1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * vrf.c: device driver to encapsulate a VRF space
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
9 * Based on dummy, team and ipvlan drivers
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
27 #include <linux/inetdevice.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/netns/generic.h>
39 #define DRV_NAME "vrf"
40 #define DRV_VERSION "1.1"
42 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
45 #define HASH_INITVAL ((u32)0xcafef00d)
48 DECLARE_HASHTABLE(ht, HT_MAP_BITS);
52 * count how many distinct tables do not comply with the strict mode
54 * shared_tables value must be 0 in order to enable the strict mode.
56 * example of the evolution of shared_tables:
58 * add vrf0 --> table 100 shared_tables = 0 | t0
59 * add vrf1 --> table 101 shared_tables = 0 | t1
60 * add vrf2 --> table 100 shared_tables = 1 | t2
61 * add vrf3 --> table 100 shared_tables = 1 | t3
62 * add vrf4 --> table 101 shared_tables = 2 v t4
64 * shared_tables is a "step function" (or "staircase function")
65 * and it is increased by one when the second vrf is associated to a
68 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
70 * at t3, another dev (vrf3) is bound to the same table 100 but the
71 * value of shared_tables is still 1.
72 * This means that no matter how many new vrfs will register on the
73 * table 100, the shared_tables will not increase (considering only
76 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
78 * Looking at the value of shared_tables we can immediately know if
79 * the strict_mode can or cannot be enforced. Indeed, strict_mode
80 * can be enforced iff shared_tables = 0.
82 * Conversely, shared_tables is decreased when a vrf is de-associated
83 * from a table with exactly two associated vrfs.
91 struct hlist_node hnode;
92 struct list_head vrf_list; /* VRFs registered to this table */
99 static unsigned int vrf_net_id;
101 /* per netns vrf data */
103 /* protected by rtnl lock */
107 struct ctl_table_header *ctl_hdr;
111 struct rtable __rcu *rth;
112 struct rt6_info __rcu *rt6;
113 #if IS_ENABLED(CONFIG_IPV6)
114 struct fib6_table *fib6_table;
118 struct list_head me_list; /* entry in vrf_map_elem */
129 struct u64_stats_sync syncp;
132 static void vrf_rx_stats(struct net_device *dev, int len)
134 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
136 u64_stats_update_begin(&dstats->syncp);
138 dstats->rx_bytes += len;
139 u64_stats_update_end(&dstats->syncp);
142 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
144 vrf_dev->stats.tx_errors++;
148 static void vrf_get_stats64(struct net_device *dev,
149 struct rtnl_link_stats64 *stats)
153 for_each_possible_cpu(i) {
154 const struct pcpu_dstats *dstats;
155 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
158 dstats = per_cpu_ptr(dev->dstats, i);
160 start = u64_stats_fetch_begin_irq(&dstats->syncp);
161 tbytes = dstats->tx_bytes;
162 tpkts = dstats->tx_pkts;
163 tdrops = dstats->tx_drps;
164 rbytes = dstats->rx_bytes;
165 rpkts = dstats->rx_pkts;
166 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
167 stats->tx_bytes += tbytes;
168 stats->tx_packets += tpkts;
169 stats->tx_dropped += tdrops;
170 stats->rx_bytes += rbytes;
171 stats->rx_packets += rpkts;
175 static struct vrf_map *netns_vrf_map(struct net *net)
177 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
179 return &nn_vrf->vmap;
182 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
184 return netns_vrf_map(dev_net(dev));
187 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
189 struct list_head *me_head = &me->vrf_list;
192 if (list_empty(me_head))
195 vrf = list_first_entry(me_head, struct net_vrf, me_list);
200 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
202 struct vrf_map_elem *me;
204 me = kmalloc(sizeof(*me), flags);
211 static void vrf_map_elem_free(struct vrf_map_elem *me)
216 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
217 int ifindex, int users)
219 me->table_id = table_id;
220 me->ifindex = ifindex;
222 INIT_LIST_HEAD(&me->vrf_list);
225 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
228 struct vrf_map_elem *me;
231 key = jhash_1word(table_id, HASH_INITVAL);
232 hash_for_each_possible(vmap->ht, me, hnode, key) {
233 if (me->table_id == table_id)
240 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
242 u32 table_id = me->table_id;
245 key = jhash_1word(table_id, HASH_INITVAL);
246 hash_add(vmap->ht, &me->hnode, key);
249 static void vrf_map_del_elem(struct vrf_map_elem *me)
251 hash_del(&me->hnode);
254 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
256 spin_lock(&vmap->vmap_lock);
259 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
261 spin_unlock(&vmap->vmap_lock);
264 /* called with rtnl lock held */
266 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
268 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
269 struct net_vrf *vrf = netdev_priv(dev);
270 struct vrf_map_elem *new_me, *me;
271 u32 table_id = vrf->tb_id;
272 bool free_new_me = false;
276 /* we pre-allocate elements used in the spin-locked section (so that we
277 * keep the spinlock as short as possibile).
