1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
30 struct follow_page_context {
31 struct dev_pagemap *pgmap;
32 unsigned int page_mask;
35 static inline void sanity_check_pinned_pages(struct page **pages,
38 if (!IS_ENABLED(CONFIG_DEBUG_VM))
42 * We only pin anonymous pages if they are exclusive. Once pinned, we
43 * can no longer turn them possibly shared and PageAnonExclusive() will
44 * stick around until the page is freed.
46 * We'd like to verify that our pinned anonymous pages are still mapped
47 * exclusively. The issue with anon THP is that we don't know how
48 * they are/were mapped when pinning them. However, for anon
49 * THP we can assume that either the given page (PTE-mapped THP) or
50 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
51 * neither is the case, there is certainly something wrong.
53 for (; npages; npages--, pages++) {
54 struct page *page = *pages;
55 struct folio *folio = page_folio(page);
57 if (is_zero_page(page) ||
58 !folio_test_anon(folio))
60 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
61 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
63 /* Either a PTE-mapped or a PMD-mapped THP. */
64 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
65 !PageAnonExclusive(page), page);
70 * Return the folio with ref appropriately incremented,
71 * or NULL if that failed.
73 static inline struct folio *try_get_folio(struct page *page, int refs)
78 folio = page_folio(page);
79 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
81 if (unlikely(!folio_ref_try_add(folio, refs)))
85 * At this point we have a stable reference to the folio; but it
86 * could be that between calling page_folio() and the refcount
87 * increment, the folio was split, in which case we'd end up
88 * holding a reference on a folio that has nothing to do with the page
89 * we were given anymore.
90 * So now that the folio is stable, recheck that the page still
91 * belongs to this folio.
93 if (unlikely(page_folio(page) != folio)) {
94 if (!put_devmap_managed_folio_refs(folio, refs))
95 folio_put_refs(folio, refs);
102 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
104 if (flags & FOLL_PIN) {
105 if (is_zero_folio(folio))
107 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
108 if (folio_test_large(folio))
109 atomic_sub(refs, &folio->_pincount);
111 refs *= GUP_PIN_COUNTING_BIAS;
114 if (!put_devmap_managed_folio_refs(folio, refs))
115 folio_put_refs(folio, refs);
119 * try_grab_folio() - add a folio's refcount by a flag-dependent amount
120 * @folio: pointer to folio to be grabbed
121 * @refs: the value to (effectively) add to the folio's refcount
122 * @flags: gup flags: these are the FOLL_* flag values
124 * This might not do anything at all, depending on the flags argument.
126 * "grab" names in this file mean, "look at flags to decide whether to use
127 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
129 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
132 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
133 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
135 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not
138 * It is called when we have a stable reference for the folio, typically in
141 int __must_check try_grab_folio(struct folio *folio, int refs,
144 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
147 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
150 if (flags & FOLL_GET)
151 folio_ref_add(folio, refs);
152 else if (flags & FOLL_PIN) {
154 * Don't take a pin on the zero page - it's not going anywhere
155 * and it is used in a *lot* of places.
157 if (is_zero_folio(folio))
161 * Increment the normal page refcount field at least once,
162 * so that the page really is pinned.
164 if (folio_test_large(folio)) {
165 folio_ref_add(folio, refs);
166 atomic_add(refs, &folio->_pincount);
168 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
178 * unpin_user_page() - release a dma-pinned page
179 * @page: pointer to page to be released
181 * Pages that were pinned via pin_user_pages*() must be released via either
182 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
183 * that such pages can be separately tracked and uniquely handled. In
184 * particular, interactions with RDMA and filesystems need special handling.
186 void unpin_user_page(struct page *page)
188 sanity_check_pinned_pages(&page, 1);
189 gup_put_folio(page_folio(page), 1, FOLL_PIN);
191 EXPORT_SYMBOL(unpin_user_page);
194 * unpin_folio() - release a dma-pinned folio
195 * @folio: pointer to folio to be released
197 * Folios that were pinned via memfd_pin_folios() or other similar routines
198 * must be released either using unpin_folio() or unpin_folios().
200 void unpin_folio(struct folio *folio)
202 gup_put_folio(folio, 1, FOLL_PIN);
204 EXPORT_SYMBOL_GPL(unpin_folio);
207 * folio_add_pin - Try to get an additional pin on a pinned folio
208 * @folio: The folio to be pinned
210 * Get an additional pin on a folio we already have a pin on. Makes no change
211 * if the folio is a zero_page.
213 void folio_add_pin(struct folio *folio)
215 if (is_zero_folio(folio))
219 * Similar to try_grab_folio(): be sure to *also* increment the normal
220 * page refcount field at least once, so that the page really is
223 if (folio_test_large(folio)) {
224 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
225 folio_ref_inc(folio);
226 atomic_inc(&folio->_pincount);
228 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
229 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
233 static inline struct folio *gup_folio_range_next(struct page *start,
234 unsigned long npages, unsigned long i, unsigned int *ntails)
236 struct page *next = nth_page(start, i);
237 struct folio *folio = page_folio(next);
240 if (folio_test_large(folio))
241 nr = min_t(unsigned int, npages - i,
242 folio_nr_pages(folio) - folio_page_idx(folio, next));
248 static inline struct folio *gup_folio_next(struct page **list,
249 unsigned long npages, unsigned long i, unsigned int *ntails)
251 struct folio *folio = page_folio(list[i]);
254 for (nr = i + 1; nr < npages; nr++) {
255 if (page_folio(list[nr]) != folio)
264 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
265 * @pages: array of pages to be maybe marked dirty, and definitely released.
266 * @npages: number of pages in the @pages array.
267 * @make_dirty: whether to mark the pages dirty
269 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
270 * variants called on that page.
272 * For each page in the @pages array, make that page (or its head page, if a
273 * compound page) dirty, if @make_dirty is true, and if the page was previously
274 * listed as clean. In any case, releases all pages using unpin_user_page(),
275 * possibly via unpin_user_pages(), for the non-dirty case.
277 * Please see the unpin_user_page() documentation for details.
279 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
280 * required, then the caller should a) verify that this is really correct,
281 * because _lock() is usually required, and b) hand code it:
282 * set_page_dirty_lock(), unpin_user_page().
285 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
293 unpin_user_pages(pages, npages);
297 sanity_check_pinned_pages(pages, npages);
298 for (i = 0; i < npages; i += nr) {
299 folio = gup_folio_next(pages, npages, i, &nr);
301 * Checking PageDirty at this point may race with
302 * clear_page_dirty_for_io(), but that's OK. Two key
305 * 1) This code sees the page as already dirty, so it
306 * skips the call to set_page_dirty(). That could happen
307 * because clear_page_dirty_for_io() called
308 * folio_mkclean(), followed by set_page_dirty().
