2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE 2
39 struct scsi_host_sg_pool {
42 struct kmem_cache *slab;
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
65 SP(SCSI_MAX_SG_SEGMENTS)
69 struct kmem_cache *scsi_sdb_cache;
72 #include <acpi/acpi_bus.h>
74 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus)
76 bus->bus = &scsi_bus_type;
77 return register_acpi_bus_type(bus);
79 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type);
81 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus)
83 unregister_acpi_bus_type(bus);
85 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type);
89 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
90 * not change behaviour from the previous unplug mechanism, experimentation
91 * may prove this needs changing.
93 #define SCSI_QUEUE_DELAY 3
96 * Function: scsi_unprep_request()
98 * Purpose: Remove all preparation done for a request, including its
99 * associated scsi_cmnd, so that it can be requeued.
101 * Arguments: req - request to unprepare
103 * Lock status: Assumed that no locks are held upon entry.
107 static void scsi_unprep_request(struct request *req)
109 struct scsi_cmnd *cmd = req->special;
111 blk_unprep_request(req);
114 scsi_put_command(cmd);
118 * __scsi_queue_insert - private queue insertion
119 * @cmd: The SCSI command being requeued
120 * @reason: The reason for the requeue
121 * @unbusy: Whether the queue should be unbusied
123 * This is a private queue insertion. The public interface
124 * scsi_queue_insert() always assumes the queue should be unbusied
125 * because it's always called before the completion. This function is
126 * for a requeue after completion, which should only occur in this
129 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
131 struct Scsi_Host *host = cmd->device->host;
132 struct scsi_device *device = cmd->device;
133 struct scsi_target *starget = scsi_target(device);
134 struct request_queue *q = device->request_queue;
138 printk("Inserting command %p into mlqueue\n", cmd));
141 * Set the appropriate busy bit for the device/host.
143 * If the host/device isn't busy, assume that something actually
144 * completed, and that we should be able to queue a command now.
146 * Note that the prior mid-layer assumption that any host could
147 * always queue at least one command is now broken. The mid-layer
148 * will implement a user specifiable stall (see
149 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
150 * if a command is requeued with no other commands outstanding
151 * either for the device or for the host.
154 case SCSI_MLQUEUE_HOST_BUSY:
155 host->host_blocked = host->max_host_blocked;
157 case SCSI_MLQUEUE_DEVICE_BUSY:
158 case SCSI_MLQUEUE_EH_RETRY:
159 device->device_blocked = device->max_device_blocked;
161 case SCSI_MLQUEUE_TARGET_BUSY:
162 starget->target_blocked = starget->max_target_blocked;
167 * Decrement the counters, since these commands are no longer
168 * active on the host/device.
171 scsi_device_unbusy(device);
174 * Requeue this command. It will go before all other commands
175 * that are already in the queue. Schedule requeue work under
176 * lock such that the kblockd_schedule_work() call happens
177 * before blk_cleanup_queue() finishes.
179 spin_lock_irqsave(q->queue_lock, flags);
180 blk_requeue_request(q, cmd->request);
181 kblockd_schedule_work(q, &device->requeue_work);
182 spin_unlock_irqrestore(q->queue_lock, flags);
186 * Function: scsi_queue_insert()
188 * Purpose: Insert a command in the midlevel queue.
190 * Arguments: cmd - command that we are adding to queue.
191 * reason - why we are inserting command to queue.
193 * Lock status: Assumed that lock is not held upon entry.
197 * Notes: We do this for one of two cases. Either the host is busy
198 * and it cannot accept any more commands for the time being,
199 * or the device returned QUEUE_FULL and can accept no more
201 * Notes: This could be called either from an interrupt context or a
202 * normal process context.
204 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
206 __scsi_queue_insert(cmd, reason, 1);
209 * scsi_execute - insert request and wait for the result
212 * @data_direction: data direction
213 * @buffer: data buffer
214 * @bufflen: len of buffer
215 * @sense: optional sense buffer
216 * @timeout: request timeout in seconds
217 * @retries: number of times to retry request
218 * @flags: or into request flags;
219 * @resid: optional residual length
221 * returns the req->errors value which is the scsi_cmnd result
224 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
225 int data_direction, void *buffer, unsigned bufflen,
226 unsigned char *sense, int timeout, int retries, int flags,
230 int write = (data_direction == DMA_TO_DEVICE);
231 int ret = DRIVER_ERROR << 24;
233 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
237 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
238 buffer, bufflen, __GFP_WAIT))
241 req->cmd_len = COMMAND_SIZE(cmd[0]);
242 memcpy(req->cmd, cmd, req->cmd_len);
245 req->retries = retries;
246 req->timeout = timeout;
247 req->cmd_type = REQ_TYPE_BLOCK_PC;
248 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
251 * head injection *required* here otherwise quiesce won't work
253 blk_execute_rq(req->q, NULL, req, 1);
256 * Some devices (USB mass-storage in particular) may transfer
257 * garbage data together with a residue indicating that the data
258 * is invalid. Prevent the garbage from being misinterpreted
259 * and prevent security leaks by zeroing out the excess data.
261 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
262 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
265 *resid = req->resid_len;
268 blk_put_request(req);
272 EXPORT_SYMBOL(scsi_execute);
275 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
276 int data_direction, void *buffer, unsigned bufflen,
277 struct scsi_sense_hdr *sshdr, int timeout, int retries,
284 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
286 return DRIVER_ERROR << 24;
288 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
289 sense, timeout, retries, 0, resid);
291 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
296 EXPORT_SYMBOL(scsi_execute_req);
299 * Function: scsi_init_cmd_errh()
301 * Purpose: Initialize cmd fields related to error handling.
303 * Arguments: cmd - command that is ready to be queued.
305 * Notes: This function has the job of initializing a number of
306 * fields related to error handling. Typically this will
307 * be called once for each command, as required.
309 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
311 cmd->serial_number = 0;
312 scsi_set_resid(cmd, 0);
313 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
314 if (cmd->cmd_len == 0)
315 cmd->cmd_len = scsi_command_size(cmd->cmnd);
318 void scsi_device_unbusy(struct scsi_device *sdev)
320 struct Scsi_Host *shost = sdev->host;
321 struct scsi_target *starget = scsi_target(sdev);
324 spin_lock_irqsave(shost->host_lock, flags);
326 starget->target_busy--;
327 if (unlikely(scsi_host_in_recovery(shost) &&
328 (shost->host_failed || shost->host_eh_scheduled)))
329 scsi_eh_wakeup(shost);
330 spin_unlock(shost->host_lock);
331 spin_lock(sdev->request_queue->queue_lock);
333 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
337 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
338 * and call blk_run_queue for all the scsi_devices on the target -
339 * including current_sdev first.
341 * Called with *no* scsi locks held.
343 static void scsi_single_lun_run(struct scsi_device *current_sdev)
345 struct Scsi_Host *shost = current_sdev->host;
346 struct scsi_device *sdev, *tmp;
347 struct scsi_target *starget = scsi_target(current_sdev);
350 spin_lock_irqsave(shost->host_lock, flags);
351 starget->starget_sdev_user = NULL;
352 spin_unlock_irqrestore(shost->host_lock, flags);
355 * Call blk_run_queue for all LUNs on the target, starting with
356 * current_sdev. We race with others (to set starget_sdev_user),
357 * but in most cases, we will be first. Ideally, each LU on the
358 * target would get some limited time or requests on the target.
