2 * Copyright (c) 2012, 2013 Intel Corporation. All rights reserved.
3 * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved.
4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 #include <linux/pci.h>
36 #include <linux/poll.h>
37 #include <linux/cdev.h>
38 #include <linux/swap.h>
39 #include <linux/vmalloc.h>
40 #include <linux/highmem.h>
42 #include <linux/jiffies.h>
43 #include <asm/pgtable.h>
44 #include <linux/delay.h>
45 #include <linux/export.h>
46 #include <linux/uio.h>
51 #include "qib_common.h"
52 #include "qib_user_sdma.h"
55 #define pr_fmt(fmt) QIB_DRV_NAME ": " fmt
57 static int qib_open(struct inode *, struct file *);
58 static int qib_close(struct inode *, struct file *);
59 static ssize_t qib_write(struct file *, const char __user *, size_t, loff_t *);
60 static ssize_t qib_write_iter(struct kiocb *, struct iov_iter *);
61 static unsigned int qib_poll(struct file *, struct poll_table_struct *);
62 static int qib_mmapf(struct file *, struct vm_area_struct *);
65 * This is really, really weird shit - write() and writev() here
66 * have completely unrelated semantics. Sucky userland ABI,
69 static const struct file_operations qib_file_ops = {
72 .write_iter = qib_write_iter,
77 .llseek = noop_llseek,
81 * Convert kernel virtual addresses to physical addresses so they don't
82 * potentially conflict with the chip addresses used as mmap offsets.
83 * It doesn't really matter what mmap offset we use as long as we can
84 * interpret it correctly.
86 static u64 cvt_kvaddr(void *p)
91 page = vmalloc_to_page(p);
93 paddr = page_to_pfn(page) << PAGE_SHIFT;
98 static int qib_get_base_info(struct file *fp, void __user *ubase,
101 struct qib_ctxtdata *rcd = ctxt_fp(fp);
103 struct qib_base_info *kinfo = NULL;
104 struct qib_devdata *dd = rcd->dd;
105 struct qib_pportdata *ppd = rcd->ppd;
106 unsigned subctxt_cnt;
110 subctxt_cnt = rcd->subctxt_cnt;
117 master = !subctxt_fp(fp);
121 /* If context sharing is not requested, allow the old size structure */
123 sz -= 7 * sizeof(u64);
124 if (ubase_size < sz) {
129 kinfo = kzalloc(sizeof(*kinfo), GFP_KERNEL);
135 ret = dd->f_get_base_info(rcd, kinfo);
139 kinfo->spi_rcvhdr_cnt = dd->rcvhdrcnt;
140 kinfo->spi_rcvhdrent_size = dd->rcvhdrentsize;
141 kinfo->spi_tidegrcnt = rcd->rcvegrcnt;
142 kinfo->spi_rcv_egrbufsize = dd->rcvegrbufsize;
144 * have to mmap whole thing
146 kinfo->spi_rcv_egrbuftotlen =
147 rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size;
148 kinfo->spi_rcv_egrperchunk = rcd->rcvegrbufs_perchunk;
149 kinfo->spi_rcv_egrchunksize = kinfo->spi_rcv_egrbuftotlen /
150 rcd->rcvegrbuf_chunks;
151 kinfo->spi_tidcnt = dd->rcvtidcnt / subctxt_cnt;
153 kinfo->spi_tidcnt += dd->rcvtidcnt % subctxt_cnt;
155 * for this use, may be cfgctxts summed over all chips that
156 * are are configured and present
158 kinfo->spi_nctxts = dd->cfgctxts;
159 /* unit (chip/board) our context is on */
160 kinfo->spi_unit = dd->unit;
161 kinfo->spi_port = ppd->port;
162 /* for now, only a single page */
163 kinfo->spi_tid_maxsize = PAGE_SIZE;
166 * Doing this per context, and based on the skip value, etc. This has
167 * to be the actual buffer size, since the protocol code treats it
170 * These have to be set to user addresses in the user code via mmap.
171 * These values are used on return to user code for the mmap target
172 * addresses only. For 32 bit, same 44 bit address problem, so use
173 * the physical address, not virtual. Before 2.6.11, using the
174 * page_address() macro worked, but in 2.6.11, even that returns the
175 * full 64 bit address (upper bits all 1's). So far, using the
176 * physical addresses (or chip offsets, for chip mapping) works, but
177 * no doubt some future kernel release will change that, and we'll be
178 * on to yet another method of dealing with this.
179 * Normally only one of rcvhdr_tailaddr or rhf_offset is useful
180 * since the chips with non-zero rhf_offset don't normally
181 * enable tail register updates to host memory, but for testing,
182 * both can be enabled and used.
184 kinfo->spi_rcvhdr_base = (u64) rcd->rcvhdrq_phys;
185 kinfo->spi_rcvhdr_tailaddr = (u64) rcd->rcvhdrqtailaddr_phys;
186 kinfo->spi_rhf_offset = dd->rhf_offset;
187 kinfo->spi_rcv_egrbufs = (u64) rcd->rcvegr_phys;
188 kinfo->spi_pioavailaddr = (u64) dd->pioavailregs_phys;
189 /* setup per-unit (not port) status area for user programs */
190 kinfo->spi_status = (u64) kinfo->spi_pioavailaddr +
191 (char *) ppd->statusp -
192 (char *) dd->pioavailregs_dma;
193 kinfo->spi_uregbase = (u64) dd->uregbase + dd->ureg_align * rcd->ctxt;
195 kinfo->spi_piocnt = rcd->piocnt;
196 kinfo->spi_piobufbase = (u64) rcd->piobufs;
197 kinfo->spi_sendbuf_status = cvt_kvaddr(rcd->user_event_mask);
199 kinfo->spi_piocnt = (rcd->piocnt / subctxt_cnt) +
200 (rcd->piocnt % subctxt_cnt);
201 /* Master's PIO buffers are after all the slave's */
202 kinfo->spi_piobufbase = (u64) rcd->piobufs +
204 (rcd->piocnt - kinfo->spi_piocnt);
206 unsigned slave = subctxt_fp(fp) - 1;
208 kinfo->spi_piocnt = rcd->piocnt / subctxt_cnt;
209 kinfo->spi_piobufbase = (u64) rcd->piobufs +
210 dd->palign * kinfo->spi_piocnt * slave;
214 kinfo->spi_sendbuf_status =
215 cvt_kvaddr(&rcd->user_event_mask[subctxt_fp(fp)]);
216 /* only spi_subctxt_* fields should be set in this block! */
217 kinfo->spi_subctxt_uregbase = cvt_kvaddr(rcd->subctxt_uregbase);
219 kinfo->spi_subctxt_rcvegrbuf =
220 cvt_kvaddr(rcd->subctxt_rcvegrbuf);
221 kinfo->spi_subctxt_rcvhdr_base =
222 cvt_kvaddr(rcd->subctxt_rcvhdr_base);
226 * All user buffers are 2KB buffers. If we ever support
227 * giving 4KB buffers to user processes, this will need some
228 * work. Can't use piobufbase directly, because it has
229 * both 2K and 4K buffer base values.
231 kinfo->spi_pioindex = (kinfo->spi_piobufbase - dd->pio2k_bufbase) /
233 kinfo->spi_pioalign = dd->palign;
234 kinfo->spi_qpair = QIB_KD_QP;
236 * user mode PIO buffers are always 2KB, even when 4KB can
237 * be received, and sent via the kernel; this is ibmaxlen
240 kinfo->spi_piosize = dd->piosize2k - 2 * sizeof(u32);
241 kinfo->spi_mtu = ppd->ibmaxlen; /* maxlen, not ibmtu */
242 kinfo->spi_ctxt = rcd->ctxt;
243 kinfo->spi_subctxt = subctxt_fp(fp);
244 kinfo->spi_sw_version = QIB_KERN_SWVERSION;
245 kinfo->spi_sw_version |= 1U << 31; /* QLogic-built, not kernel.org */
246 kinfo->spi_hw_version = dd->revision;
249 kinfo->spi_runtime_flags |= QIB_RUNTIME_MASTER;
251 sz = (ubase_size < sizeof(*kinfo)) ? ubase_size : sizeof(*kinfo);
252 if (copy_to_user(ubase, kinfo, sz))
260 * qib_tid_update - update a context TID
262 * @fp: the qib device file
263 * @ti: the TID information
265 * The new implementation as of Oct 2004 is that the driver assigns
266 * the tid and returns it to the caller. To reduce search time, we
267 * keep a cursor for each context, walking the shadow tid array to find
268 * one that's not in use.
