]> Git Repo - linux.git/blob - drivers/perf/arm_pmu.c
Merge tag 'perf-core-2022-12-12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / perf / arm_pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3
4 /*
5  * ARM performance counter support.
6  *
7  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8  * Copyright (C) 2010 ARM Ltd., Will Deacon <[email protected]>
9  *
10  * This code is based on the sparc64 perf event code, which is in turn based
11  * on the x86 code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26
27 #include <asm/irq_regs.h>
28
29 static int armpmu_count_irq_users(const int irq);
30
31 struct pmu_irq_ops {
32         void (*enable_pmuirq)(unsigned int irq);
33         void (*disable_pmuirq)(unsigned int irq);
34         void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35 };
36
37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38 {
39         free_irq(irq, per_cpu_ptr(devid, cpu));
40 }
41
42 static const struct pmu_irq_ops pmuirq_ops = {
43         .enable_pmuirq = enable_irq,
44         .disable_pmuirq = disable_irq_nosync,
45         .free_pmuirq = armpmu_free_pmuirq
46 };
47
48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49 {
50         free_nmi(irq, per_cpu_ptr(devid, cpu));
51 }
52
53 static const struct pmu_irq_ops pmunmi_ops = {
54         .enable_pmuirq = enable_nmi,
55         .disable_pmuirq = disable_nmi_nosync,
56         .free_pmuirq = armpmu_free_pmunmi
57 };
58
59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60 {
61         enable_percpu_irq(irq, IRQ_TYPE_NONE);
62 }
63
64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65                                    void __percpu *devid)
66 {
67         if (armpmu_count_irq_users(irq) == 1)
68                 free_percpu_irq(irq, devid);
69 }
70
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72         .enable_pmuirq = armpmu_enable_percpu_pmuirq,
73         .disable_pmuirq = disable_percpu_irq,
74         .free_pmuirq = armpmu_free_percpu_pmuirq
75 };
76
77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78 {
79         if (!prepare_percpu_nmi(irq))
80                 enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81 }
82
83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84 {
85         disable_percpu_nmi(irq);
86         teardown_percpu_nmi(irq);
87 }
88
89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90                                       void __percpu *devid)
91 {
92         if (armpmu_count_irq_users(irq) == 1)
93                 free_percpu_nmi(irq, devid);
94 }
95
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97         .enable_pmuirq = armpmu_enable_percpu_pmunmi,
98         .disable_pmuirq = armpmu_disable_percpu_pmunmi,
99         .free_pmuirq = armpmu_free_percpu_pmunmi
100 };
101
102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105
106 static bool has_nmi;
107
108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109 {
110         if (event->hw.flags & ARMPMU_EVT_64BIT)
111                 return GENMASK_ULL(63, 0);
112         else if (event->hw.flags & ARMPMU_EVT_47BIT)
113                 return GENMASK_ULL(46, 0);
114         else
115                 return GENMASK_ULL(31, 0);
116 }
117
118 static int
119 armpmu_map_cache_event(const unsigned (*cache_map)
120                                       [PERF_COUNT_HW_CACHE_MAX]
121                                       [PERF_COUNT_HW_CACHE_OP_MAX]
122                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
123                        u64 config)
124 {
125         unsigned int cache_type, cache_op, cache_result, ret;
126
127         cache_type = (config >>  0) & 0xff;
128         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
129                 return -EINVAL;
130
131         cache_op = (config >>  8) & 0xff;
132         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
133                 return -EINVAL;
134
135         cache_result = (config >> 16) & 0xff;
136         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
137                 return -EINVAL;
138
139         if (!cache_map)
140                 return -ENOENT;
141
142         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
143
144         if (ret == CACHE_OP_UNSUPPORTED)
145                 return -ENOENT;
146
147         return ret;
148 }
149
150 static int
151 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
152 {
153         int mapping;
154
155         if (config >= PERF_COUNT_HW_MAX)
156                 return -EINVAL;
157
158         if (!event_map)
159                 return -ENOENT;
160
161         mapping = (*event_map)[config];
162         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
163 }
164
165 static int
166 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
167 {
168         return (int)(config & raw_event_mask);
169 }
170
171 int