309 * However, now the page is going to get written back,
310 * which meets the original intention of setting it
311 * dirty, so all is well: clear_page_dirty_for_io() goes
312 * on to call TestClearPageDirty(), and write the page
315 * 2) This code sees the page as clean, so it calls
316 * set_page_dirty(). The page stays dirty, despite being
317 * written back, so it gets written back again in the
318 * next writeback cycle. This is harmless.
320 if (!folio_test_dirty(folio)) {
322 folio_mark_dirty(folio);
325 gup_put_folio(folio, nr, FOLL_PIN);
328 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
331 * unpin_user_page_range_dirty_lock() - release and optionally dirty
332 * gup-pinned page range
334 * @page: the starting page of a range maybe marked dirty, and definitely released.
335 * @npages: number of consecutive pages to release.
336 * @make_dirty: whether to mark the pages dirty
338 * "gup-pinned page range" refers to a range of pages that has had one of the
339 * pin_user_pages() variants called on that page.
341 * For the page ranges defined by [page .. page+npages], make that range (or
342 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
343 * page range was previously listed as clean.
345 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
346 * required, then the caller should a) verify that this is really correct,
347 * because _lock() is usually required, and b) hand code it:
348 * set_page_dirty_lock(), unpin_user_page().
351 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
358 for (i = 0; i < npages; i += nr) {
359 folio = gup_folio_range_next(page, npages, i, &nr);
360 if (make_dirty && !folio_test_dirty(folio)) {
362 folio_mark_dirty(folio);
365 gup_put_folio(folio, nr, FOLL_PIN);
368 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
370 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
377 * Don't perform any sanity checks because we might have raced with
378 * fork() and some anonymous pages might now actually be shared --
379 * which is why we're unpinning after all.
381 for (i = 0; i < npages; i += nr) {
382 folio = gup_folio_next(pages, npages, i, &nr);
383 gup_put_folio(folio, nr, FOLL_PIN);
388 * unpin_user_pages() - release an array of gup-pinned pages.
389 * @pages: array of pages to be marked dirty and released.
390 * @npages: number of pages in the @pages array.
392 * For each page in the @pages array, release the page using unpin_user_page().
394 * Please see the unpin_user_page() documentation for details.
396 void unpin_user_pages(struct page **pages, unsigned long npages)
403 * If this WARN_ON() fires, then the system *might* be leaking pages (by
404 * leaving them pinned), but probably not. More likely, gup/pup returned
405 * a hard -ERRNO error to the caller, who erroneously passed it here.
407 if (WARN_ON(IS_ERR_VALUE(npages)))
410 sanity_check_pinned_pages(pages, npages);
411 for (i = 0; i < npages; i += nr) {
412 folio = gup_folio_next(pages, npages, i, &nr);
413 gup_put_folio(folio, nr, FOLL_PIN);
416 EXPORT_SYMBOL(unpin_user_pages);
419 * unpin_user_folio() - release pages of a folio
420 * @folio: pointer to folio to be released
421 * @npages: number of pages of same folio
423 * Release npages of the folio
425 void unpin_user_folio(struct folio *folio, unsigned long npages)
427 gup_put_folio(folio, npages, FOLL_PIN);
429 EXPORT_SYMBOL(unpin_user_folio);
432 * unpin_folios() - release an array of gup-pinned folios.
433 * @folios: array of folios to be marked dirty and released.
434 * @nfolios: number of folios in the @folios array.
436 * For each folio in the @folios array, release the folio using gup_put_folio.
438 * Please see the unpin_folio() documentation for details.
440 void unpin_folios(struct folio **folios, unsigned long nfolios)
442 unsigned long i = 0, j;
445 * If this WARN_ON() fires, then the system *might* be leaking folios
446 * (by leaving them pinned), but probably not. More likely, gup/pup
447 * returned a hard -ERRNO error to the caller, who erroneously passed
450 if (WARN_ON(IS_ERR_VALUE(nfolios)))
453 while (i < nfolios) {
454 for (j = i + 1; j < nfolios; j++)
455 if (folios[i] != folios[j])
459 gup_put_folio(folios[i], j - i, FOLL_PIN);
463 EXPORT_SYMBOL_GPL(unpin_folios);
466 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
467 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
468 * cache bouncing on large SMP machines for concurrent pinned gups.
470 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
472 if (!test_bit(MMF_HAS_PINNED, mm_flags))
473 set_bit(MMF_HAS_PINNED, mm_flags);
478 #ifdef CONFIG_HAVE_GUP_FAST
479 static int record_subpages(struct page *page, unsigned long sz,
480 unsigned long addr, unsigned long end,
483 struct page *start_page;
486 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
487 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
488 pages[nr] = nth_page(start_page, nr);
494 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
495 * @page: pointer to page to be grabbed
496 * @refs: the value to (effectively) add to the folio's refcount
497 * @flags: gup flags: these are the FOLL_* flag values.
499 * "grab" names in this file mean, "look at flags to decide whether to use
500 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
502 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
503 * same time. (That's true throughout the get_user_pages*() and
504 * pin_user_pages*() APIs.) Cases:
506 * FOLL_GET: folio's refcount will be incremented by @refs.
508 * FOLL_PIN on large folios: folio's refcount will be incremented by
509 * @refs, and its pincount will be incremented by @refs.
511 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
512 * @refs * GUP_PIN_COUNTING_BIAS.
514 * Return: The folio containing @page (with refcount appropriately
515 * incremented) for success, or NULL upon failure. If neither FOLL_GET
516 * nor FOLL_PIN was set, that's considered failure, and furthermore,
517 * a likely bug in the caller, so a warning is also emitted.
519 * It uses add ref unless zero to elevate the folio refcount and must be called
522 static struct folio *try_grab_folio_fast(struct page *page, int refs,
527 /* Raise warn if it is not called in fast GUP */
528 VM_WARN_ON_ONCE(!irqs_disabled());
530 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
533 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
536 if (flags & FOLL_GET)
537 return try_get_folio(page, refs);
539 /* FOLL_PIN is set */
542 * Don't take a pin on the zero page - it's not going anywhere
543 * and it is used in a *lot* of places.
545 if (is_zero_page(page))
546 return page_folio(page);
548 folio = try_get_folio(page, refs);
553 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
554 * right zone, so fail and let the caller fall back to the slow
557 if (unlikely((flags & FOLL_LONGTERM) &&
558 !folio_is_longterm_pinnable(folio))) {
559 if (!put_devmap_managed_folio_refs(folio, refs))
560 folio_put_refs(folio, refs);
565 * When pinning a large folio, use an exact count to track it.