279 new_me = vrf_map_elem_alloc(GFP_KERNEL);
283 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
287 me = vrf_map_lookup_elem(vmap, table_id);
290 vrf_map_add_elem(vmap, me);
294 /* we already have an entry in the vrf_map, so it means there is (at
295 * least) a vrf registered on the specific table.
298 if (vmap->strict_mode) {
299 /* vrfs cannot share the same table */
300 NL_SET_ERR_MSG(extack, "Table is used by another VRF");
308 ++vmap->shared_tables;
310 list_add(&vrf->me_list, &me->vrf_list);
315 vrf_map_unlock(vmap);
317 /* clean-up, if needed */
319 vrf_map_elem_free(new_me);
324 /* called with rtnl lock held */
325 static void vrf_map_unregister_dev(struct net_device *dev)
327 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
328 struct net_vrf *vrf = netdev_priv(dev);
329 u32 table_id = vrf->tb_id;
330 struct vrf_map_elem *me;
335 me = vrf_map_lookup_elem(vmap, table_id);
339 list_del(&vrf->me_list);
343 --vmap->shared_tables;
344 } else if (users == 0) {
345 vrf_map_del_elem(me);
347 /* no one will refer to this element anymore */
348 vrf_map_elem_free(me);
352 vrf_map_unlock(vmap);
355 /* return the vrf device index associated with the table_id */
356 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
358 struct vrf_map *vmap = netns_vrf_map(net);
359 struct vrf_map_elem *me;
364 if (!vmap->strict_mode) {
369 me = vrf_map_lookup_elem(vmap, table_id);
375 ifindex = vrf_map_elem_get_vrf_ifindex(me);
378 vrf_map_unlock(vmap);
383 /* by default VRF devices do not have a qdisc and are expected
384 * to be created with only a single queue.
386 static bool qdisc_tx_is_default(const struct net_device *dev)
388 struct netdev_queue *txq;
391 if (dev->num_tx_queues > 1)
394 txq = netdev_get_tx_queue(dev, 0);
395 qdisc = rcu_access_pointer(txq->qdisc);
397 return !qdisc->enqueue;
400 /* Local traffic destined to local address. Reinsert the packet to rx
401 * path, similar to loopback handling.
403 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
404 struct dst_entry *dst)
410 skb_dst_set(skb, dst);
412 /* set pkt_type to avoid skb hitting packet taps twice -
413 * once on Tx and again in Rx processing
415 skb->pkt_type = PACKET_LOOPBACK;
417 skb->protocol = eth_type_trans(skb, dev);
419 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
420 vrf_rx_stats(dev, len);
422 this_cpu_inc(dev->dstats->rx_drps);
427 #if IS_ENABLED(CONFIG_IPV6)
428 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
433 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
434 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
436 if (likely(err == 1))
437 err = dst_output(net, sk, skb);
442 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
443 struct net_device *dev)
445 const struct ipv6hdr *iph;
446 struct net *net = dev_net(skb->dev);
448 int ret = NET_XMIT_DROP;
449 struct dst_entry *dst;
450 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
452 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
457 memset(&fl6, 0, sizeof(fl6));
458 /* needed to match OIF rule */
459 fl6.flowi6_oif = dev->ifindex;
460 fl6.flowi6_iif = LOOPBACK_IFINDEX;
461 fl6.daddr = iph->daddr;
462 fl6.saddr = iph->saddr;
463 fl6.flowlabel = ip6_flowinfo(iph);
464 fl6.flowi6_mark = skb->mark;
465 fl6.flowi6_proto = iph->nexthdr;
466 fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
468 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
469 if (IS_ERR(dst) || dst == dst_null)
474 /* if dst.dev is loopback or the VRF device again this is locally
475 * originated traffic destined to a local address. Short circuit
479 return vrf_local_xmit(skb, dev, dst);
481 skb_dst_set(skb, dst);
483 /* strip the ethernet header added for pass through VRF device */
484 __skb_pull(skb, skb_network_offset(skb));
486 ret = vrf_ip6_local_out(net, skb->sk, skb);
487 if (unlikely(net_xmit_eval(ret)))
488 dev->stats.tx_errors++;
490 ret = NET_XMIT_SUCCESS;
494 vrf_tx_error(dev, skb);
495 return NET_XMIT_DROP;
498 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
499 struct net_device *dev)
501 vrf_tx_error(dev, skb);
502 return NET_XMIT_DROP;
506 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
507 static int vrf_ip_local_out(struct net *net, struct sock *sk,
512 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
513 skb, NULL, skb_dst(skb)->dev, dst_output);
514 if (likely(err == 1))
515 err = dst_output(net, sk, skb);
520 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
521 struct net_device *vrf_dev)
524 int ret = NET_XMIT_DROP;
526 struct net *net = dev_net(vrf_dev);
529 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
534 memset(&fl4, 0, sizeof(fl4));
535 /* needed to match OIF rule */
536 fl4.flowi4_oif = vrf_dev->ifindex;
537 fl4.flowi4_iif = LOOPBACK_IFINDEX;
538 fl4.flowi4_tos = RT_TOS(ip4h->tos);
539 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
540 fl4.flowi4_proto = ip4h->protocol;
541 fl4.daddr = ip4h->daddr;
542 fl4.saddr = ip4h->saddr;
544 rt = ip_route_output_flow(net, &fl4, NULL);
550 /* if dst.dev is loopback or the VRF device again this is locally