172 armpmu_map_event(struct perf_event *event,
173                  const unsigned (*event_map)[PERF_COUNT_HW_MAX],
174                  const unsigned (*cache_map)
175                                 [PERF_COUNT_HW_CACHE_MAX]
176                                 [PERF_COUNT_HW_CACHE_OP_MAX]
177                                 [PERF_COUNT_HW_CACHE_RESULT_MAX],
178                  u32 raw_event_mask)
179 {
180         u64 config = event->attr.config;
181         int type = event->attr.type;
182
183         if (type == event->pmu->type)
184                 return armpmu_map_raw_event(raw_event_mask, config);
185
186         switch (type) {
187         case PERF_TYPE_HARDWARE:
188                 return armpmu_map_hw_event(event_map, config);
189         case PERF_TYPE_HW_CACHE:
190                 return armpmu_map_cache_event(cache_map, config);
191         case PERF_TYPE_RAW:
192                 return armpmu_map_raw_event(raw_event_mask, config);
193         }
194
195         return -ENOENT;
196 }
197
198 int armpmu_event_set_period(struct perf_event *event)
199 {
200         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
201         struct hw_perf_event *hwc = &event->hw;
202         s64 left = local64_read(&hwc->period_left);
203         s64 period = hwc->sample_period;
204         u64 max_period;
205         int ret = 0;
206
207         max_period = arm_pmu_event_max_period(event);
208         if (unlikely(left <= -period)) {
209                 left = period;
210                 local64_set(&hwc->period_left, left);
211                 hwc->last_period = period;
212                 ret = 1;
213         }
214
215         if (unlikely(left <= 0)) {
216                 left += period;
217                 local64_set(&hwc->period_left, left);
218                 hwc->last_period = period;
219                 ret = 1;
220         }
221
222         /*
223          * Limit the maximum period to prevent the counter value
224          * from overtaking the one we are about to program. In
225          * effect we are reducing max_period to account for
226          * interrupt latency (and we are being very conservative).
227          */
228         if (left > (max_period >> 1))
229                 left = (max_period >> 1);
230
231         local64_set(&hwc->prev_count, (u64)-left);
232
233         armpmu->write_counter(event, (u64)(-left) & max_period);
234
235         perf_event_update_userpage(event);
236
237         return ret;
238 }
239
240 u64 armpmu_event_update(struct perf_event *event)
241 {
242         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
243         struct hw_perf_event *hwc = &event->hw;
244         u64 delta, prev_raw_count, new_raw_count;
245         u64 max_period = arm_pmu_event_max_period(event);
246
247 again:
248         prev_raw_count = local64_read(&hwc->prev_count);
249         new_raw_count = armpmu->read_counter(event);
250
251         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
252                              new_raw_count) != prev_raw_count)
253                 goto again;
254
255         delta = (new_raw_count - prev_raw_count) & max_period;
256
257         local64_add(delta, &event->count);
258         local64_sub(delta, &hwc->period_left);
259
260         return new_raw_count;
261 }
262
263 static void
264 armpmu_read(struct perf_event *event)
265 {
266         armpmu_event_update(event);
267 }
268
269 static void
270 armpmu_stop(struct perf_event *event, int flags)
271 {
272         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
273         struct hw_perf_event *hwc = &event->hw;
274
275         /*
276          * ARM pmu always has to update the counter, so ignore
277          * PERF_EF_UPDATE, see comments in armpmu_start().
278          */
279         if (!(hwc->state & PERF_HES_STOPPED)) {
280                 armpmu->disable(event);
281                 armpmu_event_update(event);
282                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
283         }
284 }
285
286 static void armpmu_start(struct perf_event *event, int flags)
287 {
288         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
289         struct hw_perf_event *hwc = &event->hw;
290
291         /*
292          * ARM pmu always has to reprogram the period, so ignore
293          * PERF_EF_RELOAD, see the comment below.
294          */
295         if (flags & PERF_EF_RELOAD)
296                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
297
298         hwc->state = 0;
299         /*
300          * Set the period again. Some counters can't be stopped, so when we
301          * were stopped we simply disabled the IRQ source and the counter
302          * may have been left counting. If we don't do this step then we may
303          * get an interrupt too soon or *way* too late if the overflow has
304          * happened since disabling.
