]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_gmc.c
Merge tag 'soundwire-6.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_gmc.c
1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #ifdef CONFIG_X86
29 #include <asm/hypervisor.h>
30 #endif
31
32 #include "amdgpu.h"
33 #include "amdgpu_gmc.h"
34 #include "amdgpu_ras.h"
35 #include "amdgpu_reset.h"
36 #include "amdgpu_xgmi.h"
37
38 #include <drm/drm_drv.h>
39 #include <drm/ttm/ttm_tt.h>
40
41 /**
42  * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
43  *
44  * @adev: amdgpu_device pointer
45  *
46  * Allocate video memory for pdb0 and map it for CPU access
47  * Returns 0 for success, error for failure.
48  */
49 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
50 {
51         int r;
52         struct amdgpu_bo_param bp;
53         u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
54         uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
55         uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift;
56
57         memset(&bp, 0, sizeof(bp));
58         bp.size = PAGE_ALIGN((npdes + 1) * 8);
59         bp.byte_align = PAGE_SIZE;
60         bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
61         bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
62                 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
63         bp.type = ttm_bo_type_kernel;
64         bp.resv = NULL;
65         bp.bo_ptr_size = sizeof(struct amdgpu_bo);
66
67         r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
68         if (r)
69                 return r;
70
71         r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
72         if (unlikely(r != 0))
73                 goto bo_reserve_failure;
74
75         r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
76         if (r)
77                 goto bo_pin_failure;
78         r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
79         if (r)
80                 goto bo_kmap_failure;
81
82         amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
83         return 0;
84
85 bo_kmap_failure:
86         amdgpu_bo_unpin(adev->gmc.pdb0_bo);
87 bo_pin_failure:
88         amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
89 bo_reserve_failure:
90         amdgpu_bo_unref(&adev->gmc.pdb0_bo);
91         return r;
92 }
93
94 /**
95  * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
96  *
97  * @bo: the BO to get the PDE for
98  * @level: the level in the PD hirarchy
99  * @addr: resulting addr
100  * @flags: resulting flags
101  *
102  * Get the address and flags to be used for a PDE (Page Directory Entry).
103  */
104 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
105                                uint64_t *addr, uint64_t *flags)
106 {
107         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
108
109         switch (bo->tbo.resource->mem_type) {
110         case TTM_PL_TT:
111                 *addr = bo->tbo.ttm->dma_address[0];
112                 break;
113         case TTM_PL_VRAM:
114                 *addr = amdgpu_bo_gpu_offset(bo);
115                 break;
116         default:
117                 *addr = 0;
118                 break;
119         }
120         *flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
121         amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
122 }
123
124 /*
125  * amdgpu_gmc_pd_addr - return the address of the root directory
126  */
127 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
128 {
129         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
130         uint64_t pd_addr;
131
132         /* TODO: move that into ASIC specific code */
133         if (adev->asic_type >= CHIP_VEGA10) {
134                 uint64_t flags = AMDGPU_PTE_VALID;
135
136                 amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
137                 pd_addr |= flags;
138         } else {
139                 pd_addr = amdgpu_bo_gpu_offset(bo);
140         }
141         return pd_addr;
142 }
143
144 /**
145  * amdgpu_gmc_set_pte_pde - update the page tables using CPU
146  *
147  * @adev: amdgpu_device pointer
148  * @cpu_pt_addr: cpu address of the page table
149  * @gpu_page_idx: entry in the page table to update
150  * @addr: dst addr to write into pte/pde
151  * @flags: access flags
152  *
153  * Update the page tables using CPU.
154  */
155 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
156                                 uint32_t gpu_page_idx, uint64_t addr,
157                                 uint64_t flags)
158 {
159         void __iomem *ptr = (void *)cpu_pt_addr;
160         uint64_t value;
161
162         /*
163          * The following is for PTE only. GART does not have PDEs.
164         */
165         value = addr & 0x0000FFFFFFFFF000ULL;
166         value |= flags;
167         writeq(value, ptr + (gpu_page_idx * 8));
168
169         return 0;
170 }
171
172 /**
173  * amdgpu_gmc_agp_addr - return the address in the AGP address space
174  *
175  * @bo: TTM BO which needs the address, must be in GTT domain
176  *
177  * Tries to figure out how to access the BO through the AGP aperture. Returns
178  * AMDGPU_BO_INVALID_OFFSET if that is not possible.
179  */
180 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
181 {
182         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
183
184         if (!bo->ttm)
185                 return AMDGPU_BO_INVALID_OFFSET;
186
187         if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
188                 return AMDGPU_BO_INVALID_OFFSET;
189
190         if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
191                 return AMDGPU_BO_INVALID_OFFSET;
192
193         return adev->gmc.agp_start + bo->ttm->dma_address[0];
194 }
195
196 /**
197  * amdgpu_gmc_vram_location - try to find VRAM location
198  *
199  * @adev: amdgpu device structure holding all necessary information
200  * @mc: memory controller structure holding memory information
201  * @base: base address at which to put VRAM
202  *
203  * Function will try to place VRAM at base address provided
204  * as parameter.
