1377 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1378 * increments. The more local the fault statistics are, the higher the scan
1379 * period will be for the next scan window. If local/remote ratio is below
1380 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1381 * scan period will decrease
1383 #define NUMA_PERIOD_SLOTS 10
1384 #define NUMA_PERIOD_THRESHOLD 3
1387 * Increase the scan period (slow down scanning) if the majority of
1388 * our memory is already on our local node, or if the majority of
1389 * the page accesses are shared with other processes.
1390 * Otherwise, decrease the scan period.
1392 static void update_task_scan_period(struct task_struct *p,
1393 unsigned long shared, unsigned long private)
1395 unsigned int period_slot;
1399 unsigned long remote = p->numa_faults_locality[0];
1400 unsigned long local = p->numa_faults_locality[1];
1403 * If there were no record hinting faults then either the task is
1404 * completely idle or all activity is areas that are not of interest
1405 * to automatic numa balancing. Scan slower
1407 if (local + shared == 0) {
1408 p->numa_scan_period = min(p->numa_scan_period_max,
1409 p->numa_scan_period << 1);
1411 p->mm->numa_next_scan = jiffies +
1412 msecs_to_jiffies(p->numa_scan_period);
1418 * Prepare to scale scan period relative to the current period.
1419 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1420 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1421 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1423 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1424 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1425 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1426 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1429 diff = slot * period_slot;
1431 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1434 * Scale scan rate increases based on sharing. There is an
1435 * inverse relationship between the degree of sharing and
1436 * the adjustment made to the scanning period. Broadly
1437 * speaking the intent is that there is little point
1438 * scanning faster if shared accesses dominate as it may
1439 * simply bounce migrations uselessly
1441 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1442 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1445 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1446 task_scan_min(p), task_scan_max(p));
1447 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1451 * Get the fraction of time the task has been running since the last
1452 * NUMA placement cycle. The scheduler keeps similar statistics, but
1453 * decays those on a 32ms period, which is orders of magnitude off
1454 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1455 * stats only if the task is so new there are no NUMA statistics yet.
1457 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1459 u64 runtime, delta, now;
1460 /* Use the start of this time slice to avoid calculations. */
1461 now = p->se.exec_start;
1462 runtime = p->se.sum_exec_runtime;
1464 if (p->last_task_numa_placement) {
1465 delta = runtime - p->last_sum_exec_runtime;
1466 *period = now - p->last_task_numa_placement;
1468 delta = p->se.avg.runnable_avg_sum;
1469 *period = p->se.avg.runnable_avg_period;
1472 p->last_sum_exec_runtime = runtime;
1473 p->last_task_numa_placement = now;
1478 static void task_numa_placement(struct task_struct *p)
1480 int seq, nid, max_nid = -1, max_group_nid = -1;
1481 unsigned long max_faults = 0, max_group_faults = 0;
1482 unsigned long fault_types[2] = { 0, 0 };
1483 unsigned long total_faults;
1484 u64 runtime, period;
1485 spinlock_t *group_lock = NULL;
1487 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1488 if (p->numa_scan_seq == seq)
1490 p->numa_scan_seq = seq;
1491 p->numa_scan_period_max = task_scan_max(p);
1493 total_faults = p->numa_faults_locality[0] +
1494 p->numa_faults_locality[1];
1495 runtime = numa_get_avg_runtime(p, &period);
1497 /* If the task is part of a group prevent parallel updates to group stats */
1498 if (p->numa_group) {
1499 group_lock = &p->numa_group->lock;
1500 spin_lock(group_lock);
1503 /* Find the node with the highest number of faults */
1504 for_each_online_node(nid) {
1505 unsigned long faults = 0, group_faults = 0;
1508 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1509 long diff, f_diff, f_weight;
1511 i = task_faults_idx(nid, priv);
1513 /* Decay existing window, copy faults since last scan */
1514 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1515 fault_types[priv] += p->numa_faults_buffer_memory[i];
1516 p->numa_faults_buffer_memory[i] = 0;
1519 * Normalize the faults_from, so all tasks in a group
1520 * count according to CPU use, instead of by the raw
1521 * number of faults. Tasks with little runtime have
1522 * little over-all impact on throughput, and thus their
1523 * faults are less important.
1525 f_weight = div64_u64(runtime << 16, period + 1);
1526 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1528 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1529 p->numa_faults_buffer_cpu[i] = 0;
1531 p->numa_faults_memory[i] += diff;
1532 p->numa_faults_cpu[i] += f_diff;
1533 faults += p->numa_faults_memory[i];
1534 p->total_numa_faults += diff;
1535 if (p->numa_group) {
1536 /* safe because we can only change our own group */
1537 p->numa_group->faults[i] += diff;
1538 p->numa_group->faults_cpu[i] += f_diff;
1539 p->numa_group->total_faults += diff;
1540 group_faults += p->numa_group->faults[i];
1544 if (faults > max_faults) {
1545 max_faults = faults;
1549 if (group_faults > max_group_faults) {
1550 max_group_faults = group_faults;
1551 max_group_nid = nid;
1555 update_task_scan_period(p, fault_types[0], fault_types[1]);
1557 if (p->numa_group) {
1558 update_numa_active_node_mask(p->numa_group);
1560 * If the preferred task and group nids are different,
1561 * iterate over the nodes again to find the best place.
1563 if (max_nid != max_group_nid) {
1564 unsigned long weight, max_weight = 0;
1566 for_each_online_node(nid) {
1567 weight = task_weight(p, nid) + group_weight(p, nid);
1568 if (weight > max_weight) {
1569 max_weight = weight;
1575 spin_unlock(group_lock);
1578 /* Preferred node as the node with the most faults */
1579 if (max_faults && max_nid != p->numa_preferred_nid) {
1580 /* Update the preferred nid and migrate task if possible */
1581 sched_setnuma(p, max_nid);
1582 numa_migrate_preferred(p);
1586 static inline int get_numa_group(struct numa_group *grp)
1588 return atomic_inc_not_zero(&grp->refcount);
1591 static inline void put_numa_group(struct numa_group *grp)
1593 if (atomic_dec_and_test(&grp->refcount))
1594 kfree_rcu(grp, rcu);
1597 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1600 struct numa_group *grp, *my_grp;
1601 struct task_struct *tsk;
1603 int cpu = cpupid_to_cpu(cpupid);
1606 if (unlikely(!p->numa_group)) {
1607 unsigned int size = sizeof(struct numa_group) +
1608 4*nr_node_ids*sizeof(unsigned long);
1610 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1614 atomic_set(&grp->refcount, 1);
1615 spin_lock_init(&grp->lock);
1616 INIT_LIST_HEAD(&grp->task_list);
1618 /* Second half of the array tracks nids where faults happen */
1619 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1622 node_set(task_node(current), grp->active_nodes);
1624 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1625 grp->faults[i] = p->numa_faults_memory[i];
1627 grp->total_faults = p->total_numa_faults;
1629 list_add(&p->numa_entry, &grp->task_list);
1631 rcu_assign_pointer(p->numa_group, grp);
1635 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1637 if (!cpupid_match_pid(tsk, cpupid))
1640 grp = rcu_dereference(tsk->numa_group);
1644 my_grp = p->numa_group;
1649 * Only join the other group if its bigger; if we're the bigger group,
1650 * the other task will join us.
1652 if (my_grp->nr_tasks > grp->nr_tasks)
1656 * Tie-break on the grp address.
1658 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1661 /* Always join threads in the same process. */
1662 if (tsk->mm == current->mm)
1665 /* Simple filter to avoid false positives due to PID collisions */
1666 if (flags & TNF_SHARED)
1669 /* Update priv based on whether false sharing was detected */
1672 if (join && !get_numa_group(grp))
1680 double_lock(&my_grp->lock, &grp->lock);
1682 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1683 my_grp->faults[i] -= p->numa_faults_memory[i];
1684 grp->faults[i] += p->numa_faults_memory[i];
1686 my_grp->total_faults -= p->total_numa_faults;
1687 grp->total_faults += p->total_numa_faults;
1689 list_move(&p->numa_entry, &grp->task_list);
1693 spin_unlock(&my_grp->lock);
1694 spin_unlock(&grp->lock);
1696 rcu_assign_pointer(p->numa_group, grp);
1698 put_numa_group(my_grp);
1706 void task_numa_free(struct task_struct *p)
1708 struct numa_group *grp = p->numa_group;
1710 void *numa_faults = p->numa_faults_memory;
1713 spin_lock(&grp->lock);
1714 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1715 grp->faults[i] -= p->numa_faults_memory[i];
1716 grp->total_faults -= p->total_numa_faults;
1718 list_del(&p->numa_entry);
1720 spin_unlock(&grp->lock);
1721 rcu_assign_pointer(p->numa_group, NULL);
1722 put_numa_group(grp);
1725 p->numa_faults_memory = NULL;
1726 p->numa_faults_buffer_memory = NULL;
1727 p->numa_faults_cpu= NULL;
1728 p->numa_faults_buffer_cpu = NULL;
1733 * Got a PROT_NONE fault for a page on @node.
1735 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1737 struct task_struct *p = current;
1738 bool migrated = flags & TNF_MIGRATED;
1739 int cpu_node = task_node(current);
1742 if (!numabalancing_enabled)
1745 /* for example, ksmd faulting in a user's mm */
1749 /* Do not worry about placement if exiting */
1750 if (p->state == TASK_DEAD)
1753 /* Allocate buffer to track faults on a per-node basis */
1754 if (unlikely(!p->numa_faults_memory)) {
1755 int size = sizeof(*p->numa_faults_memory) *
1756 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1758 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1759 if (!p->numa_faults_memory)
1762 BUG_ON(p->numa_faults_buffer_memory);
1764 * The averaged statistics, shared & private, memory & cpu,
1765 * occupy the first half of the array. The second half of the
1766 * array is for current counters, which are averaged into the
1767 * first set by task_numa_placement.
1769 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1770 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1771 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1772 p->total_numa_faults = 0;
1773 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1777 * First accesses are treated as private, otherwise consider accesses
1778 * to be private if the accessing pid has not changed
1780 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1783 priv = cpupid_match_pid(p, last_cpupid);
1784 if (!priv && !(flags & TNF_NO_GROUP))
1785 task_numa_group(p, last_cpupid, flags, &priv);
1788 task_numa_placement(p);
1791 * Retry task to preferred node migration periodically, in case it
1792 * case it previously failed, or the scheduler moved us.
1794 if (time_after(jiffies, p->numa_migrate_retry))
1795 numa_migrate_preferred(p);
1798 p->numa_pages_migrated += pages;
1800 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1801 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1802 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1805 static void reset_ptenuma_scan(struct task_struct *p)
1807 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1808 p->mm->numa_scan_offset = 0;
1812 * The expensive part of numa migration is done from task_work context.
1813 * Triggered from task_tick_numa().
1815 void task_numa_work(struct callback_head *work)
1817 unsigned long migrate, next_scan, now = jiffies;
1818 struct task_struct *p = current;
1819 struct mm_struct *mm = p->mm;
1820 struct vm_area_struct *vma;
1821 unsigned long start, end;
1822 unsigned long nr_pte_updates = 0;
1825 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1827 work->next = work; /* protect against double add */
1829 * Who cares about NUMA placement when they're dying.
1831 * NOTE: make sure not to dereference p->mm before this check,
1832 * exit_task_work() happens _after_ exit_mm() so we could be called
1833 * without p->mm even though we still had it when we enqueued this
1836 if (p->flags & PF_EXITING)
1839 if (!mm->numa_next_scan) {
1840 mm->numa_next_scan = now +
1841 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1845 * Enforce maximal scan/migration frequency..
1847 migrate = mm->numa_next_scan;
1848 if (time_before(now, migrate))
1851 if (p->numa_scan_period == 0) {
1852 p->numa_scan_period_max = task_scan_max(p);
1853 p->numa_scan_period = task_scan_min(p);
1856 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1857 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1861 * Delay this task enough that another task of this mm will likely win
1862 * the next time around.
1864 p->node_stamp += 2 * TICK_NSEC;
1866 start = mm->numa_scan_offset;
1867 pages = sysctl_numa_balancing_scan_size;
1868 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1872 down_read(&mm->mmap_sem);
1873 vma = find_vma(mm, start);
1875 reset_ptenuma_scan(p);
1879 for (; vma; vma = vma->vm_next) {
1880 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1884 * Shared library pages mapped by multiple processes are not
1885 * migrated as it is expected they are cache replicated. Avoid
1886 * hinting faults in read-only file-backed mappings or the vdso
1887 * as migrating the pages will be of marginal benefit.
1890 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1894 * Skip inaccessible VMAs to avoid any confusion between
1895 * PROT_NONE and NUMA hinting ptes
1897 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1901 start = max(start, vma->vm_start);
1902 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1903 end = min(end, vma->vm_end);
1904 nr_pte_updates += change_prot_numa(vma, start, end);
1907 * Scan sysctl_numa_balancing_scan_size but ensure that
1908 * at least one PTE is updated so that unused virtual
1909 * address space is quickly skipped.
1912 pages -= (end - start) >> PAGE_SHIFT;
1919 } while (end != vma->vm_end);
1924 * It is possible to reach the end of the VMA list but the last few
1925 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1926 * would find the !migratable VMA on the next scan but not reset the
1927 * scanner to the start so check it now.
1930 mm->numa_scan_offset = start;
1932 reset_ptenuma_scan(p);
1933 up_read(&mm->mmap_sem);
1937 * Drive the periodic memory faults..
1939 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1941 struct callback_head *work = &curr->numa_work;
1945 * We don't care about NUMA placement if we don't have memory.
1947 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1951 * Using runtime rather than walltime has the dual advantage that
1952 * we (mostly) drive the selection from busy threads and that the
1953 * task needs to have done some actual work before we bother with
1956 now = curr->se.sum_exec_runtime;
1957 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1959 if (now - curr->node_stamp > period) {
1960 if (!curr->node_stamp)
1961 curr->numa_scan_period = task_scan_min(curr);
1962 curr->node_stamp += period;
1964 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1965 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1966 task_work_add(curr, work, true);
1971 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1975 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1979 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1982 #endif /* CONFIG_NUMA_BALANCING */
1985 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1987 update_load_add(&cfs_rq->load, se->load.weight);
1988 if (!parent_entity(se))
1989 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1991 if (entity_is_task(se)) {
1992 struct rq *rq = rq_of(cfs_rq);
1994 account_numa_enqueue(rq, task_of(se));
1995 list_add(&se->group_node, &rq->cfs_tasks);
1998 cfs_rq->nr_running++;
2002 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2004 update_load_sub(&cfs_rq->load, se->load.weight);
2005 if (!parent_entity(se))
2006 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2007 if (entity_is_task(se)) {
2008 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2009 list_del_init(&se->group_node);
2011 cfs_rq->nr_running--;
2014 #ifdef CONFIG_FAIR_GROUP_SCHED
2016 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2021 * Use this CPU's actual weight instead of the last load_contribution
2022 * to gain a more accurate current total weight. See
2023 * update_cfs_rq_load_contribution().
2025 tg_weight = atomic_long_read(&tg->load_avg);
2026 tg_weight -= cfs_rq->tg_load_contrib;
2027 tg_weight += cfs_rq->load.weight;
2032 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2034 long tg_weight, load, shares;
2036 tg_weight = calc_tg_weight(tg, cfs_rq);
2037 load = cfs_rq->load.weight;
2039 shares = (tg->shares * load);
2041 shares /= tg_weight;
2043 if (shares < MIN_SHARES)
2044 shares = MIN_SHARES;
2045 if (shares > tg->shares)
2046 shares = tg->shares;
2050 # else /* CONFIG_SMP */
2051 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2055 # endif /* CONFIG_SMP */
2056 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2057 unsigned long weight)
2060 /* commit outstanding execution time */
2061 if (cfs_rq->curr == se)
2062 update_curr(cfs_rq);
2063 account_entity_dequeue(cfs_rq, se);
2066 update_load_set(&se->load, weight);
2069 account_entity_enqueue(cfs_rq, se);
2072 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2074 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2076 struct task_group *tg;
2077 struct sched_entity *se;
2081 se = tg->se[cpu_of(rq_of(cfs_rq))];
2082 if (!se || throttled_hierarchy(cfs_rq))
2085 if (likely(se->load.weight == tg->shares))
2088 shares = calc_cfs_shares(cfs_rq, tg);
2090 reweight_entity(cfs_rq_of(se), se, shares);
2092 #else /* CONFIG_FAIR_GROUP_SCHED */
2093 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2096 #endif /* CONFIG_FAIR_GROUP_SCHED */
2100 * We choose a half-life close to 1 scheduling period.
2101 * Note: The tables below are dependent on this value.
2103 #define LOAD_AVG_PERIOD 32
2104 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2105 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2107 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2108 static const u32 runnable_avg_yN_inv[] = {
2109 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2110 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2111 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2112 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2113 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2114 0x85aac367, 0x82cd8698,
2118 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2119 * over-estimates when re-combining.
2121 static const u32 runnable_avg_yN_sum[] = {
2122 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2123 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2124 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2129 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2131 static __always_inline u64 decay_load(u64 val, u64 n)
2133 unsigned int local_n;
2137 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2140 /* after bounds checking we can collapse to 32-bit */
2144 * As y^PERIOD = 1/2, we can combine
2145 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2146 * With a look-up table which covers k^n (n<PERIOD)
2148 * To achieve constant time decay_load.
