2 * 8253/8254 interval timer emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 * Based on QEMU and Xen.
32 #define pr_fmt(fmt) "pit: " fmt
34 #include <linux/kvm_host.h>
40 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
42 #define mod_64(x, y) ((x) % (y))
45 #define RW_STATE_LSB 1
46 #define RW_STATE_MSB 2
47 #define RW_STATE_WORD0 3
48 #define RW_STATE_WORD1 4
50 /* Compute with 96 bit intermediate result: (a*b)/c */
51 static u64 muldiv64(u64 a, u32 b, u32 c)
62 rl = (u64)u.l.low * (u64)b;
63 rh = (u64)u.l.high * (u64)b;
65 res.l.high = div64_u64(rh, c);
66 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
70 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
72 struct kvm_kpit_channel_state *c =
73 &kvm->arch.vpit->pit_state.channels[channel];
75 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
81 /* XXX: just disable/enable counting */
87 /* Restart counting on rising edge. */
89 c->count_load_time = ktime_get();
96 static int pit_get_gate(struct kvm *kvm, int channel)
98 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
100 return kvm->arch.vpit->pit_state.channels[channel].gate;
103 static s64 __kpit_elapsed(struct kvm *kvm)
107 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
109 if (!ps->pit_timer.period)
113 * The Counter does not stop when it reaches zero. In
114 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
115 * the highest count, either FFFF hex for binary counting
116 * or 9999 for BCD counting, and continues counting.
117 * Modes 2 and 3 are periodic; the Counter reloads
118 * itself with the initial count and continues counting
121 remaining = hrtimer_get_remaining(&ps->pit_timer.timer);
122 elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
123 elapsed = mod_64(elapsed, ps->pit_timer.period);
128 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
132 return __kpit_elapsed(kvm);
134 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
137 static int pit_get_count(struct kvm *kvm, int channel)
139 struct kvm_kpit_channel_state *c =
140 &kvm->arch.vpit->pit_state.channels[channel];
144 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
146 t = kpit_elapsed(kvm, c, channel);
147 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
154 counter = (c->count - d) & 0xffff;
157 /* XXX: may be incorrect for odd counts */
158 counter = c->count - (mod_64((2 * d), c->count));
161 counter = c->count - mod_64(d, c->count);
167 static int pit_get_out(struct kvm *kvm, int channel)
169 struct kvm_kpit_channel_state *c =
170 &kvm->arch.vpit->pit_state.channels[channel];
174 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
176 t = kpit_elapsed(kvm, c, channel);
177 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
182 out = (d >= c->count);
185 out = (d < c->count);
188 out = ((mod_64(d, c->count) == 0) && (d != 0));
191 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
195 out = (d == c->count);
202 static void pit_latch_count(struct kvm *kvm, int channel)
204 struct kvm_kpit_channel_state *c =
205 &kvm->arch.vpit->pit_state.channels[channel];
207 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
209 if (!c->count_latched) {
210 c->latched_count = pit_get_count(kvm, channel);
211 c->count_latched = c->rw_mode;
215 static void pit_latch_status(struct kvm *kvm, int channel)
217 struct kvm_kpit_channel_state *c =
218 &kvm->arch.vpit->pit_state.channels[channel];
220 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
222 if (!c->status_latched) {
223 /* TODO: Return NULL COUNT (bit 6). */
224 c->status = ((pit_get_out(kvm, channel) << 7) |
228 c->status_latched = 1;
232 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
234 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
236 if (pit && kvm_vcpu_is_bsp(vcpu) && pit->pit_state.irq_ack)
237 return atomic_read(&pit->pit_state.pit_timer.pending);
241 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
243 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
245 spin_lock(&ps->inject_lock);
246 if (atomic_dec_return(&ps->pit_timer.pending) < 0)
247 atomic_inc(&ps->pit_timer.pending);
249 spin_unlock(&ps->inject_lock);
252 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
254 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
255 struct hrtimer *timer;
257 if (!kvm_vcpu_is_bsp(vcpu) || !pit)
260 timer = &pit->pit_state.pit_timer.timer;
261 if (hrtimer_cancel(timer))
262 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
265 static void destroy_pit_timer(struct kvm_timer *pt)
267 pr_debug("execute del timer!\n");
268 hrtimer_cancel(&pt->timer);
271 static bool kpit_is_periodic(struct kvm_timer *ktimer)
273 struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
275 return ps->is_periodic;
278 static struct kvm_timer_ops kpit_ops = {
279 .is_periodic = kpit_is_periodic,
282 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
284 struct kvm_timer *pt = &ps->pit_timer;
287 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
289 pr_debug("create pit timer, interval is %llu nsec\n", interval);
291 /* TODO The new value only affected after the retriggered */
292 hrtimer_cancel(&pt->timer);
293 pt->period = interval;
294 ps->is_periodic = is_period;
296 pt->timer.function = kvm_timer_fn;
297 pt->t_ops = &kpit_ops;
298 pt->kvm = ps->pit->kvm;
299 pt->vcpu = pt->kvm->bsp_vcpu;
301 atomic_set(&pt->pending, 0);
304 hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
308 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
310 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
312 WARN_ON(!mutex_is_locked(&ps->lock));
314 pr_debug("load_count val is %d, channel is %d\n", val, channel);
317 * The largest possible initial count is 0; this is equivalent
318 * to 216 for binary counting and 104 for BCD counting.