567 * However, be sure to *also* increment the normal folio
568 * refcount field at least once, so that the folio really
569 * is pinned. That's why the refcount from the earlier
570 * try_get_folio() is left intact.
572 if (folio_test_large(folio))
573 atomic_add(refs, &folio->_pincount);
576 refs * (GUP_PIN_COUNTING_BIAS - 1));
578 * Adjust the pincount before re-checking the PTE for changes.
579 * This is essentially a smp_mb() and is paired with a memory
580 * barrier in folio_try_share_anon_rmap_*().
582 smp_mb__after_atomic();
584 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
588 #endif /* CONFIG_HAVE_GUP_FAST */
590 static struct page *no_page_table(struct vm_area_struct *vma,
591 unsigned int flags, unsigned long address)
593 if (!(flags & FOLL_DUMP))
597 * When core dumping, we don't want to allocate unnecessary pages or
598 * page tables. Return error instead of NULL to skip handle_mm_fault,
599 * then get_dump_page() will return NULL to leave a hole in the dump.
600 * But we can only make this optimization where a hole would surely
601 * be zero-filled if handle_mm_fault() actually did handle it.
603 if (is_vm_hugetlb_page(vma)) {
604 struct hstate *h = hstate_vma(vma);
606 if (!hugetlbfs_pagecache_present(h, vma, address))
607 return ERR_PTR(-EFAULT);
608 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
609 return ERR_PTR(-EFAULT);
615 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
616 static struct page *follow_huge_pud(struct vm_area_struct *vma,
617 unsigned long addr, pud_t *pudp,
618 int flags, struct follow_page_context *ctx)
620 struct mm_struct *mm = vma->vm_mm;
623 unsigned long pfn = pud_pfn(pud);
626 assert_spin_locked(pud_lockptr(mm, pudp));
628 if ((flags & FOLL_WRITE) && !pud_write(pud))
631 if (!pud_present(pud))
634 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
636 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
639 * device mapped pages can only be returned if the caller
640 * will manage the page reference count.
642 * At least one of FOLL_GET | FOLL_PIN must be set, so
645 if (!(flags & (FOLL_GET | FOLL_PIN)))
646 return ERR_PTR(-EEXIST);
648 if (flags & FOLL_TOUCH)
649 touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
651 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
653 return ERR_PTR(-EFAULT);
656 page = pfn_to_page(pfn);
658 if (!pud_devmap(pud) && !pud_write(pud) &&
659 gup_must_unshare(vma, flags, page))
660 return ERR_PTR(-EMLINK);
662 ret = try_grab_folio(page_folio(page), 1, flags);
666 ctx->page_mask = HPAGE_PUD_NR - 1;
671 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
672 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
673 struct vm_area_struct *vma,
676 /* If the pmd is writable, we can write to the page. */
680 /* Maybe FOLL_FORCE is set to override it? */
681 if (!(flags & FOLL_FORCE))
684 /* But FOLL_FORCE has no effect on shared mappings */
685 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
688 /* ... or read-only private ones */
689 if (!(vma->vm_flags & VM_MAYWRITE))
692 /* ... or already writable ones that just need to take a write fault */
693 if (vma->vm_flags & VM_WRITE)
697 * See can_change_pte_writable(): we broke COW and could map the page
698 * writable if we have an exclusive anonymous page ...
700 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
703 /* ... and a write-fault isn't required for other reasons. */
704 if (pmd_needs_soft_dirty_wp(vma, pmd))
706 return !userfaultfd_huge_pmd_wp(vma, pmd);
709 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
710 unsigned long addr, pmd_t *pmd,
712 struct follow_page_context *ctx)
714 struct mm_struct *mm = vma->vm_mm;
719 assert_spin_locked(pmd_lockptr(mm, pmd));
721 page = pmd_page(pmdval);
722 if ((flags & FOLL_WRITE) &&
723 !can_follow_write_pmd(pmdval, page, vma, flags))
726 /* Avoid dumping huge zero page */
727 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
728 return ERR_PTR(-EFAULT);
730 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
733 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
734 return ERR_PTR(-EMLINK);
736 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
737 !PageAnonExclusive(page), page);
739 ret = try_grab_folio(page_folio(page), 1, flags);
743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
744 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
745 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
746 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
748 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
749 ctx->page_mask = HPAGE_PMD_NR - 1;
754 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
755 static struct page *follow_huge_pud(struct vm_area_struct *vma,
756 unsigned long addr, pud_t *pudp,
757 int flags, struct follow_page_context *ctx)
762 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
763 unsigned long addr, pmd_t *pmd,
765 struct follow_page_context *ctx)
769 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
771 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
772 pte_t *pte, unsigned int flags)
774 if (flags & FOLL_TOUCH) {
775 pte_t orig_entry = ptep_get(pte);
776 pte_t entry = orig_entry;
778 if (flags & FOLL_WRITE)
779 entry = pte_mkdirty(entry);
780 entry = pte_mkyoung(entry);
782 if (!pte_same(orig_entry, entry)) {
783 set_pte_at(vma->vm_mm, address, pte, entry);
784 update_mmu_cache(vma, address, pte);
788 /* Proper page table entry exists, but no corresponding struct page */
792 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
793 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
794 struct vm_area_struct *vma,
797 /* If the pte is writable, we can write to the page. */
801 /* Maybe FOLL_FORCE is set to override it? */
802 if (!(flags & FOLL_FORCE))
805 /* But FOLL_FORCE has no effect on shared mappings */
806 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
809 /* ... or read-only private ones */
810 if (!(vma->vm_flags & VM_MAYWRITE))
813 /* ... or already writable ones that just need to take a write fault */
814 if (vma->vm_flags & VM_WRITE)
818 * See can_change_pte_writable(): we broke COW and could map the page
819 * writable if we have an exclusive anonymous page ...
821 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
824 /* ... and a write-fault isn't required for other reasons. */
825 if (pte_needs_soft_dirty_wp(vma, pte))
827 return !userfaultfd_pte_wp(vma, pte);
830 static struct page *follow_page_pte(struct vm_area_struct *vma,
831 unsigned long address, pmd_t *pmd, unsigned int flags,
832 struct dev_pagemap **pgmap)
834 struct mm_struct *mm = vma->vm_mm;
840 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
841 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
842 (FOLL_PIN | FOLL_GET)))
843 return ERR_PTR(-EINVAL);
845 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
847 return no_page_table(vma, flags, address);
848 pte = ptep_get(ptep);
849 if (!pte_present(pte))
851 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
854 page = vm_normal_page(vma, address, pte);
857 * We only care about anon pages in can_follow_write_pte() and don't
858 * have to worry about pte_devmap() because they are never anon.