205  */
206 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
207                               u64 base)
208 {
209         uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20;
210         uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
211
212         mc->vram_start = base;
213         mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
214         if (limit < mc->real_vram_size)
215                 mc->real_vram_size = limit;
216
217         if (vis_limit && vis_limit < mc->visible_vram_size)
218                 mc->visible_vram_size = vis_limit;
219
220         if (mc->real_vram_size < mc->visible_vram_size)
221                 mc->visible_vram_size = mc->real_vram_size;
222
223         if (mc->xgmi.num_physical_nodes == 0) {
224                 mc->fb_start = mc->vram_start;
225                 mc->fb_end = mc->vram_end;
226         }
227         dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
228                         mc->mc_vram_size >> 20, mc->vram_start,
229                         mc->vram_end, mc->real_vram_size >> 20);
230 }
231
232 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
233  *
234  * @adev: amdgpu device structure holding all necessary information
235  * @mc: memory controller structure holding memory information
236  *
237  * This function is only used if use GART for FB translation. In such
238  * case, we use sysvm aperture (vmid0 page tables) for both vram
239  * and gart (aka system memory) access.
240  *
241  * GPUVM (and our organization of vmid0 page tables) require sysvm
242  * aperture to be placed at a location aligned with 8 times of native
243  * page size. For example, if vm_context0_cntl.page_table_block_size
244  * is 12, then native page size is 8G (2M*2^12), sysvm should start
245  * with a 64G aligned address. For simplicity, we just put sysvm at
246  * address 0. So vram start at address 0 and gart is right after vram.
247  */
248 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
249 {
250         u64 hive_vram_start = 0;
251         u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
252         mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
253         mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
254         mc->gart_start = hive_vram_end + 1;
255         mc->gart_end = mc->gart_start + mc->gart_size - 1;
256         mc->fb_start = hive_vram_start;
257         mc->fb_end = hive_vram_end;
258         dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
259                         mc->mc_vram_size >> 20, mc->vram_start,
260                         mc->vram_end, mc->real_vram_size >> 20);
261         dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
262                         mc->gart_size >> 20, mc->gart_start, mc->gart_end);
263 }
264
265 /**
266  * amdgpu_gmc_gart_location - try to find GART location
267  *
268  * @adev: amdgpu device structure holding all necessary information
269  * @mc: memory controller structure holding memory information
270  * @gart_placement: GART placement policy with respect to VRAM
271  *
272  * Function will place try to place GART before or after VRAM.
273  * If GART size is bigger than space left then we ajust GART size.
274  * Thus function will never fails.
275  */
276 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
277                               enum amdgpu_gart_placement gart_placement)
278 {
279         const uint64_t four_gb = 0x100000000ULL;
280         u64 size_af, size_bf;
281         /*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
282         u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
283
284         /* VCE doesn't like it when BOs cross a 4GB segment, so align
285          * the GART base on a 4GB boundary as well.
286          */
287         size_bf = mc->fb_start;
288         size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
289
290         if (mc->gart_size > max(size_bf, size_af)) {
291                 dev_warn(adev->dev, "limiting GART\n");
292                 mc->gart_size = max(size_bf, size_af);
293         }
294
295         switch (gart_placement) {
296         case AMDGPU_GART_PLACEMENT_HIGH:
297                 mc->gart_start = max_mc_address - mc->gart_size + 1;
298                 break;
299         case AMDGPU_GART_PLACEMENT_LOW:
300                 mc->gart_start = 0;
301                 break;
302         case AMDGPU_GART_PLACEMENT_BEST_FIT:
303         default:
304                 if ((size_bf >= mc->gart_size && size_bf < size_af) ||
305                     (size_af < mc->gart_size))
306                         mc->gart_start = 0;
307                 else
308                         mc->gart_start = max_mc_address - mc->gart_size + 1;
309                 break;
310         }
311
312         mc->gart_start &= ~(four_gb - 1);
313         mc->gart_end = mc->gart_start + mc->gart_size - 1;
314         dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
315                         mc->gart_size >> 20, mc->gart_start, mc->gart_end);
316 }
317
318 /**
319  * amdgpu_gmc_agp_location - try to find AGP location
320  * @adev: amdgpu device structure holding all necessary information
321  * @mc: memory controller structure holding memory information
322  *
323  * Function will place try to find a place for the AGP BAR in the MC address
324  * space.
325  *
326  * AGP BAR will be assigned the largest available hole in the address space.
327  * Should be called after VRAM and GART locations are setup.