2150 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2151 val >>= local_n / LOAD_AVG_PERIOD;
2152 local_n %= LOAD_AVG_PERIOD;
2155 val *= runnable_avg_yN_inv[local_n];
2156 /* We don't use SRR here since we always want to round down. */
2161 * For updates fully spanning n periods, the contribution to runnable
2162 * average will be: \Sum 1024*y^n
2164 * We can compute this reasonably efficiently by combining:
2165 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2167 static u32 __compute_runnable_contrib(u64 n)
2171 if (likely(n <= LOAD_AVG_PERIOD))
2172 return runnable_avg_yN_sum[n];
2173 else if (unlikely(n >= LOAD_AVG_MAX_N))
2174 return LOAD_AVG_MAX;
2176 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2178 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2179 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2181 n -= LOAD_AVG_PERIOD;
2182 } while (n > LOAD_AVG_PERIOD);
2184 contrib = decay_load(contrib, n);
2185 return contrib + runnable_avg_yN_sum[n];
2189 * We can represent the historical contribution to runnable average as the
2190 * coefficients of a geometric series. To do this we sub-divide our runnable
2191 * history into segments of approximately 1ms (1024us); label the segment that
2192 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2194 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2196 * (now) (~1ms ago) (~2ms ago)
2198 * Let u_i denote the fraction of p_i that the entity was runnable.
2200 * We then designate the fractions u_i as our co-efficients, yielding the
2201 * following representation of historical load:
2202 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2204 * We choose y based on the with of a reasonably scheduling period, fixing:
2207 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2208 * approximately half as much as the contribution to load within the last ms
2211 * When a period "rolls over" and we have new u_0`, multiplying the previous
2212 * sum again by y is sufficient to update:
2213 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2214 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2216 static __always_inline int __update_entity_runnable_avg(u64 now,
2217 struct sched_avg *sa,
2221 u32 runnable_contrib;
2222 int delta_w, decayed = 0;
2224 delta = now - sa->last_runnable_update;
2226 * This should only happen when time goes backwards, which it
2227 * unfortunately does during sched clock init when we swap over to TSC.
2229 if ((s64)delta < 0) {
2230 sa->last_runnable_update = now;
2235 * Use 1024ns as the unit of measurement since it's a reasonable
2236 * approximation of 1us and fast to compute.
2241 sa->last_runnable_update = now;
2243 /* delta_w is the amount already accumulated against our next period */
2244 delta_w = sa->runnable_avg_period % 1024;
2245 if (delta + delta_w >= 1024) {
2246 /* period roll-over */
2250 * Now that we know we're crossing a period boundary, figure
2251 * out how much from delta we need to complete the current
2252 * period and accrue it.
2254 delta_w = 1024 - delta_w;
2256 sa->runnable_avg_sum += delta_w;
2257 sa->runnable_avg_period += delta_w;
2261 /* Figure out how many additional periods this update spans */
2262 periods = delta / 1024;
2265 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2267 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2270 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2271 runnable_contrib = __compute_runnable_contrib(periods);
2273 sa->runnable_avg_sum += runnable_contrib;
2274 sa->runnable_avg_period += runnable_contrib;
2277 /* Remainder of delta accrued against u_0` */
2279 sa->runnable_avg_sum += delta;
2280 sa->runnable_avg_period += delta;
2285 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2286 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2288 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2289 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2291 decays -= se->avg.decay_count;
2295 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2296 se->avg.decay_count = 0;
2301 #ifdef CONFIG_FAIR_GROUP_SCHED
2302 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2305 struct task_group *tg = cfs_rq->tg;
2308 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2309 tg_contrib -= cfs_rq->tg_load_contrib;
2311 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2312 atomic_long_add(tg_contrib, &tg->load_avg);
2313 cfs_rq->tg_load_contrib += tg_contrib;
2318 * Aggregate cfs_rq runnable averages into an equivalent task_group
2319 * representation for computing load contributions.
2321 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2322 struct cfs_rq *cfs_rq)
2324 struct task_group *tg = cfs_rq->tg;
2327 /* The fraction of a cpu used by this cfs_rq */
2328 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2329 sa->runnable_avg_period + 1);
2330 contrib -= cfs_rq->tg_runnable_contrib;
2332 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2333 atomic_add(contrib, &tg->runnable_avg);
2334 cfs_rq->tg_runnable_contrib += contrib;
2338 static inline void __update_group_entity_contrib(struct sched_entity *se)
2340 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2341 struct task_group *tg = cfs_rq->tg;
2346 contrib = cfs_rq->tg_load_contrib * tg->shares;
2347 se->avg.load_avg_contrib = div_u64(contrib,
2348 atomic_long_read(&tg->load_avg) + 1);
2351 * For group entities we need to compute a correction term in the case
2352 * that they are consuming <1 cpu so that we would contribute the same
2353 * load as a task of equal weight.
2355 * Explicitly co-ordinating this measurement would be expensive, but
2356 * fortunately the sum of each cpus contribution forms a usable
2357 * lower-bound on the true value.
2359 * Consider the aggregate of 2 contributions. Either they are disjoint
2360 * (and the sum represents true value) or they are disjoint and we are
2361 * understating by the aggregate of their overlap.
2363 * Extending this to N cpus, for a given overlap, the maximum amount we
2364 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2365 * cpus that overlap for this interval and w_i is the interval width.
2367 * On a small machine; the first term is well-bounded which bounds the
2368 * total error since w_i is a subset of the period. Whereas on a
2369 * larger machine, while this first term can be larger, if w_i is the
2370 * of consequential size guaranteed to see n_i*w_i quickly converge to
2371 * our upper bound of 1-cpu.
2373 runnable_avg = atomic_read(&tg->runnable_avg);
2374 if (runnable_avg < NICE_0_LOAD) {
2375 se->avg.load_avg_contrib *= runnable_avg;
2376 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2380 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2382 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2383 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2385 #else /* CONFIG_FAIR_GROUP_SCHED */
2386 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2387 int force_update) {}
2388 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2389 struct cfs_rq *cfs_rq) {}
2390 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2391 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2392 #endif /* CONFIG_FAIR_GROUP_SCHED */
2394 static inline void __update_task_entity_contrib(struct sched_entity *se)
2398 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2399 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2400 contrib /= (se->avg.runnable_avg_period + 1);
2401 se->avg.load_avg_contrib = scale_load(contrib);
2404 /* Compute the current contribution to load_avg by se, return any delta */
2405 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2407 long old_contrib = se->avg.load_avg_contrib;
2409 if (entity_is_task(se)) {
2410 __update_task_entity_contrib(se);
2412 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2413 __update_group_entity_contrib(se);
2416 return se->avg.load_avg_contrib - old_contrib;
2419 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2422 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2423 cfs_rq->blocked_load_avg -= load_contrib;
2425 cfs_rq->blocked_load_avg = 0;
2428 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2430 /* Update a sched_entity's runnable average */
2431 static inline void update_entity_load_avg(struct sched_entity *se,
2434 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2439 * For a group entity we need to use their owned cfs_rq_clock_task() in
2440 * case they are the parent of a throttled hierarchy.
2442 if (entity_is_task(se))
2443 now = cfs_rq_clock_task(cfs_rq);
2445 now = cfs_rq_clock_task(group_cfs_rq(se));
2447 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2450 contrib_delta = __update_entity_load_avg_contrib(se);
2456 cfs_rq->runnable_load_avg += contrib_delta;
2458 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2462 * Decay the load contributed by all blocked children and account this so that
2463 * their contribution may appropriately discounted when they wake up.
2465 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2467 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2470 decays = now - cfs_rq->last_decay;
2471 if (!decays && !force_update)
2474 if (atomic_long_read(&cfs_rq->removed_load)) {
2475 unsigned long removed_load;
2476 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2477 subtract_blocked_load_contrib(cfs_rq, removed_load);
2481 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2483 atomic64_add(decays, &cfs_rq->decay_counter);
2484 cfs_rq->last_decay = now;
2487 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2490 /* Add the load generated by se into cfs_rq's child load-average */
2491 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2492 struct sched_entity *se,
2496 * We track migrations using entity decay_count <= 0, on a wake-up
2497 * migration we use a negative decay count to track the remote decays
2498 * accumulated while sleeping.
2500 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2501 * are seen by enqueue_entity_load_avg() as a migration with an already
2502 * constructed load_avg_contrib.
2504 if (unlikely(se->avg.decay_count <= 0)) {
2505 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2506 if (se->avg.decay_count) {
2508 * In a wake-up migration we have to approximate the
2509 * time sleeping. This is because we can't synchronize
2510 * clock_task between the two cpus, and it is not
2511 * guaranteed to be read-safe. Instead, we can
2512 * approximate this using our carried decays, which are
2513 * explicitly atomically readable.
2515 se->avg.last_runnable_update -= (-se->avg.decay_count)
2517 update_entity_load_avg(se, 0);
2518 /* Indicate that we're now synchronized and on-rq */
2519 se->avg.decay_count = 0;
2523 __synchronize_entity_decay(se);
2526 /* migrated tasks did not contribute to our blocked load */
2528 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2529 update_entity_load_avg(se, 0);
2532 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2533 /* we force update consideration on load-balancer moves */
2534 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2538 * Remove se's load from this cfs_rq child load-average, if the entity is
2539 * transitioning to a blocked state we track its projected decay using
2542 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2543 struct sched_entity *se,
2546 update_entity_load_avg(se, 1);
2547 /* we force update consideration on load-balancer moves */
2548 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2550 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2552 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2553 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2554 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2558 * Update the rq's load with the elapsed running time before entering
2559 * idle. if the last scheduled task is not a CFS task, idle_enter will
2560 * be the only way to update the runnable statistic.
2562 void idle_enter_fair(struct rq *this_rq)
2564 update_rq_runnable_avg(this_rq, 1);
2568 * Update the rq's load with the elapsed idle time before a task is
2569 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2570 * be the only way to update the runnable statistic.
2572 void idle_exit_fair(struct rq *this_rq)
2574 update_rq_runnable_avg(this_rq, 0);
2577 static int idle_balance(struct rq *this_rq);
2579 #else /* CONFIG_SMP */
2581 static inline void update_entity_load_avg(struct sched_entity *se,
2582 int update_cfs_rq) {}
2583 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2584 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2585 struct sched_entity *se,
2587 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2588 struct sched_entity *se,
2590 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2591 int force_update) {}
2593 static inline int idle_balance(struct rq *rq)
2598 #endif /* CONFIG_SMP */
2600 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2602 #ifdef CONFIG_SCHEDSTATS
2603 struct task_struct *tsk = NULL;
2605 if (entity_is_task(se))
2608 if (se->statistics.sleep_start) {
2609 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2614 if (unlikely(delta > se->statistics.sleep_max))
2615 se->statistics.sleep_max = delta;
2617 se->statistics.sleep_start = 0;
2618 se->statistics.sum_sleep_runtime += delta;
2621 account_scheduler_latency(tsk, delta >> 10, 1);
2622 trace_sched_stat_sleep(tsk, delta);
2625 if (se->statistics.block_start) {
2626 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2631 if (unlikely(delta > se->statistics.block_max))
2632 se->statistics.block_max = delta;
2634 se->statistics.block_start = 0;
2635 se->statistics.sum_sleep_runtime += delta;
2638 if (tsk->in_iowait) {
2639 se->statistics.iowait_sum += delta;
2640 se->statistics.iowait_count++;
2641 trace_sched_stat_iowait(tsk, delta);
2644 trace_sched_stat_blocked(tsk, delta);
2647 * Blocking time is in units of nanosecs, so shift by
2648 * 20 to get a milliseconds-range estimation of the
2649 * amount of time that the task spent sleeping:
2651 if (unlikely(prof_on == SLEEP_PROFILING)) {
2652 profile_hits(SLEEP_PROFILING,
2653 (void *)get_wchan(tsk),
2656 account_scheduler_latency(tsk, delta >> 10, 0);
2662 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2664 #ifdef CONFIG_SCHED_DEBUG
2665 s64 d = se->vruntime - cfs_rq->min_vruntime;
2670 if (d > 3*sysctl_sched_latency)
2671 schedstat_inc(cfs_rq, nr_spread_over);
2676 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2678 u64 vruntime = cfs_rq->min_vruntime;
2681 * The 'current' period is already promised to the current tasks,
2682 * however the extra weight of the new task will slow them down a
2683 * little, place the new task so that it fits in the slot that
2684 * stays open at the end.
2686 if (initial && sched_feat(START_DEBIT))
2687 vruntime += sched_vslice(cfs_rq, se);
2689 /* sleeps up to a single latency don't count. */
2691 unsigned long thresh = sysctl_sched_latency;
2694 * Halve their sleep time's effect, to allow
2695 * for a gentler effect of sleepers:
2697 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2703 /* ensure we never gain time by being placed backwards. */
2704 se->vruntime = max_vruntime(se->vruntime, vruntime);
2707 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2710 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2713 * Update the normalized vruntime before updating min_vruntime
2714 * through calling update_curr().
2716 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2717 se->vruntime += cfs_rq->min_vruntime;
2720 * Update run-time statistics of the 'current'.
2722 update_curr(cfs_rq);
2723 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2724 account_entity_enqueue(cfs_rq, se);
2725 update_cfs_shares(cfs_rq);
2727 if (flags & ENQUEUE_WAKEUP) {
2728 place_entity(cfs_rq, se, 0);
2729 enqueue_sleeper(cfs_rq, se);
2732 update_stats_enqueue(cfs_rq, se);
2733 check_spread(cfs_rq, se);
2734 if (se != cfs_rq->curr)
2735 __enqueue_entity(cfs_rq, se);
2738 if (cfs_rq->nr_running == 1) {
2739 list_add_leaf_cfs_rq(cfs_rq);
2740 check_enqueue_throttle(cfs_rq);
2744 static void __clear_buddies_last(struct sched_entity *se)
2746 for_each_sched_entity(se) {
2747 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2748 if (cfs_rq->last != se)
2751 cfs_rq->last = NULL;
2755 static void __clear_buddies_next(struct sched_entity *se)
2757 for_each_sched_entity(se) {
2758 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2759 if (cfs_rq->next != se)
2762 cfs_rq->next = NULL;
2766 static void __clear_buddies_skip(struct sched_entity *se)
2768 for_each_sched_entity(se) {
2769 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2770 if (cfs_rq->skip != se)
2773 cfs_rq->skip = NULL;
2777 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2779 if (cfs_rq->last == se)
2780 __clear_buddies_last(se);
2782 if (cfs_rq->next == se)
2783 __clear_buddies_next(se);
2785 if (cfs_rq->skip == se)
2786 __clear_buddies_skip(se);
2789 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2792 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2795 * Update run-time statistics of the 'current'.
2797 update_curr(cfs_rq);
2798 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2800 update_stats_dequeue(cfs_rq, se);
2801 if (flags & DEQUEUE_SLEEP) {
2802 #ifdef CONFIG_SCHEDSTATS
2803 if (entity_is_task(se)) {
2804 struct task_struct *tsk = task_of(se);
2806 if (tsk->state & TASK_INTERRUPTIBLE)
2807 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2808 if (tsk->state & TASK_UNINTERRUPTIBLE)
2809 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2814 clear_buddies(cfs_rq, se);
2816 if (se != cfs_rq->curr)
2817 __dequeue_entity(cfs_rq, se);
2819 account_entity_dequeue(cfs_rq, se);
2822 * Normalize the entity after updating the min_vruntime because the
2823 * update can refer to the ->curr item and we need to reflect this
2824 * movement in our normalized position.
2826 if (!(flags & DEQUEUE_SLEEP))
2827 se->vruntime -= cfs_rq->min_vruntime;
2829 /* return excess runtime on last dequeue */
2830 return_cfs_rq_runtime(cfs_rq);
2832 update_min_vruntime(cfs_rq);
2833 update_cfs_shares(cfs_rq);
2837 * Preempt the current task with a newly woken task if needed:
2840 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2842 unsigned long ideal_runtime, delta_exec;
2843 struct sched_entity *se;
2846 ideal_runtime = sched_slice(cfs_rq, curr);
2847 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2848 if (delta_exec > ideal_runtime) {
2849 resched_task(rq_of(cfs_rq)->curr);
2851 * The current task ran long enough, ensure it doesn't get
2852 * re-elected due to buddy favours.
2854 clear_buddies(cfs_rq, curr);
2859 * Ensure that a task that missed wakeup preemption by a
2860 * narrow margin doesn't have to wait for a full slice.
2861 * This also mitigates buddy induced latencies under load.
2863 if (delta_exec < sysctl_sched_min_granularity)
2866 se = __pick_first_entity(cfs_rq);
2867 delta = curr->vruntime - se->vruntime;
2872 if (delta > ideal_runtime)
2873 resched_task(rq_of(cfs_rq)->curr);
2877 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2879 /* 'current' is not kept within the tree. */
2882 * Any task has to be enqueued before it get to execute on
2883 * a CPU. So account for the time it spent waiting on the
2886 update_stats_wait_end(cfs_rq, se);
2887 __dequeue_entity(cfs_rq, se);
2890 update_stats_curr_start(cfs_rq, se);
2892 #ifdef CONFIG_SCHEDSTATS
2894 * Track our maximum slice length, if the CPU's load is at
2895 * least twice that of our own weight (i.e. dont track it
2896 * when there are only lesser-weight tasks around):
2898 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2899 se->statistics.slice_max = max(se->statistics.slice_max,
2900 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2903 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2907 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2910 * Pick the next process, keeping these things in mind, in this order:
2911 * 1) keep things fair between processes/task groups
2912 * 2) pick the "next" process, since someone really wants that to run
2913 * 3) pick the "last" process, for cache locality
2914 * 4) do not run the "skip" process, if something else is available
2916 static struct sched_entity *
2917 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2919 struct sched_entity *left = __pick_first_entity(cfs_rq);
2920 struct sched_entity *se;
2923 * If curr is set we have to see if its left of the leftmost entity
2924 * still in the tree, provided there was anything in the tree at all.
2926 if (!left || (curr && entity_before(curr, left)))
2929 se = left; /* ideally we run the leftmost entity */
2932 * Avoid running the skip buddy, if running something else can
2933 * be done without getting too unfair.