270 * For now, if we can't allocate the full list, we fail, although
271 * in the long run, we'll allocate as many as we can, and the
272 * caller will deal with that by trying the remaining pages later.
273 * That means that when we fail, we have to mark the tids as not in
274 * use again, in our shadow copy.
276 * It's up to the caller to free the tids when they are done.
277 * We'll unlock the pages as they free them.
279 * Also, right now we are locking one page at a time, but since
280 * the intended use of this routine is for a single group of
281 * virtually contiguous pages, that should change to improve
284 static int qib_tid_update(struct qib_ctxtdata *rcd, struct file *fp,
285 const struct qib_tid_info *ti)
288 u32 tid, ctxttid, cnt, i, tidcnt, tidoff;
290 struct qib_devdata *dd = rcd->dd;
293 u64 __iomem *tidbase;
294 unsigned long tidmap[8];
295 struct page **pagep = NULL;
296 unsigned subctxt = subctxt_fp(fp);
298 if (!dd->pageshadow) {
308 ctxttid = rcd->ctxt * dd->rcvtidcnt;
309 if (!rcd->subctxt_cnt) {
310 tidcnt = dd->rcvtidcnt;
311 tid = rcd->tidcursor;
313 } else if (!subctxt) {
314 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) +
315 (dd->rcvtidcnt % rcd->subctxt_cnt);
316 tidoff = dd->rcvtidcnt - tidcnt;
318 tid = tidcursor_fp(fp);
320 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt;
321 tidoff = tidcnt * (subctxt - 1);
323 tid = tidcursor_fp(fp);
326 /* make sure it all fits in tid_pg_list */
327 qib_devinfo(dd->pcidev,
328 "Process tried to allocate %u TIDs, only trying max (%u)\n",
332 pagep = (struct page **) rcd->tid_pg_list;
333 tidlist = (u16 *) &pagep[dd->rcvtidcnt];
337 memset(tidmap, 0, sizeof(tidmap));
338 /* before decrement; chip actual # */
340 tidbase = (u64 __iomem *) (((char __iomem *) dd->kregbase) +
342 ctxttid * sizeof(*tidbase));
344 /* virtual address of first page in transfer */
345 vaddr = ti->tidvaddr;
346 if (!access_ok(VERIFY_WRITE, (void __user *) vaddr,
351 ret = qib_get_user_pages(vaddr, cnt, pagep);
355 * We can't continue because the pagep array won't be
356 * initialized. This should never happen,
357 * unless perhaps the user has mpin'ed the pages
362 "Failed to lock addr %p, %u pages: errno %d\n",
363 (void *) vaddr, cnt, -ret);
366 for (i = 0; i < cnt; i++, vaddr += PAGE_SIZE) {
367 for (; ntids--; tid++) {
370 if (!dd->pageshadow[ctxttid + tid])
375 * Oops, wrapped all the way through their TIDs,
376 * and didn't have enough free; see comments at
379 i--; /* last tidlist[i] not filled in */
383 tidlist[i] = tid + tidoff;
384 /* we "know" system pages and TID pages are same size */
385 dd->pageshadow[ctxttid + tid] = pagep[i];
386 dd->physshadow[ctxttid + tid] =
387 qib_map_page(dd->pcidev, pagep[i], 0, PAGE_SIZE,
390 * don't need atomic or it's overhead
392 __set_bit(tid, tidmap);
393 physaddr = dd->physshadow[ctxttid + tid];
394 /* PERFORMANCE: below should almost certainly be cached */
395 dd->f_put_tid(dd, &tidbase[tid],
396 RCVHQ_RCV_TYPE_EXPECTED, physaddr);
398 * don't check this tid in qib_ctxtshadow, since we
399 * just filled it in; start with the next one.
407 /* jump here if copy out of updated info failed... */
408 /* same code that's in qib_free_tid() */
409 limit = sizeof(tidmap) * BITS_PER_BYTE;
411 /* just in case size changes in future */
413 tid = find_first_bit((const unsigned long *)tidmap, limit);
414 for (; tid < limit; tid++) {
415 if (!test_bit(tid, tidmap))
417 if (dd->pageshadow[ctxttid + tid]) {
420 phys = dd->physshadow[ctxttid + tid];
421 dd->physshadow[ctxttid + tid] = dd->tidinvalid;
422 /* PERFORMANCE: below should almost certainly
425 dd->f_put_tid(dd, &tidbase[tid],
426 RCVHQ_RCV_TYPE_EXPECTED,
428 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE,
430 dd->pageshadow[ctxttid + tid] = NULL;
433 qib_release_user_pages(pagep, cnt);
436 * Copy the updated array, with qib_tid's filled in, back
437 * to user. Since we did the copy in already, this "should
438 * never fail" If it does, we have to clean up...
440 if (copy_to_user((void __user *)
441 (unsigned long) ti->tidlist,
442 tidlist, cnt * sizeof(*tidlist))) {
446 if (copy_to_user((void __user *) (unsigned long) ti->tidmap,
447 tidmap, sizeof(tidmap))) {
453 if (!rcd->subctxt_cnt)
454 rcd->tidcursor = tid;
456 tidcursor_fp(fp) = tid;
464 * qib_tid_free - free a context TID
466 * @subctxt: the subcontext
469 * right now we are unlocking one page at a time, but since
470 * the intended use of this routine is for a single group of
471 * virtually contiguous pages, that should change to improve
472 * performance. We check that the TID is in range for this context
473 * but otherwise don't check validity; if user has an error and
474 * frees the wrong tid, it's only their own data that can thereby
475 * be corrupted. We do check that the TID was in use, for sanity
476 * We always use our idea of the saved address, not the address that
477 * they pass in to us.
479 static int qib_tid_free(struct qib_ctxtdata *rcd, unsigned subctxt,
480 const struct qib_tid_info *ti)
483 u32 tid, ctxttid, cnt, limit, tidcnt;
484 struct qib_devdata *dd = rcd->dd;
485 u64 __iomem *tidbase;
486 unsigned long tidmap[8];
488 if (!dd->pageshadow) {
493 if (copy_from_user(tidmap, (void __user *)(unsigned long)ti->tidmap,
499 ctxttid = rcd->ctxt * dd->rcvtidcnt;
500 if (!rcd->subctxt_cnt)
501 tidcnt = dd->rcvtidcnt;
503 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) +
504 (dd->rcvtidcnt % rcd->subctxt_cnt);
505 ctxttid += dd->rcvtidcnt - tidcnt;
507 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt;
508 ctxttid += tidcnt * (subctxt - 1);
510 tidbase = (u64 __iomem *) ((char __iomem *)(dd->kregbase) +
512 ctxttid * sizeof(*tidbase));
514 limit = sizeof(tidmap) * BITS_PER_BYTE;
516 /* just in case size changes in future */
518 tid = find_first_bit(tidmap, limit);
519 for (cnt = 0; tid < limit; tid++) {
521 * small optimization; if we detect a run of 3 or so without
522 * any set, use find_first_bit again. That's mainly to
523 * accelerate the case where we wrapped, so we have some at
524 * the beginning, and some at the end, and a big gap
527 if (!test_bit(tid, tidmap))
530 if (dd->pageshadow[ctxttid + tid]) {
534 p = dd->pageshadow[ctxttid + tid];
535 dd->pageshadow[ctxttid + tid] = NULL;
536 phys = dd->physshadow[ctxttid + tid];
537 dd->physshadow[ctxttid + tid] = dd->tidinvalid;
538 /* PERFORMANCE: below should almost certainly be
541 dd->f_put_tid(dd, &tidbase[tid],
542 RCVHQ_RCV_TYPE_EXPECTED, dd->tidinvalid);
543 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE,
545 qib_release_user_pages(&p, 1);
553 * qib_set_part_key - set a partition key
557 * We can have up to 4 active at a time (other than the default, which is
558 * always allowed). This is somewhat tricky, since multiple contexts may set
559 * the same key, so we reference count them, and clean up at exit. All 4
560 * partition keys are packed into a single qlogic_ib register. It's an
561 * error for a process to set the same pkey multiple times. We provide no
562 * mechanism to de-allocate a pkey at this time, we may eventually need to
563 * do that. I've used the atomic operations, and no locking, and only make
564 * a single pass through what's available. This should be more than
565 * adequate for some time. I'll think about spinlocks or the like if and as
568 static int qib_set_part_key(struct qib_ctxtdata *rcd, u16 key)
570 struct qib_pportdata *ppd = rcd->ppd;
571 int i, any = 0, pidx = -1;
572 u16 lkey = key & 0x7FFF;
575 if (lkey == (QIB_DEFAULT_P_KEY & 0x7FFF)) {
576 /* nothing to do; this key always valid */
587 * Set the full membership bit, because it has to be
588 * set in the register or the packet, and it seems
589 * cleaner to set in the register than to force all
594 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) {
595 if (!rcd->pkeys[i] && pidx == -1)
597 if (rcd->pkeys[i] == key) {
606 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) {
607 if (!ppd->pkeys[i]) {
611 if (ppd->pkeys[i] == key) {
612 atomic_t *pkrefs = &ppd->pkeyrefs[i];
614 if (atomic_inc_return(pkrefs) > 1) {
615 rcd->pkeys[pidx] = key;
620 * lost race, decrement count, catch below
626 if ((ppd->pkeys[i] & 0x7FFF) == lkey) {
628 * It makes no sense to have both the limited and
629 * full membership PKEY set at the same time since
630 * the unlimited one will disable the limited one.