328  */
329 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
330 {
331         const uint64_t sixteen_gb = 1ULL << 34;
332         const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
333         u64 size_af, size_bf;
334
335         if (mc->fb_start > mc->gart_start) {
336                 size_bf = (mc->fb_start & sixteen_gb_mask) -
337                         ALIGN(mc->gart_end + 1, sixteen_gb);
338                 size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
339         } else {
340                 size_bf = mc->fb_start & sixteen_gb_mask;
341                 size_af = (mc->gart_start & sixteen_gb_mask) -
342                         ALIGN(mc->fb_end + 1, sixteen_gb);
343         }
344
345         if (size_bf > size_af) {
346                 mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
347                 mc->agp_size = size_bf;
348         } else {
349                 mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
350                 mc->agp_size = size_af;
351         }
352
353         mc->agp_end = mc->agp_start + mc->agp_size - 1;
354         dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
355                         mc->agp_size >> 20, mc->agp_start, mc->agp_end);
356 }
357
358 /**
359  * amdgpu_gmc_set_agp_default - Set the default AGP aperture value.
360  * @adev: amdgpu device structure holding all necessary information
361  * @mc: memory controller structure holding memory information
362  *
363  * To disable the AGP aperture, you need to set the start to a larger
364  * value than the end.  This function sets the default value which
365  * can then be overridden using amdgpu_gmc_agp_location() if you want
366  * to enable the AGP aperture on a specific chip.
367  *
368  */
369 void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev,
370                                 struct amdgpu_gmc *mc)
371 {
372         mc->agp_start = 0xffffffffffff;
373         mc->agp_end = 0;
374         mc->agp_size = 0;
375 }
376
377 /**
378  * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
379  *
380  * @addr: 48 bit physical address, page aligned (36 significant bits)
381  * @pasid: 16 bit process address space identifier
382  */
383 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
384 {
385         return addr << 4 | pasid;
386 }
387
388 /**
389  * amdgpu_gmc_filter_faults - filter VM faults
390  *
391  * @adev: amdgpu device structure
392  * @ih: interrupt ring that the fault received from
393  * @addr: address of the VM fault
394  * @pasid: PASID of the process causing the fault
395  * @timestamp: timestamp of the fault
396  *
397  * Returns:
398  * True if the fault was filtered and should not be processed further.
399  * False if the fault is a new one and needs to be handled.
400  */
401 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
402                               struct amdgpu_ih_ring *ih, uint64_t addr,
403                               uint16_t pasid, uint64_t timestamp)
404 {
405         struct amdgpu_gmc *gmc = &adev->gmc;
406         uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
407         struct amdgpu_gmc_fault *fault;
408         uint32_t hash;
409
410         /* Stale retry fault if timestamp goes backward */
411         if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
412                 return true;
413
414         /* If we don't have space left in the ring buffer return immediately */
415         stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
416                 AMDGPU_GMC_FAULT_TIMEOUT;
417         if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
418                 return true;
419
420         /* Try to find the fault in the hash */
421         hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
422         fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
423         while (fault->timestamp >= stamp) {
424                 uint64_t tmp;
425
426                 if (atomic64_read(&fault->key) == key) {
427                         /*
428                          * if we get a fault which is already present in
429                          * the fault_ring and the timestamp of
430                          * the fault is after the expired timestamp,
431                          * then this is a new fault that needs to be added
432                          * into the fault ring.
433                          */
434                         if (fault->timestamp_expiry != 0 &&
435                             amdgpu_ih_ts_after(fault->timestamp_expiry,
436                                                timestamp))
437                                 break;
438                         else
439                                 return true;
440                 }
441
442                 tmp = fault->timestamp;
443                 fault = &gmc->fault_ring[fault->next];
444
445                 /* Check if the entry was reused */
446                 if (fault->timestamp >= tmp)
447                         break;
448         }
449
450         /* Add the fault to the ring */
451         fault = &gmc->fault_ring[gmc->last_fault];
452         atomic64_set(&fault->key, key);
453         fault->timestamp = timestamp;
454
455         /* And update the hash */
456         fault->next = gmc->fault_hash[hash].idx;
457         gmc->fault_hash[hash].idx = gmc->last_fault++;
458         return false;
459 }
460
461 /**
462  * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
463  *
464  * @adev: amdgpu device structure
465  * @addr: address of the VM fault
466  * @pasid: PASID of the process causing the fault
467  *
468  * Remove the address from fault filter, then future vm fault on this address
469  * will pass to retry fault handler to recover.
470  */
471 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
472                                      uint16_t pasid)
473 {
474         struct amdgpu_gmc *gmc = &adev->gmc;
475         uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
476         struct amdgpu_ih_ring *ih;
477         struct amdgpu_gmc_fault *fault;
478         uint32_t last_wptr;
479         uint64_t last_ts;
480         uint32_t hash;
481         uint64_t tmp;
482
483         if (adev->irq.retry_cam_enabled)
484                 return;
485
486         ih = &adev->irq.ih1;
487         /* Get the WPTR of the last entry in IH ring */
488         last_wptr = amdgpu_ih_get_wptr(adev, ih);
489         /* Order wptr with ring data. */
490         rmb();
491         /* Get the timetamp of the last entry in IH ring */
492         last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1);
493
494         hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
495         fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
496         do {
497                 if (atomic64_read(&fault->key) == key) {
498                         /*
499                          * Update the timestamp when this fault
500                          * expired.