2935 if (cfs_rq->skip == se) {
2936 struct sched_entity *second;
2939 second = __pick_first_entity(cfs_rq);
2941 second = __pick_next_entity(se);
2942 if (!second || (curr && entity_before(curr, second)))
2946 if (second && wakeup_preempt_entity(second, left) < 1)
2951 * Prefer last buddy, try to return the CPU to a preempted task.
2953 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2957 * Someone really wants this to run. If it's not unfair, run it.
2959 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2962 clear_buddies(cfs_rq, se);
2967 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2969 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2972 * If still on the runqueue then deactivate_task()
2973 * was not called and update_curr() has to be done:
2976 update_curr(cfs_rq);
2978 /* throttle cfs_rqs exceeding runtime */
2979 check_cfs_rq_runtime(cfs_rq);
2981 check_spread(cfs_rq, prev);
2983 update_stats_wait_start(cfs_rq, prev);
2984 /* Put 'current' back into the tree. */
2985 __enqueue_entity(cfs_rq, prev);
2986 /* in !on_rq case, update occurred at dequeue */
2987 update_entity_load_avg(prev, 1);
2989 cfs_rq->curr = NULL;
2993 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2996 * Update run-time statistics of the 'current'.
2998 update_curr(cfs_rq);
3001 * Ensure that runnable average is periodically updated.
3003 update_entity_load_avg(curr, 1);
3004 update_cfs_rq_blocked_load(cfs_rq, 1);
3005 update_cfs_shares(cfs_rq);
3007 #ifdef CONFIG_SCHED_HRTICK
3009 * queued ticks are scheduled to match the slice, so don't bother
3010 * validating it and just reschedule.
3013 resched_task(rq_of(cfs_rq)->curr);
3017 * don't let the period tick interfere with the hrtick preemption
3019 if (!sched_feat(DOUBLE_TICK) &&
3020 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3024 if (cfs_rq->nr_running > 1)
3025 check_preempt_tick(cfs_rq, curr);
3029 /**************************************************
3030 * CFS bandwidth control machinery
3033 #ifdef CONFIG_CFS_BANDWIDTH
3035 #ifdef HAVE_JUMP_LABEL
3036 static struct static_key __cfs_bandwidth_used;
3038 static inline bool cfs_bandwidth_used(void)
3040 return static_key_false(&__cfs_bandwidth_used);
3043 void cfs_bandwidth_usage_inc(void)
3045 static_key_slow_inc(&__cfs_bandwidth_used);
3048 void cfs_bandwidth_usage_dec(void)
3050 static_key_slow_dec(&__cfs_bandwidth_used);
3052 #else /* HAVE_JUMP_LABEL */
3053 static bool cfs_bandwidth_used(void)
3058 void cfs_bandwidth_usage_inc(void) {}
3059 void cfs_bandwidth_usage_dec(void) {}
3060 #endif /* HAVE_JUMP_LABEL */
3063 * default period for cfs group bandwidth.
3064 * default: 0.1s, units: nanoseconds
3066 static inline u64 default_cfs_period(void)
3068 return 100000000ULL;
3071 static inline u64 sched_cfs_bandwidth_slice(void)
3073 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3077 * Replenish runtime according to assigned quota and update expiration time.
3078 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3079 * additional synchronization around rq->lock.
3081 * requires cfs_b->lock
3083 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3087 if (cfs_b->quota == RUNTIME_INF)
3090 now = sched_clock_cpu(smp_processor_id());
3091 cfs_b->runtime = cfs_b->quota;
3092 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3095 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3097 return &tg->cfs_bandwidth;
3100 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3101 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3103 if (unlikely(cfs_rq->throttle_count))
3104 return cfs_rq->throttled_clock_task;
3106 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3109 /* returns 0 on failure to allocate runtime */
3110 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3112 struct task_group *tg = cfs_rq->tg;
3113 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3114 u64 amount = 0, min_amount, expires;
3116 /* note: this is a positive sum as runtime_remaining <= 0 */
3117 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3119 raw_spin_lock(&cfs_b->lock);
3120 if (cfs_b->quota == RUNTIME_INF)
3121 amount = min_amount;
3124 * If the bandwidth pool has become inactive, then at least one
3125 * period must have elapsed since the last consumption.
3126 * Refresh the global state and ensure bandwidth timer becomes
3129 if (!cfs_b->timer_active) {
3130 __refill_cfs_bandwidth_runtime(cfs_b);
3131 __start_cfs_bandwidth(cfs_b);
3134 if (cfs_b->runtime > 0) {
3135 amount = min(cfs_b->runtime, min_amount);
3136 cfs_b->runtime -= amount;
3140 expires = cfs_b->runtime_expires;
3141 raw_spin_unlock(&cfs_b->lock);
3143 cfs_rq->runtime_remaining += amount;
3145 * we may have advanced our local expiration to account for allowed
3146 * spread between our sched_clock and the one on which runtime was
3149 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3150 cfs_rq->runtime_expires = expires;
3152 return cfs_rq->runtime_remaining > 0;
3156 * Note: This depends on the synchronization provided by sched_clock and the
3157 * fact that rq->clock snapshots this value.
3159 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3161 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3163 /* if the deadline is ahead of our clock, nothing to do */
3164 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3167 if (cfs_rq->runtime_remaining < 0)
3171 * If the local deadline has passed we have to consider the
3172 * possibility that our sched_clock is 'fast' and the global deadline
3173 * has not truly expired.
3175 * Fortunately we can check determine whether this the case by checking
3176 * whether the global deadline has advanced.
3179 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3180 /* extend local deadline, drift is bounded above by 2 ticks */
3181 cfs_rq->runtime_expires += TICK_NSEC;
3183 /* global deadline is ahead, expiration has passed */
3184 cfs_rq->runtime_remaining = 0;
3188 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3190 /* dock delta_exec before expiring quota (as it could span periods) */
3191 cfs_rq->runtime_remaining -= delta_exec;
3192 expire_cfs_rq_runtime(cfs_rq);
3194 if (likely(cfs_rq->runtime_remaining > 0))
3198 * if we're unable to extend our runtime we resched so that the active
3199 * hierarchy can be throttled
3201 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3202 resched_task(rq_of(cfs_rq)->curr);
3205 static __always_inline
3206 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3208 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3211 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3214 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3216 return cfs_bandwidth_used() && cfs_rq->throttled;
3219 /* check whether cfs_rq, or any parent, is throttled */
3220 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3222 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3226 * Ensure that neither of the group entities corresponding to src_cpu or
3227 * dest_cpu are members of a throttled hierarchy when performing group
3228 * load-balance operations.
3230 static inline int throttled_lb_pair(struct task_group *tg,
3231 int src_cpu, int dest_cpu)
3233 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3235 src_cfs_rq = tg->cfs_rq[src_cpu];
3236 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3238 return throttled_hierarchy(src_cfs_rq) ||
3239 throttled_hierarchy(dest_cfs_rq);
3242 /* updated child weight may affect parent so we have to do this bottom up */
3243 static int tg_unthrottle_up(struct task_group *tg, void *data)
3245 struct rq *rq = data;
3246 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3248 cfs_rq->throttle_count--;
3250 if (!cfs_rq->throttle_count) {
3251 /* adjust cfs_rq_clock_task() */
3252 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3253 cfs_rq->throttled_clock_task;
3260 static int tg_throttle_down(struct task_group *tg, void *data)
3262 struct rq *rq = data;
3263 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3265 /* group is entering throttled state, stop time */
3266 if (!cfs_rq->throttle_count)
3267 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3268 cfs_rq->throttle_count++;
3273 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3275 struct rq *rq = rq_of(cfs_rq);
3276 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3277 struct sched_entity *se;
3278 long task_delta, dequeue = 1;
3280 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3282 /* freeze hierarchy runnable averages while throttled */
3284 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3287 task_delta = cfs_rq->h_nr_running;
3288 for_each_sched_entity(se) {
3289 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3290 /* throttled entity or throttle-on-deactivate */
3295 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3296 qcfs_rq->h_nr_running -= task_delta;
3298 if (qcfs_rq->load.weight)
3303 rq->nr_running -= task_delta;
3305 cfs_rq->throttled = 1;
3306 cfs_rq->throttled_clock = rq_clock(rq);
3307 raw_spin_lock(&cfs_b->lock);
3308 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3309 if (!cfs_b->timer_active)
3310 __start_cfs_bandwidth(cfs_b);
3311 raw_spin_unlock(&cfs_b->lock);
3314 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3316 struct rq *rq = rq_of(cfs_rq);
3317 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3318 struct sched_entity *se;
3322 se = cfs_rq->tg->se[cpu_of(rq)];
3324 cfs_rq->throttled = 0;
3326 update_rq_clock(rq);
3328 raw_spin_lock(&cfs_b->lock);
3329 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3330 list_del_rcu(&cfs_rq->throttled_list);
3331 raw_spin_unlock(&cfs_b->lock);
3333 /* update hierarchical throttle state */
3334 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3336 if (!cfs_rq->load.weight)
3339 task_delta = cfs_rq->h_nr_running;
3340 for_each_sched_entity(se) {
3344 cfs_rq = cfs_rq_of(se);
3346 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3347 cfs_rq->h_nr_running += task_delta;
3349 if (cfs_rq_throttled(cfs_rq))
3354 rq->nr_running += task_delta;
3356 /* determine whether we need to wake up potentially idle cpu */
3357 if (rq->curr == rq->idle && rq->cfs.nr_running)
3358 resched_task(rq->curr);
3361 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3362 u64 remaining, u64 expires)
3364 struct cfs_rq *cfs_rq;
3365 u64 runtime = remaining;
3368 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3370 struct rq *rq = rq_of(cfs_rq);
3372 raw_spin_lock(&rq->lock);
3373 if (!cfs_rq_throttled(cfs_rq))
3376 runtime = -cfs_rq->runtime_remaining + 1;
3377 if (runtime > remaining)
3378 runtime = remaining;
3379 remaining -= runtime;
3381 cfs_rq->runtime_remaining += runtime;
3382 cfs_rq->runtime_expires = expires;
3384 /* we check whether we're throttled above */
3385 if (cfs_rq->runtime_remaining > 0)
3386 unthrottle_cfs_rq(cfs_rq);
3389 raw_spin_unlock(&rq->lock);
3400 * Responsible for refilling a task_group's bandwidth and unthrottling its
3401 * cfs_rqs as appropriate. If there has been no activity within the last
3402 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3403 * used to track this state.
3405 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3407 u64 runtime, runtime_expires;
3408 int idle = 1, throttled;
3410 raw_spin_lock(&cfs_b->lock);
3411 /* no need to continue the timer with no bandwidth constraint */
3412 if (cfs_b->quota == RUNTIME_INF)
3415 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3416 /* idle depends on !throttled (for the case of a large deficit) */
3417 idle = cfs_b->idle && !throttled;
3418 cfs_b->nr_periods += overrun;
3420 /* if we're going inactive then everything else can be deferred */
3425 * if we have relooped after returning idle once, we need to update our
3426 * status as actually running, so that other cpus doing
3427 * __start_cfs_bandwidth will stop trying to cancel us.
3429 cfs_b->timer_active = 1;
3431 __refill_cfs_bandwidth_runtime(cfs_b);
3434 /* mark as potentially idle for the upcoming period */
3439 /* account preceding periods in which throttling occurred */
3440 cfs_b->nr_throttled += overrun;
3443 * There are throttled entities so we must first use the new bandwidth
3444 * to unthrottle them before making it generally available. This
3445 * ensures that all existing debts will be paid before a new cfs_rq is
3448 runtime = cfs_b->runtime;
3449 runtime_expires = cfs_b->runtime_expires;
3453 * This check is repeated as we are holding onto the new bandwidth
3454 * while we unthrottle. This can potentially race with an unthrottled
3455 * group trying to acquire new bandwidth from the global pool.
3457 while (throttled && runtime > 0) {
3458 raw_spin_unlock(&cfs_b->lock);
3459 /* we can't nest cfs_b->lock while distributing bandwidth */
3460 runtime = distribute_cfs_runtime(cfs_b, runtime,
3462 raw_spin_lock(&cfs_b->lock);
3464 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3467 /* return (any) remaining runtime */
3468 cfs_b->runtime = runtime;
3470 * While we are ensured activity in the period following an
3471 * unthrottle, this also covers the case in which the new bandwidth is
3472 * insufficient to cover the existing bandwidth deficit. (Forcing the
3473 * timer to remain active while there are any throttled entities.)
3478 cfs_b->timer_active = 0;
3479 raw_spin_unlock(&cfs_b->lock);
3484 /* a cfs_rq won't donate quota below this amount */
3485 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3486 /* minimum remaining period time to redistribute slack quota */
3487 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3488 /* how long we wait to gather additional slack before distributing */
3489 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3492 * Are we near the end of the current quota period?
3494 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3495 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3496 * migrate_hrtimers, base is never cleared, so we are fine.
3498 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3500 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3503 /* if the call-back is running a quota refresh is already occurring */
3504 if (hrtimer_callback_running(refresh_timer))
3507 /* is a quota refresh about to occur? */
3508 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3509 if (remaining < min_expire)
3515 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3517 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3519 /* if there's a quota refresh soon don't bother with slack */
3520 if (runtime_refresh_within(cfs_b, min_left))
3523 start_bandwidth_timer(&cfs_b->slack_timer,
3524 ns_to_ktime(cfs_bandwidth_slack_period));
3527 /* we know any runtime found here is valid as update_curr() precedes return */
3528 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3530 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3531 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3533 if (slack_runtime <= 0)
3536 raw_spin_lock(&cfs_b->lock);
3537 if (cfs_b->quota != RUNTIME_INF &&
3538 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3539 cfs_b->runtime += slack_runtime;
3541 /* we are under rq->lock, defer unthrottling using a timer */
3542 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3543 !list_empty(&cfs_b->throttled_cfs_rq))
3544 start_cfs_slack_bandwidth(cfs_b);
3546 raw_spin_unlock(&cfs_b->lock);
3548 /* even if it's not valid for return we don't want to try again */
3549 cfs_rq->runtime_remaining -= slack_runtime;
3552 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3554 if (!cfs_bandwidth_used())
3557 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3560 __return_cfs_rq_runtime(cfs_rq);
3564 * This is done with a timer (instead of inline with bandwidth return) since
3565 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3567 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3569 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3572 /* confirm we're still not at a refresh boundary */
3573 raw_spin_lock(&cfs_b->lock);
3574 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3575 raw_spin_unlock(&cfs_b->lock);
3579 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3580 runtime = cfs_b->runtime;
3583 expires = cfs_b->runtime_expires;
3584 raw_spin_unlock(&cfs_b->lock);
3589 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3591 raw_spin_lock(&cfs_b->lock);
3592 if (expires == cfs_b->runtime_expires)
3593 cfs_b->runtime = runtime;
3594 raw_spin_unlock(&cfs_b->lock);
3598 * When a group wakes up we want to make sure that its quota is not already
3599 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3600 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3602 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3604 if (!cfs_bandwidth_used())
3607 /* an active group must be handled by the update_curr()->put() path */
3608 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3611 /* ensure the group is not already throttled */
3612 if (cfs_rq_throttled(cfs_rq))
3615 /* update runtime allocation */
3616 account_cfs_rq_runtime(cfs_rq, 0);
3617 if (cfs_rq->runtime_remaining <= 0)
3618 throttle_cfs_rq(cfs_rq);
3621 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3622 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3624 if (!cfs_bandwidth_used())
3627 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3631 * it's possible for a throttled entity to be forced into a running
3632 * state (e.g. set_curr_task), in this case we're finished.
3634 if (cfs_rq_throttled(cfs_rq))
3637 throttle_cfs_rq(cfs_rq);
3641 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3643 struct cfs_bandwidth *cfs_b =
3644 container_of(timer, struct cfs_bandwidth, slack_timer);
3645 do_sched_cfs_slack_timer(cfs_b);
3647 return HRTIMER_NORESTART;
3650 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3652 struct cfs_bandwidth *cfs_b =
3653 container_of(timer, struct cfs_bandwidth, period_timer);
3659 now = hrtimer_cb_get_time(timer);
3660 overrun = hrtimer_forward(timer, now, cfs_b->period);
3665 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3668 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3671 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3673 raw_spin_lock_init(&cfs_b->lock);
3675 cfs_b->quota = RUNTIME_INF;
3676 cfs_b->period = ns_to_ktime(default_cfs_period());
3678 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3679 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3680 cfs_b->period_timer.function = sched_cfs_period_timer;
3681 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3682 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3685 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3687 cfs_rq->runtime_enabled = 0;
3688 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3691 /* requires cfs_b->lock, may release to reprogram timer */
3692 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3695 * The timer may be active because we're trying to set a new bandwidth
3696 * period or because we're racing with the tear-down path
3697 * (timer_active==0 becomes visible before the hrtimer call-back
3698 * terminates). In either case we ensure that it's re-programmed
3700 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3701 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3702 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3703 raw_spin_unlock(&cfs_b->lock);
3705 raw_spin_lock(&cfs_b->lock);
3706 /* if someone else restarted the timer then we're done */
3707 if (cfs_b->timer_active)
3711 cfs_b->timer_active = 1;
3712 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3715 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3717 hrtimer_cancel(&cfs_b->period_timer);
3718 hrtimer_cancel(&cfs_b->slack_timer);
3721 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3723 struct cfs_rq *cfs_rq;
3725 for_each_leaf_cfs_rq(rq, cfs_rq) {
3726 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3728 if (!cfs_rq->runtime_enabled)
3732 * clock_task is not advancing so we just need to make sure
3733 * there's some valid quota amount
3735 cfs_rq->runtime_remaining = cfs_b->quota;
3736 if (cfs_rq_throttled(cfs_rq))
3737 unthrottle_cfs_rq(cfs_rq);
3741 #else /* CONFIG_CFS_BANDWIDTH */
3742 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3744 return rq_clock_task(rq_of(cfs_rq));
3747 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3748 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3749 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3750 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3752 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3757 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3762 static inline int throttled_lb_pair(struct task_group *tg,
3763 int src_cpu, int dest_cpu)
3768 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3770 #ifdef CONFIG_FAIR_GROUP_SCHED
3771 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3774 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3778 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3779 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3781 #endif /* CONFIG_CFS_BANDWIDTH */
3783 /**************************************************
3784 * CFS operations on tasks:
3787 #ifdef CONFIG_SCHED_HRTICK
3788 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3790 struct sched_entity *se = &p->se;
3791 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3793 WARN_ON(task_rq(p) != rq);
3795 if (cfs_rq->nr_running > 1) {
3796 u64 slice = sched_slice(cfs_rq, se);
3797 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3798 s64 delta = slice - ran;
3807 * Don't schedule slices shorter than 10000ns, that just
3808 * doesn't make sense. Rely on vruntime for fairness.