323 ps->channels[channel].count = val;
326 ps->channels[channel].count_load_time = ktime_get();
330 /* Two types of timer
331 * mode 1 is one shot, mode 2 is period, otherwise del timer */
332 switch (ps->channels[0].mode) {
335 /* FIXME: enhance mode 4 precision */
337 if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)) {
338 create_pit_timer(ps, val, 0);
343 if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)){
344 create_pit_timer(ps, val, 1);
348 destroy_pit_timer(&ps->pit_timer);
352 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
355 if (hpet_legacy_start) {
356 /* save existing mode for later reenablement */
357 saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
358 kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
359 pit_load_count(kvm, channel, val);
360 kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
362 pit_load_count(kvm, channel, val);
366 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
368 return container_of(dev, struct kvm_pit, dev);
371 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
373 return container_of(dev, struct kvm_pit, speaker_dev);
376 static inline int pit_in_range(gpa_t addr)
378 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
379 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
382 static int pit_ioport_write(struct kvm_io_device *this,
383 gpa_t addr, int len, const void *data)
385 struct kvm_pit *pit = dev_to_pit(this);
386 struct kvm_kpit_state *pit_state = &pit->pit_state;
387 struct kvm *kvm = pit->kvm;
389 struct kvm_kpit_channel_state *s;
390 u32 val = *(u32 *) data;
391 if (!pit_in_range(addr))
395 addr &= KVM_PIT_CHANNEL_MASK;
397 mutex_lock(&pit_state->lock);
400 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
401 (unsigned int)addr, len, val);
406 /* Read-Back Command. */
407 for (channel = 0; channel < 3; channel++) {
408 s = &pit_state->channels[channel];
409 if (val & (2 << channel)) {
411 pit_latch_count(kvm, channel);
413 pit_latch_status(kvm, channel);
417 /* Select Counter <channel>. */
418 s = &pit_state->channels[channel];
419 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
421 pit_latch_count(kvm, channel);
424 s->read_state = access;
425 s->write_state = access;
426 s->mode = (val >> 1) & 7;
434 s = &pit_state->channels[addr];
435 switch (s->write_state) {
438 pit_load_count(kvm, addr, val);
441 pit_load_count(kvm, addr, val << 8);
444 s->write_latch = val;
445 s->write_state = RW_STATE_WORD1;
448 pit_load_count(kvm, addr, s->write_latch | (val << 8));
449 s->write_state = RW_STATE_WORD0;
454 mutex_unlock(&pit_state->lock);
458 static int pit_ioport_read(struct kvm_io_device *this,
459 gpa_t addr, int len, void *data)
461 struct kvm_pit *pit = dev_to_pit(this);
462 struct kvm_kpit_state *pit_state = &pit->pit_state;
463 struct kvm *kvm = pit->kvm;
465 struct kvm_kpit_channel_state *s;
466 if (!pit_in_range(addr))
469 addr &= KVM_PIT_CHANNEL_MASK;
470 s = &pit_state->channels[addr];
472 mutex_lock(&pit_state->lock);
474 if (s->status_latched) {
475 s->status_latched = 0;
477 } else if (s->count_latched) {
478 switch (s->count_latched) {
481 ret = s->latched_count & 0xff;
482 s->count_latched = 0;
485 ret = s->latched_count >> 8;
486 s->count_latched = 0;
489 ret = s->latched_count & 0xff;
490 s->count_latched = RW_STATE_MSB;
494 switch (s->read_state) {
497 count = pit_get_count(kvm, addr);
501 count = pit_get_count(kvm, addr);
502 ret = (count >> 8) & 0xff;
505 count = pit_get_count(kvm, addr);
507 s->read_state = RW_STATE_WORD1;
510 count = pit_get_count(kvm, addr);
511 ret = (count >> 8) & 0xff;
512 s->read_state = RW_STATE_WORD0;
517 if (len > sizeof(ret))
519 memcpy(data, (char *)&ret, len);
521 mutex_unlock(&pit_state->lock);
525 static int speaker_ioport_write(struct kvm_io_device *this,
526 gpa_t addr, int len, const void *data)
528 struct kvm_pit *pit = speaker_to_pit(this);
529 struct kvm_kpit_state *pit_state = &pit->pit_state;
530 struct kvm *kvm = pit->kvm;
531 u32 val = *(u32 *) data;
532 if (addr != KVM_SPEAKER_BASE_ADDRESS)
535 mutex_lock(&pit_state->lock);
536 pit_state->speaker_data_on = (val >> 1) & 1;
537 pit_set_gate(kvm, 2, val & 1);
538 mutex_unlock(&pit_state->lock);
542 static int speaker_ioport_read(struct kvm_io_device *this,
543 gpa_t addr, int len, void *data)
545 struct kvm_pit *pit = speaker_to_pit(this);
546 struct kvm_kpit_state *pit_state = &pit->pit_state;
