1 // SPDX-License-Identifier: GPL-2.0
3 * 64-bit Periodic Interval Timer driver
5 * Copyright (C) 2019 Microchip Technology Inc. and its subsidiaries
10 #include <linux/clk.h>
11 #include <linux/clockchips.h>
12 #include <linux/interrupt.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/sched_clock.h>
16 #include <linux/slab.h>
18 #define MCHP_PIT64B_CR 0x00 /* Control Register */
19 #define MCHP_PIT64B_CR_START BIT(0)
20 #define MCHP_PIT64B_CR_SWRST BIT(8)
22 #define MCHP_PIT64B_MR 0x04 /* Mode Register */
23 #define MCHP_PIT64B_MR_CONT BIT(0)
24 #define MCHP_PIT64B_MR_ONE_SHOT (0)
25 #define MCHP_PIT64B_MR_SGCLK BIT(3)
26 #define MCHP_PIT64B_MR_PRES GENMASK(11, 8)
28 #define MCHP_PIT64B_LSB_PR 0x08 /* LSB Period Register */
30 #define MCHP_PIT64B_MSB_PR 0x0C /* MSB Period Register */
32 #define MCHP_PIT64B_IER 0x10 /* Interrupt Enable Register */
33 #define MCHP_PIT64B_IER_PERIOD BIT(0)
35 #define MCHP_PIT64B_ISR 0x1C /* Interrupt Status Register */
37 #define MCHP_PIT64B_TLSBR 0x20 /* Timer LSB Register */
39 #define MCHP_PIT64B_TMSBR 0x24 /* Timer MSB Register */
41 #define MCHP_PIT64B_PRES_MAX 0x10
42 #define MCHP_PIT64B_LSBMASK GENMASK_ULL(31, 0)
43 #define MCHP_PIT64B_PRES_TO_MODE(p) (MCHP_PIT64B_MR_PRES & ((p) << 8))
44 #define MCHP_PIT64B_MODE_TO_PRES(m) ((MCHP_PIT64B_MR_PRES & (m)) >> 8)
45 #define MCHP_PIT64B_DEF_CS_FREQ 5000000UL /* 5 MHz */
46 #define MCHP_PIT64B_DEF_CE_FREQ 32768 /* 32 KHz */
48 #define MCHP_PIT64B_NAME "pit64b"
51 * struct mchp_pit64b_timer - PIT64B timer data structure
52 * @base: base address of PIT64B hardware block
53 * @pclk: PIT64B's peripheral clock
54 * @gclk: PIT64B's generic clock
55 * @mode: precomputed value for mode register
57 struct mchp_pit64b_timer {
65 * mchp_pit64b_clkevt - PIT64B clockevent data structure
66 * @timer: PIT64B timer
69 struct mchp_pit64b_clkevt {
70 struct mchp_pit64b_timer timer;
71 struct clock_event_device clkevt;
74 #define clkevt_to_mchp_pit64b_timer(x) \
75 ((struct mchp_pit64b_timer *)container_of(x,\
76 struct mchp_pit64b_clkevt, clkevt))
79 * mchp_pit64b_clksrc - PIT64B clocksource data structure
80 * @timer: PIT64B timer
81 * @clksrc: clocksource
83 struct mchp_pit64b_clksrc {
84 struct mchp_pit64b_timer timer;
85 struct clocksource clksrc;
88 #define clksrc_to_mchp_pit64b_timer(x) \
89 ((struct mchp_pit64b_timer *)container_of(x,\
90 struct mchp_pit64b_clksrc, clksrc))
92 /* Base address for clocksource timer. */
93 static void __iomem *mchp_pit64b_cs_base;
94 /* Default cycles for clockevent timer. */
95 static u64 mchp_pit64b_ce_cycles;
97 static inline u64 mchp_pit64b_cnt_read(void __iomem *base)
102 raw_local_irq_save(flags);
105 * When using a 64 bit period TLSB must be read first, followed by the
106 * read of TMSB. This sequence generates an atomic read of the 64 bit
107 * timer value whatever the lapse of time between the accesses.