3811 delta = max_t(s64, 10000LL, delta);
3813 hrtick_start(rq, delta);
3818 * called from enqueue/dequeue and updates the hrtick when the
3819 * current task is from our class and nr_running is low enough
3822 static void hrtick_update(struct rq *rq)
3824 struct task_struct *curr = rq->curr;
3826 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3829 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3830 hrtick_start_fair(rq, curr);
3832 #else /* !CONFIG_SCHED_HRTICK */
3834 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3838 static inline void hrtick_update(struct rq *rq)
3844 * The enqueue_task method is called before nr_running is
3845 * increased. Here we update the fair scheduling stats and
3846 * then put the task into the rbtree:
3849 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3851 struct cfs_rq *cfs_rq;
3852 struct sched_entity *se = &p->se;
3854 for_each_sched_entity(se) {
3857 cfs_rq = cfs_rq_of(se);
3858 enqueue_entity(cfs_rq, se, flags);
3861 * end evaluation on encountering a throttled cfs_rq
3863 * note: in the case of encountering a throttled cfs_rq we will
3864 * post the final h_nr_running increment below.
3866 if (cfs_rq_throttled(cfs_rq))
3868 cfs_rq->h_nr_running++;
3870 flags = ENQUEUE_WAKEUP;
3873 for_each_sched_entity(se) {
3874 cfs_rq = cfs_rq_of(se);
3875 cfs_rq->h_nr_running++;
3877 if (cfs_rq_throttled(cfs_rq))
3880 update_cfs_shares(cfs_rq);
3881 update_entity_load_avg(se, 1);
3885 update_rq_runnable_avg(rq, rq->nr_running);
3891 static void set_next_buddy(struct sched_entity *se);
3894 * The dequeue_task method is called before nr_running is
3895 * decreased. We remove the task from the rbtree and
3896 * update the fair scheduling stats:
3898 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3900 struct cfs_rq *cfs_rq;
3901 struct sched_entity *se = &p->se;
3902 int task_sleep = flags & DEQUEUE_SLEEP;
3904 for_each_sched_entity(se) {
3905 cfs_rq = cfs_rq_of(se);
3906 dequeue_entity(cfs_rq, se, flags);
3909 * end evaluation on encountering a throttled cfs_rq
3911 * note: in the case of encountering a throttled cfs_rq we will
3912 * post the final h_nr_running decrement below.
3914 if (cfs_rq_throttled(cfs_rq))
3916 cfs_rq->h_nr_running--;
3918 /* Don't dequeue parent if it has other entities besides us */
3919 if (cfs_rq->load.weight) {
3921 * Bias pick_next to pick a task from this cfs_rq, as
3922 * p is sleeping when it is within its sched_slice.
3924 if (task_sleep && parent_entity(se))
3925 set_next_buddy(parent_entity(se));
3927 /* avoid re-evaluating load for this entity */
3928 se = parent_entity(se);
3931 flags |= DEQUEUE_SLEEP;
3934 for_each_sched_entity(se) {
3935 cfs_rq = cfs_rq_of(se);
3936 cfs_rq->h_nr_running--;
3938 if (cfs_rq_throttled(cfs_rq))
3941 update_cfs_shares(cfs_rq);
3942 update_entity_load_avg(se, 1);
3947 update_rq_runnable_avg(rq, 1);
3953 /* Used instead of source_load when we know the type == 0 */
3954 static unsigned long weighted_cpuload(const int cpu)
3956 return cpu_rq(cpu)->cfs.runnable_load_avg;
3960 * Return a low guess at the load of a migration-source cpu weighted
3961 * according to the scheduling class and "nice" value.
3963 * We want to under-estimate the load of migration sources, to
3964 * balance conservatively.
3966 static unsigned long source_load(int cpu, int type)
3968 struct rq *rq = cpu_rq(cpu);
3969 unsigned long total = weighted_cpuload(cpu);
3971 if (type == 0 || !sched_feat(LB_BIAS))
3974 return min(rq->cpu_load[type-1], total);
3978 * Return a high guess at the load of a migration-target cpu weighted
3979 * according to the scheduling class and "nice" value.
3981 static unsigned long target_load(int cpu, int type)
3983 struct rq *rq = cpu_rq(cpu);
3984 unsigned long total = weighted_cpuload(cpu);
3986 if (type == 0 || !sched_feat(LB_BIAS))
3989 return max(rq->cpu_load[type-1], total);
3992 static unsigned long power_of(int cpu)
3994 return cpu_rq(cpu)->cpu_power;
3997 static unsigned long cpu_avg_load_per_task(int cpu)
3999 struct rq *rq = cpu_rq(cpu);
4000 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
4001 unsigned long load_avg = rq->cfs.runnable_load_avg;
4004 return load_avg / nr_running;
4009 static void record_wakee(struct task_struct *p)
4012 * Rough decay (wiping) for cost saving, don't worry
4013 * about the boundary, really active task won't care
4016 if (jiffies > current->wakee_flip_decay_ts + HZ) {
4017 current->wakee_flips = 0;
4018 current->wakee_flip_decay_ts = jiffies;
4021 if (current->last_wakee != p) {
4022 current->last_wakee = p;
4023 current->wakee_flips++;
4027 static void task_waking_fair(struct task_struct *p)
4029 struct sched_entity *se = &p->se;
4030 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4033 #ifndef CONFIG_64BIT
4034 u64 min_vruntime_copy;
4037 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4039 min_vruntime = cfs_rq->min_vruntime;
4040 } while (min_vruntime != min_vruntime_copy);
4042 min_vruntime = cfs_rq->min_vruntime;
4045 se->vruntime -= min_vruntime;
4049 #ifdef CONFIG_FAIR_GROUP_SCHED
4051 * effective_load() calculates the load change as seen from the root_task_group
4053 * Adding load to a group doesn't make a group heavier, but can cause movement
4054 * of group shares between cpus. Assuming the shares were perfectly aligned one
4055 * can calculate the shift in shares.
4057 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4058 * on this @cpu and results in a total addition (subtraction) of @wg to the
4059 * total group weight.
4061 * Given a runqueue weight distribution (rw_i) we can compute a shares
4062 * distribution (s_i) using:
4064 * s_i = rw_i / \Sum rw_j (1)
4066 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4067 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4068 * shares distribution (s_i):
4070 * rw_i = { 2, 4, 1, 0 }
4071 * s_i = { 2/7, 4/7, 1/7, 0 }
4073 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4074 * task used to run on and the CPU the waker is running on), we need to
4075 * compute the effect of waking a task on either CPU and, in case of a sync
4076 * wakeup, compute the effect of the current task going to sleep.
4078 * So for a change of @wl to the local @cpu with an overall group weight change
4079 * of @wl we can compute the new shares distribution (s'_i) using:
4081 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4083 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4084 * differences in waking a task to CPU 0. The additional task changes the
4085 * weight and shares distributions like:
4087 * rw'_i = { 3, 4, 1, 0 }
4088 * s'_i = { 3/8, 4/8, 1/8, 0 }
4090 * We can then compute the difference in effective weight by using:
4092 * dw_i = S * (s'_i - s_i) (3)
4094 * Where 'S' is the group weight as seen by its parent.
4096 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4097 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4098 * 4/7) times the weight of the group.
4100 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4102 struct sched_entity *se = tg->se[cpu];
4104 if (!tg->parent) /* the trivial, non-cgroup case */
4107 for_each_sched_entity(se) {
4113 * W = @wg + \Sum rw_j
4115 W = wg + calc_tg_weight(tg, se->my_q);
4120 w = se->my_q->load.weight + wl;
4123 * wl = S * s'_i; see (2)
4126 wl = (w * tg->shares) / W;
4131 * Per the above, wl is the new se->load.weight value; since
4132 * those are clipped to [MIN_SHARES, ...) do so now. See
4133 * calc_cfs_shares().
4135 if (wl < MIN_SHARES)
4139 * wl = dw_i = S * (s'_i - s_i); see (3)
4141 wl -= se->load.weight;
4144 * Recursively apply this logic to all parent groups to compute
4145 * the final effective load change on the root group. Since
4146 * only the @tg group gets extra weight, all parent groups can
4147 * only redistribute existing shares. @wl is the shift in shares
4148 * resulting from this level per the above.
4157 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4164 static int wake_wide(struct task_struct *p)
4166 int factor = this_cpu_read(sd_llc_size);
4169 * Yeah, it's the switching-frequency, could means many wakee or
4170 * rapidly switch, use factor here will just help to automatically
4171 * adjust the loose-degree, so bigger node will lead to more pull.
4173 if (p->wakee_flips > factor) {
4175 * wakee is somewhat hot, it needs certain amount of cpu
4176 * resource, so if waker is far more hot, prefer to leave
4179 if (current->wakee_flips > (factor * p->wakee_flips))
4186 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4188 s64 this_load, load;
4189 int idx, this_cpu, prev_cpu;
4190 unsigned long tl_per_task;
4191 struct task_group *tg;
4192 unsigned long weight;
4196 * If we wake multiple tasks be careful to not bounce
4197 * ourselves around too much.
4203 this_cpu = smp_processor_id();
4204 prev_cpu = task_cpu(p);
4205 load = source_load(prev_cpu, idx);
4206 this_load = target_load(this_cpu, idx);
4209 * If sync wakeup then subtract the (maximum possible)
4210 * effect of the currently running task from the load
4211 * of the current CPU:
4214 tg = task_group(current);
4215 weight = current->se.load.weight;
4217 this_load += effective_load(tg, this_cpu, -weight, -weight);
4218 load += effective_load(tg, prev_cpu, 0, -weight);
4222 weight = p->se.load.weight;
4225 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4226 * due to the sync cause above having dropped this_load to 0, we'll
4227 * always have an imbalance, but there's really nothing you can do
4228 * about that, so that's good too.
4230 * Otherwise check if either cpus are near enough in load to allow this
4231 * task to be woken on this_cpu.
4233 if (this_load > 0) {
4234 s64 this_eff_load, prev_eff_load;
4236 this_eff_load = 100;
4237 this_eff_load *= power_of(prev_cpu);
4238 this_eff_load *= this_load +
4239 effective_load(tg, this_cpu, weight, weight);
4241 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4242 prev_eff_load *= power_of(this_cpu);
4243 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4245 balanced = this_eff_load <= prev_eff_load;
4250 * If the currently running task will sleep within
4251 * a reasonable amount of time then attract this newly
4254 if (sync && balanced)
4257 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4258 tl_per_task = cpu_avg_load_per_task(this_cpu);
4261 (this_load <= load &&
4262 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4264 * This domain has SD_WAKE_AFFINE and
4265 * p is cache cold in this domain, and
4266 * there is no bad imbalance.
4268 schedstat_inc(sd, ttwu_move_affine);
4269 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4277 * find_idlest_group finds and returns the least busy CPU group within the
4280 static struct sched_group *
4281 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4282 int this_cpu, int sd_flag)
4284 struct sched_group *idlest = NULL, *group = sd->groups;
4285 unsigned long min_load = ULONG_MAX, this_load = 0;
4286 int load_idx = sd->forkexec_idx;
4287 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4289 if (sd_flag & SD_BALANCE_WAKE)
4290 load_idx = sd->wake_idx;
4293 unsigned long load, avg_load;
4297 /* Skip over this group if it has no CPUs allowed */
4298 if (!cpumask_intersects(sched_group_cpus(group),
4299 tsk_cpus_allowed(p)))
4302 local_group = cpumask_test_cpu(this_cpu,
4303 sched_group_cpus(group));
4305 /* Tally up the load of all CPUs in the group */
4308 for_each_cpu(i, sched_group_cpus(group)) {
4309 /* Bias balancing toward cpus of our domain */
4311 load = source_load(i, load_idx);
4313 load = target_load(i, load_idx);
4318 /* Adjust by relative CPU power of the group */
4319 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4322 this_load = avg_load;
4323 } else if (avg_load < min_load) {
4324 min_load = avg_load;
4327 } while (group = group->next, group != sd->groups);
4329 if (!idlest || 100*this_load < imbalance*min_load)
4335 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4338 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4340 unsigned long load, min_load = ULONG_MAX;
4344 /* Traverse only the allowed CPUs */
4345 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4346 load = weighted_cpuload(i);
4348 if (load < min_load || (load == min_load && i == this_cpu)) {
4358 * Try and locate an idle CPU in the sched_domain.
4360 static int select_idle_sibling(struct task_struct *p, int target)
4362 struct sched_domain *sd;
4363 struct sched_group *sg;
4364 int i = task_cpu(p);
4366 if (idle_cpu(target))
4370 * If the prevous cpu is cache affine and idle, don't be stupid.
4372 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4376 * Otherwise, iterate the domains and find an elegible idle cpu.
4378 sd = rcu_dereference(per_cpu(sd_llc, target));
4379 for_each_lower_domain(sd) {
4382 if (!cpumask_intersects(sched_group_cpus(sg),
4383 tsk_cpus_allowed(p)))
4386 for_each_cpu(i, sched_group_cpus(sg)) {
4387 if (i == target || !idle_cpu(i))
4391 target = cpumask_first_and(sched_group_cpus(sg),
4392 tsk_cpus_allowed(p));
4396 } while (sg != sd->groups);
4403 * select_task_rq_fair: Select target runqueue for the waking task in domains
4404 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4405 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4407 * Balances load by selecting the idlest cpu in the idlest group, or under
4408 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4410 * Returns the target cpu number.
4412 * preempt must be disabled.
4415 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4417 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4418 int cpu = smp_processor_id();
4420 int want_affine = 0;
4421 int sync = wake_flags & WF_SYNC;
4423 if (p->nr_cpus_allowed == 1)
4426 if (sd_flag & SD_BALANCE_WAKE) {
4427 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4433 for_each_domain(cpu, tmp) {
4434 if (!(tmp->flags & SD_LOAD_BALANCE))
4438 * If both cpu and prev_cpu are part of this domain,
4439 * cpu is a valid SD_WAKE_AFFINE target.
4441 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4442 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4447 if (tmp->flags & sd_flag)
4452 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4455 new_cpu = select_idle_sibling(p, prev_cpu);
4460 struct sched_group *group;
4463 if (!(sd->flags & sd_flag)) {
4468 group = find_idlest_group(sd, p, cpu, sd_flag);
4474 new_cpu = find_idlest_cpu(group, p, cpu);
4475 if (new_cpu == -1 || new_cpu == cpu) {
4476 /* Now try balancing at a lower domain level of cpu */
4481 /* Now try balancing at a lower domain level of new_cpu */
4483 weight = sd->span_weight;
4485 for_each_domain(cpu, tmp) {
4486 if (weight <= tmp->span_weight)
4488 if (tmp->flags & sd_flag)
4491 /* while loop will break here if sd == NULL */
4500 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4501 * cfs_rq_of(p) references at time of call are still valid and identify the
4502 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4503 * other assumptions, including the state of rq->lock, should be made.
4506 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4508 struct sched_entity *se = &p->se;
4509 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4512 * Load tracking: accumulate removed load so that it can be processed
4513 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4514 * to blocked load iff they have a positive decay-count. It can never
4515 * be negative here since on-rq tasks have decay-count == 0.
4517 if (se->avg.decay_count) {
4518 se->avg.decay_count = -__synchronize_entity_decay(se);
4519 atomic_long_add(se->avg.load_avg_contrib,
4520 &cfs_rq->removed_load);
4523 #endif /* CONFIG_SMP */
4525 static unsigned long
4526 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4528 unsigned long gran = sysctl_sched_wakeup_granularity;
4531 * Since its curr running now, convert the gran from real-time
4532 * to virtual-time in his units.
4534 * By using 'se' instead of 'curr' we penalize light tasks, so
4535 * they get preempted easier. That is, if 'se' < 'curr' then
4536 * the resulting gran will be larger, therefore penalizing the
4537 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4538 * be smaller, again penalizing the lighter task.
4540 * This is especially important for buddies when the leftmost
4541 * task is higher priority than the buddy.
4543 return calc_delta_fair(gran, se);
4547 * Should 'se' preempt 'curr'.
4561 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4563 s64 gran, vdiff = curr->vruntime - se->vruntime;
4568 gran = wakeup_gran(curr, se);
4575 static void set_last_buddy(struct sched_entity *se)
4577 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4580 for_each_sched_entity(se)
4581 cfs_rq_of(se)->last = se;
4584 static void set_next_buddy(struct sched_entity *se)
4586 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4589 for_each_sched_entity(se)
4590 cfs_rq_of(se)->next = se;
4593 static void set_skip_buddy(struct sched_entity *se)
4595 for_each_sched_entity(se)
4596 cfs_rq_of(se)->skip = se;
4600 * Preempt the current task with a newly woken task if needed:
4602 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4604 struct task_struct *curr = rq->curr;
4605 struct sched_entity *se = &curr->se, *pse = &p->se;
4606 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4607 int scale = cfs_rq->nr_running >= sched_nr_latency;
4608 int next_buddy_marked = 0;
4610 if (unlikely(se == pse))
4614 * This is possible from callers such as move_task(), in which we
4615 * unconditionally check_prempt_curr() after an enqueue (which may have
4616 * lead to a throttle). This both saves work and prevents false
4617 * next-buddy nomination below.