360 blk_run_queue(current_sdev->request_queue);
362 spin_lock_irqsave(shost->host_lock, flags);
363 if (starget->starget_sdev_user)
365 list_for_each_entry_safe(sdev, tmp, &starget->devices,
366 same_target_siblings) {
367 if (sdev == current_sdev)
369 if (scsi_device_get(sdev))
372 spin_unlock_irqrestore(shost->host_lock, flags);
373 blk_run_queue(sdev->request_queue);
374 spin_lock_irqsave(shost->host_lock, flags);
376 scsi_device_put(sdev);
379 spin_unlock_irqrestore(shost->host_lock, flags);
382 static inline int scsi_device_is_busy(struct scsi_device *sdev)
384 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
390 static inline int scsi_target_is_busy(struct scsi_target *starget)
392 return ((starget->can_queue > 0 &&
393 starget->target_busy >= starget->can_queue) ||
394 starget->target_blocked);
397 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
399 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
400 shost->host_blocked || shost->host_self_blocked)
407 * Function: scsi_run_queue()
409 * Purpose: Select a proper request queue to serve next
411 * Arguments: q - last request's queue
415 * Notes: The previous command was completely finished, start
416 * a new one if possible.
418 static void scsi_run_queue(struct request_queue *q)
420 struct scsi_device *sdev = q->queuedata;
421 struct Scsi_Host *shost;
422 LIST_HEAD(starved_list);
426 if (scsi_target(sdev)->single_lun)
427 scsi_single_lun_run(sdev);
429 spin_lock_irqsave(shost->host_lock, flags);
430 list_splice_init(&shost->starved_list, &starved_list);
432 while (!list_empty(&starved_list)) {
434 * As long as shost is accepting commands and we have
435 * starved queues, call blk_run_queue. scsi_request_fn
436 * drops the queue_lock and can add us back to the
439 * host_lock protects the starved_list and starved_entry.
440 * scsi_request_fn must get the host_lock before checking
441 * or modifying starved_list or starved_entry.
443 if (scsi_host_is_busy(shost))
446 sdev = list_entry(starved_list.next,
447 struct scsi_device, starved_entry);
448 list_del_init(&sdev->starved_entry);
449 if (scsi_target_is_busy(scsi_target(sdev))) {
450 list_move_tail(&sdev->starved_entry,
451 &shost->starved_list);
455 spin_unlock(shost->host_lock);
456 spin_lock(sdev->request_queue->queue_lock);
457 __blk_run_queue(sdev->request_queue);
458 spin_unlock(sdev->request_queue->queue_lock);
459 spin_lock(shost->host_lock);
461 /* put any unprocessed entries back */
462 list_splice(&starved_list, &shost->starved_list);
463 spin_unlock_irqrestore(shost->host_lock, flags);
468 void scsi_requeue_run_queue(struct work_struct *work)
470 struct scsi_device *sdev;
471 struct request_queue *q;
473 sdev = container_of(work, struct scsi_device, requeue_work);
474 q = sdev->request_queue;
479 * Function: scsi_requeue_command()
481 * Purpose: Handle post-processing of completed commands.
483 * Arguments: q - queue to operate on
484 * cmd - command that may need to be requeued.
488 * Notes: After command completion, there may be blocks left
489 * over which weren't finished by the previous command
490 * this can be for a number of reasons - the main one is
491 * I/O errors in the middle of the request, in which case
492 * we need to request the blocks that come after the bad
494 * Notes: Upon return, cmd is a stale pointer.
496 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
498 struct scsi_device *sdev = cmd->device;
499 struct request *req = cmd->request;
503 * We need to hold a reference on the device to avoid the queue being
504 * killed after the unlock and before scsi_run_queue is invoked which
505 * may happen because scsi_unprep_request() puts the command which
506 * releases its reference on the device.
508 get_device(&sdev->sdev_gendev);
510 spin_lock_irqsave(q->queue_lock, flags);
511 scsi_unprep_request(req);
512 blk_requeue_request(q, req);
513 spin_unlock_irqrestore(q->queue_lock, flags);
517 put_device(&sdev->sdev_gendev);
520 void scsi_next_command(struct scsi_cmnd *cmd)
522 struct scsi_device *sdev = cmd->device;
523 struct request_queue *q = sdev->request_queue;
525 /* need to hold a reference on the device before we let go of the cmd */
526 get_device(&sdev->sdev_gendev);
528 scsi_put_command(cmd);
531 /* ok to remove device now */
532 put_device(&sdev->sdev_gendev);
535 void scsi_run_host_queues(struct Scsi_Host *shost)
537 struct scsi_device *sdev;
539 shost_for_each_device(sdev, shost)
540 scsi_run_queue(sdev->request_queue);
543 static void __scsi_release_buffers(struct scsi_cmnd *, int);
546 * Function: scsi_end_request()
548 * Purpose: Post-processing of completed commands (usually invoked at end
549 * of upper level post-processing and scsi_io_completion).
551 * Arguments: cmd - command that is complete.
552 * error - 0 if I/O indicates success, < 0 for I/O error.
553 * bytes - number of bytes of completed I/O
554 * requeue - indicates whether we should requeue leftovers.
556 * Lock status: Assumed that lock is not held upon entry.
558 * Returns: cmd if requeue required, NULL otherwise.
560 * Notes: This is called for block device requests in order to
561 * mark some number of sectors as complete.
563 * We are guaranteeing that the request queue will be goosed
564 * at some point during this call.
565 * Notes: If cmd was requeued, upon return it will be a stale pointer.
567 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
568 int bytes, int requeue)
570 struct request_queue *q = cmd->device->request_queue;
571 struct request *req = cmd->request;
574 * If there are blocks left over at the end, set up the command
575 * to queue the remainder of them.
577 if (blk_end_request(req, error, bytes)) {
578 /* kill remainder if no retrys */
579 if (error && scsi_noretry_cmd(cmd))
580 blk_end_request_all(req, error);
584 * Bleah. Leftovers again. Stick the
585 * leftovers in the front of the
586 * queue, and goose the queue again.
588 scsi_release_buffers(cmd);
589 scsi_requeue_command(q, cmd);
597 * This will goose the queue request function at the end, so we don't
598 * need to worry about launching another command.
600 __scsi_release_buffers(cmd, 0);
601 scsi_next_command(cmd);
605 static inline unsigned int scsi_sgtable_index(unsigned short nents)
609 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
614 index = get_count_order(nents) - 3;
619 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
621 struct scsi_host_sg_pool *sgp;
623 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
624 mempool_free(sgl, sgp->pool);
627 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
629 struct scsi_host_sg_pool *sgp;
631 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
632 return mempool_alloc(sgp->pool, gfp_mask);
635 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
642 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
643 gfp_mask, scsi_sg_alloc);
645 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
651 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
653 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
656 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
659 if (cmd->sdb.table.nents)
660 scsi_free_sgtable(&cmd->sdb);
662 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
664 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
665 struct scsi_data_buffer *bidi_sdb =
666 cmd->request->next_rq->special;
667 scsi_free_sgtable(bidi_sdb);
668 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
669 cmd->request->next_rq->special = NULL;
672 if (scsi_prot_sg_count(cmd))
673 scsi_free_sgtable(cmd->prot_sdb);
677 * Function: scsi_release_buffers()
679 * Purpose: Completion processing for block device I/O requests.