640 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) {
641 if (!ppd->pkeys[i] &&
642 atomic_inc_return(&ppd->pkeyrefs[i]) == 1) {
643 rcd->pkeys[pidx] = key;
645 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0);
657 * qib_manage_rcvq - manage a context's receive queue
659 * @subctxt: the subcontext
660 * @start_stop: action to carry out
662 * start_stop == 0 disables receive on the context, for use in queue
663 * overflow conditions. start_stop==1 re-enables, to be used to
664 * re-init the software copy of the head register
666 static int qib_manage_rcvq(struct qib_ctxtdata *rcd, unsigned subctxt,
669 struct qib_devdata *dd = rcd->dd;
670 unsigned int rcvctrl_op;
674 /* atomically clear receive enable ctxt. */
677 * On enable, force in-memory copy of the tail register to
678 * 0, so that protocol code doesn't have to worry about
679 * whether or not the chip has yet updated the in-memory
680 * copy or not on return from the system call. The chip
681 * always resets it's tail register back to 0 on a
682 * transition from disabled to enabled.
684 if (rcd->rcvhdrtail_kvaddr)
685 qib_clear_rcvhdrtail(rcd);
686 rcvctrl_op = QIB_RCVCTRL_CTXT_ENB;
688 rcvctrl_op = QIB_RCVCTRL_CTXT_DIS;
689 dd->f_rcvctrl(rcd->ppd, rcvctrl_op, rcd->ctxt);
690 /* always; new head should be equal to new tail; see above */
695 static void qib_clean_part_key(struct qib_ctxtdata *rcd,
696 struct qib_devdata *dd)
698 int i, j, pchanged = 0;
699 struct qib_pportdata *ppd = rcd->ppd;
701 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) {
704 for (j = 0; j < ARRAY_SIZE(ppd->pkeys); j++) {
705 /* check for match independent of the global bit */
706 if ((ppd->pkeys[j] & 0x7fff) !=
707 (rcd->pkeys[i] & 0x7fff))
709 if (atomic_dec_and_test(&ppd->pkeyrefs[j])) {
718 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0);
721 /* common code for the mappings on dma_alloc_coherent mem */
722 static int qib_mmap_mem(struct vm_area_struct *vma, struct qib_ctxtdata *rcd,
723 unsigned len, void *kvaddr, u32 write_ok, char *what)
725 struct qib_devdata *dd = rcd->dd;
729 if ((vma->vm_end - vma->vm_start) > len) {
730 qib_devinfo(dd->pcidev,
731 "FAIL on %s: len %lx > %x\n", what,
732 vma->vm_end - vma->vm_start, len);
738 * shared context user code requires rcvhdrq mapped r/w, others
739 * only allowed readonly mapping.
742 if (vma->vm_flags & VM_WRITE) {
743 qib_devinfo(dd->pcidev,
744 "%s must be mapped readonly\n", what);
749 /* don't allow them to later change with mprotect */
750 vma->vm_flags &= ~VM_MAYWRITE;
753 pfn = virt_to_phys(kvaddr) >> PAGE_SHIFT;
754 ret = remap_pfn_range(vma, vma->vm_start, pfn,
755 len, vma->vm_page_prot);
757 qib_devinfo(dd->pcidev,
758 "%s ctxt%u mmap of %lx, %x bytes failed: %d\n",
759 what, rcd->ctxt, pfn, len, ret);
764 static int mmap_ureg(struct vm_area_struct *vma, struct qib_devdata *dd,
772 * This is real hardware, so use io_remap. This is the mechanism
773 * for the user process to update the head registers for their ctxt
776 sz = dd->flags & QIB_HAS_HDRSUPP ? 2 * PAGE_SIZE : PAGE_SIZE;
777 if ((vma->vm_end - vma->vm_start) > sz) {
778 qib_devinfo(dd->pcidev,
779 "FAIL mmap userreg: reqlen %lx > PAGE\n",
780 vma->vm_end - vma->vm_start);
783 phys = dd->physaddr + ureg;
784 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
786 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND;
787 ret = io_remap_pfn_range(vma, vma->vm_start,
789 vma->vm_end - vma->vm_start,
795 static int mmap_piobufs(struct vm_area_struct *vma,
796 struct qib_devdata *dd,
797 struct qib_ctxtdata *rcd,
798 unsigned piobufs, unsigned piocnt)
804 * When we map the PIO buffers in the chip, we want to map them as
805 * writeonly, no read possible; unfortunately, x86 doesn't allow
806 * for this in hardware, but we still prevent users from asking
809 if ((vma->vm_end - vma->vm_start) > (piocnt * dd->palign)) {
810 qib_devinfo(dd->pcidev,
811 "FAIL mmap piobufs: reqlen %lx > PAGE\n",
812 vma->vm_end - vma->vm_start);
817 phys = dd->physaddr + piobufs;
819 #if defined(__powerpc__)
820 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
824 * don't allow them to later change to readable with mprotect (for when
825 * not initially mapped readable, as is normally the case)
827 vma->vm_flags &= ~VM_MAYREAD;
828 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND;
830 /* We used PAT if wc_cookie == 0 */
832 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
834 ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT,
835 vma->vm_end - vma->vm_start,
841 static int mmap_rcvegrbufs(struct vm_area_struct *vma,
842 struct qib_ctxtdata *rcd)
844 struct qib_devdata *dd = rcd->dd;
845 unsigned long start, size;
846 size_t total_size, i;
850 size = rcd->rcvegrbuf_size;
851 total_size = rcd->rcvegrbuf_chunks * size;
852 if ((vma->vm_end - vma->vm_start) > total_size) {
853 qib_devinfo(dd->pcidev,
854 "FAIL on egr bufs: reqlen %lx > actual %lx\n",
855 vma->vm_end - vma->vm_start,
856 (unsigned long) total_size);
861 if (vma->vm_flags & VM_WRITE) {
862 qib_devinfo(dd->pcidev,
863 "Can't map eager buffers as writable (flags=%lx)\n",
868 /* don't allow them to later change to writeable with mprotect */
869 vma->vm_flags &= ~VM_MAYWRITE;
871 start = vma->vm_start;
873 for (i = 0; i < rcd->rcvegrbuf_chunks; i++, start += size) {
874 pfn = virt_to_phys(rcd->rcvegrbuf[i]) >> PAGE_SHIFT;
875 ret = remap_pfn_range(vma, start, pfn, size,
887 * qib_file_vma_fault - handle a VMA page fault.
889 static int qib_file_vma_fault(struct vm_fault *vmf)
893 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
895 return VM_FAULT_SIGBUS;
903 static const struct vm_operations_struct qib_file_vm_ops = {
904 .fault = qib_file_vma_fault,
907 static int mmap_kvaddr(struct vm_area_struct *vma, u64 pgaddr,
908 struct qib_ctxtdata *rcd, unsigned subctxt)
910 struct qib_devdata *dd = rcd->dd;
911 unsigned subctxt_cnt;
917 subctxt_cnt = rcd->subctxt_cnt;
918 size = rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size;
921 * Each process has all the subctxt uregbase, rcvhdrq, and
922 * rcvegrbufs mmapped - as an array for all the processes,
923 * and also separately for this process.