4619 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4622 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4623 set_next_buddy(pse);
4624 next_buddy_marked = 1;
4628 * We can come here with TIF_NEED_RESCHED already set from new task
4631 * Note: this also catches the edge-case of curr being in a throttled
4632 * group (e.g. via set_curr_task), since update_curr() (in the
4633 * enqueue of curr) will have resulted in resched being set. This
4634 * prevents us from potentially nominating it as a false LAST_BUDDY
4637 if (test_tsk_need_resched(curr))
4640 /* Idle tasks are by definition preempted by non-idle tasks. */
4641 if (unlikely(curr->policy == SCHED_IDLE) &&
4642 likely(p->policy != SCHED_IDLE))
4646 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4647 * is driven by the tick):
4649 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4652 find_matching_se(&se, &pse);
4653 update_curr(cfs_rq_of(se));
4655 if (wakeup_preempt_entity(se, pse) == 1) {
4657 * Bias pick_next to pick the sched entity that is
4658 * triggering this preemption.
4660 if (!next_buddy_marked)
4661 set_next_buddy(pse);
4670 * Only set the backward buddy when the current task is still
4671 * on the rq. This can happen when a wakeup gets interleaved
4672 * with schedule on the ->pre_schedule() or idle_balance()
4673 * point, either of which can * drop the rq lock.
4675 * Also, during early boot the idle thread is in the fair class,
4676 * for obvious reasons its a bad idea to schedule back to it.
4678 if (unlikely(!se->on_rq || curr == rq->idle))
4681 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4685 static struct task_struct *
4686 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4688 struct cfs_rq *cfs_rq = &rq->cfs;
4689 struct sched_entity *se;
4690 struct task_struct *p;
4694 #ifdef CONFIG_FAIR_GROUP_SCHED
4695 if (!cfs_rq->nr_running)
4698 if (prev->sched_class != &fair_sched_class)
4702 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4703 * likely that a next task is from the same cgroup as the current.
4705 * Therefore attempt to avoid putting and setting the entire cgroup
4706 * hierarchy, only change the part that actually changes.
4710 struct sched_entity *curr = cfs_rq->curr;
4713 * Since we got here without doing put_prev_entity() we also
4714 * have to consider cfs_rq->curr. If it is still a runnable
4715 * entity, update_curr() will update its vruntime, otherwise
4716 * forget we've ever seen it.
4718 if (curr && curr->on_rq)
4719 update_curr(cfs_rq);
4724 * This call to check_cfs_rq_runtime() will do the throttle and
4725 * dequeue its entity in the parent(s). Therefore the 'simple'
4726 * nr_running test will indeed be correct.
4728 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4731 se = pick_next_entity(cfs_rq, curr);
4732 cfs_rq = group_cfs_rq(se);
4738 * Since we haven't yet done put_prev_entity and if the selected task
4739 * is a different task than we started out with, try and touch the
4740 * least amount of cfs_rqs.
4743 struct sched_entity *pse = &prev->se;
4745 while (!(cfs_rq = is_same_group(se, pse))) {
4746 int se_depth = se->depth;
4747 int pse_depth = pse->depth;
4749 if (se_depth <= pse_depth) {
4750 put_prev_entity(cfs_rq_of(pse), pse);
4751 pse = parent_entity(pse);
4753 if (se_depth >= pse_depth) {
4754 set_next_entity(cfs_rq_of(se), se);
4755 se = parent_entity(se);
4759 put_prev_entity(cfs_rq, pse);
4760 set_next_entity(cfs_rq, se);
4763 if (hrtick_enabled(rq))
4764 hrtick_start_fair(rq, p);
4771 if (!cfs_rq->nr_running)
4774 put_prev_task(rq, prev);
4777 se = pick_next_entity(cfs_rq, NULL);
4778 set_next_entity(cfs_rq, se);
4779 cfs_rq = group_cfs_rq(se);
4784 if (hrtick_enabled(rq))
4785 hrtick_start_fair(rq, p);
4790 new_tasks = idle_balance(rq);
4792 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4793 * possible for any higher priority task to appear. In that case we
4794 * must re-start the pick_next_entity() loop.
4806 * Account for a descheduled task:
4808 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4810 struct sched_entity *se = &prev->se;
4811 struct cfs_rq *cfs_rq;
4813 for_each_sched_entity(se) {
4814 cfs_rq = cfs_rq_of(se);
4815 put_prev_entity(cfs_rq, se);
4820 * sched_yield() is very simple
4822 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4824 static void yield_task_fair(struct rq *rq)
4826 struct task_struct *curr = rq->curr;
4827 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4828 struct sched_entity *se = &curr->se;
4831 * Are we the only task in the tree?
4833 if (unlikely(rq->nr_running == 1))
4836 clear_buddies(cfs_rq, se);
4838 if (curr->policy != SCHED_BATCH) {
4839 update_rq_clock(rq);
4841 * Update run-time statistics of the 'current'.
4843 update_curr(cfs_rq);
4845 * Tell update_rq_clock() that we've just updated,
4846 * so we don't do microscopic update in schedule()
4847 * and double the fastpath cost.
4849 rq->skip_clock_update = 1;
4855 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4857 struct sched_entity *se = &p->se;
4859 /* throttled hierarchies are not runnable */
4860 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4863 /* Tell the scheduler that we'd really like pse to run next. */
4866 yield_task_fair(rq);
4872 /**************************************************
4873 * Fair scheduling class load-balancing methods.
4877 * The purpose of load-balancing is to achieve the same basic fairness the
4878 * per-cpu scheduler provides, namely provide a proportional amount of compute
4879 * time to each task. This is expressed in the following equation:
4881 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4883 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4884 * W_i,0 is defined as:
4886 * W_i,0 = \Sum_j w_i,j (2)
4888 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4889 * is derived from the nice value as per prio_to_weight[].
4891 * The weight average is an exponential decay average of the instantaneous
4894 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4896 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4897 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4898 * can also include other factors [XXX].
4900 * To achieve this balance we define a measure of imbalance which follows
4901 * directly from (1):
4903 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4905 * We them move tasks around to minimize the imbalance. In the continuous
4906 * function space it is obvious this converges, in the discrete case we get
4907 * a few fun cases generally called infeasible weight scenarios.
4910 * - infeasible weights;
4911 * - local vs global optima in the discrete case. ]
4916 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4917 * for all i,j solution, we create a tree of cpus that follows the hardware
4918 * topology where each level pairs two lower groups (or better). This results
4919 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4920 * tree to only the first of the previous level and we decrease the frequency
4921 * of load-balance at each level inv. proportional to the number of cpus in
4927 * \Sum { --- * --- * 2^i } = O(n) (5)
4929 * `- size of each group
4930 * | | `- number of cpus doing load-balance
4932 * `- sum over all levels
4934 * Coupled with a limit on how many tasks we can migrate every balance pass,
4935 * this makes (5) the runtime complexity of the balancer.
4937 * An important property here is that each CPU is still (indirectly) connected
4938 * to every other cpu in at most O(log n) steps:
4940 * The adjacency matrix of the resulting graph is given by:
4943 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4946 * And you'll find that:
4948 * A^(log_2 n)_i,j != 0 for all i,j (7)
4950 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4951 * The task movement gives a factor of O(m), giving a convergence complexity
4954 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4959 * In order to avoid CPUs going idle while there's still work to do, new idle
4960 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4961 * tree itself instead of relying on other CPUs to bring it work.
4963 * This adds some complexity to both (5) and (8) but it reduces the total idle
4971 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4974 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4979 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4981 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4983 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4986 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4987 * rewrite all of this once again.]
4990 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4992 enum fbq_type { regular, remote, all };
4994 #define LBF_ALL_PINNED 0x01
4995 #define LBF_NEED_BREAK 0x02
4996 #define LBF_DST_PINNED 0x04
4997 #define LBF_SOME_PINNED 0x08
5000 struct sched_domain *sd;
5008 struct cpumask *dst_grpmask;
5010 enum cpu_idle_type idle;
5012 /* The set of CPUs under consideration for load-balancing */
5013 struct cpumask *cpus;
5018 unsigned int loop_break;
5019 unsigned int loop_max;
5021 enum fbq_type fbq_type;
5025 * move_task - move a task from one runqueue to another runqueue.
5026 * Both runqueues must be locked.
5028 static void move_task(struct task_struct *p, struct lb_env *env)
5030 deactivate_task(env->src_rq, p, 0);
5031 set_task_cpu(p, env->dst_cpu);
5032 activate_task(env->dst_rq, p, 0);
5033 check_preempt_curr(env->dst_rq, p, 0);
5037 * Is this task likely cache-hot:
5040 task_hot(struct task_struct *p, u64 now)
5044 if (p->sched_class != &fair_sched_class)
5047 if (unlikely(p->policy == SCHED_IDLE))
5051 * Buddy candidates are cache hot:
5053 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5054 (&p->se == cfs_rq_of(&p->se)->next ||
5055 &p->se == cfs_rq_of(&p->se)->last))
5058 if (sysctl_sched_migration_cost == -1)
5060 if (sysctl_sched_migration_cost == 0)
5063 delta = now - p->se.exec_start;
5065 return delta < (s64)sysctl_sched_migration_cost;
5068 #ifdef CONFIG_NUMA_BALANCING
5069 /* Returns true if the destination node has incurred more faults */
5070 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5072 int src_nid, dst_nid;
5074 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5075 !(env->sd->flags & SD_NUMA)) {
5079 src_nid = cpu_to_node(env->src_cpu);
5080 dst_nid = cpu_to_node(env->dst_cpu);
5082 if (src_nid == dst_nid)
5085 /* Always encourage migration to the preferred node. */
5086 if (dst_nid == p->numa_preferred_nid)
5089 /* If both task and group weight improve, this move is a winner. */
5090 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
5091 group_weight(p, dst_nid) > group_weight(p, src_nid))
5098 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5100 int src_nid, dst_nid;
5102 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5105 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5108 src_nid = cpu_to_node(env->src_cpu);
5109 dst_nid = cpu_to_node(env->dst_cpu);
5111 if (src_nid == dst_nid)
5114 /* Migrating away from the preferred node is always bad. */
5115 if (src_nid == p->numa_preferred_nid)
5118 /* If either task or group weight get worse, don't do it. */
5119 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
5120 group_weight(p, dst_nid) < group_weight(p, src_nid))
5127 static inline bool migrate_improves_locality(struct task_struct *p,
5133 static inline bool migrate_degrades_locality(struct task_struct *p,
5141 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5144 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5146 int tsk_cache_hot = 0;
5148 * We do not migrate tasks that are:
5149 * 1) throttled_lb_pair, or
5150 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5151 * 3) running (obviously), or
5152 * 4) are cache-hot on their current CPU.
5154 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5157 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5160 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5162 env->flags |= LBF_SOME_PINNED;
5165 * Remember if this task can be migrated to any other cpu in
5166 * our sched_group. We may want to revisit it if we couldn't
5167 * meet load balance goals by pulling other tasks on src_cpu.
5169 * Also avoid computing new_dst_cpu if we have already computed
5170 * one in current iteration.
5172 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5175 /* Prevent to re-select dst_cpu via env's cpus */
5176 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5177 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5178 env->flags |= LBF_DST_PINNED;
5179 env->new_dst_cpu = cpu;
5187 /* Record that we found atleast one task that could run on dst_cpu */
5188 env->flags &= ~LBF_ALL_PINNED;
5190 if (task_running(env->src_rq, p)) {
5191 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5196 * Aggressive migration if:
5197 * 1) destination numa is preferred
5198 * 2) task is cache cold, or
5199 * 3) too many balance attempts have failed.
5201 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
5203 tsk_cache_hot = migrate_degrades_locality(p, env);
5205 if (migrate_improves_locality(p, env)) {
5206 #ifdef CONFIG_SCHEDSTATS
5207 if (tsk_cache_hot) {
5208 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5209 schedstat_inc(p, se.statistics.nr_forced_migrations);
5215 if (!tsk_cache_hot ||
5216 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5218 if (tsk_cache_hot) {
5219 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5220 schedstat_inc(p, se.statistics.nr_forced_migrations);
5226 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5231 * move_one_task tries to move exactly one task from busiest to this_rq, as
5232 * part of active balancing operations within "domain".
5233 * Returns 1 if successful and 0 otherwise.
5235 * Called with both runqueues locked.
5237 static int move_one_task(struct lb_env *env)
5239 struct task_struct *p, *n;
5241 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5242 if (!can_migrate_task(p, env))
5247 * Right now, this is only the second place move_task()
5248 * is called, so we can safely collect move_task()
5249 * stats here rather than inside move_task().
5251 schedstat_inc(env->sd, lb_gained[env->idle]);
5257 static const unsigned int sched_nr_migrate_break = 32;
5260 * move_tasks tries to move up to imbalance weighted load from busiest to
5261 * this_rq, as part of a balancing operation within domain "sd".
5262 * Returns 1 if successful and 0 otherwise.
5264 * Called with both runqueues locked.
5266 static int move_tasks(struct lb_env *env)
5268 struct list_head *tasks = &env->src_rq->cfs_tasks;
5269 struct task_struct *p;
5273 if (env->imbalance <= 0)
5276 while (!list_empty(tasks)) {
5277 p = list_first_entry(tasks, struct task_struct, se.group_node);
5280 /* We've more or less seen every task there is, call it quits */
5281 if (env->loop > env->loop_max)
5284 /* take a breather every nr_migrate tasks */
5285 if (env->loop > env->loop_break) {
5286 env->loop_break += sched_nr_migrate_break;
5287 env->flags |= LBF_NEED_BREAK;
5291 if (!can_migrate_task(p, env))
5294 load = task_h_load(p);
5296 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5299 if ((load / 2) > env->imbalance)
5304 env->imbalance -= load;
5306 #ifdef CONFIG_PREEMPT
5308 * NEWIDLE balancing is a source of latency, so preemptible
5309 * kernels will stop after the first task is pulled to minimize
5310 * the critical section.
5312 if (env->idle == CPU_NEWLY_IDLE)
5317 * We only want to steal up to the prescribed amount of
5320 if (env->imbalance <= 0)
5325 list_move_tail(&p->se.group_node, tasks);
5329 * Right now, this is one of only two places move_task() is called,
5330 * so we can safely collect move_task() stats here rather than
5331 * inside move_task().
5333 schedstat_add(env->sd, lb_gained[env->idle], pulled);
5338 #ifdef CONFIG_FAIR_GROUP_SCHED
5340 * update tg->load_weight by folding this cpu's load_avg
5342 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5344 struct sched_entity *se = tg->se[cpu];
5345 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5347 /* throttled entities do not contribute to load */
5348 if (throttled_hierarchy(cfs_rq))
5351 update_cfs_rq_blocked_load(cfs_rq, 1);
5354 update_entity_load_avg(se, 1);
5356 * We pivot on our runnable average having decayed to zero for
5357 * list removal. This generally implies that all our children
5358 * have also been removed (modulo rounding error or bandwidth
5359 * control); however, such cases are rare and we can fix these
5362 * TODO: fix up out-of-order children on enqueue.
5364 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5365 list_del_leaf_cfs_rq(cfs_rq);
5367 struct rq *rq = rq_of(cfs_rq);
5368 update_rq_runnable_avg(rq, rq->nr_running);
5372 static void update_blocked_averages(int cpu)
5374 struct rq *rq = cpu_rq(cpu);
5375 struct cfs_rq *cfs_rq;
5376 unsigned long flags;
5378 raw_spin_lock_irqsave(&rq->lock, flags);
5379 update_rq_clock(rq);
5381 * Iterates the task_group tree in a bottom up fashion, see
5382 * list_add_leaf_cfs_rq() for details.
5384 for_each_leaf_cfs_rq(rq, cfs_rq) {
5386 * Note: We may want to consider periodically releasing
5387 * rq->lock about these updates so that creating many task
5388 * groups does not result in continually extending hold time.
5390 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5393 raw_spin_unlock_irqrestore(&rq->lock, flags);
5397 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5398 * This needs to be done in a top-down fashion because the load of a child
5399 * group is a fraction of its parents load.
5401 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5403 struct rq *rq = rq_of(cfs_rq);
5404 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5405 unsigned long now = jiffies;
5408 if (cfs_rq->last_h_load_update == now)
5411 cfs_rq->h_load_next = NULL;
5412 for_each_sched_entity(se) {
5413 cfs_rq = cfs_rq_of(se);
5414 cfs_rq->h_load_next = se;
5415 if (cfs_rq->last_h_load_update == now)
5420 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5421 cfs_rq->last_h_load_update = now;
5424 while ((se = cfs_rq->h_load_next) != NULL) {
5425 load = cfs_rq->h_load;
5426 load = div64_ul(load * se->avg.load_avg_contrib,
5427 cfs_rq->runnable_load_avg + 1);
5428 cfs_rq = group_cfs_rq(se);
5429 cfs_rq->h_load = load;
5430 cfs_rq->last_h_load_update = now;
5434 static unsigned long task_h_load(struct task_struct *p)
5436 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5438 update_cfs_rq_h_load(cfs_rq);
5439 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5440 cfs_rq->runnable_load_avg + 1);
5443 static inline void update_blocked_averages(int cpu)
5447 static unsigned long task_h_load(struct task_struct *p)
5449 return p->se.avg.load_avg_contrib;
5453 /********** Helpers for find_busiest_group ************************/
5455 * sg_lb_stats - stats of a sched_group required for load_balancing
5457 struct sg_lb_stats {
5458 unsigned long avg_load; /*Avg load across the CPUs of the group */
5459 unsigned long group_load; /* Total load over the CPUs of the group */
5460 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5461 unsigned long load_per_task;
5462 unsigned long group_power;
5463 unsigned int sum_nr_running; /* Nr tasks running in the group */
5464 unsigned int group_capacity;
5465 unsigned int idle_cpus;
5466 unsigned int group_weight;
5467 int group_imb; /* Is there an imbalance in the group ? */
5468 int group_has_capacity; /* Is there extra capacity in the group? */
5469 #ifdef CONFIG_NUMA_BALANCING
5470 unsigned int nr_numa_running;
5471 unsigned int nr_preferred_running;
5476 * sd_lb_stats - Structure to store the statistics of a sched_domain
5477 * during load balancing.