681 * Arguments: cmd - command that we are bailing.
683 * Lock status: Assumed that no lock is held upon entry.
687 * Notes: In the event that an upper level driver rejects a
688 * command, we must release resources allocated during
689 * the __init_io() function. Primarily this would involve
690 * the scatter-gather table, and potentially any bounce
693 void scsi_release_buffers(struct scsi_cmnd *cmd)
695 __scsi_release_buffers(cmd, 1);
697 EXPORT_SYMBOL(scsi_release_buffers);
699 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
703 switch(host_byte(result)) {
704 case DID_TRANSPORT_FAILFAST:
707 case DID_TARGET_FAILURE:
708 set_host_byte(cmd, DID_OK);
711 case DID_NEXUS_FAILURE:
712 set_host_byte(cmd, DID_OK);
724 * Function: scsi_io_completion()
726 * Purpose: Completion processing for block device I/O requests.
728 * Arguments: cmd - command that is finished.
730 * Lock status: Assumed that no lock is held upon entry.
734 * Notes: This function is matched in terms of capabilities to
735 * the function that created the scatter-gather list.
736 * In other words, if there are no bounce buffers
737 * (the normal case for most drivers), we don't need
738 * the logic to deal with cleaning up afterwards.
740 * We must call scsi_end_request(). This will finish off
741 * the specified number of sectors. If we are done, the
742 * command block will be released and the queue function
743 * will be goosed. If we are not done then we have to
744 * figure out what to do next:
746 * a) We can call scsi_requeue_command(). The request
747 * will be unprepared and put back on the queue. Then
748 * a new command will be created for it. This should
749 * be used if we made forward progress, or if we want
750 * to switch from READ(10) to READ(6) for example.
752 * b) We can call scsi_queue_insert(). The request will
753 * be put back on the queue and retried using the same
754 * command as before, possibly after a delay.
756 * c) We can call blk_end_request() with -EIO to fail
757 * the remainder of the request.
759 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
761 int result = cmd->result;
762 struct request_queue *q = cmd->device->request_queue;
763 struct request *req = cmd->request;
765 struct scsi_sense_hdr sshdr;
767 int sense_deferred = 0;
768 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
769 ACTION_DELAYED_RETRY} action;
770 char *description = NULL;
773 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
775 sense_deferred = scsi_sense_is_deferred(&sshdr);
778 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
780 if (sense_valid && req->sense) {
782 * SG_IO wants current and deferred errors
784 int len = 8 + cmd->sense_buffer[7];
786 if (len > SCSI_SENSE_BUFFERSIZE)
787 len = SCSI_SENSE_BUFFERSIZE;
788 memcpy(req->sense, cmd->sense_buffer, len);
789 req->sense_len = len;
792 error = __scsi_error_from_host_byte(cmd, result);
795 * __scsi_error_from_host_byte may have reset the host_byte
797 req->errors = cmd->result;
799 req->resid_len = scsi_get_resid(cmd);
801 if (scsi_bidi_cmnd(cmd)) {
803 * Bidi commands Must be complete as a whole,
804 * both sides at once.
806 req->next_rq->resid_len = scsi_in(cmd)->resid;
808 scsi_release_buffers(cmd);
809 blk_end_request_all(req, 0);
811 scsi_next_command(cmd);
816 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
817 BUG_ON(blk_bidi_rq(req));
820 * Next deal with any sectors which we were able to correctly
823 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
825 blk_rq_sectors(req), good_bytes));
828 * Recovered errors need reporting, but they're always treated
829 * as success, so fiddle the result code here. For BLOCK_PC
830 * we already took a copy of the original into rq->errors which
831 * is what gets returned to the user
833 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
834 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
835 * print since caller wants ATA registers. Only occurs on
836 * SCSI ATA PASS_THROUGH commands when CK_COND=1
838 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
840 else if (!(req->cmd_flags & REQ_QUIET))
841 scsi_print_sense("", cmd);
843 /* BLOCK_PC may have set error */
848 * A number of bytes were successfully read. If there
849 * are leftovers and there is some kind of error
850 * (result != 0), retry the rest.
852 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
855 error = __scsi_error_from_host_byte(cmd, result);
857 if (host_byte(result) == DID_RESET) {
858 /* Third party bus reset or reset for error recovery
859 * reasons. Just retry the command and see what
862 action = ACTION_RETRY;
863 } else if (sense_valid && !sense_deferred) {
864 switch (sshdr.sense_key) {
866 if (cmd->device->removable) {
867 /* Detected disc change. Set a bit
868 * and quietly refuse further access.
870 cmd->device->changed = 1;
871 description = "Media Changed";
872 action = ACTION_FAIL;
874 /* Must have been a power glitch, or a
875 * bus reset. Could not have been a
876 * media change, so we just retry the
877 * command and see what happens.
879 action = ACTION_RETRY;
882 case ILLEGAL_REQUEST:
883 /* If we had an ILLEGAL REQUEST returned, then
884 * we may have performed an unsupported
885 * command. The only thing this should be
886 * would be a ten byte read where only a six
887 * byte read was supported. Also, on a system
888 * where READ CAPACITY failed, we may have
889 * read past the end of the disk.
891 if ((cmd->device->use_10_for_rw &&
892 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
893 (cmd->cmnd[0] == READ_10 ||
894 cmd->cmnd[0] == WRITE_10)) {
895 /* This will issue a new 6-byte command. */
896 cmd->device->use_10_for_rw = 0;
897 action = ACTION_REPREP;
898 } else if (sshdr.asc == 0x10) /* DIX */ {
899 description = "Host Data Integrity Failure";
900 action = ACTION_FAIL;
902 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
903 } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
904 (cmd->cmnd[0] == UNMAP ||
905 cmd->cmnd[0] == WRITE_SAME_16 ||
906 cmd->cmnd[0] == WRITE_SAME)) {
907 description = "Discard failure";
908 action = ACTION_FAIL;
911 action = ACTION_FAIL;
913 case ABORTED_COMMAND:
914 action = ACTION_FAIL;
915 if (sshdr.asc == 0x10) { /* DIF */
916 description = "Target Data Integrity Failure";
921 /* If the device is in the process of becoming
922 * ready, or has a temporary blockage, retry.