925 if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase)) {
926 addr = rcd->subctxt_uregbase;
927 size = PAGE_SIZE * subctxt_cnt;
928 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base)) {
929 addr = rcd->subctxt_rcvhdr_base;
930 size = rcd->rcvhdrq_size * subctxt_cnt;
931 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf)) {
932 addr = rcd->subctxt_rcvegrbuf;
934 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase +
935 PAGE_SIZE * subctxt)) {
936 addr = rcd->subctxt_uregbase + PAGE_SIZE * subctxt;
938 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base +
939 rcd->rcvhdrq_size * subctxt)) {
940 addr = rcd->subctxt_rcvhdr_base +
941 rcd->rcvhdrq_size * subctxt;
942 size = rcd->rcvhdrq_size;
943 } else if (pgaddr == cvt_kvaddr(&rcd->user_event_mask[subctxt])) {
944 addr = rcd->user_event_mask;
946 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf +
948 addr = rcd->subctxt_rcvegrbuf + size * subctxt;
949 /* rcvegrbufs are read-only on the slave */
950 if (vma->vm_flags & VM_WRITE) {
951 qib_devinfo(dd->pcidev,
952 "Can't map eager buffers as writable (flags=%lx)\n",
958 * Don't allow permission to later change to writeable
961 vma->vm_flags &= ~VM_MAYWRITE;
964 len = vma->vm_end - vma->vm_start;
970 vma->vm_pgoff = (unsigned long) addr >> PAGE_SHIFT;
971 vma->vm_ops = &qib_file_vm_ops;
972 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
980 * qib_mmapf - mmap various structures into user space
981 * @fp: the file pointer
984 * We use this to have a shared buffer between the kernel and the user code
985 * for the rcvhdr queue, egr buffers, and the per-context user regs and pio
986 * buffers in the chip. We have the open and close entries so we can bump
987 * the ref count and keep the driver from being unloaded while still mapped.
989 static int qib_mmapf(struct file *fp, struct vm_area_struct *vma)
991 struct qib_ctxtdata *rcd;
992 struct qib_devdata *dd;
994 unsigned piobufs, piocnt;
998 if (!rcd || !(vma->vm_flags & VM_SHARED)) {
1005 * This is the qib_do_user_init() code, mapping the shared buffers
1006 * and per-context user registers into the user process. The address
1007 * referred to by vm_pgoff is the file offset passed via mmap().
1008 * For shared contexts, this is the kernel vmalloc() address of the
1009 * pages to share with the master.
1010 * For non-shared or master ctxts, this is a physical address.
1011 * We only do one mmap for each space mapped.
1013 pgaddr = vma->vm_pgoff << PAGE_SHIFT;
1016 * Check for 0 in case one of the allocations failed, but user
1017 * called mmap anyway.
1025 * Physical addresses must fit in 40 bits for our hardware.
1026 * Check for kernel virtual addresses first, anything else must
1027 * match a HW or memory address.
1029 ret = mmap_kvaddr(vma, pgaddr, rcd, subctxt_fp(fp));
1036 ureg = dd->uregbase + dd->ureg_align * rcd->ctxt;
1037 if (!rcd->subctxt_cnt) {
1038 /* ctxt is not shared */
1039 piocnt = rcd->piocnt;
1040 piobufs = rcd->piobufs;
1041 } else if (!subctxt_fp(fp)) {
1042 /* caller is the master */
1043 piocnt = (rcd->piocnt / rcd->subctxt_cnt) +
1044 (rcd->piocnt % rcd->subctxt_cnt);
1045 piobufs = rcd->piobufs +
1046 dd->palign * (rcd->piocnt - piocnt);
1048 unsigned slave = subctxt_fp(fp) - 1;
1050 /* caller is a slave */
1051 piocnt = rcd->piocnt / rcd->subctxt_cnt;
1052 piobufs = rcd->piobufs + dd->palign * piocnt * slave;
1056 ret = mmap_ureg(vma, dd, ureg);
1057 else if (pgaddr == piobufs)
1058 ret = mmap_piobufs(vma, dd, rcd, piobufs, piocnt);
1059 else if (pgaddr == dd->pioavailregs_phys)
1060 /* in-memory copy of pioavail registers */
1061 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE,
1062 (void *) dd->pioavailregs_dma, 0,
1063 "pioavail registers");
1064 else if (pgaddr == rcd->rcvegr_phys)
1065 ret = mmap_rcvegrbufs(vma, rcd);
1066 else if (pgaddr == (u64) rcd->rcvhdrq_phys)
1068 * The rcvhdrq itself; multiple pages, contiguous
1069 * from an i/o perspective. Shared contexts need
1070 * to map r/w, so we allow writing.
1072 ret = qib_mmap_mem(vma, rcd, rcd->rcvhdrq_size,
1073 rcd->rcvhdrq, 1, "rcvhdrq");
1074 else if (pgaddr == (u64) rcd->rcvhdrqtailaddr_phys)
1075 /* in-memory copy of rcvhdrq tail register */
1076 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE,
1077 rcd->rcvhdrtail_kvaddr, 0,
1084 vma->vm_private_data = NULL;
1087 qib_devinfo(dd->pcidev,
1088 "mmap Failure %d: off %llx len %lx\n",
1089 -ret, (unsigned long long)pgaddr,
1090 vma->vm_end - vma->vm_start);
1095 static unsigned int qib_poll_urgent(struct qib_ctxtdata *rcd,
1097 struct poll_table_struct *pt)
1099 struct qib_devdata *dd = rcd->dd;
1102 poll_wait(fp, &rcd->wait, pt);
1104 spin_lock_irq(&dd->uctxt_lock);
1105 if (rcd->urgent != rcd->urgent_poll) {
1106 pollflag = POLLIN | POLLRDNORM;
1107 rcd->urgent_poll = rcd->urgent;
1110 set_bit(QIB_CTXT_WAITING_URG, &rcd->flag);
1112 spin_unlock_irq(&dd->uctxt_lock);
1117 static unsigned int qib_poll_next(struct qib_ctxtdata *rcd,
1119 struct poll_table_struct *pt)
1121 struct qib_devdata *dd = rcd->dd;
1124 poll_wait(fp, &rcd->wait, pt);
1126 spin_lock_irq(&dd->uctxt_lock);
1127 if (dd->f_hdrqempty(rcd)) {
1128 set_bit(QIB_CTXT_WAITING_RCV, &rcd->flag);
1129 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_INTRAVAIL_ENB, rcd->ctxt);
1132 pollflag = POLLIN | POLLRDNORM;
1133 spin_unlock_irq(&dd->uctxt_lock);
1138 static unsigned int qib_poll(struct file *fp, struct poll_table_struct *pt)
1140 struct qib_ctxtdata *rcd;
1146 else if (rcd->poll_type == QIB_POLL_TYPE_URGENT)
1147 pollflag = qib_poll_urgent(rcd, fp, pt);
1148 else if (rcd->poll_type == QIB_POLL_TYPE_ANYRCV)
1149 pollflag = qib_poll_next(rcd, fp, pt);
1156 static void assign_ctxt_affinity(struct file *fp, struct qib_devdata *dd)
1158 struct qib_filedata *fd = fp->private_data;
1159 const unsigned int weight = cpumask_weight(¤t->cpus_allowed);
1160 const struct cpumask *local_mask = cpumask_of_pcibus(dd->pcidev->bus);
1164 * If process has NOT already set it's affinity, select and
1165 * reserve a processor for it on the local NUMA node.
1167 if ((weight >= qib_cpulist_count) &&
1168 (cpumask_weight(local_mask) <= qib_cpulist_count)) {
1169 for_each_cpu(local_cpu, local_mask)
1170 if (!test_and_set_bit(local_cpu, qib_cpulist)) {
1171 fd->rec_cpu_num = local_cpu;
1177 * If process has NOT already set it's affinity, select and
1178 * reserve a processor for it, as a rendevous for all
1179 * users of the driver. If they don't actually later
1180 * set affinity to this cpu, or set it to some other cpu,
1181 * it just means that sooner or later we don't recommend
1182 * a cpu, and let the scheduler do it's best.
1184 if (weight >= qib_cpulist_count) {
1187 cpu = find_first_zero_bit(qib_cpulist,
1189 if (cpu == qib_cpulist_count)
1191 "no cpus avail for affinity PID %u\n",
1194 __set_bit(cpu, qib_cpulist);
1195 fd->rec_cpu_num = cpu;
1201 * Check that userland and driver are compatible for subcontexts.