5479 struct sd_lb_stats {
5480 struct sched_group *busiest; /* Busiest group in this sd */
5481 struct sched_group *local; /* Local group in this sd */
5482 unsigned long total_load; /* Total load of all groups in sd */
5483 unsigned long total_pwr; /* Total power of all groups in sd */
5484 unsigned long avg_load; /* Average load across all groups in sd */
5486 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5487 struct sg_lb_stats local_stat; /* Statistics of the local group */
5490 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5493 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5494 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5495 * We must however clear busiest_stat::avg_load because
5496 * update_sd_pick_busiest() reads this before assignment.
5498 *sds = (struct sd_lb_stats){
5510 * get_sd_load_idx - Obtain the load index for a given sched domain.
5511 * @sd: The sched_domain whose load_idx is to be obtained.
5512 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5514 * Return: The load index.
5516 static inline int get_sd_load_idx(struct sched_domain *sd,
5517 enum cpu_idle_type idle)
5523 load_idx = sd->busy_idx;
5526 case CPU_NEWLY_IDLE:
5527 load_idx = sd->newidle_idx;
5530 load_idx = sd->idle_idx;
5537 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5539 return SCHED_POWER_SCALE;
5542 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5544 return default_scale_freq_power(sd, cpu);
5547 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5549 unsigned long weight = sd->span_weight;
5550 unsigned long smt_gain = sd->smt_gain;
5557 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5559 return default_scale_smt_power(sd, cpu);
5562 static unsigned long scale_rt_power(int cpu)
5564 struct rq *rq = cpu_rq(cpu);
5565 u64 total, available, age_stamp, avg;
5568 * Since we're reading these variables without serialization make sure
5569 * we read them once before doing sanity checks on them.
5571 age_stamp = ACCESS_ONCE(rq->age_stamp);
5572 avg = ACCESS_ONCE(rq->rt_avg);
5574 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5576 if (unlikely(total < avg)) {
5577 /* Ensures that power won't end up being negative */
5580 available = total - avg;
5583 if (unlikely((s64)total < SCHED_POWER_SCALE))
5584 total = SCHED_POWER_SCALE;
5586 total >>= SCHED_POWER_SHIFT;
5588 return div_u64(available, total);
5591 static void update_cpu_power(struct sched_domain *sd, int cpu)
5593 unsigned long weight = sd->span_weight;
5594 unsigned long power = SCHED_POWER_SCALE;
5595 struct sched_group *sdg = sd->groups;
5597 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5598 if (sched_feat(ARCH_POWER))
5599 power *= arch_scale_smt_power(sd, cpu);
5601 power *= default_scale_smt_power(sd, cpu);
5603 power >>= SCHED_POWER_SHIFT;
5606 sdg->sgp->power_orig = power;
5608 if (sched_feat(ARCH_POWER))
5609 power *= arch_scale_freq_power(sd, cpu);
5611 power *= default_scale_freq_power(sd, cpu);
5613 power >>= SCHED_POWER_SHIFT;
5615 power *= scale_rt_power(cpu);
5616 power >>= SCHED_POWER_SHIFT;
5621 cpu_rq(cpu)->cpu_power = power;
5622 sdg->sgp->power = power;
5625 void update_group_power(struct sched_domain *sd, int cpu)
5627 struct sched_domain *child = sd->child;
5628 struct sched_group *group, *sdg = sd->groups;
5629 unsigned long power, power_orig;
5630 unsigned long interval;
5632 interval = msecs_to_jiffies(sd->balance_interval);
5633 interval = clamp(interval, 1UL, max_load_balance_interval);
5634 sdg->sgp->next_update = jiffies + interval;
5637 update_cpu_power(sd, cpu);
5641 power_orig = power = 0;
5643 if (child->flags & SD_OVERLAP) {
5645 * SD_OVERLAP domains cannot assume that child groups
5646 * span the current group.
5649 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5650 struct sched_group_power *sgp;
5651 struct rq *rq = cpu_rq(cpu);
5654 * build_sched_domains() -> init_sched_groups_power()
5655 * gets here before we've attached the domains to the
5658 * Use power_of(), which is set irrespective of domains
5659 * in update_cpu_power().
5661 * This avoids power/power_orig from being 0 and
5662 * causing divide-by-zero issues on boot.
5664 * Runtime updates will correct power_orig.
5666 if (unlikely(!rq->sd)) {
5667 power_orig += power_of(cpu);
5668 power += power_of(cpu);
5672 sgp = rq->sd->groups->sgp;
5673 power_orig += sgp->power_orig;
5674 power += sgp->power;
5678 * !SD_OVERLAP domains can assume that child groups
5679 * span the current group.
5682 group = child->groups;
5684 power_orig += group->sgp->power_orig;
5685 power += group->sgp->power;
5686 group = group->next;
5687 } while (group != child->groups);
5690 sdg->sgp->power_orig = power_orig;
5691 sdg->sgp->power = power;
5695 * Try and fix up capacity for tiny siblings, this is needed when
5696 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5697 * which on its own isn't powerful enough.
5699 * See update_sd_pick_busiest() and check_asym_packing().
5702 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5705 * Only siblings can have significantly less than SCHED_POWER_SCALE
5707 if (!(sd->flags & SD_SHARE_CPUPOWER))
5711 * If ~90% of the cpu_power is still there, we're good.
5713 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5720 * Group imbalance indicates (and tries to solve) the problem where balancing
5721 * groups is inadequate due to tsk_cpus_allowed() constraints.
5723 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5724 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5727 * { 0 1 2 3 } { 4 5 6 7 }
5730 * If we were to balance group-wise we'd place two tasks in the first group and
5731 * two tasks in the second group. Clearly this is undesired as it will overload
5732 * cpu 3 and leave one of the cpus in the second group unused.
5734 * The current solution to this issue is detecting the skew in the first group
5735 * by noticing the lower domain failed to reach balance and had difficulty
5736 * moving tasks due to affinity constraints.
5738 * When this is so detected; this group becomes a candidate for busiest; see
5739 * update_sd_pick_busiest(). And calculate_imbalance() and
5740 * find_busiest_group() avoid some of the usual balance conditions to allow it
5741 * to create an effective group imbalance.
5743 * This is a somewhat tricky proposition since the next run might not find the
5744 * group imbalance and decide the groups need to be balanced again. A most
5745 * subtle and fragile situation.
5748 static inline int sg_imbalanced(struct sched_group *group)
5750 return group->sgp->imbalance;
5754 * Compute the group capacity.
5756 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5757 * first dividing out the smt factor and computing the actual number of cores
5758 * and limit power unit capacity with that.
5760 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5762 unsigned int capacity, smt, cpus;
5763 unsigned int power, power_orig;
5765 power = group->sgp->power;
5766 power_orig = group->sgp->power_orig;
5767 cpus = group->group_weight;
5769 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5770 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5771 capacity = cpus / smt; /* cores */
5773 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5775 capacity = fix_small_capacity(env->sd, group);
5781 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5782 * @env: The load balancing environment.
5783 * @group: sched_group whose statistics are to be updated.
5784 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5785 * @local_group: Does group contain this_cpu.
5786 * @sgs: variable to hold the statistics for this group.
5788 static inline void update_sg_lb_stats(struct lb_env *env,
5789 struct sched_group *group, int load_idx,
5790 int local_group, struct sg_lb_stats *sgs)
5795 memset(sgs, 0, sizeof(*sgs));
5797 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5798 struct rq *rq = cpu_rq(i);
5800 /* Bias balancing toward cpus of our domain */
5802 load = target_load(i, load_idx);
5804 load = source_load(i, load_idx);
5806 sgs->group_load += load;
5807 sgs->sum_nr_running += rq->nr_running;
5808 #ifdef CONFIG_NUMA_BALANCING
5809 sgs->nr_numa_running += rq->nr_numa_running;
5810 sgs->nr_preferred_running += rq->nr_preferred_running;
5812 sgs->sum_weighted_load += weighted_cpuload(i);
5817 /* Adjust by relative CPU power of the group */
5818 sgs->group_power = group->sgp->power;
5819 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5821 if (sgs->sum_nr_running)
5822 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5824 sgs->group_weight = group->group_weight;
5826 sgs->group_imb = sg_imbalanced(group);
5827 sgs->group_capacity = sg_capacity(env, group);
5829 if (sgs->group_capacity > sgs->sum_nr_running)
5830 sgs->group_has_capacity = 1;
5834 * update_sd_pick_busiest - return 1 on busiest group
5835 * @env: The load balancing environment.
5836 * @sds: sched_domain statistics
5837 * @sg: sched_group candidate to be checked for being the busiest
5838 * @sgs: sched_group statistics
5840 * Determine if @sg is a busier group than the previously selected
5843 * Return: %true if @sg is a busier group than the previously selected
5844 * busiest group. %false otherwise.
5846 static bool update_sd_pick_busiest(struct lb_env *env,
5847 struct sd_lb_stats *sds,
5848 struct sched_group *sg,
5849 struct sg_lb_stats *sgs)
5851 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5854 if (sgs->sum_nr_running > sgs->group_capacity)
5861 * ASYM_PACKING needs to move all the work to the lowest
5862 * numbered CPUs in the group, therefore mark all groups
5863 * higher than ourself as busy.
5865 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5866 env->dst_cpu < group_first_cpu(sg)) {
5870 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5877 #ifdef CONFIG_NUMA_BALANCING
5878 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5880 if (sgs->sum_nr_running > sgs->nr_numa_running)
5882 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5887 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5889 if (rq->nr_running > rq->nr_numa_running)
5891 if (rq->nr_running > rq->nr_preferred_running)
5896 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5901 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5905 #endif /* CONFIG_NUMA_BALANCING */
5908 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5909 * @env: The load balancing environment.
5910 * @sds: variable to hold the statistics for this sched_domain.
5912 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5914 struct sched_domain *child = env->sd->child;
5915 struct sched_group *sg = env->sd->groups;
5916 struct sg_lb_stats tmp_sgs;
5917 int load_idx, prefer_sibling = 0;
5919 if (child && child->flags & SD_PREFER_SIBLING)
5922 load_idx = get_sd_load_idx(env->sd, env->idle);
5925 struct sg_lb_stats *sgs = &tmp_sgs;
5928 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5931 sgs = &sds->local_stat;
5933 if (env->idle != CPU_NEWLY_IDLE ||
5934 time_after_eq(jiffies, sg->sgp->next_update))
5935 update_group_power(env->sd, env->dst_cpu);
5938 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5944 * In case the child domain prefers tasks go to siblings
5945 * first, lower the sg capacity to one so that we'll try
5946 * and move all the excess tasks away. We lower the capacity
5947 * of a group only if the local group has the capacity to fit
5948 * these excess tasks, i.e. nr_running < group_capacity. The
5949 * extra check prevents the case where you always pull from the
5950 * heaviest group when it is already under-utilized (possible
5951 * with a large weight task outweighs the tasks on the system).
5953 if (prefer_sibling && sds->local &&
5954 sds->local_stat.group_has_capacity)
5955 sgs->group_capacity = min(sgs->group_capacity, 1U);
5957 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5959 sds->busiest_stat = *sgs;
5963 /* Now, start updating sd_lb_stats */
5964 sds->total_load += sgs->group_load;
5965 sds->total_pwr += sgs->group_power;
5968 } while (sg != env->sd->groups);
5970 if (env->sd->flags & SD_NUMA)
5971 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5975 * check_asym_packing - Check to see if the group is packed into the
5978 * This is primarily intended to used at the sibling level. Some
5979 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5980 * case of POWER7, it can move to lower SMT modes only when higher
5981 * threads are idle. When in lower SMT modes, the threads will
5982 * perform better since they share less core resources. Hence when we
5983 * have idle threads, we want them to be the higher ones.
5985 * This packing function is run on idle threads. It checks to see if
5986 * the busiest CPU in this domain (core in the P7 case) has a higher
5987 * CPU number than the packing function is being run on. Here we are
5988 * assuming lower CPU number will be equivalent to lower a SMT thread
5991 * Return: 1 when packing is required and a task should be moved to
5992 * this CPU. The amount of the imbalance is returned in *imbalance.
5994 * @env: The load balancing environment.
5995 * @sds: Statistics of the sched_domain which is to be packed
5997 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6001 if (!(env->sd->flags & SD_ASYM_PACKING))
6007 busiest_cpu = group_first_cpu(sds->busiest);
6008 if (env->dst_cpu > busiest_cpu)
6011 env->imbalance = DIV_ROUND_CLOSEST(
6012 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6019 * fix_small_imbalance - Calculate the minor imbalance that exists
6020 * amongst the groups of a sched_domain, during
6022 * @env: The load balancing environment.
6023 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6026 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6028 unsigned long tmp, pwr_now = 0, pwr_move = 0;
6029 unsigned int imbn = 2;
6030 unsigned long scaled_busy_load_per_task;
6031 struct sg_lb_stats *local, *busiest;
6033 local = &sds->local_stat;
6034 busiest = &sds->busiest_stat;
6036 if (!local->sum_nr_running)
6037 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6038 else if (busiest->load_per_task > local->load_per_task)
6041 scaled_busy_load_per_task =
6042 (busiest->load_per_task * SCHED_POWER_SCALE) /
6043 busiest->group_power;
6045 if (busiest->avg_load + scaled_busy_load_per_task >=
6046 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6047 env->imbalance = busiest->load_per_task;
6052 * OK, we don't have enough imbalance to justify moving tasks,
6053 * however we may be able to increase total CPU power used by
6057 pwr_now += busiest->group_power *
6058 min(busiest->load_per_task, busiest->avg_load);
6059 pwr_now += local->group_power *
6060 min(local->load_per_task, local->avg_load);
6061 pwr_now /= SCHED_POWER_SCALE;
6063 /* Amount of load we'd subtract */
6064 if (busiest->avg_load > scaled_busy_load_per_task) {
6065 pwr_move += busiest->group_power *
6066 min(busiest->load_per_task,
6067 busiest->avg_load - scaled_busy_load_per_task);
6070 /* Amount of load we'd add */
6071 if (busiest->avg_load * busiest->group_power <
6072 busiest->load_per_task * SCHED_POWER_SCALE) {
6073 tmp = (busiest->avg_load * busiest->group_power) /
6076 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
6079 pwr_move += local->group_power *
6080 min(local->load_per_task, local->avg_load + tmp);
6081 pwr_move /= SCHED_POWER_SCALE;
6083 /* Move if we gain throughput */
6084 if (pwr_move > pwr_now)
6085 env->imbalance = busiest->load_per_task;
6089 * calculate_imbalance - Calculate the amount of imbalance present within the
6090 * groups of a given sched_domain during load balance.
6091 * @env: load balance environment
6092 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6094 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6096 unsigned long max_pull, load_above_capacity = ~0UL;
6097 struct sg_lb_stats *local, *busiest;
6099 local = &sds->local_stat;
6100 busiest = &sds->busiest_stat;
6102 if (busiest->group_imb) {
6104 * In the group_imb case we cannot rely on group-wide averages
6105 * to ensure cpu-load equilibrium, look at wider averages. XXX
6107 busiest->load_per_task =
6108 min(busiest->load_per_task, sds->avg_load);
6112 * In the presence of smp nice balancing, certain scenarios can have
6113 * max load less than avg load(as we skip the groups at or below
6114 * its cpu_power, while calculating max_load..)
6116 if (busiest->avg_load <= sds->avg_load ||
6117 local->avg_load >= sds->avg_load) {
6119 return fix_small_imbalance(env, sds);
6122 if (!busiest->group_imb) {
6124 * Don't want to pull so many tasks that a group would go idle.
6125 * Except of course for the group_imb case, since then we might
6126 * have to drop below capacity to reach cpu-load equilibrium.
6128 load_above_capacity =
6129 (busiest->sum_nr_running - busiest->group_capacity);
6131 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
6132 load_above_capacity /= busiest->group_power;
6136 * We're trying to get all the cpus to the average_load, so we don't
6137 * want to push ourselves above the average load, nor do we wish to
6138 * reduce the max loaded cpu below the average load. At the same time,
6139 * we also don't want to reduce the group load below the group capacity
6140 * (so that we can implement power-savings policies etc). Thus we look
6141 * for the minimum possible imbalance.
6143 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6145 /* How much load to actually move to equalise the imbalance */
6146 env->imbalance = min(
6147 max_pull * busiest->group_power,
6148 (sds->avg_load - local->avg_load) * local->group_power
6149 ) / SCHED_POWER_SCALE;
6152 * if *imbalance is less than the average load per runnable task
6153 * there is no guarantee that any tasks will be moved so we'll have
6154 * a think about bumping its value to force at least one task to be
6157 if (env->imbalance < busiest->load_per_task)
6158 return fix_small_imbalance(env, sds);
6161 /******* find_busiest_group() helpers end here *********************/
6164 * find_busiest_group - Returns the busiest group within the sched_domain
6165 * if there is an imbalance. If there isn't an imbalance, and
6166 * the user has opted for power-savings, it returns a group whose
6167 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6168 * such a group exists.