501                          */
502                         fault->timestamp_expiry = last_ts;
503                         break;
504                 }
505
506                 tmp = fault->timestamp;
507                 fault = &gmc->fault_ring[fault->next];
508         } while (fault->timestamp < tmp);
509 }
510
511 int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev)
512 {
513         int r;
514
515         /* umc ras block */
516         r = amdgpu_umc_ras_sw_init(adev);
517         if (r)
518                 return r;
519
520         /* mmhub ras block */
521         r = amdgpu_mmhub_ras_sw_init(adev);
522         if (r)
523                 return r;
524
525         /* hdp ras block */
526         r = amdgpu_hdp_ras_sw_init(adev);
527         if (r)
528                 return r;
529
530         /* mca.x ras block */
531         r = amdgpu_mca_mp0_ras_sw_init(adev);
532         if (r)
533                 return r;
534
535         r = amdgpu_mca_mp1_ras_sw_init(adev);
536         if (r)
537                 return r;
538
539         r = amdgpu_mca_mpio_ras_sw_init(adev);
540         if (r)
541                 return r;
542
543         /* xgmi ras block */
544         r = amdgpu_xgmi_ras_sw_init(adev);
545         if (r)
546                 return r;
547
548         return 0;
549 }
550
551 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
552 {
553         return 0;
554 }
555
556 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
557 {
558
559 }
560
561         /*
562          * The latest engine allocation on gfx9/10 is:
563          * Engine 2, 3: firmware
564          * Engine 0, 1, 4~16: amdgpu ring,
565          *                    subject to change when ring number changes
566          * Engine 17: Gart flushes
567          */
568 #define AMDGPU_VMHUB_INV_ENG_BITMAP             0x1FFF3
569
570 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
571 {
572         struct amdgpu_ring *ring;
573         unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0};
574         unsigned i;
575         unsigned vmhub, inv_eng;
576
577         /* init the vm inv eng for all vmhubs */
578         for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) {
579                 vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP;
580                 /* reserve engine 5 for firmware */
581                 if (adev->enable_mes)
582                         vm_inv_engs[i] &= ~(1 << 5);
583                 /* reserve mmhub engine 3 for firmware */
584                 if (adev->enable_umsch_mm)
585                         vm_inv_engs[i] &= ~(1 << 3);
586         }
587
588         for (i = 0; i < adev->num_rings; ++i) {
589                 ring = adev->rings[i];
590                 vmhub = ring->vm_hub;
591
592                 if (ring == &adev->mes.ring ||
593                     ring == &adev->umsch_mm.ring)
594                         continue;
595
596                 inv_eng = ffs(vm_inv_engs[vmhub]);
597                 if (!inv_eng) {
598                         dev_err(adev->dev, "no VM inv eng for ring %s\n",
599                                 ring->name);
600                         return -EINVAL;
601                 }
602
603                 ring->vm_inv_eng = inv_eng - 1;
604                 vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
605
606                 dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
607                          ring->name, ring->vm_inv_eng, ring->vm_hub);
608         }
609
610         return 0;
611 }
612
613 void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid,
614                               uint32_t vmhub, uint32_t flush_type)
615 {
616         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
617         struct amdgpu_vmhub *hub = &adev->vmhub[vmhub];
618         struct dma_fence *fence;
619         struct amdgpu_job *job;
620         int r;
621
622         if (!hub->sdma_invalidation_workaround || vmid ||
623             !adev->mman.buffer_funcs_enabled || !adev->ib_pool_ready ||
624             !ring->sched.ready) {
625                 /*
626                  * A GPU reset should flush all TLBs anyway, so no need to do
627                  * this while one is ongoing.
628                  */
629                 if (!down_read_trylock(&adev->reset_domain->sem))
630                         return;
631
632                 if (adev->gmc.flush_tlb_needs_extra_type_2)
633                         adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
634                                                            vmhub, 2);
635
636                 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
637                         adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
638                                                            vmhub, 0);
639
640                 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub,
641                                                    flush_type);
642                 up_read(&adev->reset_domain->sem);
643                 return;
644         }
645
646         /* The SDMA on Navi 1x has a bug which can theoretically result in memory
647          * corruption if an invalidation happens at the same time as an VA
648          * translation. Avoid this by doing the invalidation from the SDMA
649          * itself at least for GART.