1203 static int qib_compatible_subctxts(int user_swmajor, int user_swminor)
1205 /* this code is written long-hand for clarity */
1206 if (QIB_USER_SWMAJOR != user_swmajor) {
1207 /* no promise of compatibility if major mismatch */
1210 if (QIB_USER_SWMAJOR == 1) {
1211 switch (QIB_USER_SWMINOR) {
1215 /* no subctxt implementation so cannot be compatible */
1218 /* 3 is only compatible with itself */
1219 return user_swminor == 3;
1221 /* >= 4 are compatible (or are expected to be) */
1222 return user_swminor <= QIB_USER_SWMINOR;
1225 /* make no promises yet for future major versions */
1229 static int init_subctxts(struct qib_devdata *dd,
1230 struct qib_ctxtdata *rcd,
1231 const struct qib_user_info *uinfo)
1234 unsigned num_subctxts;
1238 * If the user is requesting zero subctxts,
1239 * skip the subctxt allocation.
1241 if (uinfo->spu_subctxt_cnt <= 0)
1243 num_subctxts = uinfo->spu_subctxt_cnt;
1245 /* Check for subctxt compatibility */
1246 if (!qib_compatible_subctxts(uinfo->spu_userversion >> 16,
1247 uinfo->spu_userversion & 0xffff)) {
1248 qib_devinfo(dd->pcidev,
1249 "Mismatched user version (%d.%d) and driver version (%d.%d) while context sharing. Ensure that driver and library are from the same release.\n",
1250 (int) (uinfo->spu_userversion >> 16),
1251 (int) (uinfo->spu_userversion & 0xffff),
1252 QIB_USER_SWMAJOR, QIB_USER_SWMINOR);
1255 if (num_subctxts > QLOGIC_IB_MAX_SUBCTXT) {
1260 rcd->subctxt_uregbase = vmalloc_user(PAGE_SIZE * num_subctxts);
1261 if (!rcd->subctxt_uregbase) {
1265 /* Note: rcd->rcvhdrq_size isn't initialized yet. */
1266 size = ALIGN(dd->rcvhdrcnt * dd->rcvhdrentsize *
1267 sizeof(u32), PAGE_SIZE) * num_subctxts;
1268 rcd->subctxt_rcvhdr_base = vmalloc_user(size);
1269 if (!rcd->subctxt_rcvhdr_base) {
1274 rcd->subctxt_rcvegrbuf = vmalloc_user(rcd->rcvegrbuf_chunks *
1275 rcd->rcvegrbuf_size *
1277 if (!rcd->subctxt_rcvegrbuf) {
1282 rcd->subctxt_cnt = uinfo->spu_subctxt_cnt;
1283 rcd->subctxt_id = uinfo->spu_subctxt_id;
1284 rcd->active_slaves = 1;
1285 rcd->redirect_seq_cnt = 1;
1286 set_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag);
1290 vfree(rcd->subctxt_rcvhdr_base);
1292 vfree(rcd->subctxt_uregbase);
1293 rcd->subctxt_uregbase = NULL;
1298 static int setup_ctxt(struct qib_pportdata *ppd, int ctxt,
1299 struct file *fp, const struct qib_user_info *uinfo)
1301 struct qib_filedata *fd = fp->private_data;
1302 struct qib_devdata *dd = ppd->dd;
1303 struct qib_ctxtdata *rcd;
1308 assign_ctxt_affinity(fp, dd);
1310 numa_id = qib_numa_aware ? ((fd->rec_cpu_num != -1) ?
1311 cpu_to_node(fd->rec_cpu_num) :
1312 numa_node_id()) : dd->assigned_node_id;
1314 rcd = qib_create_ctxtdata(ppd, ctxt, numa_id);
1317 * Allocate memory for use in qib_tid_update() at open to
1318 * reduce cost of expected send setup per message segment
1321 ptmp = kmalloc(dd->rcvtidcnt * sizeof(u16) +
1322 dd->rcvtidcnt * sizeof(struct page **),
1325 if (!rcd || !ptmp) {
1327 "Unable to allocate ctxtdata memory, failing open\n");
1331 rcd->userversion = uinfo->spu_userversion;
1332 ret = init_subctxts(dd, rcd, uinfo);
1335 rcd->tid_pg_list = ptmp;
1336 rcd->pid = current->pid;
1337 init_waitqueue_head(&dd->rcd[ctxt]->wait);
1338 strlcpy(rcd->comm, current->comm, sizeof(rcd->comm));
1340 qib_stats.sps_ctxts++;
1346 if (fd->rec_cpu_num != -1)
1347 __clear_bit(fd->rec_cpu_num, qib_cpulist);
1349 dd->rcd[ctxt] = NULL;
1356 static inline int usable(struct qib_pportdata *ppd)
1358 struct qib_devdata *dd = ppd->dd;
1360 return dd && (dd->flags & QIB_PRESENT) && dd->kregbase && ppd->lid &&
1361 (ppd->lflags & QIBL_LINKACTIVE);
1365 * Select a context on the given device, either using a requested port
1366 * or the port based on the context number.
1368 static int choose_port_ctxt(struct file *fp, struct qib_devdata *dd, u32 port,
1369 const struct qib_user_info *uinfo)
1371 struct qib_pportdata *ppd = NULL;
1375 if (!usable(dd->pport + port - 1)) {
1379 ppd = dd->pport + port - 1;
1381 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts && dd->rcd[ctxt];
1384 if (ctxt == dd->cfgctxts) {
1389 u32 pidx = ctxt % dd->num_pports;
1391 if (usable(dd->pport + pidx))
1392 ppd = dd->pport + pidx;
1394 for (pidx = 0; pidx < dd->num_pports && !ppd;
1396 if (usable(dd->pport + pidx))
1397 ppd = dd->pport + pidx;
1400 ret = ppd ? setup_ctxt(ppd, ctxt, fp, uinfo) : -ENETDOWN;
1405 static int find_free_ctxt(int unit, struct file *fp,
1406 const struct qib_user_info *uinfo)
1408 struct qib_devdata *dd = qib_lookup(unit);
1411 if (!dd || (uinfo->spu_port && uinfo->spu_port > dd->num_pports))
1414 ret = choose_port_ctxt(fp, dd, uinfo->spu_port, uinfo);
1419 static int get_a_ctxt(struct file *fp, const struct qib_user_info *uinfo,
1422 struct qib_devdata *udd = NULL;
1423 int ret = 0, devmax, npresent, nup, ndev, dusable = 0, i;
1424 u32 port = uinfo->spu_port, ctxt;
1426 devmax = qib_count_units(&npresent, &nup);
1436 if (alg == QIB_PORT_ALG_ACROSS) {
1437 unsigned inuse = ~0U;
1439 /* find device (with ACTIVE ports) with fewest ctxts in use */
1440 for (ndev = 0; ndev < devmax; ndev++) {
1441 struct qib_devdata *dd = qib_lookup(ndev);
1442 unsigned cused = 0, cfree = 0, pusable = 0;
1446 if (port && port <= dd->num_pports &&
1447 usable(dd->pport + port - 1))
1450 for (i = 0; i < dd->num_pports; i++)
1451 if (usable(dd->pport + i))
1455 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts;
1461 if (cfree && cused < inuse) {
1467 ret = choose_port_ctxt(fp, udd, port, uinfo);
1471 for (ndev = 0; ndev < devmax; ndev++) {
1472 struct qib_devdata *dd = qib_lookup(ndev);
1475 ret = choose_port_ctxt(fp, dd, port, uinfo);
1483 ret = dusable ? -EBUSY : -ENETDOWN;
1489 static int find_shared_ctxt(struct file *fp,
1490 const struct qib_user_info *uinfo)
1492 int devmax, ndev, i;
1495 devmax = qib_count_units(NULL, NULL);
1497 for (ndev = 0; ndev < devmax; ndev++) {
1498 struct qib_devdata *dd = qib_lookup(ndev);
1500 /* device portion of usable() */
1501 if (!(dd && (dd->flags & QIB_PRESENT) && dd->kregbase))
1503 for (i = dd->first_user_ctxt; i < dd->cfgctxts; i++) {
1504 struct qib_ctxtdata *rcd = dd->rcd[i];
1506 /* Skip ctxts which are not yet open */
1507 if (!rcd || !rcd->cnt)
1509 /* Skip ctxt if it doesn't match the requested one */
1510 if (rcd->subctxt_id != uinfo->spu_subctxt_id)
1512 /* Verify the sharing process matches the master */
1513 if (rcd->subctxt_cnt != uinfo->spu_subctxt_cnt ||
1514 rcd->userversion != uinfo->spu_userversion ||
1515 rcd->cnt >= rcd->subctxt_cnt) {
1520 subctxt_fp(fp) = rcd->cnt++;
1521 rcd->subpid[subctxt_fp(fp)] = current->pid;
1522 tidcursor_fp(fp) = 0;
1523 rcd->active_slaves |= 1 << subctxt_fp(fp);
1533 static int qib_open(struct inode *in, struct file *fp)
1535 /* The real work is performed later in qib_assign_ctxt() */
1536 fp->private_data = kzalloc(sizeof(struct qib_filedata), GFP_KERNEL);
1537 if (fp->private_data) /* no cpu affinity by default */
1538 ((struct qib_filedata *)fp->private_data)->rec_cpu_num = -1;
1539 return fp->private_data ? 0 : -ENOMEM;
1542 static int find_hca(unsigned int cpu, int *unit)
1544 int ret = 0, devmax, npresent, nup, ndev;
1548 devmax = qib_count_units(&npresent, &nup);
1557 for (ndev = 0; ndev < devmax; ndev++) {
1558 struct qib_devdata *dd = qib_lookup(ndev);
1561 if (pcibus_to_node(dd->pcidev->bus) < 0) {
1565 if (cpu_to_node(cpu) ==
1566 pcibus_to_node(dd->pcidev->bus)) {
1576 static int do_qib_user_sdma_queue_create(struct file *fp)
1578 struct qib_filedata *fd = fp->private_data;
1579 struct qib_ctxtdata *rcd = fd->rcd;
1580 struct qib_devdata *dd = rcd->dd;
1582 if (dd->flags & QIB_HAS_SEND_DMA) {
1584 fd->pq = qib_user_sdma_queue_create(&dd->pcidev->dev,
1596 * Get ctxt early, so can set affinity prior to memory allocation.