860 if ((flags & FOLL_WRITE) &&
861 !can_follow_write_pte(pte, page, vma, flags)) {
866 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
868 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
869 * case since they are only valid while holding the pgmap
872 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
874 page = pte_page(pte);
877 } else if (unlikely(!page)) {
878 if (flags & FOLL_DUMP) {
879 /* Avoid special (like zero) pages in core dumps */
880 page = ERR_PTR(-EFAULT);
884 if (is_zero_pfn(pte_pfn(pte))) {
885 page = pte_page(pte);
887 ret = follow_pfn_pte(vma, address, ptep, flags);
893 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
894 page = ERR_PTR(-EMLINK);
898 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
899 !PageAnonExclusive(page), page);
901 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
902 ret = try_grab_folio(page_folio(page), 1, flags);
909 * We need to make the page accessible if and only if we are going
910 * to access its content (the FOLL_PIN case). Please see
911 * Documentation/core-api/pin_user_pages.rst for details.
913 if (flags & FOLL_PIN) {
914 ret = arch_make_page_accessible(page);
916 unpin_user_page(page);
921 if (flags & FOLL_TOUCH) {
922 if ((flags & FOLL_WRITE) &&
923 !pte_dirty(pte) && !PageDirty(page))
924 set_page_dirty(page);
926 * pte_mkyoung() would be more correct here, but atomic care
927 * is needed to avoid losing the dirty bit: it is easier to use
928 * mark_page_accessed().
930 mark_page_accessed(page);
933 pte_unmap_unlock(ptep, ptl);
936 pte_unmap_unlock(ptep, ptl);
939 return no_page_table(vma, flags, address);
942 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
943 unsigned long address, pud_t *pudp,
945 struct follow_page_context *ctx)
950 struct mm_struct *mm = vma->vm_mm;
952 pmd = pmd_offset(pudp, address);
953 pmdval = pmdp_get_lockless(pmd);
954 if (pmd_none(pmdval))
955 return no_page_table(vma, flags, address);
956 if (!pmd_present(pmdval))
957 return no_page_table(vma, flags, address);
958 if (pmd_devmap(pmdval)) {
959 ptl = pmd_lock(mm, pmd);
960 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
964 return no_page_table(vma, flags, address);
966 if (likely(!pmd_leaf(pmdval)))
967 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
969 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
970 return no_page_table(vma, flags, address);
972 ptl = pmd_lock(mm, pmd);
974 if (unlikely(!pmd_present(pmdval))) {
976 return no_page_table(vma, flags, address);
978 if (unlikely(!pmd_leaf(pmdval))) {
980 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
982 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
984 split_huge_pmd(vma, pmd, address);
985 /* If pmd was left empty, stuff a page table in there quickly */
986 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
987 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
989 page = follow_huge_pmd(vma, address, pmd, flags, ctx);
994 static struct page *follow_pud_mask(struct vm_area_struct *vma,
995 unsigned long address, p4d_t *p4dp,
997 struct follow_page_context *ctx)
1002 struct mm_struct *mm = vma->vm_mm;
1004 pudp = pud_offset(p4dp, address);
1005 pud = READ_ONCE(*pudp);
1006 if (!pud_present(pud))
1007 return no_page_table(vma, flags, address);
1008 if (pud_leaf(pud)) {
1009 ptl = pud_lock(mm, pudp);
1010 page = follow_huge_pud(vma, address, pudp, flags, ctx);
1014 return no_page_table(vma, flags, address);
1016 if (unlikely(pud_bad(pud)))
1017 return no_page_table(vma, flags, address);
1019 return follow_pmd_mask(vma, address, pudp, flags, ctx);
1022 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1023 unsigned long address, pgd_t *pgdp,
1025 struct follow_page_context *ctx)
1029 p4dp = p4d_offset(pgdp, address);
1030 p4d = READ_ONCE(*p4dp);
1031 BUILD_BUG_ON(p4d_leaf(p4d));
1033 if (!p4d_present(p4d) || p4d_bad(p4d))
1034 return no_page_table(vma, flags, address);
1036 return follow_pud_mask(vma, address, p4dp, flags, ctx);
1040 * follow_page_mask - look up a page descriptor from a user-virtual address
1041 * @vma: vm_area_struct mapping @address
1042 * @address: virtual address to look up
1043 * @flags: flags modifying lookup behaviour
1044 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1045 * pointer to output page_mask
1047 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1049 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1050 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1052 * When getting an anonymous page and the caller has to trigger unsharing
1053 * of a shared anonymous page first, -EMLINK is returned. The caller should
1054 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1055 * relevant with FOLL_PIN and !FOLL_WRITE.
1057 * On output, the @ctx->page_mask is set according to the size of the page.
1059 * Return: the mapped (struct page *), %NULL if no mapping exists, or
1060 * an error pointer if there is a mapping to something not represented
1061 * by a page descriptor (see also vm_normal_page()).
1063 static struct page *follow_page_mask(struct vm_area_struct *vma,
1064 unsigned long address, unsigned int flags,
1065 struct follow_page_context *ctx)
1068 struct mm_struct *mm = vma->vm_mm;
1071 vma_pgtable_walk_begin(vma);
1074 pgd = pgd_offset(mm, address);
1076 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1077 page = no_page_table(vma, flags, address);
1079 page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1081 vma_pgtable_walk_end(vma);
1086 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1087 unsigned int foll_flags)
1089 struct follow_page_context ctx = { NULL };
1092 if (vma_is_secretmem(vma))
1095 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
1099 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
1100 * to fail on PROT_NONE-mapped pages.
1102 page = follow_page_mask(vma, address, foll_flags, &ctx);
1104 put_dev_pagemap(ctx.pgmap);
1108 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1109 unsigned int gup_flags, struct vm_area_struct **vma,
1120 /* user gate pages are read-only */
1121 if (gup_flags & FOLL_WRITE)
1123 if (address > TASK_SIZE)
1124 pgd = pgd_offset_k(address);
1126 pgd = pgd_offset_gate(mm, address);
1129 p4d = p4d_offset(pgd, address);
1132 pud = pud_offset(p4d, address);
1135 pmd = pmd_offset(pud, address);
1136 if (!pmd_present(*pmd))
1138 pte = pte_offset_map(pmd, address);
1141 entry = ptep_get(pte);
1142 if (pte_none(entry))
1144 *vma = get_gate_vma(mm);
1147 *page = vm_normal_page(*vma, address, entry);
1149 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1151 *page = pte_page(entry);
1153 ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1164 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
1165 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
1166 * to 0 and -EBUSY returned.