547 struct kvm *kvm = pit->kvm;
548 unsigned int refresh_clock;
550 if (addr != KVM_SPEAKER_BASE_ADDRESS)
553 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
554 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
556 mutex_lock(&pit_state->lock);
557 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
558 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
559 if (len > sizeof(ret))
561 memcpy(data, (char *)&ret, len);
562 mutex_unlock(&pit_state->lock);
566 void kvm_pit_reset(struct kvm_pit *pit)
569 struct kvm_kpit_channel_state *c;
571 mutex_lock(&pit->pit_state.lock);
572 pit->pit_state.flags = 0;
573 for (i = 0; i < 3; i++) {
574 c = &pit->pit_state.channels[i];
577 pit_load_count(pit->kvm, i, 0);
579 mutex_unlock(&pit->pit_state.lock);
581 atomic_set(&pit->pit_state.pit_timer.pending, 0);
582 pit->pit_state.irq_ack = 1;
585 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
587 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
590 atomic_set(&pit->pit_state.pit_timer.pending, 0);
591 pit->pit_state.irq_ack = 1;
595 static const struct kvm_io_device_ops pit_dev_ops = {
596 .read = pit_ioport_read,
597 .write = pit_ioport_write,
600 static const struct kvm_io_device_ops speaker_dev_ops = {
601 .read = speaker_ioport_read,
602 .write = speaker_ioport_write,
605 /* Caller must have writers lock on slots_lock */
606 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
609 struct kvm_kpit_state *pit_state;
612 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
616 pit->irq_source_id = kvm_request_irq_source_id(kvm);
617 if (pit->irq_source_id < 0) {
622 mutex_init(&pit->pit_state.lock);
623 mutex_lock(&pit->pit_state.lock);
624 spin_lock_init(&pit->pit_state.inject_lock);
626 kvm->arch.vpit = pit;
629 pit_state = &pit->pit_state;
630 pit_state->pit = pit;
631 hrtimer_init(&pit_state->pit_timer.timer,
632 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
633 pit_state->irq_ack_notifier.gsi = 0;
634 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
635 kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
636 pit_state->pit_timer.reinject = true;
637 mutex_unlock(&pit->pit_state.lock);
641 pit->mask_notifier.func = pit_mask_notifer;
642 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
644 kvm_iodevice_init(&pit->dev, &pit_dev_ops);
645 ret = __kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
649 if (flags & KVM_PIT_SPEAKER_DUMMY) {
650 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
651 ret = __kvm_io_bus_register_dev(&kvm->pio_bus,
654 goto fail_unregister;
660 __kvm_io_bus_unregister_dev(&kvm->pio_bus, &pit->dev);
663 if (pit->irq_source_id >= 0)
664 kvm_free_irq_source_id(kvm, pit->irq_source_id);
670 void kvm_free_pit(struct kvm *kvm)
672 struct hrtimer *timer;
674 if (kvm->arch.vpit) {
675 kvm_unregister_irq_mask_notifier(kvm, 0,
676 &kvm->arch.vpit->mask_notifier);
677 kvm_unregister_irq_ack_notifier(kvm,
678 &kvm->arch.vpit->pit_state.irq_ack_notifier);
679 mutex_lock(&kvm->arch.vpit->pit_state.lock);
680 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
681 hrtimer_cancel(timer);
682 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
683 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
684 kfree(kvm->arch.vpit);
688 static void __inject_pit_timer_intr(struct kvm *kvm)
690 struct kvm_vcpu *vcpu;
693 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
694 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
697 * Provides NMI watchdog support via Virtual Wire mode.
698 * The route is: PIT -> PIC -> LVT0 in NMI mode.
700 * Note: Our Virtual Wire implementation is simplified, only
701 * propagating PIT interrupts to all VCPUs when they have set
702 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
703 * VCPU0, and only if its LVT0 is in EXTINT mode.
705 if (kvm->arch.vapics_in_nmi_mode > 0)
706 kvm_for_each_vcpu(i, vcpu, kvm)
707 kvm_apic_nmi_wd_deliver(vcpu);
710 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
712 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
713 struct kvm *kvm = vcpu->kvm;
714 struct kvm_kpit_state *ps;
718 ps = &pit->pit_state;
720 /* Try to inject pending interrupts when
721 * last one has been acked.
723 spin_lock(&ps->inject_lock);
724 if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
728 spin_unlock(&ps->inject_lock);
730 __inject_pit_timer_intr(kvm);