1598 static int qib_assign_ctxt(struct file *fp, const struct qib_user_info *uinfo)
1602 unsigned swmajor, swminor, alg = QIB_PORT_ALG_ACROSS;
1604 /* Check to be sure we haven't already initialized this file */
1610 /* for now, if major version is different, bail */
1611 swmajor = uinfo->spu_userversion >> 16;
1612 if (swmajor != QIB_USER_SWMAJOR) {
1617 swminor = uinfo->spu_userversion & 0xffff;
1619 if (swminor >= 11 && uinfo->spu_port_alg < QIB_PORT_ALG_COUNT)
1620 alg = uinfo->spu_port_alg;
1622 mutex_lock(&qib_mutex);
1624 if (qib_compatible_subctxts(swmajor, swminor) &&
1625 uinfo->spu_subctxt_cnt) {
1626 ret = find_shared_ctxt(fp, uinfo);
1628 ret = do_qib_user_sdma_queue_create(fp);
1630 assign_ctxt_affinity(fp, (ctxt_fp(fp))->dd);
1635 i_minor = iminor(file_inode(fp)) - QIB_USER_MINOR_BASE;
1637 ret = find_free_ctxt(i_minor - 1, fp, uinfo);
1640 const unsigned int cpu = cpumask_first(¤t->cpus_allowed);
1641 const unsigned int weight =
1642 cpumask_weight(¤t->cpus_allowed);
1644 if (weight == 1 && !test_bit(cpu, qib_cpulist))
1645 if (!find_hca(cpu, &unit) && unit >= 0)
1646 if (!find_free_ctxt(unit, fp, uinfo)) {
1650 ret = get_a_ctxt(fp, uinfo, alg);
1655 ret = do_qib_user_sdma_queue_create(fp);
1657 mutex_unlock(&qib_mutex);
1664 static int qib_do_user_init(struct file *fp,
1665 const struct qib_user_info *uinfo)
1668 struct qib_ctxtdata *rcd = ctxt_fp(fp);
1669 struct qib_devdata *dd;
1672 /* Subctxts don't need to initialize anything since master did it. */
1673 if (subctxt_fp(fp)) {
1674 ret = wait_event_interruptible(rcd->wait,
1675 !test_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag));
1681 /* some ctxts may get extra buffers, calculate that here */
1682 uctxt = rcd->ctxt - dd->first_user_ctxt;
1683 if (uctxt < dd->ctxts_extrabuf) {
1684 rcd->piocnt = dd->pbufsctxt + 1;
1685 rcd->pio_base = rcd->piocnt * uctxt;
1687 rcd->piocnt = dd->pbufsctxt;
1688 rcd->pio_base = rcd->piocnt * uctxt +
1693 * All user buffers are 2KB buffers. If we ever support
1694 * giving 4KB buffers to user processes, this will need some
1695 * work. Can't use piobufbase directly, because it has
1696 * both 2K and 4K buffer base values. So check and handle.
1698 if ((rcd->pio_base + rcd->piocnt) > dd->piobcnt2k) {
1699 if (rcd->pio_base >= dd->piobcnt2k) {
1701 "%u:ctxt%u: no 2KB buffers available\n",
1702 dd->unit, rcd->ctxt);
1706 rcd->piocnt = dd->piobcnt2k - rcd->pio_base;
1707 qib_dev_err(dd, "Ctxt%u: would use 4KB bufs, using %u\n",
1708 rcd->ctxt, rcd->piocnt);
1711 rcd->piobufs = dd->pio2k_bufbase + rcd->pio_base * dd->palign;
1712 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt,
1713 TXCHK_CHG_TYPE_USER, rcd);
1715 * try to ensure that processes start up with consistent avail update
1716 * for their own range, at least. If system very quiet, it might
1717 * have the in-memory copy out of date at startup for this range of
1718 * buffers, when a context gets re-used. Do after the chg_pioavail
1719 * and before the rest of setup, so it's "almost certain" the dma
1720 * will have occurred (can't 100% guarantee, but should be many
1721 * decimals of 9s, with this ordering), given how much else happens
1724 dd->f_sendctrl(dd->pport, QIB_SENDCTRL_AVAIL_BLIP);
1727 * Now allocate the rcvhdr Q and eager TIDs; skip the TID
1728 * array for time being. If rcd->ctxt > chip-supported,
1729 * we need to do extra stuff here to handle by handling overflow
1730 * through ctxt 0, someday
1732 ret = qib_create_rcvhdrq(dd, rcd);
1734 ret = qib_setup_eagerbufs(rcd);
1738 rcd->tidcursor = 0; /* start at beginning after open */
1740 /* initialize poll variables... */
1742 rcd->urgent_poll = 0;
1745 * Now enable the ctxt for receive.
1746 * For chips that are set to DMA the tail register to memory
1747 * when they change (and when the update bit transitions from
1748 * 0 to 1. So for those chips, we turn it off and then back on.
1749 * This will (very briefly) affect any other open ctxts, but the
1750 * duration is very short, and therefore isn't an issue. We
1751 * explicitly set the in-memory tail copy to 0 beforehand, so we
1752 * don't have to wait to be sure the DMA update has happened
1753 * (chip resets head/tail to 0 on transition to enable).
1755 if (rcd->rcvhdrtail_kvaddr)
1756 qib_clear_rcvhdrtail(rcd);
1758 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_ENB | QIB_RCVCTRL_TIDFLOW_ENB,
1761 /* Notify any waiting slaves */
1762 if (rcd->subctxt_cnt) {
1763 clear_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag);
1764 wake_up(&rcd->wait);
1769 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt,
1770 TXCHK_CHG_TYPE_KERN, rcd);
1776 * unlock_exptid - unlock any expected TID entries context still had in use
1779 * We don't actually update the chip here, because we do a bulk update
1780 * below, using f_clear_tids.