6170 * Also calculates the amount of weighted load which should be moved
6171 * to restore balance.
6173 * @env: The load balancing environment.
6175 * Return: - The busiest group if imbalance exists.
6176 * - If no imbalance and user has opted for power-savings balance,
6177 * return the least loaded group whose CPUs can be
6178 * put to idle by rebalancing its tasks onto our group.
6180 static struct sched_group *find_busiest_group(struct lb_env *env)
6182 struct sg_lb_stats *local, *busiest;
6183 struct sd_lb_stats sds;
6185 init_sd_lb_stats(&sds);
6188 * Compute the various statistics relavent for load balancing at
6191 update_sd_lb_stats(env, &sds);
6192 local = &sds.local_stat;
6193 busiest = &sds.busiest_stat;
6195 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6196 check_asym_packing(env, &sds))
6199 /* There is no busy sibling group to pull tasks from */
6200 if (!sds.busiest || busiest->sum_nr_running == 0)
6203 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
6206 * If the busiest group is imbalanced the below checks don't
6207 * work because they assume all things are equal, which typically
6208 * isn't true due to cpus_allowed constraints and the like.
6210 if (busiest->group_imb)
6213 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6214 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6215 !busiest->group_has_capacity)
6219 * If the local group is more busy than the selected busiest group
6220 * don't try and pull any tasks.
6222 if (local->avg_load >= busiest->avg_load)
6226 * Don't pull any tasks if this group is already above the domain
6229 if (local->avg_load >= sds.avg_load)
6232 if (env->idle == CPU_IDLE) {
6234 * This cpu is idle. If the busiest group load doesn't
6235 * have more tasks than the number of available cpu's and
6236 * there is no imbalance between this and busiest group
6237 * wrt to idle cpu's, it is balanced.
6239 if ((local->idle_cpus < busiest->idle_cpus) &&
6240 busiest->sum_nr_running <= busiest->group_weight)
6244 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6245 * imbalance_pct to be conservative.
6247 if (100 * busiest->avg_load <=
6248 env->sd->imbalance_pct * local->avg_load)
6253 /* Looks like there is an imbalance. Compute it */
6254 calculate_imbalance(env, &sds);
6263 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6265 static struct rq *find_busiest_queue(struct lb_env *env,
6266 struct sched_group *group)
6268 struct rq *busiest = NULL, *rq;
6269 unsigned long busiest_load = 0, busiest_power = 1;
6272 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6273 unsigned long power, capacity, wl;
6277 rt = fbq_classify_rq(rq);
6280 * We classify groups/runqueues into three groups:
6281 * - regular: there are !numa tasks
6282 * - remote: there are numa tasks that run on the 'wrong' node
6283 * - all: there is no distinction
6285 * In order to avoid migrating ideally placed numa tasks,
6286 * ignore those when there's better options.
6288 * If we ignore the actual busiest queue to migrate another
6289 * task, the next balance pass can still reduce the busiest
6290 * queue by moving tasks around inside the node.
6292 * If we cannot move enough load due to this classification
6293 * the next pass will adjust the group classification and
6294 * allow migration of more tasks.
6296 * Both cases only affect the total convergence complexity.
6298 if (rt > env->fbq_type)
6301 power = power_of(i);
6302 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6304 capacity = fix_small_capacity(env->sd, group);
6306 wl = weighted_cpuload(i);
6309 * When comparing with imbalance, use weighted_cpuload()
6310 * which is not scaled with the cpu power.
6312 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6316 * For the load comparisons with the other cpu's, consider
6317 * the weighted_cpuload() scaled with the cpu power, so that
6318 * the load can be moved away from the cpu that is potentially
6319 * running at a lower capacity.
6321 * Thus we're looking for max(wl_i / power_i), crosswise
6322 * multiplication to rid ourselves of the division works out
6323 * to: wl_i * power_j > wl_j * power_i; where j is our
6326 if (wl * busiest_power > busiest_load * power) {
6328 busiest_power = power;
6337 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6338 * so long as it is large enough.
6340 #define MAX_PINNED_INTERVAL 512
6342 /* Working cpumask for load_balance and load_balance_newidle. */
6343 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6345 static int need_active_balance(struct lb_env *env)
6347 struct sched_domain *sd = env->sd;
6349 if (env->idle == CPU_NEWLY_IDLE) {
6352 * ASYM_PACKING needs to force migrate tasks from busy but
6353 * higher numbered CPUs in order to pack all tasks in the
6354 * lowest numbered CPUs.
6356 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6360 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6363 static int active_load_balance_cpu_stop(void *data);
6365 static int should_we_balance(struct lb_env *env)
6367 struct sched_group *sg = env->sd->groups;
6368 struct cpumask *sg_cpus, *sg_mask;
6369 int cpu, balance_cpu = -1;
6372 * In the newly idle case, we will allow all the cpu's
6373 * to do the newly idle load balance.
6375 if (env->idle == CPU_NEWLY_IDLE)
6378 sg_cpus = sched_group_cpus(sg);
6379 sg_mask = sched_group_mask(sg);
6380 /* Try to find first idle cpu */
6381 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6382 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6389 if (balance_cpu == -1)
6390 balance_cpu = group_balance_cpu(sg);
6393 * First idle cpu or the first cpu(busiest) in this sched group
6394 * is eligible for doing load balancing at this and above domains.
6396 return balance_cpu == env->dst_cpu;
6400 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6401 * tasks if there is an imbalance.
6403 static int load_balance(int this_cpu, struct rq *this_rq,
6404 struct sched_domain *sd, enum cpu_idle_type idle,
6405 int *continue_balancing)
6407 int ld_moved, cur_ld_moved, active_balance = 0;
6408 struct sched_domain *sd_parent = sd->parent;
6409 struct sched_group *group;
6411 unsigned long flags;
6412 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6414 struct lb_env env = {
6416 .dst_cpu = this_cpu,
6418 .dst_grpmask = sched_group_cpus(sd->groups),
6420 .loop_break = sched_nr_migrate_break,
6426 * For NEWLY_IDLE load_balancing, we don't need to consider
6427 * other cpus in our group
6429 if (idle == CPU_NEWLY_IDLE)
6430 env.dst_grpmask = NULL;
6432 cpumask_copy(cpus, cpu_active_mask);
6434 schedstat_inc(sd, lb_count[idle]);
6437 if (!should_we_balance(&env)) {
6438 *continue_balancing = 0;
6442 group = find_busiest_group(&env);
6444 schedstat_inc(sd, lb_nobusyg[idle]);
6448 busiest = find_busiest_queue(&env, group);
6450 schedstat_inc(sd, lb_nobusyq[idle]);
6454 BUG_ON(busiest == env.dst_rq);
6456 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6459 if (busiest->nr_running > 1) {
6461 * Attempt to move tasks. If find_busiest_group has found
6462 * an imbalance but busiest->nr_running <= 1, the group is
6463 * still unbalanced. ld_moved simply stays zero, so it is
6464 * correctly treated as an imbalance.
6466 env.flags |= LBF_ALL_PINNED;
6467 env.src_cpu = busiest->cpu;
6468 env.src_rq = busiest;
6469 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6472 local_irq_save(flags);
6473 double_rq_lock(env.dst_rq, busiest);
6476 * cur_ld_moved - load moved in current iteration
6477 * ld_moved - cumulative load moved across iterations
6479 cur_ld_moved = move_tasks(&env);
6480 ld_moved += cur_ld_moved;
6481 double_rq_unlock(env.dst_rq, busiest);
6482 local_irq_restore(flags);
6485 * some other cpu did the load balance for us.
6487 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6488 resched_cpu(env.dst_cpu);
6490 if (env.flags & LBF_NEED_BREAK) {
6491 env.flags &= ~LBF_NEED_BREAK;
6496 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6497 * us and move them to an alternate dst_cpu in our sched_group
6498 * where they can run. The upper limit on how many times we
6499 * iterate on same src_cpu is dependent on number of cpus in our
6502 * This changes load balance semantics a bit on who can move
6503 * load to a given_cpu. In addition to the given_cpu itself
6504 * (or a ilb_cpu acting on its behalf where given_cpu is
6505 * nohz-idle), we now have balance_cpu in a position to move
6506 * load to given_cpu. In rare situations, this may cause
6507 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6508 * _independently_ and at _same_ time to move some load to
6509 * given_cpu) causing exceess load to be moved to given_cpu.
6510 * This however should not happen so much in practice and
6511 * moreover subsequent load balance cycles should correct the
6512 * excess load moved.
6514 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6516 /* Prevent to re-select dst_cpu via env's cpus */
6517 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6519 env.dst_rq = cpu_rq(env.new_dst_cpu);
6520 env.dst_cpu = env.new_dst_cpu;
6521 env.flags &= ~LBF_DST_PINNED;
6523 env.loop_break = sched_nr_migrate_break;
6526 * Go back to "more_balance" rather than "redo" since we
6527 * need to continue with same src_cpu.
6533 * We failed to reach balance because of affinity.
6536 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6538 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6539 *group_imbalance = 1;
6540 } else if (*group_imbalance)
6541 *group_imbalance = 0;
6544 /* All tasks on this runqueue were pinned by CPU affinity */
6545 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6546 cpumask_clear_cpu(cpu_of(busiest), cpus);
6547 if (!cpumask_empty(cpus)) {
6549 env.loop_break = sched_nr_migrate_break;
6557 schedstat_inc(sd, lb_failed[idle]);
6559 * Increment the failure counter only on periodic balance.
6560 * We do not want newidle balance, which can be very
6561 * frequent, pollute the failure counter causing
6562 * excessive cache_hot migrations and active balances.
6564 if (idle != CPU_NEWLY_IDLE)
6565 sd->nr_balance_failed++;
6567 if (need_active_balance(&env)) {
6568 raw_spin_lock_irqsave(&busiest->lock, flags);
6570 /* don't kick the active_load_balance_cpu_stop,
6571 * if the curr task on busiest cpu can't be
6574 if (!cpumask_test_cpu(this_cpu,
6575 tsk_cpus_allowed(busiest->curr))) {
6576 raw_spin_unlock_irqrestore(&busiest->lock,
6578 env.flags |= LBF_ALL_PINNED;
6579 goto out_one_pinned;
6583 * ->active_balance synchronizes accesses to
6584 * ->active_balance_work. Once set, it's cleared
6585 * only after active load balance is finished.
6587 if (!busiest->active_balance) {
6588 busiest->active_balance = 1;
6589 busiest->push_cpu = this_cpu;
6592 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6594 if (active_balance) {
6595 stop_one_cpu_nowait(cpu_of(busiest),
6596 active_load_balance_cpu_stop, busiest,
6597 &busiest->active_balance_work);
6601 * We've kicked active balancing, reset the failure
6604 sd->nr_balance_failed = sd->cache_nice_tries+1;
6607 sd->nr_balance_failed = 0;
6609 if (likely(!active_balance)) {
6610 /* We were unbalanced, so reset the balancing interval */
6611 sd->balance_interval = sd->min_interval;
6614 * If we've begun active balancing, start to back off. This
6615 * case may not be covered by the all_pinned logic if there
6616 * is only 1 task on the busy runqueue (because we don't call
6619 if (sd->balance_interval < sd->max_interval)
6620 sd->balance_interval *= 2;
6626 schedstat_inc(sd, lb_balanced[idle]);
6628 sd->nr_balance_failed = 0;
6631 /* tune up the balancing interval */
6632 if (((env.flags & LBF_ALL_PINNED) &&
6633 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6634 (sd->balance_interval < sd->max_interval))
6635 sd->balance_interval *= 2;
6643 * idle_balance is called by schedule() if this_cpu is about to become
6644 * idle. Attempts to pull tasks from other CPUs.
6646 static int idle_balance(struct rq *this_rq)
6648 struct sched_domain *sd;
6649 int pulled_task = 0;
6650 unsigned long next_balance = jiffies + HZ;
6652 int this_cpu = this_rq->cpu;
6654 idle_enter_fair(this_rq);
6656 * We must set idle_stamp _before_ calling idle_balance(), such that we
6657 * measure the duration of idle_balance() as idle time.
6659 this_rq->idle_stamp = rq_clock(this_rq);
6661 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6665 * Drop the rq->lock, but keep IRQ/preempt disabled.
6667 raw_spin_unlock(&this_rq->lock);
6669 update_blocked_averages(this_cpu);
6671 for_each_domain(this_cpu, sd) {
6672 unsigned long interval;
6673 int continue_balancing = 1;
6674 u64 t0, domain_cost;
6676 if (!(sd->flags & SD_LOAD_BALANCE))
6679 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6682 if (sd->flags & SD_BALANCE_NEWIDLE) {
6683 t0 = sched_clock_cpu(this_cpu);
6685 /* If we've pulled tasks over stop searching: */
6686 pulled_task = load_balance(this_cpu, this_rq,
6688 &continue_balancing);
6690 domain_cost = sched_clock_cpu(this_cpu) - t0;
6691 if (domain_cost > sd->max_newidle_lb_cost)
6692 sd->max_newidle_lb_cost = domain_cost;
6694 curr_cost += domain_cost;
6697 interval = msecs_to_jiffies(sd->balance_interval);
6698 if (time_after(next_balance, sd->last_balance + interval))
6699 next_balance = sd->last_balance + interval;
6705 raw_spin_lock(&this_rq->lock);
6708 * While browsing the domains, we released the rq lock.
6709 * A task could have be enqueued in the meantime
6711 if (this_rq->cfs.h_nr_running && !pulled_task) {
6716 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6718 * We are going idle. next_balance may be set based on
6719 * a busy processor. So reset next_balance.
6721 this_rq->next_balance = next_balance;
6724 if (curr_cost > this_rq->max_idle_balance_cost)
6725 this_rq->max_idle_balance_cost = curr_cost;
6728 /* Is there a task of a high priority class? */
6729 if (this_rq->nr_running != this_rq->cfs.h_nr_running &&
6730 (this_rq->dl.dl_nr_running ||
6731 (this_rq->rt.rt_nr_running && !rt_rq_throttled(&this_rq->rt))))
6735 idle_exit_fair(this_rq);
6736 this_rq->idle_stamp = 0;
6743 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6744 * running tasks off the busiest CPU onto idle CPUs. It requires at
6745 * least 1 task to be running on each physical CPU where possible, and
6746 * avoids physical / logical imbalances.
6748 static int active_load_balance_cpu_stop(void *data)
6750 struct rq *busiest_rq = data;
6751 int busiest_cpu = cpu_of(busiest_rq);
6752 int target_cpu = busiest_rq->push_cpu;
6753 struct rq *target_rq = cpu_rq(target_cpu);
6754 struct sched_domain *sd;
6756 raw_spin_lock_irq(&busiest_rq->lock);
6758 /* make sure the requested cpu hasn't gone down in the meantime */
6759 if (unlikely(busiest_cpu != smp_processor_id() ||
6760 !busiest_rq->active_balance))
6763 /* Is there any task to move? */
6764 if (busiest_rq->nr_running <= 1)
6768 * This condition is "impossible", if it occurs
6769 * we need to fix it. Originally reported by
6770 * Bjorn Helgaas on a 128-cpu setup.
6772 BUG_ON(busiest_rq == target_rq);
6774 /* move a task from busiest_rq to target_rq */
6775 double_lock_balance(busiest_rq, target_rq);
6777 /* Search for an sd spanning us and the target CPU. */
6779 for_each_domain(target_cpu, sd) {
6780 if ((sd->flags & SD_LOAD_BALANCE) &&
6781 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6786 struct lb_env env = {
6788 .dst_cpu = target_cpu,
6789 .dst_rq = target_rq,
6790 .src_cpu = busiest_rq->cpu,
6791 .src_rq = busiest_rq,
6795 schedstat_inc(sd, alb_count);
6797 if (move_one_task(&env))
6798 schedstat_inc(sd, alb_pushed);
6800 schedstat_inc(sd, alb_failed);
6803 double_unlock_balance(busiest_rq, target_rq);
6805 busiest_rq->active_balance = 0;
6806 raw_spin_unlock_irq(&busiest_rq->lock);
6810 static inline int on_null_domain(struct rq *rq)
6812 return unlikely(!rcu_dereference_sched(rq->sd));
6815 #ifdef CONFIG_NO_HZ_COMMON
6817 * idle load balancing details
6818 * - When one of the busy CPUs notice that there may be an idle rebalancing
6819 * needed, they will kick the idle load balancer, which then does idle
6820 * load balancing for all the idle CPUs.
6823 cpumask_var_t idle_cpus_mask;
6825 unsigned long next_balance; /* in jiffy units */
6826 } nohz ____cacheline_aligned;
6828 static inline int find_new_ilb(void)
6830 int ilb = cpumask_first(nohz.idle_cpus_mask);
6832 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6839 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6840 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6841 * CPU (if there is one).
6843 static void nohz_balancer_kick(void)
6847 nohz.next_balance++;
6849 ilb_cpu = find_new_ilb();
6851 if (ilb_cpu >= nr_cpu_ids)
6854 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6857 * Use smp_send_reschedule() instead of resched_cpu().
6858 * This way we generate a sched IPI on the target cpu which
6859 * is idle. And the softirq performing nohz idle load balance
6860 * will be run before returning from the IPI.
6862 smp_send_reschedule(ilb_cpu);
6866 static inline void nohz_balance_exit_idle(int cpu)
6868 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6870 * Completely isolated CPUs don't ever set, so we must test.
6872 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6873 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6874 atomic_dec(&nohz.nr_cpus);
6876 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6880 static inline void set_cpu_sd_state_busy(void)
6882 struct sched_domain *sd;
6883 int cpu = smp_processor_id();
6886 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6888 if (!sd || !sd->nohz_idle)
6892 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6897 void set_cpu_sd_state_idle(void)
6899 struct sched_domain *sd;
6900 int cpu = smp_processor_id();
6903 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6905 if (!sd || sd->nohz_idle)
6909 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6915 * This routine will record that the cpu is going idle with tick stopped.