109 low = readl_relaxed(base + MCHP_PIT64B_TLSBR);
110 high = readl_relaxed(base + MCHP_PIT64B_TMSBR);
112 raw_local_irq_restore(flags);
114 return (((u64)high << 32) | low);
117 static inline void mchp_pit64b_reset(struct mchp_pit64b_timer *timer,
118 u64 cycles, u32 mode, u32 irqs)
122 low = cycles & MCHP_PIT64B_LSBMASK;
125 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
126 writel_relaxed(mode | timer->mode, timer->base + MCHP_PIT64B_MR);
127 writel_relaxed(high, timer->base + MCHP_PIT64B_MSB_PR);
128 writel_relaxed(low, timer->base + MCHP_PIT64B_LSB_PR);
129 writel_relaxed(irqs, timer->base + MCHP_PIT64B_IER);
130 writel_relaxed(MCHP_PIT64B_CR_START, timer->base + MCHP_PIT64B_CR);
133 static void mchp_pit64b_suspend(struct mchp_pit64b_timer *timer)
135 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
136 if (timer->mode & MCHP_PIT64B_MR_SGCLK)
137 clk_disable_unprepare(timer->gclk);
138 clk_disable_unprepare(timer->pclk);
141 static void mchp_pit64b_resume(struct mchp_pit64b_timer *timer)
143 clk_prepare_enable(timer->pclk);
144 if (timer->mode & MCHP_PIT64B_MR_SGCLK)
145 clk_prepare_enable(timer->gclk);
148 static void mchp_pit64b_clksrc_suspend(struct clocksource *cs)
150 struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs);
152 mchp_pit64b_suspend(timer);
155 static void mchp_pit64b_clksrc_resume(struct clocksource *cs)
157 struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs);
159 mchp_pit64b_resume(timer);
160 mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);
163 static u64 mchp_pit64b_clksrc_read(struct clocksource *cs)
165 return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
168 static u64 mchp_pit64b_sched_read_clk(void)
170 return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
173 static int mchp_pit64b_clkevt_shutdown(struct clock_event_device *cedev)
175 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
177 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
182 static int mchp_pit64b_clkevt_set_periodic(struct clock_event_device *cedev)
184 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
186 mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_CONT,
187 MCHP_PIT64B_IER_PERIOD);
192 static int mchp_pit64b_clkevt_set_next_event(unsigned long evt,
193 struct clock_event_device *cedev)
195 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
197 mchp_pit64b_reset(timer, evt, MCHP_PIT64B_MR_ONE_SHOT,
198 MCHP_PIT64B_IER_PERIOD);
203 static void mchp_pit64b_clkevt_suspend(struct clock_event_device *cedev)
205 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
207 mchp_pit64b_suspend(timer);
210 static void mchp_pit64b_clkevt_resume(struct clock_event_device *cedev)
212 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
214 mchp_pit64b_resume(timer);
217 static irqreturn_t mchp_pit64b_interrupt(int irq, void *dev_id)
219 struct mchp_pit64b_clkevt *irq_data = dev_id;
221 /* Need to clear the interrupt. */
222 readl_relaxed(irq_data->timer.base + MCHP_PIT64B_ISR);
224 irq_data->clkevt.event_handler(&irq_data->clkevt);
229 static void __init mchp_pit64b_pres_compute(u32 *pres, u32 clk_rate,
234 for (*pres = 0; *pres < MCHP_PIT64B_PRES_MAX; (*pres)++) {
235 tmp = clk_rate / (*pres + 1);
240 /* Use the biggest prescaler if we didn't match one. */
241 if (*pres == MCHP_PIT64B_PRES_MAX)
242 *pres = MCHP_PIT64B_PRES_MAX - 1;
246 * mchp_pit64b_init_mode - prepare PIT64B mode register value to be used at
247 * runtime; this includes prescaler and SGCLK bit
249 * PIT64B timer may be fed by gclk or pclk. When gclk is used its rate has to
250 * be at least 3 times lower that pclk's rate. pclk rate is fixed, gclk rate
251 * could be changed via clock APIs. The chosen clock (pclk or gclk) could be
252 * divided by the internal PIT64B's divider.