305          */
306         armpmu_event_set_period(event);
307         armpmu->enable(event);
308 }
309
310 static void
311 armpmu_del(struct perf_event *event, int flags)
312 {
313         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
314         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
315         struct hw_perf_event *hwc = &event->hw;
316         int idx = hwc->idx;
317
318         armpmu_stop(event, PERF_EF_UPDATE);
319         hw_events->events[idx] = NULL;
320         armpmu->clear_event_idx(hw_events, event);
321         perf_event_update_userpage(event);
322         /* Clear the allocated counter */
323         hwc->idx = -1;
324 }
325
326 static int
327 armpmu_add(struct perf_event *event, int flags)
328 {
329         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
330         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
331         struct hw_perf_event *hwc = &event->hw;
332         int idx;
333
334         /* An event following a process won't be stopped earlier */
335         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
336                 return -ENOENT;
337
338         /* If we don't have a space for the counter then finish early. */
339         idx = armpmu->get_event_idx(hw_events, event);
340         if (idx < 0)
341                 return idx;
342
343         /*
344          * If there is an event in the counter we are going to use then make
345          * sure it is disabled.
346          */
347         event->hw.idx = idx;
348         armpmu->disable(event);
349         hw_events->events[idx] = event;
350
351         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
352         if (flags & PERF_EF_START)
353                 armpmu_start(event, PERF_EF_RELOAD);
354
355         /* Propagate our changes to the userspace mapping. */
356         perf_event_update_userpage(event);
357
358         return 0;
359 }
360
361 static int
362 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
363                                struct perf_event *event)
364 {
365         struct arm_pmu *armpmu;
366
367         if (is_software_event(event))
368                 return 1;
369
370         /*
371          * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
372          * core perf code won't check that the pmu->ctx == leader->ctx
373          * until after pmu->event_init(event).
374          */
375         if (event->pmu != pmu)
376                 return 0;
377
378         if (event->state < PERF_EVENT_STATE_OFF)
379                 return 1;
380
381         if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
382                 return 1;
383
384         armpmu = to_arm_pmu(event->pmu);
385         return armpmu->get_event_idx(hw_events, event) >= 0;
386 }
387
388 static int
389 validate_group(struct perf_event *event)
390 {
391         struct perf_event *sibling, *leader = event->group_leader;
392         struct pmu_hw_events fake_pmu;
393
394         /*
395          * Initialise the fake PMU. We only need to populate the
396          * used_mask for the purposes of validation.
397          */
398         memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
399
400         if (!validate_event(event->pmu, &fake_pmu, leader))
401                 return -EINVAL;
402
403         if (event == leader)
404                 return 0;
405
406         for_each_sibling_event(sibling, leader) {
407                 if (!validate_event(event->pmu, &fake_pmu, sibling))
408                         return -EINVAL;
409         }
410
411         if (!validate_event(event->pmu, &fake_pmu, event))
412                 return -EINVAL;
413
414         return 0;
415 }
416
417 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
418 {
419         struct arm_pmu *armpmu;
420         int ret;
421         u64 start_clock, finish_clock;
422
423         /*
424          * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
425          * the handlers expect a struct arm_pmu*. The percpu_irq framework will
426          * do any necessary shifting, we just need to perform the first
427          * dereference.
428          */
429         armpmu = *(void **)dev;
430         if (WARN_ON_ONCE(!armpmu))
431                 return IRQ_NONE;
432
433         start_clock = sched_clock();
434         ret = armpmu->handle_irq(armpmu);
435         finish_clock = sched_clock();
436
437         perf_sample_event_took(finish_clock - start_clock);
438         return ret;
439 }
440
441 static int
442 __hw_perf_event_init(struct perf_event *event)
443 {
444         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
445         struct hw_perf_event *hwc = &event->hw;
446         int mapping;
447
448         hwc->flags = 0;
449         mapping = armpmu->map_event(event);
450
451         if (mapping < 0) {
452                 pr_debug("event %x:%llx not supported\n", event->attr.type,
453                          event->attr.config);
454                 return mapping;
455         }
456
457         /*
458          * We don't assign an index until we actually place the event onto
459          * hardware. Use -1 to signify that we haven't decided where to put it
460          * yet. For SMP systems, each core has it's own PMU so we can't do any
461          * clever allocation or constraints checking at this point.
462          */
463         hwc->idx                = -1;
464         hwc->config_base        = 0;
465         hwc->config             = 0;
466         hwc->event_base         = 0;
467
468         /*
469          * Check whether we need to exclude the counter from certain modes.