650          */
651         mutex_lock(&adev->mman.gtt_window_lock);
652         r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr,
653                                      AMDGPU_FENCE_OWNER_UNDEFINED,
654                                      16 * 4, AMDGPU_IB_POOL_IMMEDIATE,
655                                      &job);
656         if (r)
657                 goto error_alloc;
658
659         job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
660         job->vm_needs_flush = true;
661         job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop;
662         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
663         fence = amdgpu_job_submit(job);
664         mutex_unlock(&adev->mman.gtt_window_lock);
665
666         dma_fence_wait(fence, false);
667         dma_fence_put(fence);
668
669         return;
670
671 error_alloc:
672         mutex_unlock(&adev->mman.gtt_window_lock);
673         dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r);
674 }
675
676 int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid,
677                                    uint32_t flush_type, bool all_hub,
678                                    uint32_t inst)
679 {
680         u32 usec_timeout = amdgpu_sriov_vf(adev) ? SRIOV_USEC_TIMEOUT :
681                 adev->usec_timeout;
682         struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring;
683         struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst];
684         unsigned int ndw;
685         int r;
686         uint32_t seq;
687
688         /*
689          * A GPU reset should flush all TLBs anyway, so no need to do
690          * this while one is ongoing.
691          */
692         if (!down_read_trylock(&adev->reset_domain->sem))
693                 return 0;
694
695         if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready) {
696                 if (adev->gmc.flush_tlb_needs_extra_type_2)
697                         adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
698                                                                  2, all_hub,
699                                                                  inst);
700
701                 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
702                         adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
703                                                                  0, all_hub,
704                                                                  inst);
705
706                 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
707                                                          flush_type, all_hub,
708                                                          inst);
709                 r = 0;
710         } else {
711                 /* 2 dwords flush + 8 dwords fence */
712                 ndw = kiq->pmf->invalidate_tlbs_size + 8;
713
714                 if (adev->gmc.flush_tlb_needs_extra_type_2)
715                         ndw += kiq->pmf->invalidate_tlbs_size;
716
717                 if (adev->gmc.flush_tlb_needs_extra_type_0)
718                         ndw += kiq->pmf->invalidate_tlbs_size;
719
720                 spin_lock(&adev->gfx.kiq[inst].ring_lock);
721                 r = amdgpu_ring_alloc(ring, ndw);
722                 if (r) {
723                         spin_unlock(&adev->gfx.kiq[inst].ring_lock);
724                         goto error_unlock_reset;
725                 }
726                 if (adev->gmc.flush_tlb_needs_extra_type_2)
727                         kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub);
728
729                 if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0)
730                         kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub);
731
732                 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub);
733                 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
734                 if (r) {
735                         amdgpu_ring_undo(ring);
736                         spin_unlock(&adev->gfx.kiq[inst].ring_lock);
737                         goto error_unlock_reset;
738                 }
739
740                 amdgpu_ring_commit(ring);
741                 spin_unlock(&adev->gfx.kiq[inst].ring_lock);
742                 if (amdgpu_fence_wait_polling(ring, seq, usec_timeout) < 1) {
743                         dev_err(adev->dev, "timeout waiting for kiq fence\n");
744                         r = -ETIME;
745                 }
746         }
747
748 error_unlock_reset:
749         up_read(&adev->reset_domain->sem);
750         return r;
751 }
752
753 void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev,
754                                       uint32_t reg0, uint32_t reg1,
755                                       uint32_t ref, uint32_t mask,
756                                       uint32_t xcc_inst)
757 {
758         struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst];
759         struct amdgpu_ring *ring = &kiq->ring;
760         signed long r, cnt = 0;
761         unsigned long flags;
762         uint32_t seq;
763
764         if (adev->mes.ring.sched.ready) {
765                 amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1,
766                                               ref, mask);
767                 return;
768         }
769
770         spin_lock_irqsave(&kiq->ring_lock, flags);
771         amdgpu_ring_alloc(ring, 32);
772         amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1,
773                                             ref, mask);
774         r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
775         if (r)
776                 goto failed_undo;
777
778         amdgpu_ring_commit(ring);
779         spin_unlock_irqrestore(&kiq->ring_lock, flags);
780
781         r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
782
783         /* don't wait anymore for IRQ context */
784         if (r < 1 && in_interrupt())
785                 goto failed_kiq;
786
787         might_sleep();
788         while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
789
790                 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
791                 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
792         }
793
794         if (cnt > MAX_KIQ_REG_TRY)
795                 goto failed_kiq;
796
797         return;
798
799 failed_undo:
800         amdgpu_ring_undo(ring);
801         spin_unlock_irqrestore(&kiq->ring_lock, flags);
802 failed_kiq:
803         dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1);
804 }
805
806 /**
807  * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
808  * @adev: amdgpu_device pointer
809  *
810  * Check and set if an the device @adev supports Trusted Memory
811  * Zones (TMZ).