924 if (sshdr.asc == 0x04) {
925 switch (sshdr.ascq) {
926 case 0x01: /* becoming ready */
927 case 0x04: /* format in progress */
928 case 0x05: /* rebuild in progress */
929 case 0x06: /* recalculation in progress */
930 case 0x07: /* operation in progress */
931 case 0x08: /* Long write in progress */
932 case 0x09: /* self test in progress */
933 case 0x14: /* space allocation in progress */
934 action = ACTION_DELAYED_RETRY;
937 description = "Device not ready";
938 action = ACTION_FAIL;
942 description = "Device not ready";
943 action = ACTION_FAIL;
946 case VOLUME_OVERFLOW:
947 /* See SSC3rXX or current. */
948 action = ACTION_FAIL;
951 description = "Unhandled sense code";
952 action = ACTION_FAIL;
956 description = "Unhandled error code";
957 action = ACTION_FAIL;
962 /* Give up and fail the remainder of the request */
963 scsi_release_buffers(cmd);
964 if (!(req->cmd_flags & REQ_QUIET)) {
966 scmd_printk(KERN_INFO, cmd, "%s\n",
968 scsi_print_result(cmd);
969 if (driver_byte(result) & DRIVER_SENSE)
970 scsi_print_sense("", cmd);
971 scsi_print_command(cmd);
973 if (blk_end_request_err(req, error))
974 scsi_requeue_command(q, cmd);
976 scsi_next_command(cmd);
979 /* Unprep the request and put it back at the head of the queue.
980 * A new command will be prepared and issued.
982 scsi_release_buffers(cmd);
983 scsi_requeue_command(q, cmd);
986 /* Retry the same command immediately */
987 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
989 case ACTION_DELAYED_RETRY:
990 /* Retry the same command after a delay */
991 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
996 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1002 * If sg table allocation fails, requeue request later.
1004 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1006 return BLKPREP_DEFER;
1012 * Next, walk the list, and fill in the addresses and sizes of
1015 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1016 BUG_ON(count > sdb->table.nents);
1017 sdb->table.nents = count;
1018 sdb->length = blk_rq_bytes(req);
1023 * Function: scsi_init_io()
1025 * Purpose: SCSI I/O initialize function.
1027 * Arguments: cmd - Command descriptor we wish to initialize
1029 * Returns: 0 on success
1030 * BLKPREP_DEFER if the failure is retryable
1031 * BLKPREP_KILL if the failure is fatal
1033 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1035 struct request *rq = cmd->request;
1037 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1041 if (blk_bidi_rq(rq)) {
1042 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1043 scsi_sdb_cache, GFP_ATOMIC);
1045 error = BLKPREP_DEFER;
1049 rq->next_rq->special = bidi_sdb;
1050 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1055 if (blk_integrity_rq(rq)) {
1056 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1059 BUG_ON(prot_sdb == NULL);
1060 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1062 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1063 error = BLKPREP_DEFER;
1067 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1068 prot_sdb->table.sgl);
1069 BUG_ON(unlikely(count > ivecs));
1070 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1072 cmd->prot_sdb = prot_sdb;
1073 cmd->prot_sdb->table.nents = count;
1079 scsi_release_buffers(cmd);
1080 cmd->request->special = NULL;
1081 scsi_put_command(cmd);
1084 EXPORT_SYMBOL(scsi_init_io);
1086 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1087 struct request *req)
1089 struct scsi_cmnd *cmd;
1091 if (!req->special) {
1092 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1100 /* pull a tag out of the request if we have one */
1101 cmd->tag = req->tag;
1104 cmd->cmnd = req->cmd;
1105 cmd->prot_op = SCSI_PROT_NORMAL;
1110 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1112 struct scsi_cmnd *cmd;
1113 int ret = scsi_prep_state_check(sdev, req);
1115 if (ret != BLKPREP_OK)
1118 cmd = scsi_get_cmd_from_req(sdev, req);
1120 return BLKPREP_DEFER;
1123 * BLOCK_PC requests may transfer data, in which case they must
1124 * a bio attached to them. Or they might contain a SCSI command
1125 * that does not transfer data, in which case they may optionally
1126 * submit a request without an attached bio.
1131 BUG_ON(!req->nr_phys_segments);
1133 ret = scsi_init_io(cmd, GFP_ATOMIC);
1137 BUG_ON(blk_rq_bytes(req));
1139 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1143 cmd->cmd_len = req->cmd_len;
1144 if (!blk_rq_bytes(req))
1145 cmd->sc_data_direction = DMA_NONE;
1146 else if (rq_data_dir(req) == WRITE)
1147 cmd->sc_data_direction = DMA_TO_DEVICE;
1149 cmd->sc_data_direction = DMA_FROM_DEVICE;
1151 cmd->transfersize = blk_rq_bytes(req);
1152 cmd->allowed = req->retries;
1155 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1158 * Setup a REQ_TYPE_FS command. These are simple read/write request
1159 * from filesystems that still need to be translated to SCSI CDBs from
1162 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1164 struct scsi_cmnd *cmd;
1165 int ret = scsi_prep_state_check(sdev, req);
1167 if (ret != BLKPREP_OK)
1170 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1171 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1172 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1173 if (ret != BLKPREP_OK)
1178 * Filesystem requests must transfer data.
1180 BUG_ON(!req->nr_phys_segments);
1182 cmd = scsi_get_cmd_from_req(sdev, req);
1184 return BLKPREP_DEFER;
1186 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1187 return scsi_init_io(cmd, GFP_ATOMIC);
1189 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1191 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1193 int ret = BLKPREP_OK;
1196 * If the device is not in running state we will reject some
1199 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1200 switch (sdev->sdev_state) {
1202 case SDEV_TRANSPORT_OFFLINE:
1204 * If the device is offline we refuse to process any
1205 * commands. The device must be brought online
1206 * before trying any recovery commands.
1208 sdev_printk(KERN_ERR, sdev,
1209 "rejecting I/O to offline device\n");
1214 * If the device is fully deleted, we refuse to
1215 * process any commands as well.
1217 sdev_printk(KERN_ERR, sdev,
1218 "rejecting I/O to dead device\n");
1223 case SDEV_CREATED_BLOCK:
1225 * If the devices is blocked we defer normal commands.
1227 if (!(req->cmd_flags & REQ_PREEMPT))
1228 ret = BLKPREP_DEFER;
1232 * For any other not fully online state we only allow
1233 * special commands. In particular any user initiated
1234 * command is not allowed.
1236 if (!(req->cmd_flags & REQ_PREEMPT))
1243 EXPORT_SYMBOL(scsi_prep_state_check);
1245 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1247 struct scsi_device *sdev = q->queuedata;
1251 req->errors = DID_NO_CONNECT << 16;
1252 /* release the command and kill it */
1254 struct scsi_cmnd *cmd = req->special;
1255 scsi_release_buffers(cmd);
1256 scsi_put_command(cmd);
1257 req->special = NULL;
1262 * If we defer, the blk_peek_request() returns NULL, but the
1263 * queue must be restarted, so we schedule a callback to happen
1266 if (sdev->device_busy == 0)
1267 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1270 req->cmd_flags |= REQ_DONTPREP;
1275 EXPORT_SYMBOL(scsi_prep_return);
1277 int scsi_prep_fn(struct request_queue *q, struct request *req)
1279 struct scsi_device *sdev = q->queuedata;
1280 int ret = BLKPREP_KILL;
1282 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1283 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1284 return scsi_prep_return(q, req, ret);
1286 EXPORT_SYMBOL(scsi_prep_fn);
1289 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1292 * Called with the queue_lock held.