551 * originated traffic destined to a local address. Short circuit
554 if (rt->dst.dev == vrf_dev)
555 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
557 skb_dst_set(skb, &rt->dst);
559 /* strip the ethernet header added for pass through VRF device */
560 __skb_pull(skb, skb_network_offset(skb));
563 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
567 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
568 if (unlikely(net_xmit_eval(ret)))
569 vrf_dev->stats.tx_errors++;
571 ret = NET_XMIT_SUCCESS;
576 vrf_tx_error(vrf_dev, skb);
580 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
582 switch (skb->protocol) {
583 case htons(ETH_P_IP):
584 return vrf_process_v4_outbound(skb, dev);
585 case htons(ETH_P_IPV6):
586 return vrf_process_v6_outbound(skb, dev);
588 vrf_tx_error(dev, skb);
589 return NET_XMIT_DROP;
593 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
596 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
598 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
599 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
601 u64_stats_update_begin(&dstats->syncp);
603 dstats->tx_bytes += len;
604 u64_stats_update_end(&dstats->syncp);
606 this_cpu_inc(dev->dstats->tx_drps);
612 static void vrf_finish_direct(struct sk_buff *skb)
614 struct net_device *vrf_dev = skb->dev;
616 if (!list_empty(&vrf_dev->ptype_all) &&
617 likely(skb_headroom(skb) >= ETH_HLEN)) {
618 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
620 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
621 eth_zero_addr(eth->h_dest);
622 eth->h_proto = skb->protocol;
625 dev_queue_xmit_nit(skb, vrf_dev);
626 rcu_read_unlock_bh();
628 skb_pull(skb, ETH_HLEN);
631 /* reset skb device */
635 #if IS_ENABLED(CONFIG_IPV6)
636 /* modelled after ip6_finish_output2 */
637 static int vrf_finish_output6(struct net *net, struct sock *sk,
640 struct dst_entry *dst = skb_dst(skb);
641 struct net_device *dev = dst->dev;
642 const struct in6_addr *nexthop;
643 struct neighbour *neigh;
648 skb->protocol = htons(ETH_P_IPV6);
652 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
653 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
654 if (unlikely(!neigh))
655 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
656 if (!IS_ERR(neigh)) {
657 sock_confirm_neigh(skb, neigh);
658 ret = neigh_output(neigh, skb, false);
659 rcu_read_unlock_bh();
662 rcu_read_unlock_bh();
664 IP6_INC_STATS(dev_net(dst->dev),
665 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
670 /* modelled after ip6_output */
671 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
673 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
674 net, sk, skb, NULL, skb_dst(skb)->dev,
676 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
679 /* set dst on skb to send packet to us via dev_xmit path. Allows
680 * packet to go through device based features such as qdisc, netfilter
681 * hooks and packet sockets with skb->dev set to vrf device.
683 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
686 struct net_vrf *vrf = netdev_priv(vrf_dev);
687 struct dst_entry *dst = NULL;
688 struct rt6_info *rt6;
692 rt6 = rcu_dereference(vrf->rt6);
700 if (unlikely(!dst)) {
701 vrf_tx_error(vrf_dev, skb);
706 skb_dst_set(skb, dst);
711 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
714 vrf_finish_direct(skb);
716 return vrf_ip6_local_out(net, sk, skb);
719 static int vrf_output6_direct(struct net *net, struct sock *sk,
724 skb->protocol = htons(ETH_P_IPV6);
726 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
727 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
728 NULL, skb->dev, vrf_output6_direct_finish);
730 if (likely(err == 1))
731 vrf_finish_direct(skb);
736 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
741 err = vrf_output6_direct(net, sk, skb);
742 if (likely(err == 1))
743 err = vrf_ip6_local_out(net, sk, skb);
748 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
752 struct net *net = dev_net(vrf_dev);
757 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
758 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
760 if (likely(err == 1))
761 err = vrf_output6_direct(net, sk, skb);
763 if (likely(err == 1))
769 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
773 /* don't divert link scope packets */
774 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
777 if (qdisc_tx_is_default(vrf_dev) ||
778 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
779 return vrf_ip6_out_direct(vrf_dev, sk, skb);
781 return vrf_ip6_out_redirect(vrf_dev, skb);
785 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
787 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
788 struct net *net = dev_net(dev);
789 struct dst_entry *dst;
791 RCU_INIT_POINTER(vrf->rt6, NULL);
794 /* move dev in dst's to loopback so this VRF device can be deleted
795 * - based on dst_ifdown
800 dst->dev = net->loopback_dev;
806 static int vrf_rt6_create(struct net_device *dev)
808 int flags = DST_NOPOLICY | DST_NOXFRM;
809 struct net_vrf *vrf = netdev_priv(dev);
810 struct net *net = dev_net(dev);
811 struct rt6_info *rt6;