812  */
813 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
814 {
815         switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
816         /* RAVEN */
817         case IP_VERSION(9, 2, 2):
818         case IP_VERSION(9, 1, 0):
819         /* RENOIR looks like RAVEN */
820         case IP_VERSION(9, 3, 0):
821         /* GC 10.3.7 */
822         case IP_VERSION(10, 3, 7):
823         /* GC 11.0.1 */
824         case IP_VERSION(11, 0, 1):
825                 if (amdgpu_tmz == 0) {
826                         adev->gmc.tmz_enabled = false;
827                         dev_info(adev->dev,
828                                  "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
829                 } else {
830                         adev->gmc.tmz_enabled = true;
831                         dev_info(adev->dev,
832                                  "Trusted Memory Zone (TMZ) feature enabled\n");
833                 }
834                 break;
835         case IP_VERSION(10, 1, 10):
836         case IP_VERSION(10, 1, 1):
837         case IP_VERSION(10, 1, 2):
838         case IP_VERSION(10, 1, 3):
839         case IP_VERSION(10, 3, 0):
840         case IP_VERSION(10, 3, 2):
841         case IP_VERSION(10, 3, 4):
842         case IP_VERSION(10, 3, 5):
843         case IP_VERSION(10, 3, 6):
844         /* VANGOGH */
845         case IP_VERSION(10, 3, 1):
846         /* YELLOW_CARP*/
847         case IP_VERSION(10, 3, 3):
848         case IP_VERSION(11, 0, 4):
849         case IP_VERSION(11, 5, 0):
850         case IP_VERSION(11, 5, 1):
851         case IP_VERSION(11, 5, 2):
852                 /* Don't enable it by default yet.
853                  */
854                 if (amdgpu_tmz < 1) {
855                         adev->gmc.tmz_enabled = false;
856                         dev_info(adev->dev,
857                                  "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
858                 } else {
859                         adev->gmc.tmz_enabled = true;
860                         dev_info(adev->dev,
861                                  "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
862                 }
863                 break;
864         default:
865                 adev->gmc.tmz_enabled = false;
866                 dev_info(adev->dev,
867                          "Trusted Memory Zone (TMZ) feature not supported\n");
868                 break;
869         }
870 }
871
872 /**
873  * amdgpu_gmc_noretry_set -- set per asic noretry defaults
874  * @adev: amdgpu_device pointer
875  *
876  * Set a per asic default for the no-retry parameter.
877  *
878  */
879 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
880 {
881         struct amdgpu_gmc *gmc = &adev->gmc;
882         uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
883         bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) ||
884                                 gc_ver == IP_VERSION(9, 4, 0) ||
885                                 gc_ver == IP_VERSION(9, 4, 1) ||
886                                 gc_ver == IP_VERSION(9, 4, 2) ||
887                                 gc_ver == IP_VERSION(9, 4, 3) ||
888                                 gc_ver == IP_VERSION(9, 4, 4) ||
889                                 gc_ver >= IP_VERSION(10, 3, 0));
890
891         if (!amdgpu_sriov_xnack_support(adev))
892                 gmc->noretry = 1;
893         else
894                 gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry;
895 }
896
897 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
898                                    bool enable)
899 {
900         struct amdgpu_vmhub *hub;
901         u32 tmp, reg, i;
902
903         hub = &adev->vmhub[hub_type];
904         for (i = 0; i < 16; i++) {
905                 reg = hub->vm_context0_cntl + hub->ctx_distance * i;
906
907                 tmp = (hub_type == AMDGPU_GFXHUB(0)) ?
908                         RREG32_SOC15_IP(GC, reg) :
909                         RREG32_SOC15_IP(MMHUB, reg);
910
911                 if (enable)
912                         tmp |= hub->vm_cntx_cntl_vm_fault;
913                 else
914                         tmp &= ~hub->vm_cntx_cntl_vm_fault;
915
916                 (hub_type == AMDGPU_GFXHUB(0)) ?
917                         WREG32_SOC15_IP(GC, reg, tmp) :
918                         WREG32_SOC15_IP(MMHUB, reg, tmp);
919         }
920 }
921
922 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
923 {
924         unsigned size;
925
926         /*
927          * Some ASICs need to reserve a region of video memory to avoid access
928          * from driver
929          */
930         adev->mman.stolen_reserved_offset = 0;
931         adev->mman.stolen_reserved_size = 0;
932
933         /*
934          * TODO:
935          * Currently there is a bug where some memory client outside
936          * of the driver writes to first 8M of VRAM on S3 resume,
937          * this overrides GART which by default gets placed in first 8M and
938          * causes VM_FAULTS once GTT is accessed.
939          * Keep the stolen memory reservation until the while this is not solved.