1294 static inline int scsi_dev_queue_ready(struct request_queue *q,
1295 struct scsi_device *sdev)
1297 if (sdev->device_busy == 0 && sdev->device_blocked) {
1299 * unblock after device_blocked iterates to zero
1301 if (--sdev->device_blocked == 0) {
1303 sdev_printk(KERN_INFO, sdev,
1304 "unblocking device at zero depth\n"));
1306 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1310 if (scsi_device_is_busy(sdev))
1318 * scsi_target_queue_ready: checks if there we can send commands to target
1319 * @sdev: scsi device on starget to check.
1321 * Called with the host lock held.
1323 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1324 struct scsi_device *sdev)
1326 struct scsi_target *starget = scsi_target(sdev);
1328 if (starget->single_lun) {
1329 if (starget->starget_sdev_user &&
1330 starget->starget_sdev_user != sdev)
1332 starget->starget_sdev_user = sdev;
1335 if (starget->target_busy == 0 && starget->target_blocked) {
1337 * unblock after target_blocked iterates to zero
1339 if (--starget->target_blocked == 0) {
1340 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1341 "unblocking target at zero depth\n"));
1346 if (scsi_target_is_busy(starget)) {
1347 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1355 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1356 * return 0. We must end up running the queue again whenever 0 is
1357 * returned, else IO can hang.
1359 * Called with host_lock held.
1361 static inline int scsi_host_queue_ready(struct request_queue *q,
1362 struct Scsi_Host *shost,
1363 struct scsi_device *sdev)
1365 if (scsi_host_in_recovery(shost))
1367 if (shost->host_busy == 0 && shost->host_blocked) {
1369 * unblock after host_blocked iterates to zero
1371 if (--shost->host_blocked == 0) {
1373 printk("scsi%d unblocking host at zero depth\n",
1379 if (scsi_host_is_busy(shost)) {
1380 if (list_empty(&sdev->starved_entry))
1381 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1385 /* We're OK to process the command, so we can't be starved */
1386 if (!list_empty(&sdev->starved_entry))
1387 list_del_init(&sdev->starved_entry);
1393 * Busy state exporting function for request stacking drivers.
1395 * For efficiency, no lock is taken to check the busy state of
1396 * shost/starget/sdev, since the returned value is not guaranteed and
1397 * may be changed after request stacking drivers call the function,
1398 * regardless of taking lock or not.
1400 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1401 * needs to return 'not busy'. Otherwise, request stacking drivers
1402 * may hold requests forever.
1404 static int scsi_lld_busy(struct request_queue *q)
1406 struct scsi_device *sdev = q->queuedata;
1407 struct Scsi_Host *shost;
1409 if (blk_queue_dead(q))
1415 * Ignore host/starget busy state.
1416 * Since block layer does not have a concept of fairness across
1417 * multiple queues, congestion of host/starget needs to be handled
1420 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1427 * Kill a request for a dead device
1429 static void scsi_kill_request(struct request *req, struct request_queue *q)
1431 struct scsi_cmnd *cmd = req->special;
1432 struct scsi_device *sdev;
1433 struct scsi_target *starget;
1434 struct Scsi_Host *shost;
1436 blk_start_request(req);
1438 scmd_printk(KERN_INFO, cmd, "killing request\n");
1441 starget = scsi_target(sdev);
1443 scsi_init_cmd_errh(cmd);
1444 cmd->result = DID_NO_CONNECT << 16;
1445 atomic_inc(&cmd->device->iorequest_cnt);
1448 * SCSI request completion path will do scsi_device_unbusy(),
1449 * bump busy counts. To bump the counters, we need to dance
1450 * with the locks as normal issue path does.
1452 sdev->device_busy++;
1453 spin_unlock(sdev->request_queue->queue_lock);
1454 spin_lock(shost->host_lock);
1456 starget->target_busy++;
1457 spin_unlock(shost->host_lock);
1458 spin_lock(sdev->request_queue->queue_lock);
1460 blk_complete_request(req);
1463 static void scsi_softirq_done(struct request *rq)
1465 struct scsi_cmnd *cmd = rq->special;
1466 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1469 INIT_LIST_HEAD(&cmd->eh_entry);
1471 atomic_inc(&cmd->device->iodone_cnt);
1473 atomic_inc(&cmd->device->ioerr_cnt);
1475 disposition = scsi_decide_disposition(cmd);
1476 if (disposition != SUCCESS &&
1477 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1478 sdev_printk(KERN_ERR, cmd->device,
1479 "timing out command, waited %lus\n",
1481 disposition = SUCCESS;
1484 scsi_log_completion(cmd, disposition);
1486 switch (disposition) {
1488 scsi_finish_command(cmd);
1491 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1493 case ADD_TO_MLQUEUE:
1494 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1497 if (!scsi_eh_scmd_add(cmd, 0))
1498 scsi_finish_command(cmd);
1503 * Function: scsi_request_fn()
1505 * Purpose: Main strategy routine for SCSI.
1507 * Arguments: q - Pointer to actual queue.
1511 * Lock status: IO request lock assumed to be held when called.
1513 static void scsi_request_fn(struct request_queue *q)
1515 struct scsi_device *sdev = q->queuedata;
1516 struct Scsi_Host *shost;
1517 struct scsi_cmnd *cmd;
1518 struct request *req;
1520 if(!get_device(&sdev->sdev_gendev))
1521 /* We must be tearing the block queue down already */
1525 * To start with, we keep looping until the queue is empty, or until
1526 * the host is no longer able to accept any more requests.
1532 * get next queueable request. We do this early to make sure
1533 * that the request is fully prepared even if we cannot
1536 req = blk_peek_request(q);
1537 if (!req || !scsi_dev_queue_ready(q, sdev))
1540 if (unlikely(!scsi_device_online(sdev))) {
1541 sdev_printk(KERN_ERR, sdev,
1542 "rejecting I/O to offline device\n");
1543 scsi_kill_request(req, q);
1549 * Remove the request from the request list.
1551 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1552 blk_start_request(req);
1553 sdev->device_busy++;
1555 spin_unlock(q->queue_lock);
1557 if (unlikely(cmd == NULL)) {
1558 printk(KERN_CRIT "impossible request in %s.\n"
1559 "please mail a stack trace to "
1562 blk_dump_rq_flags(req, "foo");
1565 spin_lock(shost->host_lock);
1568 * We hit this when the driver is using a host wide
1569 * tag map. For device level tag maps the queue_depth check
1570 * in the device ready fn would prevent us from trying
1571 * to allocate a tag. Since the map is a shared host resource
1572 * we add the dev to the starved list so it eventually gets
1573 * a run when a tag is freed.
1575 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1576 if (list_empty(&sdev->starved_entry))
1577 list_add_tail(&sdev->starved_entry,
1578 &shost->starved_list);
1582 if (!scsi_target_queue_ready(shost, sdev))
1585 if (!scsi_host_queue_ready(q, shost, sdev))
1588 scsi_target(sdev)->target_busy++;
1592 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1593 * take the lock again.
1595 spin_unlock_irq(shost->host_lock);
1598 * Finally, initialize any error handling parameters, and set up
1599 * the timers for timeouts.
1601 scsi_init_cmd_errh(cmd);
1604 * Dispatch the command to the low-level driver.