814 /* IPv6 can be CONFIG enabled and then disabled runtime */
815 if (!ipv6_mod_enabled())
818 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
819 if (!vrf->fib6_table)
822 /* create a dst for routing packets out a VRF device */
823 rt6 = ip6_dst_alloc(net, dev, flags);
827 rt6->dst.output = vrf_output6;
829 rcu_assign_pointer(vrf->rt6, rt6);
836 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
843 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
847 static int vrf_rt6_create(struct net_device *dev)
853 /* modelled after ip_finish_output2 */
854 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
856 struct dst_entry *dst = skb_dst(skb);
857 struct rtable *rt = (struct rtable *)dst;
858 struct net_device *dev = dst->dev;
859 unsigned int hh_len = LL_RESERVED_SPACE(dev);
860 struct neighbour *neigh;
861 bool is_v6gw = false;
866 /* Be paranoid, rather than too clever. */
867 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
868 struct sk_buff *skb2;
870 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
876 skb_set_owner_w(skb2, skb->sk);
884 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
885 if (!IS_ERR(neigh)) {
886 sock_confirm_neigh(skb, neigh);
887 /* if crossing protocols, can not use the cached header */
888 ret = neigh_output(neigh, skb, is_v6gw);
889 rcu_read_unlock_bh();
893 rcu_read_unlock_bh();
895 vrf_tx_error(skb->dev, skb);
899 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
901 struct net_device *dev = skb_dst(skb)->dev;
903 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
906 skb->protocol = htons(ETH_P_IP);
908 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
909 net, sk, skb, NULL, dev,
911 !(IPCB(skb)->flags & IPSKB_REROUTED));
914 /* set dst on skb to send packet to us via dev_xmit path. Allows
915 * packet to go through device based features such as qdisc, netfilter
916 * hooks and packet sockets with skb->dev set to vrf device.
918 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
921 struct net_vrf *vrf = netdev_priv(vrf_dev);
922 struct dst_entry *dst = NULL;
927 rth = rcu_dereference(vrf->rth);
935 if (unlikely(!dst)) {
936 vrf_tx_error(vrf_dev, skb);
941 skb_dst_set(skb, dst);
946 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
949 vrf_finish_direct(skb);
951 return vrf_ip_local_out(net, sk, skb);
954 static int vrf_output_direct(struct net *net, struct sock *sk,
959 skb->protocol = htons(ETH_P_IP);
961 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
962 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
963 NULL, skb->dev, vrf_output_direct_finish);
965 if (likely(err == 1))
966 vrf_finish_direct(skb);
971 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
976 err = vrf_output_direct(net, sk, skb);
977 if (likely(err == 1))
978 err = vrf_ip_local_out(net, sk, skb);
983 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
987 struct net *net = dev_net(vrf_dev);
992 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
993 skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
995 if (likely(err == 1))
996 err = vrf_output_direct(net, sk, skb);
998 if (likely(err == 1))
1004 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1006 struct sk_buff *skb)
1008 /* don't divert multicast or local broadcast */
1009 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1010 ipv4_is_lbcast(ip_hdr(skb)->daddr))
1013 if (qdisc_tx_is_default(vrf_dev) ||
1014 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1015 return vrf_ip_out_direct(vrf_dev, sk, skb);
1017 return vrf_ip_out_redirect(vrf_dev, skb);
1020 /* called with rcu lock held */
1021 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1023 struct sk_buff *skb,
1028 return vrf_ip_out(vrf_dev, sk, skb);
1030 return vrf_ip6_out(vrf_dev, sk, skb);
1037 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1039 struct rtable *rth = rtnl_dereference(vrf->rth);
1040 struct net *net = dev_net(dev);
1041 struct dst_entry *dst;
1043 RCU_INIT_POINTER(vrf->rth, NULL);
1046 /* move dev in dst's to loopback so this VRF device can be deleted
1047 * - based on dst_ifdown
1052 dst->dev = net->loopback_dev;
1058 static int vrf_rtable_create(struct net_device *dev)
1060 struct net_vrf *vrf = netdev_priv(dev);
1063 if (!fib_new_table(dev_net(dev), vrf->tb_id))
1066 /* create a dst for routing packets out through a VRF device */
1067 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1071 rth->dst.output = vrf_output;
1073 rcu_assign_pointer(vrf->rth, rth);
1078 /**************************** device handling ********************/
1080 /* cycle interface to flush neighbor cache and move routes across tables */
1081 static void cycle_netdev(struct net_device *dev,
1082 struct netlink_ext_ack *extack)
1084 unsigned int flags = dev->flags;
1087 if (!netif_running(dev))
1090 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1092 ret = dev_change_flags(dev, flags, extack);
1096 "Failed to cycle device %s; route tables might be wrong!\n",
1101 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1102 struct netlink_ext_ack *extack)
1106 /* do not allow loopback device to be enslaved to a VRF.