940          */
941         switch (adev->asic_type) {
942         case CHIP_VEGA10:
943                 adev->mman.keep_stolen_vga_memory = true;
944                 /*
945                  * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
946                  */
947 #ifdef CONFIG_X86
948                 if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
949                         adev->mman.stolen_reserved_offset = 0x500000;
950                         adev->mman.stolen_reserved_size = 0x200000;
951                 }
952 #endif
953                 break;
954         case CHIP_RAVEN:
955         case CHIP_RENOIR:
956                 adev->mman.keep_stolen_vga_memory = true;
957                 break;
958         default:
959                 adev->mman.keep_stolen_vga_memory = false;
960                 break;
961         }
962
963         if (amdgpu_sriov_vf(adev) ||
964             !amdgpu_device_has_display_hardware(adev)) {
965                 size = 0;
966         } else {
967                 size = amdgpu_gmc_get_vbios_fb_size(adev);
968
969                 if (adev->mman.keep_stolen_vga_memory)
970                         size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
971         }
972
973         /* set to 0 if the pre-OS buffer uses up most of vram */
974         if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
975                 size = 0;
976
977         if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
978                 adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
979                 adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
980         } else {
981                 adev->mman.stolen_vga_size = size;
982                 adev->mman.stolen_extended_size = 0;
983         }
984 }
985
986 /**
987  * amdgpu_gmc_init_pdb0 - initialize PDB0
988  *
989  * @adev: amdgpu_device pointer
990  *
991  * This function is only used when GART page table is used
992  * for FB address translatioin. In such a case, we construct
993  * a 2-level system VM page table: PDB0->PTB, to cover both
994  * VRAM of the hive and system memory.
995  *
996  * PDB0 is static, initialized once on driver initialization.
997  * The first n entries of PDB0 are used as PTE by setting
998  * P bit to 1, pointing to VRAM. The n+1'th entry points
999  * to a big PTB covering system memory.
1000  *
1001  */
1002 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
1003 {
1004         int i;
1005         uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
1006         /* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
1007          */
1008         u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
1009         u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
1010         u64 vram_addr = adev->vm_manager.vram_base_offset -
1011                 adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
1012         u64 vram_end = vram_addr + vram_size;
1013         u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
1014         int idx;
1015
1016         if (!drm_dev_enter(adev_to_drm(adev), &idx))
1017                 return;
1018
1019         flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
1020         flags |= AMDGPU_PTE_WRITEABLE;
1021         flags |= AMDGPU_PTE_SNOOPED;
1022         flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
1023         flags |= AMDGPU_PDE_PTE_FLAG(adev);
1024
1025         /* The first n PDE0 entries are used as PTE,
1026          * pointing to vram
1027          */
1028         for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
1029                 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
1030
1031         /* The n+1'th PDE0 entry points to a huge
1032          * PTB who has more than 512 entries each
1033          * pointing to a 4K system page
1034          */
1035         flags = AMDGPU_PTE_VALID;
1036         flags |= AMDGPU_PTE_SNOOPED | AMDGPU_PDE_BFS_FLAG(adev, 0);
1037         /* Requires gart_ptb_gpu_pa to be 4K aligned */
1038         amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
1039         drm_dev_exit(idx);
1040 }
1041
1042 /**
1043  * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
1044  * address
1045  *
1046  * @adev: amdgpu_device pointer
1047  * @mc_addr: MC address of buffer
1048  */
1049 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
1050 {
1051         return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
1052 }
1053
1054 /**
1055  * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
1056  * GPU's view
1057  *
1058  * @adev: amdgpu_device pointer
1059  * @bo: amdgpu buffer object
1060  */
1061 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
1062 {
1063         return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
1064 }
1065
1066 /**
1067  * amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address
1068  * from CPU's view
1069  *
1070  * @adev: amdgpu_device pointer
1071  * @bo: amdgpu buffer object
1072  */
1073 uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
1074 {
1075         return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base;
1076 }
1077
1078 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
1079 {
1080         struct amdgpu_bo *vram_bo = NULL;
1081         uint64_t vram_gpu = 0;
1082         void *vram_ptr = NULL;
1083
1084         int ret, size = 0x100000;
1085         uint8_t cptr[10];
1086
1087         ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
1088                                 AMDGPU_GEM_DOMAIN_VRAM,
1089                                 &vram_bo,
1090                                 &vram_gpu,
1091                                 &vram_ptr);
1092         if (ret)
1093                 return ret;
1094
1095         memset(vram_ptr, 0x86, size);
1096         memset(cptr, 0x86, 10);
1097
1098         /**
1099          * Check the start, the mid, and the end of the memory if the content of
1100          * each byte is the pattern "0x86". If yes, we suppose the vram bo is
1101          * workable.
1102          *
1103          * Note: If check the each byte of whole 1M bo, it will cost too many
1104          * seconds, so here, we just pick up three parts for emulation.