6916 * This info will be used in performing idle load balancing in the future.
6918 void nohz_balance_enter_idle(int cpu)
6921 * If this cpu is going down, then nothing needs to be done.
6923 if (!cpu_active(cpu))
6926 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6930 * If we're a completely isolated CPU, we don't play.
6932 if (on_null_domain(cpu_rq(cpu)))
6935 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6936 atomic_inc(&nohz.nr_cpus);
6937 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6940 static int sched_ilb_notifier(struct notifier_block *nfb,
6941 unsigned long action, void *hcpu)
6943 switch (action & ~CPU_TASKS_FROZEN) {
6945 nohz_balance_exit_idle(smp_processor_id());
6953 static DEFINE_SPINLOCK(balancing);
6956 * Scale the max load_balance interval with the number of CPUs in the system.
6957 * This trades load-balance latency on larger machines for less cross talk.
6959 void update_max_interval(void)
6961 max_load_balance_interval = HZ*num_online_cpus()/10;
6965 * It checks each scheduling domain to see if it is due to be balanced,
6966 * and initiates a balancing operation if so.
6968 * Balancing parameters are set up in init_sched_domains.
6970 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
6972 int continue_balancing = 1;
6974 unsigned long interval;
6975 struct sched_domain *sd;
6976 /* Earliest time when we have to do rebalance again */
6977 unsigned long next_balance = jiffies + 60*HZ;
6978 int update_next_balance = 0;
6979 int need_serialize, need_decay = 0;
6982 update_blocked_averages(cpu);
6985 for_each_domain(cpu, sd) {
6987 * Decay the newidle max times here because this is a regular
6988 * visit to all the domains. Decay ~1% per second.
6990 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6991 sd->max_newidle_lb_cost =
6992 (sd->max_newidle_lb_cost * 253) / 256;
6993 sd->next_decay_max_lb_cost = jiffies + HZ;
6996 max_cost += sd->max_newidle_lb_cost;
6998 if (!(sd->flags & SD_LOAD_BALANCE))
7002 * Stop the load balance at this level. There is another
7003 * CPU in our sched group which is doing load balancing more
7006 if (!continue_balancing) {
7012 interval = sd->balance_interval;
7013 if (idle != CPU_IDLE)
7014 interval *= sd->busy_factor;
7016 /* scale ms to jiffies */
7017 interval = msecs_to_jiffies(interval);
7018 interval = clamp(interval, 1UL, max_load_balance_interval);
7020 need_serialize = sd->flags & SD_SERIALIZE;
7022 if (need_serialize) {
7023 if (!spin_trylock(&balancing))
7027 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7028 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7030 * The LBF_DST_PINNED logic could have changed
7031 * env->dst_cpu, so we can't know our idle
7032 * state even if we migrated tasks. Update it.
7034 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7036 sd->last_balance = jiffies;
7039 spin_unlock(&balancing);
7041 if (time_after(next_balance, sd->last_balance + interval)) {
7042 next_balance = sd->last_balance + interval;
7043 update_next_balance = 1;
7048 * Ensure the rq-wide value also decays but keep it at a
7049 * reasonable floor to avoid funnies with rq->avg_idle.
7051 rq->max_idle_balance_cost =
7052 max((u64)sysctl_sched_migration_cost, max_cost);
7057 * next_balance will be updated only when there is a need.
7058 * When the cpu is attached to null domain for ex, it will not be
7061 if (likely(update_next_balance))
7062 rq->next_balance = next_balance;
7065 #ifdef CONFIG_NO_HZ_COMMON
7067 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7068 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7070 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7072 int this_cpu = this_rq->cpu;
7076 if (idle != CPU_IDLE ||
7077 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7080 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7081 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7085 * If this cpu gets work to do, stop the load balancing
7086 * work being done for other cpus. Next load
7087 * balancing owner will pick it up.
7092 rq = cpu_rq(balance_cpu);
7094 raw_spin_lock_irq(&rq->lock);
7095 update_rq_clock(rq);
7096 update_idle_cpu_load(rq);
7097 raw_spin_unlock_irq(&rq->lock);
7099 rebalance_domains(rq, CPU_IDLE);
7101 if (time_after(this_rq->next_balance, rq->next_balance))
7102 this_rq->next_balance = rq->next_balance;
7104 nohz.next_balance = this_rq->next_balance;
7106 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7110 * Current heuristic for kicking the idle load balancer in the presence
7111 * of an idle cpu is the system.
7112 * - This rq has more than one task.
7113 * - At any scheduler domain level, this cpu's scheduler group has multiple
7114 * busy cpu's exceeding the group's power.
7115 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7116 * domain span are idle.
7118 static inline int nohz_kick_needed(struct rq *rq)
7120 unsigned long now = jiffies;
7121 struct sched_domain *sd;
7122 struct sched_group_power *sgp;
7123 int nr_busy, cpu = rq->cpu;
7125 if (unlikely(rq->idle_balance))
7129 * We may be recently in ticked or tickless idle mode. At the first
7130 * busy tick after returning from idle, we will update the busy stats.
7132 set_cpu_sd_state_busy();
7133 nohz_balance_exit_idle(cpu);
7136 * None are in tickless mode and hence no need for NOHZ idle load
7139 if (likely(!atomic_read(&nohz.nr_cpus)))
7142 if (time_before(now, nohz.next_balance))
7145 if (rq->nr_running >= 2)
7149 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7152 sgp = sd->groups->sgp;
7153 nr_busy = atomic_read(&sgp->nr_busy_cpus);
7156 goto need_kick_unlock;
7159 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7161 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7162 sched_domain_span(sd)) < cpu))
7163 goto need_kick_unlock;
7174 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7178 * run_rebalance_domains is triggered when needed from the scheduler tick.
7179 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7181 static void run_rebalance_domains(struct softirq_action *h)
7183 struct rq *this_rq = this_rq();
7184 enum cpu_idle_type idle = this_rq->idle_balance ?
7185 CPU_IDLE : CPU_NOT_IDLE;
7187 rebalance_domains(this_rq, idle);
7190 * If this cpu has a pending nohz_balance_kick, then do the
7191 * balancing on behalf of the other idle cpus whose ticks are
7194 nohz_idle_balance(this_rq, idle);
7198 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7200 void trigger_load_balance(struct rq *rq)
7202 /* Don't need to rebalance while attached to NULL domain */
7203 if (unlikely(on_null_domain(rq)))
7206 if (time_after_eq(jiffies, rq->next_balance))
7207 raise_softirq(SCHED_SOFTIRQ);
7208 #ifdef CONFIG_NO_HZ_COMMON
7209 if (nohz_kick_needed(rq))
7210 nohz_balancer_kick();
7214 static void rq_online_fair(struct rq *rq)
7219 static void rq_offline_fair(struct rq *rq)
7223 /* Ensure any throttled groups are reachable by pick_next_task */
7224 unthrottle_offline_cfs_rqs(rq);
7227 #endif /* CONFIG_SMP */
7230 * scheduler tick hitting a task of our scheduling class:
7232 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7234 struct cfs_rq *cfs_rq;
7235 struct sched_entity *se = &curr->se;
7237 for_each_sched_entity(se) {
7238 cfs_rq = cfs_rq_of(se);
7239 entity_tick(cfs_rq, se, queued);
7242 if (numabalancing_enabled)
7243 task_tick_numa(rq, curr);
7245 update_rq_runnable_avg(rq, 1);
7249 * called on fork with the child task as argument from the parent's context
7250 * - child not yet on the tasklist
7251 * - preemption disabled
7253 static void task_fork_fair(struct task_struct *p)
7255 struct cfs_rq *cfs_rq;
7256 struct sched_entity *se = &p->se, *curr;
7257 int this_cpu = smp_processor_id();
7258 struct rq *rq = this_rq();
7259 unsigned long flags;
7261 raw_spin_lock_irqsave(&rq->lock, flags);
7263 update_rq_clock(rq);
7265 cfs_rq = task_cfs_rq(current);
7266 curr = cfs_rq->curr;
7269 * Not only the cpu but also the task_group of the parent might have
7270 * been changed after parent->se.parent,cfs_rq were copied to
7271 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7272 * of child point to valid ones.
7275 __set_task_cpu(p, this_cpu);
7278 update_curr(cfs_rq);
7281 se->vruntime = curr->vruntime;
7282 place_entity(cfs_rq, se, 1);
7284 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7286 * Upon rescheduling, sched_class::put_prev_task() will place
7287 * 'current' within the tree based on its new key value.
7289 swap(curr->vruntime, se->vruntime);
7290 resched_task(rq->curr);
7293 se->vruntime -= cfs_rq->min_vruntime;
7295 raw_spin_unlock_irqrestore(&rq->lock, flags);
7299 * Priority of the task has changed. Check to see if we preempt
7303 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7309 * Reschedule if we are currently running on this runqueue and
7310 * our priority decreased, or if we are not currently running on
7311 * this runqueue and our priority is higher than the current's
7313 if (rq->curr == p) {
7314 if (p->prio > oldprio)
7315 resched_task(rq->curr);
7317 check_preempt_curr(rq, p, 0);
7320 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7322 struct sched_entity *se = &p->se;
7323 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7326 * Ensure the task's vruntime is normalized, so that when it's
7327 * switched back to the fair class the enqueue_entity(.flags=0) will
7328 * do the right thing.
7330 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7331 * have normalized the vruntime, if it's !on_rq, then only when
7332 * the task is sleeping will it still have non-normalized vruntime.
7334 if (!p->on_rq && p->state != TASK_RUNNING) {
7336 * Fix up our vruntime so that the current sleep doesn't
7337 * cause 'unlimited' sleep bonus.
7339 place_entity(cfs_rq, se, 0);
7340 se->vruntime -= cfs_rq->min_vruntime;
7345 * Remove our load from contribution when we leave sched_fair
7346 * and ensure we don't carry in an old decay_count if we
7349 if (se->avg.decay_count) {
7350 __synchronize_entity_decay(se);
7351 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7357 * We switched to the sched_fair class.
7359 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7361 struct sched_entity *se = &p->se;
7362 #ifdef CONFIG_FAIR_GROUP_SCHED
7364 * Since the real-depth could have been changed (only FAIR
7365 * class maintain depth value), reset depth properly.
7367 se->depth = se->parent ? se->parent->depth + 1 : 0;
7373 * We were most likely switched from sched_rt, so
7374 * kick off the schedule if running, otherwise just see
7375 * if we can still preempt the current task.
7378 resched_task(rq->curr);
7380 check_preempt_curr(rq, p, 0);
7383 /* Account for a task changing its policy or group.
7385 * This routine is mostly called to set cfs_rq->curr field when a task
7386 * migrates between groups/classes.
7388 static void set_curr_task_fair(struct rq *rq)
7390 struct sched_entity *se = &rq->curr->se;
7392 for_each_sched_entity(se) {
7393 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7395 set_next_entity(cfs_rq, se);
7396 /* ensure bandwidth has been allocated on our new cfs_rq */
7397 account_cfs_rq_runtime(cfs_rq, 0);
7401 void init_cfs_rq(struct cfs_rq *cfs_rq)
7403 cfs_rq->tasks_timeline = RB_ROOT;
7404 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7405 #ifndef CONFIG_64BIT
7406 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7409 atomic64_set(&cfs_rq->decay_counter, 1);
7410 atomic_long_set(&cfs_rq->removed_load, 0);
7414 #ifdef CONFIG_FAIR_GROUP_SCHED
7415 static void task_move_group_fair(struct task_struct *p, int on_rq)
7417 struct sched_entity *se = &p->se;
7418 struct cfs_rq *cfs_rq;
7421 * If the task was not on the rq at the time of this cgroup movement
7422 * it must have been asleep, sleeping tasks keep their ->vruntime
7423 * absolute on their old rq until wakeup (needed for the fair sleeper
7424 * bonus in place_entity()).
7426 * If it was on the rq, we've just 'preempted' it, which does convert
7427 * ->vruntime to a relative base.
7429 * Make sure both cases convert their relative position when migrating
7430 * to another cgroup's rq. This does somewhat interfere with the
7431 * fair sleeper stuff for the first placement, but who cares.
7434 * When !on_rq, vruntime of the task has usually NOT been normalized.
7435 * But there are some cases where it has already been normalized:
7437 * - Moving a forked child which is waiting for being woken up by
7438 * wake_up_new_task().
7439 * - Moving a task which has been woken up by try_to_wake_up() and
7440 * waiting for actually being woken up by sched_ttwu_pending().
7442 * To prevent boost or penalty in the new cfs_rq caused by delta
7443 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7445 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7449 se->vruntime -= cfs_rq_of(se)->min_vruntime;
7450 set_task_rq(p, task_cpu(p));
7451 se->depth = se->parent ? se->parent->depth + 1 : 0;
7453 cfs_rq = cfs_rq_of(se);
7454 se->vruntime += cfs_rq->min_vruntime;
7457 * migrate_task_rq_fair() will have removed our previous
7458 * contribution, but we must synchronize for ongoing future
7461 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7462 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7467 void free_fair_sched_group(struct task_group *tg)
7471 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7473 for_each_possible_cpu(i) {
7475 kfree(tg->cfs_rq[i]);
7484 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7486 struct cfs_rq *cfs_rq;
7487 struct sched_entity *se;
7490 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7493 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7497 tg->shares = NICE_0_LOAD;
7499 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7501 for_each_possible_cpu(i) {
7502 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7503 GFP_KERNEL, cpu_to_node(i));
7507 se = kzalloc_node(sizeof(struct sched_entity),
7508 GFP_KERNEL, cpu_to_node(i));
7512 init_cfs_rq(cfs_rq);
7513 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7524 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7526 struct rq *rq = cpu_rq(cpu);
7527 unsigned long flags;
7530 * Only empty task groups can be destroyed; so we can speculatively
7531 * check on_list without danger of it being re-added.
7533 if (!tg->cfs_rq[cpu]->on_list)
7536 raw_spin_lock_irqsave(&rq->lock, flags);
7537 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7538 raw_spin_unlock_irqrestore(&rq->lock, flags);
7541 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7542 struct sched_entity *se, int cpu,
7543 struct sched_entity *parent)
7545 struct rq *rq = cpu_rq(cpu);
7549 init_cfs_rq_runtime(cfs_rq);
7551 tg->cfs_rq[cpu] = cfs_rq;
7554 /* se could be NULL for root_task_group */
7559 se->cfs_rq = &rq->cfs;
7562 se->cfs_rq = parent->my_q;
7563 se->depth = parent->depth + 1;
7567 /* guarantee group entities always have weight */
7568 update_load_set(&se->load, NICE_0_LOAD);
7569 se->parent = parent;
7572 static DEFINE_MUTEX(shares_mutex);
7574 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7577 unsigned long flags;
7580 * We can't change the weight of the root cgroup.
7585 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7587 mutex_lock(&shares_mutex);
7588 if (tg->shares == shares)
7591 tg->shares = shares;
7592 for_each_possible_cpu(i) {
7593 struct rq *rq = cpu_rq(i);
7594 struct sched_entity *se;
7597 /* Propagate contribution to hierarchy */
7598 raw_spin_lock_irqsave(&rq->lock, flags);
7600 /* Possible calls to update_curr() need rq clock */
7601 update_rq_clock(rq);
7602 for_each_sched_entity(se)
7603 update_cfs_shares(group_cfs_rq(se));
7604 raw_spin_unlock_irqrestore(&rq->lock, flags);
7608 mutex_unlock(&shares_mutex);
7611 #else /* CONFIG_FAIR_GROUP_SCHED */
7613 void free_fair_sched_group(struct task_group *tg) { }
7615 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7620 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7622 #endif /* CONFIG_FAIR_GROUP_SCHED */
7625 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7627 struct sched_entity *se = &task->se;
7628 unsigned int rr_interval = 0;
7631 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7634 if (rq->cfs.load.weight)
7635 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7641 * All the scheduling class methods:
7643 const struct sched_class fair_sched_class = {
7644 .next = &idle_sched_class,
7645 .enqueue_task = enqueue_task_fair,
7646 .dequeue_task = dequeue_task_fair,
7647 .yield_task = yield_task_fair,
7648 .yield_to_task = yield_to_task_fair,
7650 .check_preempt_curr = check_preempt_wakeup,
7652 .pick_next_task = pick_next_task_fair,
7653 .put_prev_task = put_prev_task_fair,
7656 .select_task_rq = select_task_rq_fair,
7657 .migrate_task_rq = migrate_task_rq_fair,
7659 .rq_online = rq_online_fair,
7660 .rq_offline = rq_offline_fair,
7662 .task_waking = task_waking_fair,
7665 .set_curr_task = set_curr_task_fair,
7666 .task_tick = task_tick_fair,
7667 .task_fork = task_fork_fair,
7669 .prio_changed = prio_changed_fair,
7670 .switched_from = switched_from_fair,
7671 .switched_to = switched_to_fair,
7673 .get_rr_interval = get_rr_interval_fair,
7675 #ifdef CONFIG_FAIR_GROUP_SCHED
7676 .task_move_group = task_move_group_fair,
7680 #ifdef CONFIG_SCHED_DEBUG
7681 void print_cfs_stats(struct seq_file *m, int cpu)
7683 struct cfs_rq *cfs_rq;
7686 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7687 print_cfs_rq(m, cpu, cfs_rq);
7692 __init void init_sched_fair_class(void)
7695 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7697 #ifdef CONFIG_NO_HZ_COMMON
7698 nohz.next_balance = jiffies;
7699 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7700 cpu_notifier(sched_ilb_notifier, 0);