254 * This function, first tries to use GCLK by requesting the desired rate from
255 * PMC and then using the internal PIT64B prescaler, if any, to reach the
256 * requested rate. If PCLK/GCLK < 3 (condition requested by PIT64B hardware)
257 * then the function falls back on using PCLK as clock source for PIT64B timer
258 * choosing the highest prescaler in case it doesn't locate one to match the
259 * requested frequency.
261 * Below is presented the PIT64B block in relation with PMC:
264 * PMC +------------------------------------+
266 * | |-->gclk -->|-->| | +---------+ +-----+ |
267 * | | | | MUX |--->| Divider |->|timer| |
268 * | |-->pclk -->|-->| | +---------+ +-----+ |
272 * +------------------------------------+
275 * - gclk rate <= pclk rate/3
276 * - gclk rate could be requested from PMC
277 * - pclk rate is fixed (cannot be requested from PMC)
279 static int __init mchp_pit64b_init_mode(struct mchp_pit64b_timer *timer,
280 unsigned long max_rate)
282 unsigned long pclk_rate, diff = 0, best_diff = ULONG_MAX;
284 u32 pres, best_pres = 0;
286 pclk_rate = clk_get_rate(timer->pclk);
292 /* Try using GCLK. */
293 gclk_round = clk_round_rate(timer->gclk, max_rate);
297 if (pclk_rate / gclk_round < 3)
300 mchp_pit64b_pres_compute(&pres, gclk_round, max_rate);
301 best_diff = abs(gclk_round / (pres + 1) - max_rate);
305 timer->mode |= MCHP_PIT64B_MR_SGCLK;
306 clk_set_rate(timer->gclk, gclk_round);
311 /* Check if requested rate could be obtained using PCLK. */
312 mchp_pit64b_pres_compute(&pres, pclk_rate, max_rate);
313 diff = abs(pclk_rate / (pres + 1) - max_rate);
315 if (best_diff > diff) {
320 timer->mode |= MCHP_PIT64B_MR_SGCLK;
321 clk_set_rate(timer->gclk, gclk_round);
325 timer->mode |= MCHP_PIT64B_PRES_TO_MODE(best_pres);
327 pr_info("PIT64B: using clk=%s with prescaler %u, freq=%lu [Hz]\n",
328 timer->mode & MCHP_PIT64B_MR_SGCLK ? "gclk" : "pclk", best_pres,
329 timer->mode & MCHP_PIT64B_MR_SGCLK ?
330 gclk_round / (best_pres + 1) : pclk_rate / (best_pres + 1));
335 static int __init mchp_pit64b_init_clksrc(struct mchp_pit64b_timer *timer,
338 struct mchp_pit64b_clksrc *cs;
341 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
345 mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);
347 mchp_pit64b_cs_base = timer->base;
349 cs->timer.base = timer->base;
350 cs->timer.pclk = timer->pclk;
351 cs->timer.gclk = timer->gclk;
352 cs->timer.mode = timer->mode;
353 cs->clksrc.name = MCHP_PIT64B_NAME;
354 cs->clksrc.mask = CLOCKSOURCE_MASK(64);
355 cs->clksrc.flags = CLOCK_SOURCE_IS_CONTINUOUS;
356 cs->clksrc.rating = 210;
357 cs->clksrc.read = mchp_pit64b_clksrc_read;
358 cs->clksrc.suspend = mchp_pit64b_clksrc_suspend;
359 cs->clksrc.resume = mchp_pit64b_clksrc_resume;
361 ret = clocksource_register_hz(&cs->clksrc, clk_rate);