1105          */
1106         ret = memcmp(vram_ptr, cptr, 10);
1107         if (ret) {
1108                 ret = -EIO;
1109                 goto release_buffer;
1110         }
1111
1112         ret = memcmp(vram_ptr + (size / 2), cptr, 10);
1113         if (ret) {
1114                 ret = -EIO;
1115                 goto release_buffer;
1116         }
1117
1118         ret = memcmp(vram_ptr + size - 10, cptr, 10);
1119         if (ret) {
1120                 ret = -EIO;
1121                 goto release_buffer;
1122         }
1123
1124 release_buffer:
1125         amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
1126                         &vram_ptr);
1127
1128         return ret;
1129 }
1130
1131 static ssize_t current_memory_partition_show(
1132         struct device *dev, struct device_attribute *addr, char *buf)
1133 {
1134         struct drm_device *ddev = dev_get_drvdata(dev);
1135         struct amdgpu_device *adev = drm_to_adev(ddev);
1136         enum amdgpu_memory_partition mode;
1137
1138         mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1139         switch (mode) {
1140         case AMDGPU_NPS1_PARTITION_MODE:
1141                 return sysfs_emit(buf, "NPS1\n");
1142         case AMDGPU_NPS2_PARTITION_MODE:
1143                 return sysfs_emit(buf, "NPS2\n");
1144         case AMDGPU_NPS3_PARTITION_MODE:
1145                 return sysfs_emit(buf, "NPS3\n");
1146         case AMDGPU_NPS4_PARTITION_MODE:
1147                 return sysfs_emit(buf, "NPS4\n");
1148         case AMDGPU_NPS6_PARTITION_MODE:
1149                 return sysfs_emit(buf, "NPS6\n");
1150         case AMDGPU_NPS8_PARTITION_MODE:
1151                 return sysfs_emit(buf, "NPS8\n");
1152         default:
1153                 return sysfs_emit(buf, "UNKNOWN\n");
1154         }
1155 }
1156
1157 static DEVICE_ATTR_RO(current_memory_partition);
1158
1159 int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev)
1160 {
1161         if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1162                 return 0;
1163
1164         return device_create_file(adev->dev,
1165                                   &dev_attr_current_memory_partition);
1166 }
1167
1168 void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev)
1169 {
1170         device_remove_file(adev->dev, &dev_attr_current_memory_partition);
1171 }
1172
1173 int amdgpu_gmc_get_nps_memranges(struct amdgpu_device *adev,
1174                                  struct amdgpu_mem_partition_info *mem_ranges,
1175                                  int exp_ranges)
1176 {
1177         struct amdgpu_gmc_memrange *ranges;
1178         int range_cnt, ret, i, j;
1179         uint32_t nps_type;
1180
1181         if (!mem_ranges)
1182                 return -EINVAL;
1183
1184         ret = amdgpu_discovery_get_nps_info(adev, &nps_type, &ranges,
1185                                             &range_cnt);
1186
1187         if (ret)
1188                 return ret;
1189
1190         /* TODO: For now, expect ranges and partition count to be the same.
1191          * Adjust if there are holes expected in any NPS domain.
1192          */
1193         if (range_cnt != exp_ranges) {
1194                 dev_warn(
1195                         adev->dev,
1196                         "NPS config mismatch - expected ranges: %d discovery - nps mode: %d, nps ranges: %d",
1197                         exp_ranges, nps_type, range_cnt);
1198                 ret = -EINVAL;
1199                 goto err;
1200         }
1201
1202         for (i = 0; i < exp_ranges; ++i) {
1203                 if (ranges[i].base_address >= ranges[i].limit_address) {
1204                         dev_warn(
1205                                 adev->dev,
1206                                 "Invalid NPS range - nps mode: %d, range[%d]: base: %llx limit: %llx",
1207                                 nps_type, i, ranges[i].base_address,
1208                                 ranges[i].limit_address);
1209                         ret = -EINVAL;
1210                         goto err;
1211                 }
1212
1213                 /* Check for overlaps, not expecting any now */
1214                 for (j = i - 1; j >= 0; j--) {
1215                         if (max(ranges[j].base_address,
1216                                 ranges[i].base_address) <=
1217                             min(ranges[j].limit_address,
1218                                 ranges[i].limit_address)) {
1219                                 dev_warn(
1220                                         adev->dev,
1221                                         "overlapping ranges detected [ %llx - %llx ] | [%llx - %llx]",
1222                                         ranges[j].base_address,
1223                                         ranges[j].limit_address,
1224                                         ranges[i].base_address,
1225                                         ranges[i].limit_address);
1226                                 ret = -EINVAL;
1227                                 goto err;
1228                         }
1229                 }
1230
1231                 mem_ranges[i].range.fpfn =
1232                         (ranges[i].base_address -
1233                          adev->vm_manager.vram_base_offset) >>
1234                         AMDGPU_GPU_PAGE_SHIFT;
1235                 mem_ranges[i].range.lpfn =
1236                         (ranges[i].limit_address -
1237                          adev->vm_manager.vram_base_offset) >>
1238                         AMDGPU_GPU_PAGE_SHIFT;
1239                 mem_ranges[i].size =
1240                         ranges[i].limit_address - ranges[i].base_address + 1;
1241         }
1242
1243 err:
1244         kfree(ranges);
1245
1246         return ret;
1247 }
This page took 0.121483 seconds and 4 git commands to generate.