1606 rtn = scsi_dispatch_cmd(cmd);
1607 spin_lock_irq(q->queue_lock);
1615 spin_unlock_irq(shost->host_lock);
1618 * lock q, handle tag, requeue req, and decrement device_busy. We
1619 * must return with queue_lock held.
1621 * Decrementing device_busy without checking it is OK, as all such
1622 * cases (host limits or settings) should run the queue at some
1625 spin_lock_irq(q->queue_lock);
1626 blk_requeue_request(q, req);
1627 sdev->device_busy--;
1629 if (sdev->device_busy == 0)
1630 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1632 /* must be careful here...if we trigger the ->remove() function
1633 * we cannot be holding the q lock */
1634 spin_unlock_irq(q->queue_lock);
1635 put_device(&sdev->sdev_gendev);
1636 spin_lock_irq(q->queue_lock);
1639 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1641 struct device *host_dev;
1642 u64 bounce_limit = 0xffffffff;
1644 if (shost->unchecked_isa_dma)
1645 return BLK_BOUNCE_ISA;
1647 * Platforms with virtual-DMA translation
1648 * hardware have no practical limit.
1650 if (!PCI_DMA_BUS_IS_PHYS)
1651 return BLK_BOUNCE_ANY;
1653 host_dev = scsi_get_device(shost);
1654 if (host_dev && host_dev->dma_mask)
1655 bounce_limit = *host_dev->dma_mask;
1657 return bounce_limit;
1659 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1661 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1662 request_fn_proc *request_fn)
1664 struct request_queue *q;
1665 struct device *dev = shost->dma_dev;
1667 q = blk_init_queue(request_fn, NULL);
1672 * this limit is imposed by hardware restrictions
1674 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1675 SCSI_MAX_SG_CHAIN_SEGMENTS));
1677 if (scsi_host_prot_dma(shost)) {
1678 shost->sg_prot_tablesize =
1679 min_not_zero(shost->sg_prot_tablesize,
1680 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1681 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1682 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1685 blk_queue_max_hw_sectors(q, shost->max_sectors);
1686 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1687 blk_queue_segment_boundary(q, shost->dma_boundary);
1688 dma_set_seg_boundary(dev, shost->dma_boundary);
1690 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1692 if (!shost->use_clustering)
1693 q->limits.cluster = 0;
1696 * set a reasonable default alignment on word boundaries: the
1697 * host and device may alter it using
1698 * blk_queue_update_dma_alignment() later.
1700 blk_queue_dma_alignment(q, 0x03);
1704 EXPORT_SYMBOL(__scsi_alloc_queue);
1706 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1708 struct request_queue *q;
1710 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1714 blk_queue_prep_rq(q, scsi_prep_fn);
1715 blk_queue_softirq_done(q, scsi_softirq_done);
1716 blk_queue_rq_timed_out(q, scsi_times_out);
1717 blk_queue_lld_busy(q, scsi_lld_busy);
1722 * Function: scsi_block_requests()
1724 * Purpose: Utility function used by low-level drivers to prevent further
1725 * commands from being queued to the device.
1727 * Arguments: shost - Host in question
1731 * Lock status: No locks are assumed held.
1733 * Notes: There is no timer nor any other means by which the requests
1734 * get unblocked other than the low-level driver calling
1735 * scsi_unblock_requests().
1737 void scsi_block_requests(struct Scsi_Host *shost)
1739 shost->host_self_blocked = 1;
1741 EXPORT_SYMBOL(scsi_block_requests);
1744 * Function: scsi_unblock_requests()
1746 * Purpose: Utility function used by low-level drivers to allow further
1747 * commands from being queued to the device.
1749 * Arguments: shost - Host in question
1753 * Lock status: No locks are assumed held.
1755 * Notes: There is no timer nor any other means by which the requests
1756 * get unblocked other than the low-level driver calling
1757 * scsi_unblock_requests().
1759 * This is done as an API function so that changes to the
1760 * internals of the scsi mid-layer won't require wholesale
1761 * changes to drivers that use this feature.
1763 void scsi_unblock_requests(struct Scsi_Host *shost)
1765 shost->host_self_blocked = 0;
1766 scsi_run_host_queues(shost);
1768 EXPORT_SYMBOL(scsi_unblock_requests);
1770 int __init scsi_init_queue(void)
1774 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1775 sizeof(struct scsi_data_buffer),
1777 if (!scsi_sdb_cache) {
1778 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1782 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1783 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1784 int size = sgp->size * sizeof(struct scatterlist);
1786 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1787 SLAB_HWCACHE_ALIGN, NULL);
1789 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1794 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1797 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1806 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1807 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1809 mempool_destroy(sgp->pool);
1811 kmem_cache_destroy(sgp->slab);
1813 kmem_cache_destroy(scsi_sdb_cache);
1818 void scsi_exit_queue(void)
1822 kmem_cache_destroy(scsi_sdb_cache);
1824 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1825 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1826 mempool_destroy(sgp->pool);
1827 kmem_cache_destroy(sgp->slab);
1832 * scsi_mode_select - issue a mode select
1833 * @sdev: SCSI device to be queried
1834 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1835 * @sp: Save page bit (0 == don't save, 1 == save)
1836 * @modepage: mode page being requested
1837 * @buffer: request buffer (may not be smaller than eight bytes)
1838 * @len: length of request buffer.
1839 * @timeout: command timeout
1840 * @retries: number of retries before failing
1841 * @data: returns a structure abstracting the mode header data
1842 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1843 * must be SCSI_SENSE_BUFFERSIZE big.
1845 * Returns zero if successful; negative error number or scsi
1850 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1851 unsigned char *buffer, int len, int timeout, int retries,
1852 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1854 unsigned char cmd[10];
1855 unsigned char *real_buffer;
1858 memset(cmd, 0, sizeof(cmd));
1859 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1861 if (sdev->use_10_for_ms) {
1864 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1867 memcpy(real_buffer + 8, buffer, len);
1871 real_buffer[2] = data->medium_type;
1872 real_buffer[3] = data->device_specific;
1873 real_buffer[4] = data->longlba ? 0x01 : 0;
1875 real_buffer[6] = data->block_descriptor_length >> 8;
1876 real_buffer[7] = data->block_descriptor_length;
1878 cmd[0] = MODE_SELECT_10;
1882 if (len > 255 || data->block_descriptor_length > 255 ||
1886 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1889 memcpy(real_buffer + 4, buffer, len);
1892 real_buffer[1] = data->medium_type;
1893 real_buffer[2] = data->device_specific;
1894 real_buffer[3] = data->block_descriptor_length;
1897 cmd[0] = MODE_SELECT;
1901 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1902 sshdr, timeout, retries, NULL);
1906 EXPORT_SYMBOL_GPL(scsi_mode_select);
1909 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1910 * @sdev: SCSI device to be queried
1911 * @dbd: set if mode sense will allow block descriptors to be returned
1912 * @modepage: mode page being requested
1913 * @buffer: request buffer (may not be smaller than eight bytes)
1914 * @len: length of request buffer.
1915 * @timeout: command timeout
1916 * @retries: number of retries before failing
1917 * @data: returns a structure abstracting the mode header data
1918 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1919 * must be SCSI_SENSE_BUFFERSIZE big.