1107 * The vrf device acts as the loopback for the vrf.
1109 if (port_dev == dev_net(dev)->loopback_dev) {
1110 NL_SET_ERR_MSG(extack,
1111 "Can not enslave loopback device to a VRF");
1115 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1116 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1120 cycle_netdev(port_dev, extack);
1125 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1129 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1130 struct netlink_ext_ack *extack)
1132 if (netif_is_l3_master(port_dev)) {
1133 NL_SET_ERR_MSG(extack,
1134 "Can not enslave an L3 master device to a VRF");
1138 if (netif_is_l3_slave(port_dev))
1141 return do_vrf_add_slave(dev, port_dev, extack);
1144 /* inverse of do_vrf_add_slave */
1145 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1147 netdev_upper_dev_unlink(port_dev, dev);
1148 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1150 cycle_netdev(port_dev, NULL);
1155 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1157 return do_vrf_del_slave(dev, port_dev);
1160 static void vrf_dev_uninit(struct net_device *dev)
1162 struct net_vrf *vrf = netdev_priv(dev);
1164 vrf_rtable_release(dev, vrf);
1165 vrf_rt6_release(dev, vrf);
1167 free_percpu(dev->dstats);
1171 static int vrf_dev_init(struct net_device *dev)
1173 struct net_vrf *vrf = netdev_priv(dev);
1175 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1179 /* create the default dst which points back to us */
1180 if (vrf_rtable_create(dev) != 0)
1183 if (vrf_rt6_create(dev) != 0)
1186 dev->flags = IFF_MASTER | IFF_NOARP;
1188 /* MTU is irrelevant for VRF device; set to 64k similar to lo */
1189 dev->mtu = 64 * 1024;
1191 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1192 dev->operstate = IF_OPER_UP;
1193 netdev_lockdep_set_classes(dev);
1197 vrf_rtable_release(dev, vrf);
1199 free_percpu(dev->dstats);
1205 static const struct net_device_ops vrf_netdev_ops = {
1206 .ndo_init = vrf_dev_init,
1207 .ndo_uninit = vrf_dev_uninit,
1208 .ndo_start_xmit = vrf_xmit,
1209 .ndo_set_mac_address = eth_mac_addr,
1210 .ndo_get_stats64 = vrf_get_stats64,
1211 .ndo_add_slave = vrf_add_slave,
1212 .ndo_del_slave = vrf_del_slave,
1215 static u32 vrf_fib_table(const struct net_device *dev)
1217 struct net_vrf *vrf = netdev_priv(dev);
1222 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1228 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1229 struct sk_buff *skb,
1230 struct net_device *dev)
1232 struct net *net = dev_net(dev);
1234 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1235 skb = NULL; /* kfree_skb(skb) handled by nf code */
1240 static int vrf_prepare_mac_header(struct sk_buff *skb,
1241 struct net_device *vrf_dev, u16 proto)
1246 /* in general, we do not know if there is enough space in the head of
1247 * the packet for hosting the mac header.
1249 err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1251 /* no space in the skb head */
1254 __skb_push(skb, ETH_HLEN);
1255 eth = (struct ethhdr *)skb->data;
1257 skb_reset_mac_header(skb);
1259 /* we set the ethernet destination and the source addresses to the
1260 * address of the VRF device.
1262 ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1263 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1264 eth->h_proto = htons(proto);
1266 /* the destination address of the Ethernet frame corresponds to the
1267 * address set on the VRF interface; therefore, the packet is intended
1268 * to be processed locally.
1270 skb->protocol = eth->h_proto;
1271 skb->pkt_type = PACKET_HOST;
1273 skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1275 skb_pull_inline(skb, ETH_HLEN);
1280 /* prepare and add the mac header to the packet if it was not set previously.
1281 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1282 * If the mac header was already set, the original mac header is left
1283 * untouched and the function returns immediately.