1782 static void unlock_expected_tids(struct qib_ctxtdata *rcd)
1784 struct qib_devdata *dd = rcd->dd;
1785 int ctxt_tidbase = rcd->ctxt * dd->rcvtidcnt;
1786 int i, cnt = 0, maxtid = ctxt_tidbase + dd->rcvtidcnt;
1788 for (i = ctxt_tidbase; i < maxtid; i++) {
1789 struct page *p = dd->pageshadow[i];
1795 phys = dd->physshadow[i];
1796 dd->physshadow[i] = dd->tidinvalid;
1797 dd->pageshadow[i] = NULL;
1798 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE,
1799 PCI_DMA_FROMDEVICE);
1800 qib_release_user_pages(&p, 1);
1805 static int qib_close(struct inode *in, struct file *fp)
1808 struct qib_filedata *fd;
1809 struct qib_ctxtdata *rcd;
1810 struct qib_devdata *dd;
1811 unsigned long flags;
1814 mutex_lock(&qib_mutex);
1816 fd = fp->private_data;
1817 fp->private_data = NULL;
1820 mutex_unlock(&qib_mutex);
1826 /* ensure all pio buffer writes in progress are flushed */
1829 /* drain user sdma queue */
1831 qib_user_sdma_queue_drain(rcd->ppd, fd->pq);
1832 qib_user_sdma_queue_destroy(fd->pq);
1835 if (fd->rec_cpu_num != -1)
1836 __clear_bit(fd->rec_cpu_num, qib_cpulist);
1840 * XXX If the master closes the context before the slave(s),
1841 * revoke the mmap for the eager receive queue so
1842 * the slave(s) don't wait for receive data forever.
1844 rcd->active_slaves &= ~(1 << fd->subctxt);
1845 rcd->subpid[fd->subctxt] = 0;
1846 mutex_unlock(&qib_mutex);
1850 /* early; no interrupt users after this */
1851 spin_lock_irqsave(&dd->uctxt_lock, flags);
1853 dd->rcd[ctxt] = NULL;
1855 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1857 if (rcd->rcvwait_to || rcd->piowait_to ||
1858 rcd->rcvnowait || rcd->pionowait) {
1859 rcd->rcvwait_to = 0;
1860 rcd->piowait_to = 0;
1868 /* atomically clear receive enable ctxt and intr avail. */
1869 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_DIS |
1870 QIB_RCVCTRL_INTRAVAIL_DIS, ctxt);
1872 /* clean up the pkeys for this ctxt user */
1873 qib_clean_part_key(rcd, dd);
1874 qib_disarm_piobufs(dd, rcd->pio_base, rcd->piocnt);
1875 qib_chg_pioavailkernel(dd, rcd->pio_base,
1876 rcd->piocnt, TXCHK_CHG_TYPE_KERN, NULL);
1878 dd->f_clear_tids(dd, rcd);
1881 unlock_expected_tids(rcd);
1882 qib_stats.sps_ctxts--;
1886 mutex_unlock(&qib_mutex);
1887 qib_free_ctxtdata(dd, rcd); /* after releasing the mutex */
1894 static int qib_ctxt_info(struct file *fp, struct qib_ctxt_info __user *uinfo)
1896 struct qib_ctxt_info info;
1899 struct qib_ctxtdata *rcd = ctxt_fp(fp);
1900 struct qib_filedata *fd;
1902 fd = fp->private_data;
1904 info.num_active = qib_count_active_units();
1905 info.unit = rcd->dd->unit;
1906 info.port = rcd->ppd->port;
1907 info.ctxt = rcd->ctxt;
1908 info.subctxt = subctxt_fp(fp);
1909 /* Number of user ctxts available for this device. */
1910 info.num_ctxts = rcd->dd->cfgctxts - rcd->dd->first_user_ctxt;
1911 info.num_subctxts = rcd->subctxt_cnt;
1912 info.rec_cpu = fd->rec_cpu_num;
1915 if (copy_to_user(uinfo, &info, sz)) {
1925 static int qib_sdma_get_inflight(struct qib_user_sdma_queue *pq,
1926 u32 __user *inflightp)
1928 const u32 val = qib_user_sdma_inflight_counter(pq);
1930 if (put_user(val, inflightp))
1936 static int qib_sdma_get_complete(struct qib_pportdata *ppd,
1937 struct qib_user_sdma_queue *pq,
1938 u32 __user *completep)
1946 err = qib_user_sdma_make_progress(ppd, pq);
1950 val = qib_user_sdma_complete_counter(pq);
1951 if (put_user(val, completep))
1957 static int disarm_req_delay(struct qib_ctxtdata *rcd)
1961 if (!usable(rcd->ppd)) {
1964 * if link is down, or otherwise not usable, delay
1965 * the caller up to 30 seconds, so we don't thrash
1966 * in trying to get the chip back to ACTIVE, and
1967 * set flag so they make the call again.
1969 if (rcd->user_event_mask) {
1971 * subctxt_cnt is 0 if not shared, so do base
1972 * separately, first, then remaining subctxt, if any
1974 set_bit(_QIB_EVENT_DISARM_BUFS_BIT,
1975 &rcd->user_event_mask[0]);
1976 for (i = 1; i < rcd->subctxt_cnt; i++)
1977 set_bit(_QIB_EVENT_DISARM_BUFS_BIT,
1978 &rcd->user_event_mask[i]);
1980 for (i = 0; !usable(rcd->ppd) && i < 300; i++)
1988 * Find all user contexts in use, and set the specified bit in their
1990 * See also find_ctxt() for a similar use, that is specific to send buffers.
1992 int qib_set_uevent_bits(struct qib_pportdata *ppd, const int evtbit)
1994 struct qib_ctxtdata *rcd;
1997 unsigned long flags;
1999 spin_lock_irqsave(&ppd->dd->uctxt_lock, flags);
2000 for (ctxt = ppd->dd->first_user_ctxt; ctxt < ppd->dd->cfgctxts;
2002 rcd = ppd->dd->rcd[ctxt];
2005 if (rcd->user_event_mask) {
2008 * subctxt_cnt is 0 if not shared, so do base
2009 * separately, first, then remaining subctxt, if any
2011 set_bit(evtbit, &rcd->user_event_mask[0]);
2012 for (i = 1; i < rcd->subctxt_cnt; i++)
2013 set_bit(evtbit, &rcd->user_event_mask[i]);
2018 spin_unlock_irqrestore(&ppd->dd->uctxt_lock, flags);
2024 * clear the event notifier events for this context.
2025 * For the DISARM_BUFS case, we also take action (this obsoletes
2026 * the older QIB_CMD_DISARM_BUFS, but we keep it for backwards
2028 * Other bits don't currently require actions, just atomically clear.
2029 * User process then performs actions appropriate to bit having been
2030 * set, if desired, and checks again in future.