1921 * Returns zero if unsuccessful, or the header offset (either 4
1922 * or 8 depending on whether a six or ten byte command was
1923 * issued) if successful.
1926 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1927 unsigned char *buffer, int len, int timeout, int retries,
1928 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1930 unsigned char cmd[12];
1934 struct scsi_sense_hdr my_sshdr;
1936 memset(data, 0, sizeof(*data));
1937 memset(&cmd[0], 0, 12);
1938 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1941 /* caller might not be interested in sense, but we need it */
1946 use_10_for_ms = sdev->use_10_for_ms;
1948 if (use_10_for_ms) {
1952 cmd[0] = MODE_SENSE_10;
1959 cmd[0] = MODE_SENSE;
1964 memset(buffer, 0, len);
1966 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1967 sshdr, timeout, retries, NULL);
1969 /* This code looks awful: what it's doing is making sure an
1970 * ILLEGAL REQUEST sense return identifies the actual command
1971 * byte as the problem. MODE_SENSE commands can return
1972 * ILLEGAL REQUEST if the code page isn't supported */
1974 if (use_10_for_ms && !scsi_status_is_good(result) &&
1975 (driver_byte(result) & DRIVER_SENSE)) {
1976 if (scsi_sense_valid(sshdr)) {
1977 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1978 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1980 * Invalid command operation code
1982 sdev->use_10_for_ms = 0;
1988 if(scsi_status_is_good(result)) {
1989 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1990 (modepage == 6 || modepage == 8))) {
1991 /* Initio breakage? */
1994 data->medium_type = 0;
1995 data->device_specific = 0;
1997 data->block_descriptor_length = 0;
1998 } else if(use_10_for_ms) {
1999 data->length = buffer[0]*256 + buffer[1] + 2;
2000 data->medium_type = buffer[2];
2001 data->device_specific = buffer[3];
2002 data->longlba = buffer[4] & 0x01;
2003 data->block_descriptor_length = buffer[6]*256
2006 data->length = buffer[0] + 1;
2007 data->medium_type = buffer[1];
2008 data->device_specific = buffer[2];
2009 data->block_descriptor_length = buffer[3];
2011 data->header_length = header_length;
2016 EXPORT_SYMBOL(scsi_mode_sense);
2019 * scsi_test_unit_ready - test if unit is ready
2020 * @sdev: scsi device to change the state of.
2021 * @timeout: command timeout
2022 * @retries: number of retries before failing
2023 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2024 * returning sense. Make sure that this is cleared before passing
2027 * Returns zero if unsuccessful or an error if TUR failed. For
2028 * removable media, UNIT_ATTENTION sets ->changed flag.
2031 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2032 struct scsi_sense_hdr *sshdr_external)
2035 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2037 struct scsi_sense_hdr *sshdr;
2040 if (!sshdr_external)
2041 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2043 sshdr = sshdr_external;
2045 /* try to eat the UNIT_ATTENTION if there are enough retries */
2047 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2048 timeout, retries, NULL);
2049 if (sdev->removable && scsi_sense_valid(sshdr) &&
2050 sshdr->sense_key == UNIT_ATTENTION)
2052 } while (scsi_sense_valid(sshdr) &&
2053 sshdr->sense_key == UNIT_ATTENTION && --retries);
2055 if (!sshdr_external)
2059 EXPORT_SYMBOL(scsi_test_unit_ready);
2062 * scsi_device_set_state - Take the given device through the device state model.
2063 * @sdev: scsi device to change the state of.
2064 * @state: state to change to.
2066 * Returns zero if unsuccessful or an error if the requested
2067 * transition is illegal.
2070 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2072 enum scsi_device_state oldstate = sdev->sdev_state;
2074 if (state == oldstate)
2080 case SDEV_CREATED_BLOCK:
2091 case SDEV_TRANSPORT_OFFLINE:
2104 case SDEV_TRANSPORT_OFFLINE:
2112 case SDEV_TRANSPORT_OFFLINE:
2127 case SDEV_CREATED_BLOCK:
2134 case SDEV_CREATED_BLOCK:
2149 case SDEV_TRANSPORT_OFFLINE:
2162 case SDEV_TRANSPORT_OFFLINE:
2171 sdev->sdev_state = state;
2175 SCSI_LOG_ERROR_RECOVERY(1,
2176 sdev_printk(KERN_ERR, sdev,
2177 "Illegal state transition %s->%s\n",
2178 scsi_device_state_name(oldstate),
2179 scsi_device_state_name(state))
2183 EXPORT_SYMBOL(scsi_device_set_state);
2186 * sdev_evt_emit - emit a single SCSI device uevent
2187 * @sdev: associated SCSI device
2188 * @evt: event to emit
2190 * Send a single uevent (scsi_event) to the associated scsi_device.
2192 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2197 switch (evt->evt_type) {
2198 case SDEV_EVT_MEDIA_CHANGE:
2199 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2209 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2213 * sdev_evt_thread - send a uevent for each scsi event
2214 * @work: work struct for scsi_device
2216 * Dispatch queued events to their associated scsi_device kobjects
2219 void scsi_evt_thread(struct work_struct *work)
2221 struct scsi_device *sdev;
2222 LIST_HEAD(event_list);
2224 sdev = container_of(work, struct scsi_device, event_work);
2227 struct scsi_event *evt;
2228 struct list_head *this, *tmp;
2229 unsigned long flags;
2231 spin_lock_irqsave(&sdev->list_lock, flags);
2232 list_splice_init(&sdev->event_list, &event_list);
2233 spin_unlock_irqrestore(&sdev->list_lock, flags);
2235 if (list_empty(&event_list))
2238 list_for_each_safe(this, tmp, &event_list) {
2239 evt = list_entry(this, struct scsi_event, node);
2240 list_del(&evt->node);
2241 scsi_evt_emit(sdev, evt);
2248 * sdev_evt_send - send asserted event to uevent thread
2249 * @sdev: scsi_device event occurred on
2250 * @evt: event to send
2252 * Assert scsi device event asynchronously.
2254 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2256 unsigned long flags;
2259 /* FIXME: currently this check eliminates all media change events
2260 * for polled devices. Need to update to discriminate between AN
2261 * and polled events */
2262 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2268 spin_lock_irqsave(&sdev->list_lock, flags);
2269 list_add_tail(&evt->node, &sdev->event_list);
2270 schedule_work(&sdev->event_work);
2271 spin_unlock_irqrestore(&sdev->list_lock, flags);
2273 EXPORT_SYMBOL_GPL(sdev_evt_send);
2276 * sdev_evt_alloc - allocate a new scsi event
2277 * @evt_type: type of event to allocate
2278 * @gfpflags: GFP flags for allocation
2280 * Allocates and returns a new scsi_event.
2282 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2285 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2289 evt->evt_type = evt_type;
2290 INIT_LIST_HEAD(&evt->node);
2292 /* evt_type-specific initialization, if any */
2294 case SDEV_EVT_MEDIA_CHANGE:
2302 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2305 * sdev_evt_send_simple - send asserted event to uevent thread
2306 * @sdev: scsi_device event occurred on
2307 * @evt_type: type of event to send
2308 * @gfpflags: GFP flags for allocation
2310 * Assert scsi device event asynchronously, given an event type.