1168 static int faultin_page(struct vm_area_struct *vma,
1169 unsigned long address, unsigned int *flags, bool unshare,
1172 unsigned int fault_flags = 0;
1175 if (*flags & FOLL_NOFAULT)
1177 if (*flags & FOLL_WRITE)
1178 fault_flags |= FAULT_FLAG_WRITE;
1179 if (*flags & FOLL_REMOTE)
1180 fault_flags |= FAULT_FLAG_REMOTE;
1181 if (*flags & FOLL_UNLOCKABLE) {
1182 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1184 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1185 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1186 * That's because some callers may not be prepared to
1187 * handle early exits caused by non-fatal signals.
1189 if (*flags & FOLL_INTERRUPTIBLE)
1190 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1192 if (*flags & FOLL_NOWAIT)
1193 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1194 if (*flags & FOLL_TRIED) {
1196 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1199 fault_flags |= FAULT_FLAG_TRIED;
1202 fault_flags |= FAULT_FLAG_UNSHARE;
1203 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1204 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1207 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1209 if (ret & VM_FAULT_COMPLETED) {
1211 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1212 * mmap lock in the page fault handler. Sanity check this.
1214 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1218 * We should do the same as VM_FAULT_RETRY, but let's not
1219 * return -EBUSY since that's not reflecting the reality of
1220 * what has happened - we've just fully completed a page
1221 * fault, with the mmap lock released. Use -EAGAIN to show
1222 * that we want to take the mmap lock _again_.
1227 if (ret & VM_FAULT_ERROR) {
1228 int err = vm_fault_to_errno(ret, *flags);
1235 if (ret & VM_FAULT_RETRY) {
1236 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1245 * Writing to file-backed mappings which require folio dirty tracking using GUP
1246 * is a fundamentally broken operation, as kernel write access to GUP mappings
1247 * do not adhere to the semantics expected by a file system.
1249 * Consider the following scenario:-
1251 * 1. A folio is written to via GUP which write-faults the memory, notifying
1252 * the file system and dirtying the folio.
1253 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1254 * the PTE being marked read-only.
1255 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1257 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1258 * (though it does not have to).
1260 * This results in both data being written to a folio without writenotify, and
1261 * the folio being dirtied unexpectedly (if the caller decides to do so).
1263 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1264 unsigned long gup_flags)
1267 * If we aren't pinning then no problematic write can occur. A long term
1268 * pin is the most egregious case so this is the case we disallow.
1270 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1271 (FOLL_PIN | FOLL_LONGTERM))
1275 * If the VMA does not require dirty tracking then no problematic write
1278 return !vma_needs_dirty_tracking(vma);
1281 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1283 vm_flags_t vm_flags = vma->vm_flags;
1284 int write = (gup_flags & FOLL_WRITE);
1285 int foreign = (gup_flags & FOLL_REMOTE);
1286 bool vma_anon = vma_is_anonymous(vma);
1288 if (vm_flags & (VM_IO | VM_PFNMAP))
1291 if ((gup_flags & FOLL_ANON) && !vma_anon)
1294 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1297 if (vma_is_secretmem(vma))
1302 !writable_file_mapping_allowed(vma, gup_flags))
1305 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1306 if (!(gup_flags & FOLL_FORCE))
1308 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1309 if (is_vm_hugetlb_page(vma))
1312 * We used to let the write,force case do COW in a
1313 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1314 * set a breakpoint in a read-only mapping of an
1315 * executable, without corrupting the file (yet only
1316 * when that file had been opened for writing!).
1317 * Anon pages in shared mappings are surprising: now
1320 if (!is_cow_mapping(vm_flags))
1323 } else if (!(vm_flags & VM_READ)) {
1324 if (!(gup_flags & FOLL_FORCE))
1327 * Is there actually any vma we can reach here which does not
1328 * have VM_MAYREAD set?
1330 if (!(vm_flags & VM_MAYREAD))
1334 * gups are always data accesses, not instruction
1335 * fetches, so execute=false here
1337 if (!arch_vma_access_permitted(vma, write, false, foreign))
1343 * This is "vma_lookup()", but with a warning if we would have
1344 * historically expanded the stack in the GUP code.
1346 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1349 #ifdef CONFIG_STACK_GROWSUP
1350 return vma_lookup(mm, addr);
1352 static volatile unsigned long next_warn;
1353 struct vm_area_struct *vma;
1354 unsigned long now, next;
1356 vma = find_vma(mm, addr);
1357 if (!vma || (addr >= vma->vm_start))
1360 /* Only warn for half-way relevant accesses */
1361 if (!(vma->vm_flags & VM_GROWSDOWN))
1363 if (vma->vm_start - addr > 65536)
1366 /* Let's not warn more than once an hour.. */
1367 now = jiffies; next = next_warn;
1368 if (next && time_before(now, next))
1370 next_warn = now + 60*60*HZ;
1372 /* Let people know things may have changed. */
1373 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1374 current->comm, task_pid_nr(current),
1375 vma->vm_start, vma->vm_end, addr);
1382 * __get_user_pages() - pin user pages in memory
1383 * @mm: mm_struct of target mm
1384 * @start: starting user address
1385 * @nr_pages: number of pages from start to pin
1386 * @gup_flags: flags modifying pin behaviour
1387 * @pages: array that receives pointers to the pages pinned.
1388 * Should be at least nr_pages long. Or NULL, if caller
1389 * only intends to ensure the pages are faulted in.
1390 * @locked: whether we're still with the mmap_lock held
1392 * Returns either number of pages pinned (which may be less than the
1393 * number requested), or an error. Details about the return value:
1395 * -- If nr_pages is 0, returns 0.
1396 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1397 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1398 * pages pinned. Again, this may be less than nr_pages.
1399 * -- 0 return value is possible when the fault would need to be retried.
1401 * The caller is responsible for releasing returned @pages, via put_page().
1403 * Must be called with mmap_lock held. It may be released. See below.
1405 * __get_user_pages walks a process's page tables and takes a reference to
1406 * each struct page that each user address corresponds to at a given
1407 * instant. That is, it takes the page that would be accessed if a user
1408 * thread accesses the given user virtual address at that instant.
1410 * This does not guarantee that the page exists in the user mappings when
1411 * __get_user_pages returns, and there may even be a completely different
1412 * page there in some cases (eg. if mmapped pagecache has been invalidated
1413 * and subsequently re-faulted). However it does guarantee that the page
1414 * won't be freed completely. And mostly callers simply care that the page
1415 * contains data that was valid *at some point in time*. Typically, an IO
1416 * or similar operation cannot guarantee anything stronger anyway because
1417 * locks can't be held over the syscall boundary.