2032 static int qib_user_event_ack(struct qib_ctxtdata *rcd, int subctxt,
2033 unsigned long events)
2037 for (i = 0; i <= _QIB_MAX_EVENT_BIT; i++) {
2038 if (!test_bit(i, &events))
2040 if (i == _QIB_EVENT_DISARM_BUFS_BIT) {
2041 (void)qib_disarm_piobufs_ifneeded(rcd);
2042 ret = disarm_req_delay(rcd);
2044 clear_bit(i, &rcd->user_event_mask[subctxt]);
2049 static ssize_t qib_write(struct file *fp, const char __user *data,
2050 size_t count, loff_t *off)
2052 const struct qib_cmd __user *ucmd;
2053 struct qib_ctxtdata *rcd;
2054 const void __user *src;
2055 size_t consumed, copy = 0;
2060 if (!ib_safe_file_access(fp)) {
2061 pr_err_once("qib_write: process %d (%s) changed security contexts after opening file descriptor, this is not allowed.\n",
2062 task_tgid_vnr(current), current->comm);
2066 if (count < sizeof(cmd.type)) {
2071 ucmd = (const struct qib_cmd __user *) data;
2073 if (copy_from_user(&cmd.type, &ucmd->type, sizeof(cmd.type))) {
2078 consumed = sizeof(cmd.type);
2081 case QIB_CMD_ASSIGN_CTXT:
2082 case QIB_CMD_USER_INIT:
2083 copy = sizeof(cmd.cmd.user_info);
2084 dest = &cmd.cmd.user_info;
2085 src = &ucmd->cmd.user_info;
2088 case QIB_CMD_RECV_CTRL:
2089 copy = sizeof(cmd.cmd.recv_ctrl);
2090 dest = &cmd.cmd.recv_ctrl;
2091 src = &ucmd->cmd.recv_ctrl;
2094 case QIB_CMD_CTXT_INFO:
2095 copy = sizeof(cmd.cmd.ctxt_info);
2096 dest = &cmd.cmd.ctxt_info;
2097 src = &ucmd->cmd.ctxt_info;
2100 case QIB_CMD_TID_UPDATE:
2101 case QIB_CMD_TID_FREE:
2102 copy = sizeof(cmd.cmd.tid_info);
2103 dest = &cmd.cmd.tid_info;
2104 src = &ucmd->cmd.tid_info;
2107 case QIB_CMD_SET_PART_KEY:
2108 copy = sizeof(cmd.cmd.part_key);
2109 dest = &cmd.cmd.part_key;
2110 src = &ucmd->cmd.part_key;
2113 case QIB_CMD_DISARM_BUFS:
2114 case QIB_CMD_PIOAVAILUPD: /* force an update of PIOAvail reg */
2120 case QIB_CMD_POLL_TYPE:
2121 copy = sizeof(cmd.cmd.poll_type);
2122 dest = &cmd.cmd.poll_type;
2123 src = &ucmd->cmd.poll_type;
2126 case QIB_CMD_ARMLAUNCH_CTRL:
2127 copy = sizeof(cmd.cmd.armlaunch_ctrl);
2128 dest = &cmd.cmd.armlaunch_ctrl;
2129 src = &ucmd->cmd.armlaunch_ctrl;
2132 case QIB_CMD_SDMA_INFLIGHT:
2133 copy = sizeof(cmd.cmd.sdma_inflight);
2134 dest = &cmd.cmd.sdma_inflight;
2135 src = &ucmd->cmd.sdma_inflight;
2138 case QIB_CMD_SDMA_COMPLETE:
2139 copy = sizeof(cmd.cmd.sdma_complete);
2140 dest = &cmd.cmd.sdma_complete;
2141 src = &ucmd->cmd.sdma_complete;
2144 case QIB_CMD_ACK_EVENT:
2145 copy = sizeof(cmd.cmd.event_mask);
2146 dest = &cmd.cmd.event_mask;
2147 src = &ucmd->cmd.event_mask;
2156 if ((count - consumed) < copy) {
2160 if (copy_from_user(dest, src, copy)) {
2168 if (!rcd && cmd.type != QIB_CMD_ASSIGN_CTXT) {
2174 case QIB_CMD_ASSIGN_CTXT:
2180 ret = qib_assign_ctxt(fp, &cmd.cmd.user_info);
2185 case QIB_CMD_USER_INIT:
2186 ret = qib_do_user_init(fp, &cmd.cmd.user_info);
2189 ret = qib_get_base_info(fp, (void __user *) (unsigned long)
2190 cmd.cmd.user_info.spu_base_info,
2191 cmd.cmd.user_info.spu_base_info_size);
2194 case QIB_CMD_RECV_CTRL:
2195 ret = qib_manage_rcvq(rcd, subctxt_fp(fp), cmd.cmd.recv_ctrl);
2198 case QIB_CMD_CTXT_INFO:
2199 ret = qib_ctxt_info(fp, (struct qib_ctxt_info __user *)
2200 (unsigned long) cmd.cmd.ctxt_info);
2203 case QIB_CMD_TID_UPDATE:
2204 ret = qib_tid_update(rcd, fp, &cmd.cmd.tid_info);
2207 case QIB_CMD_TID_FREE:
2208 ret = qib_tid_free(rcd, subctxt_fp(fp), &cmd.cmd.tid_info);
2211 case QIB_CMD_SET_PART_KEY:
2212 ret = qib_set_part_key(rcd, cmd.cmd.part_key);
2215 case QIB_CMD_DISARM_BUFS:
2216 (void)qib_disarm_piobufs_ifneeded(rcd);
2217 ret = disarm_req_delay(rcd);
2220 case QIB_CMD_PIOAVAILUPD:
2221 qib_force_pio_avail_update(rcd->dd);
2224 case QIB_CMD_POLL_TYPE:
2225 rcd->poll_type = cmd.cmd.poll_type;
2228 case QIB_CMD_ARMLAUNCH_CTRL:
2229 rcd->dd->f_set_armlaunch(rcd->dd, cmd.cmd.armlaunch_ctrl);
2232 case QIB_CMD_SDMA_INFLIGHT:
2233 ret = qib_sdma_get_inflight(user_sdma_queue_fp(fp),
2234 (u32 __user *) (unsigned long)
2235 cmd.cmd.sdma_inflight);
2238 case QIB_CMD_SDMA_COMPLETE:
2239 ret = qib_sdma_get_complete(rcd->ppd,
2240 user_sdma_queue_fp(fp),
2241 (u32 __user *) (unsigned long)
2242 cmd.cmd.sdma_complete);
2245 case QIB_CMD_ACK_EVENT:
2246 ret = qib_user_event_ack(rcd, subctxt_fp(fp),
2247 cmd.cmd.event_mask);
2258 static ssize_t qib_write_iter(struct kiocb *iocb, struct iov_iter *from)
2260 struct qib_filedata *fp = iocb->ki_filp->private_data;
2261 struct qib_ctxtdata *rcd = ctxt_fp(iocb->ki_filp);
2262 struct qib_user_sdma_queue *pq = fp->pq;
2264 if (!iter_is_iovec(from) || !from->nr_segs || !pq)
2267 return qib_user_sdma_writev(rcd, pq, from->iov, from->nr_segs);
2270 static struct class *qib_class;
2271 static dev_t qib_dev;
2273 int qib_cdev_init(int minor, const char *name,
2274 const struct file_operations *fops,
2275 struct cdev **cdevp, struct device **devp)
2277 const dev_t dev = MKDEV(MAJOR(qib_dev), minor);
2279 struct device *device = NULL;
2282 cdev = cdev_alloc();
2284 pr_err("Could not allocate cdev for minor %d, %s\n",
2290 cdev->owner = THIS_MODULE;
2292 kobject_set_name(&cdev->kobj, name);
2294 ret = cdev_add(cdev, dev, 1);
2296 pr_err("Could not add cdev for minor %d, %s (err %d)\n",
2301 device = device_create(qib_class, NULL, dev, NULL, "%s", name);
2302 if (!IS_ERR(device))
2304 ret = PTR_ERR(device);
2306 pr_err("Could not create device for minor %d, %s (err %d)\n",
2317 void qib_cdev_cleanup(struct cdev **cdevp, struct device **devp)
2319 struct device *device = *devp;
2322 device_unregister(device);
2332 static struct cdev *wildcard_cdev;
2333 static struct device *wildcard_device;
2335 int __init qib_dev_init(void)
2339 ret = alloc_chrdev_region(&qib_dev, 0, QIB_NMINORS, QIB_DRV_NAME);
2341 pr_err("Could not allocate chrdev region (err %d)\n", -ret);
2345 qib_class = class_create(THIS_MODULE, "ipath");
2346 if (IS_ERR(qib_class)) {
2347 ret = PTR_ERR(qib_class);
2348 pr_err("Could not create device class (err %d)\n", -ret);
2349 unregister_chrdev_region(qib_dev, QIB_NMINORS);
2356 void qib_dev_cleanup(void)
2359 class_destroy(qib_class);
2363 unregister_chrdev_region(qib_dev, QIB_NMINORS);
2366 static atomic_t user_count = ATOMIC_INIT(0);
2368 static void qib_user_remove(struct qib_devdata *dd)
2370 if (atomic_dec_return(&user_count) == 0)
2371 qib_cdev_cleanup(&wildcard_cdev, &wildcard_device);
2373 qib_cdev_cleanup(&dd->user_cdev, &dd->user_device);
2376 static int qib_user_add(struct qib_devdata *dd)
2381 if (atomic_inc_return(&user_count) == 1) {
2382 ret = qib_cdev_init(0, "ipath", &qib_file_ops,
2383 &wildcard_cdev, &wildcard_device);
2388 snprintf(name, sizeof(name), "ipath%d", dd->unit);
2389 ret = qib_cdev_init(dd->unit + 1, name, &qib_file_ops,
2390 &dd->user_cdev, &dd->user_device);
2392 qib_user_remove(dd);
2398 * Create per-unit files in /dev
2400 int qib_device_create(struct qib_devdata *dd)
2404 r = qib_user_add(dd);
2405 ret = qib_diag_add(dd);
2412 * Remove per-unit files in /dev
2413 * void, core kernel returns no errors for this stuff
2415 void qib_device_remove(struct qib_devdata *dd)
2417 qib_user_remove(dd);
2418 qib_diag_remove(dd);