363 pr_debug("clksrc: Failed to register PIT64B clocksource!\n");
366 writel_relaxed(MCHP_PIT64B_CR_SWRST,
367 timer->base + MCHP_PIT64B_CR);
373 sched_clock_register(mchp_pit64b_sched_read_clk, 64, clk_rate);
378 static int __init mchp_pit64b_init_clkevt(struct mchp_pit64b_timer *timer,
379 u32 clk_rate, u32 irq)
381 struct mchp_pit64b_clkevt *ce;
384 ce = kzalloc(sizeof(*ce), GFP_KERNEL);
388 mchp_pit64b_ce_cycles = DIV_ROUND_CLOSEST(clk_rate, HZ);
390 ce->timer.base = timer->base;
391 ce->timer.pclk = timer->pclk;
392 ce->timer.gclk = timer->gclk;
393 ce->timer.mode = timer->mode;
394 ce->clkevt.name = MCHP_PIT64B_NAME;
395 ce->clkevt.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC;
396 ce->clkevt.rating = 150;
397 ce->clkevt.set_state_shutdown = mchp_pit64b_clkevt_shutdown;
398 ce->clkevt.set_state_periodic = mchp_pit64b_clkevt_set_periodic;
399 ce->clkevt.set_next_event = mchp_pit64b_clkevt_set_next_event;
400 ce->clkevt.suspend = mchp_pit64b_clkevt_suspend;
401 ce->clkevt.resume = mchp_pit64b_clkevt_resume;
402 ce->clkevt.cpumask = cpumask_of(0);
403 ce->clkevt.irq = irq;
405 ret = request_irq(irq, mchp_pit64b_interrupt, IRQF_TIMER,
408 pr_debug("clkevt: Failed to setup PIT64B IRQ\n");
413 clockevents_config_and_register(&ce->clkevt, clk_rate, 1, ULONG_MAX);
418 static int __init mchp_pit64b_dt_init_timer(struct device_node *node,
421 u32 freq = clkevt ? MCHP_PIT64B_DEF_CE_FREQ : MCHP_PIT64B_DEF_CS_FREQ;
422 struct mchp_pit64b_timer timer;
423 unsigned long clk_rate;
428 timer.pclk = of_clk_get_by_name(node, "pclk");
429 if (IS_ERR(timer.pclk))
430 return PTR_ERR(timer.pclk);
432 timer.gclk = of_clk_get_by_name(node, "gclk");
433 if (IS_ERR(timer.gclk))
434 return PTR_ERR(timer.gclk);
436 timer.base = of_iomap(node, 0);
441 irq = irq_of_parse_and_map(node, 0);
448 /* Initialize mode (prescaler + SGCK bit). To be used at runtime. */
449 ret = mchp_pit64b_init_mode(&timer, freq);
453 ret = clk_prepare_enable(timer.pclk);
457 if (timer.mode & MCHP_PIT64B_MR_SGCLK) {
458 ret = clk_prepare_enable(timer.gclk);
462 clk_rate = clk_get_rate(timer.gclk);
464 clk_rate = clk_get_rate(timer.pclk);
466 clk_rate = clk_rate / (MCHP_PIT64B_MODE_TO_PRES(timer.mode) + 1);
469 ret = mchp_pit64b_init_clkevt(&timer, clk_rate, irq);
471 ret = mchp_pit64b_init_clksrc(&timer, clk_rate);
479 if (timer.mode & MCHP_PIT64B_MR_SGCLK)
480 clk_disable_unprepare(timer.gclk);
482 clk_disable_unprepare(timer.pclk);
484 irq_dispose_mapping(irq);
491 static int __init mchp_pit64b_dt_init(struct device_node *node)
497 /* 1st request, register clockevent. */
498 return mchp_pit64b_dt_init_timer(node, true);
500 /* 2nd request, register clocksource. */
501 return mchp_pit64b_dt_init_timer(node, false);
504 /* The rest, don't care. */
508 TIMER_OF_DECLARE(mchp_pit64b, "microchip,sam9x60-pit64b", mchp_pit64b_dt_init);