2312 void sdev_evt_send_simple(struct scsi_device *sdev,
2313 enum scsi_device_event evt_type, gfp_t gfpflags)
2315 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2317 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2322 sdev_evt_send(sdev, evt);
2324 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2327 * scsi_device_quiesce - Block user issued commands.
2328 * @sdev: scsi device to quiesce.
2330 * This works by trying to transition to the SDEV_QUIESCE state
2331 * (which must be a legal transition). When the device is in this
2332 * state, only special requests will be accepted, all others will
2333 * be deferred. Since special requests may also be requeued requests,
2334 * a successful return doesn't guarantee the device will be
2335 * totally quiescent.
2337 * Must be called with user context, may sleep.
2339 * Returns zero if unsuccessful or an error if not.
2342 scsi_device_quiesce(struct scsi_device *sdev)
2344 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2348 scsi_run_queue(sdev->request_queue);
2349 while (sdev->device_busy) {
2350 msleep_interruptible(200);
2351 scsi_run_queue(sdev->request_queue);
2355 EXPORT_SYMBOL(scsi_device_quiesce);
2358 * scsi_device_resume - Restart user issued commands to a quiesced device.
2359 * @sdev: scsi device to resume.
2361 * Moves the device from quiesced back to running and restarts the
2364 * Must be called with user context, may sleep.
2366 void scsi_device_resume(struct scsi_device *sdev)
2368 /* check if the device state was mutated prior to resume, and if
2369 * so assume the state is being managed elsewhere (for example
2370 * device deleted during suspend)
2372 if (sdev->sdev_state != SDEV_QUIESCE ||
2373 scsi_device_set_state(sdev, SDEV_RUNNING))
2375 scsi_run_queue(sdev->request_queue);
2377 EXPORT_SYMBOL(scsi_device_resume);
2380 device_quiesce_fn(struct scsi_device *sdev, void *data)
2382 scsi_device_quiesce(sdev);
2386 scsi_target_quiesce(struct scsi_target *starget)
2388 starget_for_each_device(starget, NULL, device_quiesce_fn);
2390 EXPORT_SYMBOL(scsi_target_quiesce);
2393 device_resume_fn(struct scsi_device *sdev, void *data)
2395 scsi_device_resume(sdev);
2399 scsi_target_resume(struct scsi_target *starget)
2401 starget_for_each_device(starget, NULL, device_resume_fn);
2403 EXPORT_SYMBOL(scsi_target_resume);
2406 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2407 * @sdev: device to block
2409 * Block request made by scsi lld's to temporarily stop all
2410 * scsi commands on the specified device. Called from interrupt
2411 * or normal process context.
2413 * Returns zero if successful or error if not
2416 * This routine transitions the device to the SDEV_BLOCK state
2417 * (which must be a legal transition). When the device is in this
2418 * state, all commands are deferred until the scsi lld reenables
2419 * the device with scsi_device_unblock or device_block_tmo fires.
2422 scsi_internal_device_block(struct scsi_device *sdev)
2424 struct request_queue *q = sdev->request_queue;
2425 unsigned long flags;
2428 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2430 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2437 * The device has transitioned to SDEV_BLOCK. Stop the
2438 * block layer from calling the midlayer with this device's
2441 spin_lock_irqsave(q->queue_lock, flags);
2443 spin_unlock_irqrestore(q->queue_lock, flags);
2447 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2450 * scsi_internal_device_unblock - resume a device after a block request
2451 * @sdev: device to resume
2452 * @new_state: state to set devices to after unblocking
2454 * Called by scsi lld's or the midlayer to restart the device queue
2455 * for the previously suspended scsi device. Called from interrupt or
2456 * normal process context.
2458 * Returns zero if successful or error if not.
2461 * This routine transitions the device to the SDEV_RUNNING state
2462 * or to one of the offline states (which must be a legal transition)
2463 * allowing the midlayer to goose the queue for this device.
2466 scsi_internal_device_unblock(struct scsi_device *sdev,
2467 enum scsi_device_state new_state)
2469 struct request_queue *q = sdev->request_queue;
2470 unsigned long flags;
2473 * Try to transition the scsi device to SDEV_RUNNING or one of the
2474 * offlined states and goose the device queue if successful.
2476 if ((sdev->sdev_state == SDEV_BLOCK) ||
2477 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2478 sdev->sdev_state = new_state;
2479 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2480 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2481 new_state == SDEV_OFFLINE)
2482 sdev->sdev_state = new_state;
2484 sdev->sdev_state = SDEV_CREATED;
2485 } else if (sdev->sdev_state != SDEV_CANCEL &&
2486 sdev->sdev_state != SDEV_OFFLINE)
2489 spin_lock_irqsave(q->queue_lock, flags);
2491 spin_unlock_irqrestore(q->queue_lock, flags);
2495 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2498 device_block(struct scsi_device *sdev, void *data)
2500 scsi_internal_device_block(sdev);
2504 target_block(struct device *dev, void *data)
2506 if (scsi_is_target_device(dev))
2507 starget_for_each_device(to_scsi_target(dev), NULL,
2513 scsi_target_block(struct device *dev)
2515 if (scsi_is_target_device(dev))
2516 starget_for_each_device(to_scsi_target(dev), NULL,
2519 device_for_each_child(dev, NULL, target_block);
2521 EXPORT_SYMBOL_GPL(scsi_target_block);
2524 device_unblock(struct scsi_device *sdev, void *data)
2526 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2530 target_unblock(struct device *dev, void *data)
2532 if (scsi_is_target_device(dev))
2533 starget_for_each_device(to_scsi_target(dev), data,
2539 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2541 if (scsi_is_target_device(dev))
2542 starget_for_each_device(to_scsi_target(dev), &new_state,
2545 device_for_each_child(dev, &new_state, target_unblock);
2547 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2550 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2551 * @sgl: scatter-gather list
2552 * @sg_count: number of segments in sg
2553 * @offset: offset in bytes into sg, on return offset into the mapped area
2554 * @len: bytes to map, on return number of bytes mapped
2556 * Returns virtual address of the start of the mapped page
2558 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2559 size_t *offset, size_t *len)
2562 size_t sg_len = 0, len_complete = 0;
2563 struct scatterlist *sg;
2566 WARN_ON(!irqs_disabled());
2568 for_each_sg(sgl, sg, sg_count, i) {
2569 len_complete = sg_len; /* Complete sg-entries */
2570 sg_len += sg->length;
2571 if (sg_len > *offset)
2575 if (unlikely(i == sg_count)) {
2576 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2578 __func__, sg_len, *offset, sg_count);
2583 /* Offset starting from the beginning of first page in this sg-entry */
2584 *offset = *offset - len_complete + sg->offset;
2586 /* Assumption: contiguous pages can be accessed as "page + i" */
2587 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2588 *offset &= ~PAGE_MASK;
2590 /* Bytes in this sg-entry from *offset to the end of the page */
2591 sg_len = PAGE_SIZE - *offset;
2595 return kmap_atomic(page);
2597 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2600 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2601 * @virt: virtual address to be unmapped
2603 void scsi_kunmap_atomic_sg(void *virt)
2605 kunmap_atomic(virt);
2607 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);