1285 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1286 struct net_device *vrf_dev,
1289 if (skb_mac_header_was_set(skb))
1292 return vrf_prepare_mac_header(skb, vrf_dev, proto);
1295 #if IS_ENABLED(CONFIG_IPV6)
1296 /* neighbor handling is done with actual device; do not want
1297 * to flip skb->dev for those ndisc packets. This really fails
1298 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1301 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1303 const struct ipv6hdr *iph = ipv6_hdr(skb);
1306 if (iph->nexthdr == NEXTHDR_ICMP) {
1307 const struct icmp6hdr *icmph;
1308 struct icmp6hdr _icmph;
1310 icmph = skb_header_pointer(skb, sizeof(*iph),
1311 sizeof(_icmph), &_icmph);
1315 switch (icmph->icmp6_type) {
1316 case NDISC_ROUTER_SOLICITATION:
1317 case NDISC_ROUTER_ADVERTISEMENT:
1318 case NDISC_NEIGHBOUR_SOLICITATION:
1319 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1320 case NDISC_REDIRECT:
1330 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1331 const struct net_device *dev,
1334 const struct sk_buff *skb,
1337 struct net_vrf *vrf = netdev_priv(dev);
1339 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1342 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1345 const struct ipv6hdr *iph = ipv6_hdr(skb);
1346 struct flowi6 fl6 = {
1347 .flowi6_iif = ifindex,
1348 .flowi6_mark = skb->mark,
1349 .flowi6_proto = iph->nexthdr,
1350 .daddr = iph->daddr,
1351 .saddr = iph->saddr,
1352 .flowlabel = ip6_flowinfo(iph),
1354 struct net *net = dev_net(vrf_dev);
1355 struct rt6_info *rt6;
1357 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1358 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1362 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1365 skb_dst_set(skb, &rt6->dst);
1368 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1369 struct sk_buff *skb)
1371 int orig_iif = skb->skb_iif;
1372 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1373 bool is_ndisc = ipv6_ndisc_frame(skb);
1376 /* loopback, multicast & non-ND link-local traffic; do not push through
1377 * packet taps again. Reset pkt_type for upper layers to process skb.
1378 * for packets with lladdr src, however, skip so that the dst can be
1379 * determine at input using original ifindex in the case that daddr
1382 is_ll_src = ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL;
1383 if (skb->pkt_type == PACKET_LOOPBACK ||
1384 (need_strict && !is_ndisc && !is_ll_src)) {
1386 skb->skb_iif = vrf_dev->ifindex;
1387 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1388 if (skb->pkt_type == PACKET_LOOPBACK)
1389 skb->pkt_type = PACKET_HOST;
1393 /* if packet is NDISC then keep the ingress interface */
1395 vrf_rx_stats(vrf_dev, skb->len);
1397 skb->skb_iif = vrf_dev->ifindex;
1399 if (!list_empty(&vrf_dev->ptype_all)) {
1402 err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1405 skb_push(skb, skb->mac_len);
1406 dev_queue_xmit_nit(skb, vrf_dev);
1407 skb_pull(skb, skb->mac_len);
1411 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1415 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1417 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1423 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1424 struct sk_buff *skb)
1430 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1431 struct sk_buff *skb)
1434 skb->skb_iif = vrf_dev->ifindex;
1435 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1437 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1440 /* loopback traffic; do not push through packet taps again.
1441 * Reset pkt_type for upper layers to process skb
1443 if (skb->pkt_type == PACKET_LOOPBACK) {
1444 skb->pkt_type = PACKET_HOST;
1448 vrf_rx_stats(vrf_dev, skb->len);
1450 if (!list_empty(&vrf_dev->ptype_all)) {
1453 err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP);
1455 skb_push(skb, skb->mac_len);
1456 dev_queue_xmit_nit(skb, vrf_dev);
1457 skb_pull(skb, skb->mac_len);
1461 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1466 /* called with rcu lock held */
1467 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1468 struct sk_buff *skb,
1473 return vrf_ip_rcv(vrf_dev, skb);
1475 return vrf_ip6_rcv(vrf_dev, skb);
1481 #if IS_ENABLED(CONFIG_IPV6)
1482 /* send to link-local or multicast address via interface enslaved to
1483 * VRF device. Force lookup to VRF table without changing flow struct
1484 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1485 * is taken on the dst by this function.