470          */
471         if (armpmu->set_event_filter &&
472             armpmu->set_event_filter(hwc, &event->attr)) {
473                 pr_debug("ARM performance counters do not support "
474                          "mode exclusion\n");
475                 return -EOPNOTSUPP;
476         }
477
478         /*
479          * Store the event encoding into the config_base field.
480          */
481         hwc->config_base            |= (unsigned long)mapping;
482
483         if (!is_sampling_event(event)) {
484                 /*
485                  * For non-sampling runs, limit the sample_period to half
486                  * of the counter width. That way, the new counter value
487                  * is far less likely to overtake the previous one unless
488                  * you have some serious IRQ latency issues.
489                  */
490                 hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
491                 hwc->last_period    = hwc->sample_period;
492                 local64_set(&hwc->period_left, hwc->sample_period);
493         }
494
495         return validate_group(event);
496 }
497
498 static int armpmu_event_init(struct perf_event *event)
499 {
500         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
501
502         /*
503          * Reject CPU-affine events for CPUs that are of a different class to
504          * that which this PMU handles. Process-following events (where
505          * event->cpu == -1) can be migrated between CPUs, and thus we have to
506          * reject them later (in armpmu_add) if they're scheduled on a
507          * different class of CPU.
508          */
509         if (event->cpu != -1 &&
510                 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
511                 return -ENOENT;
512
513         /* does not support taken branch sampling */
514         if (has_branch_stack(event))
515                 return -EOPNOTSUPP;
516
517         return __hw_perf_event_init(event);
518 }
519
520 static void armpmu_enable(struct pmu *pmu)
521 {
522         struct arm_pmu *armpmu = to_arm_pmu(pmu);
523         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
524         bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
525
526         /* For task-bound events we may be called on other CPUs */
527         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
528                 return;
529
530         if (enabled)
531                 armpmu->start(armpmu);
532 }
533
534 static void armpmu_disable(struct pmu *pmu)
535 {
536         struct arm_pmu *armpmu = to_arm_pmu(pmu);
537
538         /* For task-bound events we may be called on other CPUs */
539         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
540                 return;
541
542         armpmu->stop(armpmu);
543 }
544
545 /*
546  * In heterogeneous systems, events are specific to a particular
547  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
548  * the same microarchitecture.
549  */
550 static bool armpmu_filter(struct pmu *pmu, int cpu)
551 {
552         struct arm_pmu *armpmu = to_arm_pmu(pmu);
553         bool ret;
554
555         ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
556         if (ret && armpmu->filter)
557                 return armpmu->filter(pmu, cpu);
558
559         return ret;
560 }
561
562 static ssize_t cpus_show(struct device *dev,
563                          struct device_attribute *attr, char *buf)
564 {
565         struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
566         return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
567 }
568
569 static DEVICE_ATTR_RO(cpus);
570
571 static struct attribute *armpmu_common_attrs[] = {
572         &dev_attr_cpus.attr,
573         NULL,
574 };
575
576 static const struct attribute_group armpmu_common_attr_group = {
577         .attrs = armpmu_common_attrs,
578 };
579
580 static int armpmu_count_irq_users(const int irq)
581 {
582         int cpu, count = 0;
583
584         for_each_possible_cpu(cpu) {
585                 if (per_cpu(cpu_irq, cpu) == irq)
586                         count++;
587         }
588
589         return count;
590 }
591
592 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
593 {
594         const struct pmu_irq_ops *ops = NULL;
595         int cpu;
596
597         for_each_possible_cpu(cpu) {
598                 if (per_cpu(cpu_irq, cpu) != irq)
599                         continue;
600
601                 ops = per_cpu(cpu_irq_ops, cpu);
602                 if (ops)
603                         break;
604         }
605
606         return ops;
607 }
608
609 void armpmu_free_irq(int irq, int cpu)
610 {
611         if (per_cpu(cpu_irq, cpu) == 0)
612                 return;
613         if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
614                 return;
615
616         per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
617
618         per_cpu(cpu_irq, cpu) = 0;
619         per_cpu(cpu_irq_ops, cpu) = NULL;
620 }
621
622 int armpmu_request_irq(int irq, int cpu)
623 {
624         int err = 0;
625         const irq_handler_t handler = armpmu_dispatch_irq;
626         const struct pmu_irq_ops *irq_ops;
627
628         if (!irq)
629                 return 0;
630
631         if (!irq_is_percpu_devid(irq)) {
632                 unsigned long irq_flags;
633
634                 err = irq_force_affinity(irq, cpumask_of(cpu));
635
636                 if (err && num_possible_cpus() > 1) {
637                         pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
638                                 irq, cpu);
639                         goto err_out;