1419 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1420 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1421 * appropriate) must be called after the page is finished with, and
1422 * before put_page is called.
1424 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1425 * be released. If this happens *@locked will be set to 0 on return.
1427 * A caller using such a combination of @gup_flags must therefore hold the
1428 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1429 * it must be held for either reading or writing and will not be released.
1431 * In most cases, get_user_pages or get_user_pages_fast should be used
1432 * instead of __get_user_pages. __get_user_pages should be used only if
1433 * you need some special @gup_flags.
1435 static long __get_user_pages(struct mm_struct *mm,
1436 unsigned long start, unsigned long nr_pages,
1437 unsigned int gup_flags, struct page **pages,
1440 long ret = 0, i = 0;
1441 struct vm_area_struct *vma = NULL;
1442 struct follow_page_context ctx = { NULL };
1447 start = untagged_addr_remote(mm, start);
1449 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1453 unsigned int foll_flags = gup_flags;
1454 unsigned int page_increm;
1456 /* first iteration or cross vma bound */
1457 if (!vma || start >= vma->vm_end) {
1459 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1460 * lookups+error reporting differently.
1462 if (gup_flags & FOLL_MADV_POPULATE) {
1463 vma = vma_lookup(mm, start);
1468 if (check_vma_flags(vma, gup_flags)) {
1474 vma = gup_vma_lookup(mm, start);
1475 if (!vma && in_gate_area(mm, start)) {
1476 ret = get_gate_page(mm, start & PAGE_MASK,
1478 pages ? &page : NULL);
1489 ret = check_vma_flags(vma, gup_flags);
1495 * If we have a pending SIGKILL, don't keep faulting pages and
1496 * potentially allocating memory.
1498 if (fatal_signal_pending(current)) {
1504 page = follow_page_mask(vma, start, foll_flags, &ctx);
1505 if (!page || PTR_ERR(page) == -EMLINK) {
1506 ret = faultin_page(vma, start, &foll_flags,
1507 PTR_ERR(page) == -EMLINK, locked);
1521 } else if (PTR_ERR(page) == -EEXIST) {
1523 * Proper page table entry exists, but no corresponding
1524 * struct page. If the caller expects **pages to be
1525 * filled in, bail out now, because that can't be done
1529 ret = PTR_ERR(page);
1532 } else if (IS_ERR(page)) {
1533 ret = PTR_ERR(page);
1537 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1538 if (page_increm > nr_pages)
1539 page_increm = nr_pages;
1542 struct page *subpage;
1546 * This must be a large folio (and doesn't need to
1547 * be the whole folio; it can be part of it), do
1548 * the refcount work for all the subpages too.
1550 * NOTE: here the page may not be the head page
1551 * e.g. when start addr is not thp-size aligned.
1552 * try_grab_folio() should have taken care of tail
1555 if (page_increm > 1) {
1556 struct folio *folio = page_folio(page);
1559 * Since we already hold refcount on the
1560 * large folio, this should never fail.
1562 if (try_grab_folio(folio, page_increm - 1,
1565 * Release the 1st page ref if the
1566 * folio is problematic, fail hard.
1568 gup_put_folio(folio, 1,
1575 for (j = 0; j < page_increm; j++) {
1576 subpage = nth_page(page, j);
1577 pages[i + j] = subpage;
1578 flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1579 flush_dcache_page(subpage);
1584 start += page_increm * PAGE_SIZE;
1585 nr_pages -= page_increm;
1589 put_dev_pagemap(ctx.pgmap);
1593 static bool vma_permits_fault(struct vm_area_struct *vma,
1594 unsigned int fault_flags)
1596 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1597 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1598 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1600 if (!(vm_flags & vma->vm_flags))
1604 * The architecture might have a hardware protection
1605 * mechanism other than read/write that can deny access.
1607 * gup always represents data access, not instruction
1608 * fetches, so execute=false here:
1610 if (!arch_vma_access_permitted(vma, write, false, foreign))
1617 * fixup_user_fault() - manually resolve a user page fault
1618 * @mm: mm_struct of target mm
1619 * @address: user address
1620 * @fault_flags:flags to pass down to handle_mm_fault()
1621 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1622 * does not allow retry. If NULL, the caller must guarantee
1623 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1625 * This is meant to be called in the specific scenario where for locking reasons
1626 * we try to access user memory in atomic context (within a pagefault_disable()
1627 * section), this returns -EFAULT, and we want to resolve the user fault before
1630 * Typically this is meant to be used by the futex code.
1632 * The main difference with get_user_pages() is that this function will
1633 * unconditionally call handle_mm_fault() which will in turn perform all the
1634 * necessary SW fixup of the dirty and young bits in the PTE, while
1635 * get_user_pages() only guarantees to update these in the struct page.
1637 * This is important for some architectures where those bits also gate the
1638 * access permission to the page because they are maintained in software. On
1639 * such architectures, gup() will not be enough to make a subsequent access
1642 * This function will not return with an unlocked mmap_lock. So it has not the
1643 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1645 int fixup_user_fault(struct mm_struct *mm,
1646 unsigned long address, unsigned int fault_flags,
1649 struct vm_area_struct *vma;
1652 address = untagged_addr_remote(mm, address);
1655 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1658 vma = gup_vma_lookup(mm, address);
1662 if (!vma_permits_fault(vma, fault_flags))
1665 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1666 fatal_signal_pending(current))
1669 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1671 if (ret & VM_FAULT_COMPLETED) {
1673 * NOTE: it's a pity that we need to retake the lock here
1674 * to pair with the unlock() in the callers. Ideally we
1675 * could tell the callers so they do not need to unlock.
1682 if (ret & VM_FAULT_ERROR) {
1683 int err = vm_fault_to_errno(ret, 0);
1690 if (ret & VM_FAULT_RETRY) {
1693 fault_flags |= FAULT_FLAG_TRIED;
1699 EXPORT_SYMBOL_GPL(fixup_user_fault);
1702 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1703 * specified, it'll also respond to generic signals. The caller of GUP
1704 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1706 static bool gup_signal_pending(unsigned int flags)
1708 if (fatal_signal_pending(current))
1711 if (!(flags & FOLL_INTERRUPTIBLE))
1714 return signal_pending(current);
1718 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1719 * the caller. This function may drop the mmap_lock. If it does so, then it will
1720 * set (*locked = 0).
1722 * (*locked == 0) means that the caller expects this function to acquire and
1723 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1724 * the function returns, even though it may have changed temporarily during
1725 * function execution.