1487 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1490 struct net *net = dev_net(dev);
1491 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1492 struct dst_entry *dst = NULL;
1493 struct rt6_info *rt;
1495 /* VRF device does not have a link-local address and
1496 * sending packets to link-local or mcast addresses over
1497 * a VRF device does not make sense
1499 if (fl6->flowi6_oif == dev->ifindex) {
1500 dst = &net->ipv6.ip6_null_entry->dst;
1504 if (!ipv6_addr_any(&fl6->saddr))
1505 flags |= RT6_LOOKUP_F_HAS_SADDR;
1507 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1515 static const struct l3mdev_ops vrf_l3mdev_ops = {
1516 .l3mdev_fib_table = vrf_fib_table,
1517 .l3mdev_l3_rcv = vrf_l3_rcv,
1518 .l3mdev_l3_out = vrf_l3_out,
1519 #if IS_ENABLED(CONFIG_IPV6)
1520 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1524 static void vrf_get_drvinfo(struct net_device *dev,
1525 struct ethtool_drvinfo *info)
1527 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1528 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1531 static const struct ethtool_ops vrf_ethtool_ops = {
1532 .get_drvinfo = vrf_get_drvinfo,
1535 static inline size_t vrf_fib_rule_nl_size(void)
1539 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1540 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1541 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1542 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1547 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1549 struct fib_rule_hdr *frh;
1550 struct nlmsghdr *nlh;
1551 struct sk_buff *skb;
1554 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1555 !ipv6_mod_enabled())
1558 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1562 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1564 goto nla_put_failure;
1566 /* rule only needs to appear once */
1567 nlh->nlmsg_flags |= NLM_F_EXCL;
1569 frh = nlmsg_data(nlh);
1570 memset(frh, 0, sizeof(*frh));
1571 frh->family = family;
1572 frh->action = FR_ACT_TO_TBL;
1574 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1575 goto nla_put_failure;
1577 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1578 goto nla_put_failure;
1580 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1581 goto nla_put_failure;
1583 nlmsg_end(skb, nlh);
1585 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1586 skb->sk = dev_net(dev)->rtnl;
1588 err = fib_nl_newrule(skb, nlh, NULL);
1592 err = fib_nl_delrule(skb, nlh, NULL);
1606 static int vrf_add_fib_rules(const struct net_device *dev)
1610 err = vrf_fib_rule(dev, AF_INET, true);
1614 err = vrf_fib_rule(dev, AF_INET6, true);
1618 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1619 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1624 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1625 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1632 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1634 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1637 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1639 vrf_fib_rule(dev, AF_INET6, false);
1643 vrf_fib_rule(dev, AF_INET, false);
1646 netdev_err(dev, "Failed to add FIB rules.\n");
1650 static void vrf_setup(struct net_device *dev)
1654 /* Initialize the device structure. */
1655 dev->netdev_ops = &vrf_netdev_ops;
1656 dev->l3mdev_ops = &vrf_l3mdev_ops;
1657 dev->ethtool_ops = &vrf_ethtool_ops;
1658 dev->needs_free_netdev = true;
1660 /* Fill in device structure with ethernet-generic values. */
1661 eth_hw_addr_random(dev);
1663 /* don't acquire vrf device's netif_tx_lock when transmitting */
1664 dev->features |= NETIF_F_LLTX;
1666 /* don't allow vrf devices to change network namespaces. */
1667 dev->features |= NETIF_F_NETNS_LOCAL;
1669 /* does not make sense for a VLAN to be added to a vrf device */
1670 dev->features |= NETIF_F_VLAN_CHALLENGED;
1672 /* enable offload features */
1673 dev->features |= NETIF_F_GSO_SOFTWARE;
1674 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1675 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1677 dev->hw_features = dev->features;
1678 dev->hw_enc_features = dev->features;
1680 /* default to no qdisc; user can add if desired */
1681 dev->priv_flags |= IFF_NO_QUEUE;
1682 dev->priv_flags |= IFF_NO_RX_HANDLER;
1683 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1685 /* VRF devices do not care about MTU, but if the MTU is set
1686 * too low then the ipv4 and ipv6 protocols are disabled
1687 * which breaks networking.
1689 dev->min_mtu = IPV6_MIN_MTU;
1690 dev->max_mtu = ETH_MAX_MTU;
1693 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1694 struct netlink_ext_ack *extack)
1696 if (tb[IFLA_ADDRESS]) {
1697 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1698 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1701 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1702 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1703 return -EADDRNOTAVAIL;
1709 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1711 struct net_device *port_dev;
1712 struct list_head *iter;
1714 netdev_for_each_lower_dev(dev, port_dev, iter)
1715 vrf_del_slave(dev, port_dev);
1717 vrf_map_unregister_dev(dev);
1719 unregister_netdevice_queue(dev, head);
1722 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1723 struct nlattr *tb[], struct nlattr *data[],
1724 struct netlink_ext_ack *extack)
1726 struct net_vrf *vrf = netdev_priv(dev);
1727 struct netns_vrf *nn_vrf;
1728 bool *add_fib_rules;
1732 if (!data || !data[IFLA_VRF_TABLE]) {
1733 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1737 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1738 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1739 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1740 "Invalid VRF table id");
1744 dev->priv_flags |= IFF_L3MDEV_MASTER;
1746 err = register_netdevice(dev);
1750 /* mapping between table_id and vrf;
1751 * note: such binding could not be done in the dev init function
1752 * because dev->ifindex id is not available yet.