640                 }
641
642                 irq_flags = IRQF_PERCPU |
643                             IRQF_NOBALANCING | IRQF_NO_AUTOEN |
644                             IRQF_NO_THREAD;
645
646                 err = request_nmi(irq, handler, irq_flags, "arm-pmu",
647                                   per_cpu_ptr(&cpu_armpmu, cpu));
648
649                 /* If cannot get an NMI, get a normal interrupt */
650                 if (err) {
651                         err = request_irq(irq, handler, irq_flags, "arm-pmu",
652                                           per_cpu_ptr(&cpu_armpmu, cpu));
653                         irq_ops = &pmuirq_ops;
654                 } else {
655                         has_nmi = true;
656                         irq_ops = &pmunmi_ops;
657                 }
658         } else if (armpmu_count_irq_users(irq) == 0) {
659                 err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
660
661                 /* If cannot get an NMI, get a normal interrupt */
662                 if (err) {
663                         err = request_percpu_irq(irq, handler, "arm-pmu",
664                                                  &cpu_armpmu);
665                         irq_ops = &percpu_pmuirq_ops;
666                 } else {
667                         has_nmi = true;
668                         irq_ops = &percpu_pmunmi_ops;
669                 }
670         } else {
671                 /* Per cpudevid irq was already requested by another CPU */
672                 irq_ops = armpmu_find_irq_ops(irq);
673
674                 if (WARN_ON(!irq_ops))
675                         err = -EINVAL;
676         }
677
678         if (err)
679                 goto err_out;
680
681         per_cpu(cpu_irq, cpu) = irq;
682         per_cpu(cpu_irq_ops, cpu) = irq_ops;
683         return 0;
684
685 err_out:
686         pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
687         return err;
688 }
689
690 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
691 {
692         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
693         return per_cpu(hw_events->irq, cpu);
694 }
695
696 /*
697  * PMU hardware loses all context when a CPU goes offline.
698  * When a CPU is hotplugged back in, since some hardware registers are
699  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
700  * junk values out of them.
701  */
702 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
703 {
704         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
705         int irq;
706
707         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
708                 return 0;
709         if (pmu->reset)
710                 pmu->reset(pmu);
711
712         per_cpu(cpu_armpmu, cpu) = pmu;
713
714         irq = armpmu_get_cpu_irq(pmu, cpu);
715         if (irq)
716                 per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
717
718         return 0;
719 }
720
721 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
722 {
723         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
724         int irq;
725
726         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
727                 return 0;
728
729         irq = armpmu_get_cpu_irq(pmu, cpu);
730         if (irq)
731                 per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
732
733         per_cpu(cpu_armpmu, cpu) = NULL;
734
735         return 0;
736 }
737
738 #ifdef CONFIG_CPU_PM
739 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
740 {
741         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
742         struct perf_event *event;
743         int idx;
744
745         for (idx = 0; idx < armpmu->num_events; idx++) {
746                 event = hw_events->events[idx];
747                 if (!event)
748                         continue;
749
750                 switch (cmd) {
751                 case CPU_PM_ENTER:
752                         /*
753                          * Stop and update the counter
754                          */
755                         armpmu_stop(event, PERF_EF_UPDATE);
756                         break;
757                 case CPU_PM_EXIT:
758                 case CPU_PM_ENTER_FAILED:
759                          /*
760                           * Restore and enable the counter.
761                           * armpmu_start() indirectly calls
762                           *
763                           * perf_event_update_userpage()
764                           *
765                           * that requires RCU read locking to be functional,
766                           * wrap the call within RCU_NONIDLE to make the
767                           * RCU subsystem aware this cpu is not idle from
768                           * an RCU perspective for the armpmu_start() call
769                           * duration.
770                           */
771                         RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
772                         break;
773                 default:
774                         break;
775                 }
776         }
777 }
778
779 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
780                              void *v)
781 {
782         struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
783         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
784         bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
785
786         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
787                 return NOTIFY_DONE;
788
789         /*
790          * Always reset the PMU registers on power-up even if
791          * there are no events running.