1727 * Please note that this function, unlike __get_user_pages(), will not return 0
1728 * for nr_pages > 0, unless FOLL_NOWAIT is used.
1730 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1731 unsigned long start,
1732 unsigned long nr_pages,
1733 struct page **pages,
1737 long ret, pages_done;
1738 bool must_unlock = false;
1744 * The internal caller expects GUP to manage the lock internally and the
1745 * lock must be released when this returns.
1748 if (mmap_read_lock_killable(mm))
1754 mmap_assert_locked(mm);
1756 if (flags & FOLL_PIN)
1757 mm_set_has_pinned_flag(&mm->flags);
1760 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1761 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1762 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1763 * for FOLL_GET, not for the newer FOLL_PIN.
1765 * FOLL_PIN always expects pages to be non-null, but no need to assert
1766 * that here, as any failures will be obvious enough.
1768 if (pages && !(flags & FOLL_PIN))
1773 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1775 if (!(flags & FOLL_UNLOCKABLE)) {
1776 /* VM_FAULT_RETRY couldn't trigger, bypass */
1781 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1784 BUG_ON(ret >= nr_pages);
1795 * VM_FAULT_RETRY didn't trigger or it was a
1803 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1804 * For the prefault case (!pages) we only update counts.
1808 start += ret << PAGE_SHIFT;
1810 /* The lock was temporarily dropped, so we must unlock later */
1815 * Repeat on the address that fired VM_FAULT_RETRY
1816 * with both FAULT_FLAG_ALLOW_RETRY and
1817 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1818 * by fatal signals of even common signals, depending on
1819 * the caller's request. So we need to check it before we
1820 * start trying again otherwise it can loop forever.
1822 if (gup_signal_pending(flags)) {
1824 pages_done = -EINTR;
1828 ret = mmap_read_lock_killable(mm);
1837 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1840 /* Continue to retry until we succeeded */
1858 if (must_unlock && *locked) {
1860 * We either temporarily dropped the lock, or the caller
1861 * requested that we both acquire and drop the lock. Either way,
1862 * we must now unlock, and notify the caller of that state.
1864 mmap_read_unlock(mm);
1869 * Failing to pin anything implies something has gone wrong (except when
1870 * FOLL_NOWAIT is specified).
1872 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1879 * populate_vma_page_range() - populate a range of pages in the vma.
1881 * @start: start address
1883 * @locked: whether the mmap_lock is still held
1885 * This takes care of mlocking the pages too if VM_LOCKED is set.
1887 * Return either number of pages pinned in the vma, or a negative error
1890 * vma->vm_mm->mmap_lock must be held.
1892 * If @locked is NULL, it may be held for read or write and will
1895 * If @locked is non-NULL, it must held for read only and may be
1896 * released. If it's released, *@locked will be set to 0.
1898 long populate_vma_page_range(struct vm_area_struct *vma,
1899 unsigned long start, unsigned long end, int *locked)
1901 struct mm_struct *mm = vma->vm_mm;
1902 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1903 int local_locked = 1;
1907 VM_BUG_ON(!PAGE_ALIGNED(start));
1908 VM_BUG_ON(!PAGE_ALIGNED(end));
1909 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1910 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1911 mmap_assert_locked(mm);
1914 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1915 * faultin_page() to break COW, so it has no work to do here.
1917 if (vma->vm_flags & VM_LOCKONFAULT)
1920 /* ... similarly, we've never faulted in PROT_NONE pages */
1921 if (!vma_is_accessible(vma))
1924 gup_flags = FOLL_TOUCH;
1926 * We want to touch writable mappings with a write fault in order
1927 * to break COW, except for shared mappings because these don't COW
1928 * and we would not want to dirty them for nothing.
1930 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1931 * readable (ie write-only or executable).
1933 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1934 gup_flags |= FOLL_WRITE;
1936 gup_flags |= FOLL_FORCE;
1939 gup_flags |= FOLL_UNLOCKABLE;
1942 * We made sure addr is within a VMA, so the following will
1943 * not result in a stack expansion that recurses back here.
1945 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1946 NULL, locked ? locked : &local_locked);
1952 * faultin_page_range() - populate (prefault) page tables inside the
1953 * given range readable/writable
1955 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1957 * @mm: the mm to populate page tables in
1958 * @start: start address
1960 * @write: whether to prefault readable or writable
1961 * @locked: whether the mmap_lock is still held
1963 * Returns either number of processed pages in the MM, or a negative error
1964 * code on error (see __get_user_pages()). Note that this function reports
1965 * errors related to VMAs, such as incompatible mappings, as expected by
1966 * MADV_POPULATE_(READ|WRITE).
1968 * The range must be page-aligned.
1970 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1972 long faultin_page_range(struct mm_struct *mm, unsigned long start,
1973 unsigned long end, bool write, int *locked)
1975 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1979 VM_BUG_ON(!PAGE_ALIGNED(start));
1980 VM_BUG_ON(!PAGE_ALIGNED(end));
1981 mmap_assert_locked(mm);
1984 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1985 * the page dirty with FOLL_WRITE -- which doesn't make a
1986 * difference with !FOLL_FORCE, because the page is writable
1987 * in the page table.
1988 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1990 * !FOLL_FORCE: Require proper access permissions.
1992 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1995 gup_flags |= FOLL_WRITE;
1997 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
2004 * __mm_populate - populate and/or mlock pages within a range of address space.
2006 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
2007 * flags. VMAs must be already marked with the desired vm_flags, and
2008 * mmap_lock must not be held.
2010 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
2012 struct mm_struct *mm = current->mm;
2013 unsigned long end, nstart, nend;
2014 struct vm_area_struct *vma = NULL;
2020 for (nstart = start; nstart < end; nstart = nend) {
2022 * We want to fault in pages for [nstart; end) address range.
2023 * Find first corresponding VMA.
2028 vma = find_vma_intersection(mm, nstart, end);
2029 } else if (nstart >= vma->vm_end)
2030 vma = find_vma_intersection(mm, vma->vm_end, end);
2035 * Set [nstart; nend) to intersection of desired address
2036 * range with the first VMA. Also, skip undesirable VMA types.
2038 nend = min(end, vma->vm_end);
2039 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2041 if (nstart < vma->vm_start)
2042 nstart = vma->vm_start;
2044 * Now fault in a range of pages. populate_vma_page_range()
2045 * double checks the vma flags, so that it won't mlock pages
2046 * if the vma was already munlocked.