1754 vrf->ifindex = dev->ifindex;
1756 err = vrf_map_register_dev(dev, extack);
1758 unregister_netdevice(dev);
1763 nn_vrf = net_generic(net, vrf_net_id);
1765 add_fib_rules = &nn_vrf->add_fib_rules;
1766 if (*add_fib_rules) {
1767 err = vrf_add_fib_rules(dev);
1769 vrf_map_unregister_dev(dev);
1770 unregister_netdevice(dev);
1773 *add_fib_rules = false;
1780 static size_t vrf_nl_getsize(const struct net_device *dev)
1782 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1785 static int vrf_fillinfo(struct sk_buff *skb,
1786 const struct net_device *dev)
1788 struct net_vrf *vrf = netdev_priv(dev);
1790 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1793 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1794 const struct net_device *slave_dev)
1796 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1799 static int vrf_fill_slave_info(struct sk_buff *skb,
1800 const struct net_device *vrf_dev,
1801 const struct net_device *slave_dev)
1803 struct net_vrf *vrf = netdev_priv(vrf_dev);
1805 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1811 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1812 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1815 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1817 .priv_size = sizeof(struct net_vrf),
1819 .get_size = vrf_nl_getsize,
1820 .policy = vrf_nl_policy,
1821 .validate = vrf_validate,
1822 .fill_info = vrf_fillinfo,
1824 .get_slave_size = vrf_get_slave_size,
1825 .fill_slave_info = vrf_fill_slave_info,
1827 .newlink = vrf_newlink,
1828 .dellink = vrf_dellink,
1830 .maxtype = IFLA_VRF_MAX,
1833 static int vrf_device_event(struct notifier_block *unused,
1834 unsigned long event, void *ptr)
1836 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1838 /* only care about unregister events to drop slave references */
1839 if (event == NETDEV_UNREGISTER) {
1840 struct net_device *vrf_dev;
1842 if (!netif_is_l3_slave(dev))
1845 vrf_dev = netdev_master_upper_dev_get(dev);
1846 vrf_del_slave(vrf_dev, dev);
1852 static struct notifier_block vrf_notifier_block __read_mostly = {
1853 .notifier_call = vrf_device_event,
1856 static int vrf_map_init(struct vrf_map *vmap)
1858 spin_lock_init(&vmap->vmap_lock);
1859 hash_init(vmap->ht);
1861 vmap->strict_mode = false;
1866 #ifdef CONFIG_SYSCTL
1867 static bool vrf_strict_mode(struct vrf_map *vmap)
1872 strict_mode = vmap->strict_mode;
1873 vrf_map_unlock(vmap);
1878 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1885 cur_mode = &vmap->strict_mode;
1886 if (*cur_mode == new_mode)
1890 /* disable strict mode */
1893 if (vmap->shared_tables) {
1894 /* we cannot allow strict_mode because there are some
1895 * vrfs that share one or more tables.
1901 /* no tables are shared among vrfs, so we can go back
1902 * to 1:1 association between a vrf with its table.
1908 vrf_map_unlock(vmap);
1913 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1914 void *buffer, size_t *lenp, loff_t *ppos)
1916 struct net *net = (struct net *)table->extra1;
1917 struct vrf_map *vmap = netns_vrf_map(net);
1918 int proc_strict_mode = 0;
1919 struct ctl_table tmp = {
1920 .procname = table->procname,
1921 .data = &proc_strict_mode,
1922 .maxlen = sizeof(int),
1923 .mode = table->mode,
1924 .extra1 = SYSCTL_ZERO,
1925 .extra2 = SYSCTL_ONE,
1930 proc_strict_mode = vrf_strict_mode(vmap);
1932 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1934 if (write && ret == 0)
1935 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1940 static const struct ctl_table vrf_table[] = {
1942 .procname = "strict_mode",
1944 .maxlen = sizeof(int),
1946 .proc_handler = vrf_shared_table_handler,
1947 /* set by the vrf_netns_init */
1953 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1955 struct ctl_table *table;
1957 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1961 /* init the extra1 parameter with the reference to current netns */
1962 table[0].extra1 = net;
1964 nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1965 if (!nn_vrf->ctl_hdr) {
1973 static void vrf_netns_exit_sysctl(struct net *net)
1975 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1976 struct ctl_table *table;
1978 table = nn_vrf->ctl_hdr->ctl_table_arg;
1979 unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1983 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1988 static void vrf_netns_exit_sysctl(struct net *net)
1993 /* Initialize per network namespace state */
1994 static int __net_init vrf_netns_init(struct net *net)
1996 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1998 nn_vrf->add_fib_rules = true;
1999 vrf_map_init(&nn_vrf->vmap);
2001 return vrf_netns_init_sysctl(net, nn_vrf);
2004 static void __net_exit vrf_netns_exit(struct net *net)
2006 vrf_netns_exit_sysctl(net);
2009 static struct pernet_operations vrf_net_ops __net_initdata = {
2010 .init = vrf_netns_init,
2011 .exit = vrf_netns_exit,
2013 .size = sizeof(struct netns_vrf),
2016 static int __init vrf_init_module(void)
2020 register_netdevice_notifier(&vrf_notifier_block);
2022 rc = register_pernet_subsys(&vrf_net_ops);
2026 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2027 vrf_ifindex_lookup_by_table_id);
2031 rc = rtnl_link_register(&vrf_link_ops);
2033 goto table_lookup_unreg;
2038 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2039 vrf_ifindex_lookup_by_table_id);
2042 unregister_pernet_subsys(&vrf_net_ops);
2045 unregister_netdevice_notifier(&vrf_notifier_block);
2049 module_init(vrf_init_module);
2050 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2051 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2052 MODULE_LICENSE("GPL");
2053 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2054 MODULE_VERSION(DRV_VERSION);