792          */
793         if (cmd == CPU_PM_EXIT && armpmu->reset)
794                 armpmu->reset(armpmu);
795
796         if (!enabled)
797                 return NOTIFY_OK;
798
799         switch (cmd) {
800         case CPU_PM_ENTER:
801                 armpmu->stop(armpmu);
802                 cpu_pm_pmu_setup(armpmu, cmd);
803                 break;
804         case CPU_PM_EXIT:
805         case CPU_PM_ENTER_FAILED:
806                 cpu_pm_pmu_setup(armpmu, cmd);
807                 armpmu->start(armpmu);
808                 break;
809         default:
810                 return NOTIFY_DONE;
811         }
812
813         return NOTIFY_OK;
814 }
815
816 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
817 {
818         cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
819         return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
820 }
821
822 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
823 {
824         cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
825 }
826 #else
827 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
828 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
829 #endif
830
831 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
832 {
833         int err;
834
835         err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
836                                        &cpu_pmu->node);
837         if (err)
838                 goto out;
839
840         err = cpu_pm_pmu_register(cpu_pmu);
841         if (err)
842                 goto out_unregister;
843
844         return 0;
845
846 out_unregister:
847         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
848                                             &cpu_pmu->node);
849 out:
850         return err;
851 }
852
853 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
854 {
855         cpu_pm_pmu_unregister(cpu_pmu);
856         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
857                                             &cpu_pmu->node);
858 }
859
860 struct arm_pmu *armpmu_alloc(void)
861 {
862         struct arm_pmu *pmu;
863         int cpu;
864
865         pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
866         if (!pmu)
867                 goto out;
868
869         pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL);
870         if (!pmu->hw_events) {
871                 pr_info("failed to allocate per-cpu PMU data.\n");
872                 goto out_free_pmu;
873         }
874
875         pmu->pmu = (struct pmu) {
876                 .pmu_enable     = armpmu_enable,
877                 .pmu_disable    = armpmu_disable,
878                 .event_init     = armpmu_event_init,
879                 .add            = armpmu_add,
880                 .del            = armpmu_del,
881                 .start          = armpmu_start,
882                 .stop           = armpmu_stop,
883                 .read           = armpmu_read,
884                 .filter         = armpmu_filter,
885                 .attr_groups    = pmu->attr_groups,
886                 /*
887                  * This is a CPU PMU potentially in a heterogeneous
888                  * configuration (e.g. big.LITTLE). This is not an uncore PMU,
889                  * and we have taken ctx sharing into account (e.g. with our
890                  * pmu::filter callback and pmu::event_init group validation).
891                  */
892                 .capabilities   = PERF_PMU_CAP_HETEROGENEOUS_CPUS | PERF_PMU_CAP_EXTENDED_REGS,
893         };
894
895         pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
896                 &armpmu_common_attr_group;
897
898         for_each_possible_cpu(cpu) {
899                 struct pmu_hw_events *events;
900
901                 events = per_cpu_ptr(pmu->hw_events, cpu);
902                 raw_spin_lock_init(&events->pmu_lock);
903                 events->percpu_pmu = pmu;
904         }
905
906         return pmu;
907
908 out_free_pmu:
909         kfree(pmu);
910 out:
911         return NULL;
912 }
913
914 void armpmu_free(struct arm_pmu *pmu)
915 {
916         free_percpu(pmu->hw_events);
917         kfree(pmu);
918 }
919
920 int armpmu_register(struct arm_pmu *pmu)
921 {
922         int ret;
923
924         ret = cpu_pmu_init(pmu);
925         if (ret)
926                 return ret;
927
928         if (!pmu->set_event_filter)
929                 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
930
931         ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
932         if (ret)
933                 goto out_destroy;
934
935         pr_info("enabled with %s PMU driver, %d counters available%s\n",
936                 pmu->name, pmu->num_events,
937                 has_nmi ? ", using NMIs" : "");
938
939         kvm_host_pmu_init(pmu);
940
941         return 0;
942
943 out_destroy:
944         cpu_pmu_destroy(pmu);
945         return ret;
946 }
947
948 static int arm_pmu_hp_init(void)
949 {
950         int ret;
951
952         ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
953                                       "perf/arm/pmu:starting",
954                                       arm_perf_starting_cpu,
955                                       arm_perf_teardown_cpu);
956         if (ret)
957                 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
958                        ret);
959         return ret;
960 }
961 subsys_initcall(arm_pmu_hp_init);
This page took 0.089987 seconds and 4 git commands to generate.