2048 ret = populate_vma_page_range(vma, nstart, nend, &locked);
2050 if (ignore_errors) {
2052 continue; /* continue at next VMA */
2056 nend = nstart + ret * PAGE_SIZE;
2060 mmap_read_unlock(mm);
2061 return ret; /* 0 or negative error code */
2063 #else /* CONFIG_MMU */
2064 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2065 unsigned long nr_pages, struct page **pages,
2066 int *locked, unsigned int foll_flags)
2068 struct vm_area_struct *vma;
2069 bool must_unlock = false;
2070 unsigned long vm_flags;
2077 * The internal caller expects GUP to manage the lock internally and the
2078 * lock must be released when this returns.
2081 if (mmap_read_lock_killable(mm))
2087 /* calculate required read or write permissions.
2088 * If FOLL_FORCE is set, we only require the "MAY" flags.
2090 vm_flags = (foll_flags & FOLL_WRITE) ?
2091 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2092 vm_flags &= (foll_flags & FOLL_FORCE) ?
2093 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2095 for (i = 0; i < nr_pages; i++) {
2096 vma = find_vma(mm, start);
2100 /* protect what we can, including chardevs */
2101 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2102 !(vm_flags & vma->vm_flags))
2106 pages[i] = virt_to_page((void *)start);
2111 start = (start + PAGE_SIZE) & PAGE_MASK;
2114 if (must_unlock && *locked) {
2115 mmap_read_unlock(mm);
2119 return i ? : -EFAULT;
2121 #endif /* !CONFIG_MMU */
2124 * fault_in_writeable - fault in userspace address range for writing
2125 * @uaddr: start of address range
2126 * @size: size of address range
2128 * Returns the number of bytes not faulted in (like copy_to_user() and
2129 * copy_from_user()).
2131 size_t fault_in_writeable(char __user *uaddr, size_t size)
2133 char __user *start = uaddr, *end;
2135 if (unlikely(size == 0))
2137 if (!user_write_access_begin(uaddr, size))
2139 if (!PAGE_ALIGNED(uaddr)) {
2140 unsafe_put_user(0, uaddr, out);
2141 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
2143 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
2144 if (unlikely(end < start))
2146 while (uaddr != end) {
2147 unsafe_put_user(0, uaddr, out);
2152 user_write_access_end();
2153 if (size > uaddr - start)
2154 return size - (uaddr - start);
2157 EXPORT_SYMBOL(fault_in_writeable);
2160 * fault_in_subpage_writeable - fault in an address range for writing
2161 * @uaddr: start of address range
2162 * @size: size of address range
2164 * Fault in a user address range for writing while checking for permissions at
2165 * sub-page granularity (e.g. arm64 MTE). This function should be used when
2166 * the caller cannot guarantee forward progress of a copy_to_user() loop.
2168 * Returns the number of bytes not faulted in (like copy_to_user() and
2169 * copy_from_user()).
2171 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2176 * Attempt faulting in at page granularity first for page table
2177 * permission checking. The arch-specific probe_subpage_writeable()
2178 * functions may not check for this.
2180 faulted_in = size - fault_in_writeable(uaddr, size);
2182 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2184 return size - faulted_in;
2186 EXPORT_SYMBOL(fault_in_subpage_writeable);
2189 * fault_in_safe_writeable - fault in an address range for writing
2190 * @uaddr: start of address range
2191 * @size: length of address range
2193 * Faults in an address range for writing. This is primarily useful when we
2194 * already know that some or all of the pages in the address range aren't in
2197 * Unlike fault_in_writeable(), this function is non-destructive.
2199 * Note that we don't pin or otherwise hold the pages referenced that we fault
2200 * in. There's no guarantee that they'll stay in memory for any duration of
2203 * Returns the number of bytes not faulted in, like copy_to_user() and
2206 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2208 unsigned long start = (unsigned long)uaddr, end;
2209 struct mm_struct *mm = current->mm;
2210 bool unlocked = false;
2212 if (unlikely(size == 0))
2214 end = PAGE_ALIGN(start + size);
2220 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
2222 start = (start + PAGE_SIZE) & PAGE_MASK;
2223 } while (start != end);
2224 mmap_read_unlock(mm);
2226 if (size > (unsigned long)uaddr - start)
2227 return size - ((unsigned long)uaddr - start);
2230 EXPORT_SYMBOL(fault_in_safe_writeable);
2233 * fault_in_readable - fault in userspace address range for reading
2234 * @uaddr: start of user address range
2235 * @size: size of user address range
2237 * Returns the number of bytes not faulted in (like copy_to_user() and
2238 * copy_from_user()).
2240 size_t fault_in_readable(const char __user *uaddr, size_t size)
2242 const char __user *start = uaddr, *end;
2245 if (unlikely(size == 0))
2247 if (!user_read_access_begin(uaddr, size))
2249 if (!PAGE_ALIGNED(uaddr)) {
2250 unsafe_get_user(c, uaddr, out);
2251 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2253 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2254 if (unlikely(end < start))
2256 while (uaddr != end) {
2257 unsafe_get_user(c, uaddr, out);
2262 user_read_access_end();
2264 if (size > uaddr - start)
2265 return size - (uaddr - start);
2268 EXPORT_SYMBOL(fault_in_readable);
2271 * get_dump_page() - pin user page in memory while writing it to core dump
2272 * @addr: user address
2274 * Returns struct page pointer of user page pinned for dump,
2275 * to be freed afterwards by put_page().
2277 * Returns NULL on any kind of failure - a hole must then be inserted into
2278 * the corefile, to preserve alignment with its headers; and also returns
2279 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2280 * allowing a hole to be left in the corefile to save disk space.
2282 * Called without mmap_lock (takes and releases the mmap_lock by itself).
2284 #ifdef CONFIG_ELF_CORE
2285 struct page *get_dump_page(unsigned long addr)
2291 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2292 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2293 return (ret == 1) ? page : NULL;
2295 #endif /* CONFIG_ELF_CORE */
2297 #ifdef CONFIG_MIGRATION
2299 * Returns the number of collected folios. Return value is always >= 0.
2301 static unsigned long collect_longterm_unpinnable_folios(
2302 struct list_head *movable_folio_list,
2303 unsigned long nr_folios,
2304 struct folio **folios)
2306 unsigned long i, collected = 0;
2307 struct folio *prev_folio = NULL;
2308 bool drain_allow = true;
2310 for (i = 0; i < nr_folios; i++) {
2311 struct folio *folio = folios[i];
2313 if (folio == prev_folio)
2317 if (folio_is_longterm_pinnable(folio))
2322 if (folio_is_device_coherent(folio))
2325 if (folio_test_hugetlb(folio)) {
2326 isolate_hugetlb(folio, movable_folio_list);
2330 if (!folio_test_lru(folio) && drain_allow) {
2331 lru_add_drain_all();
2332 drain_allow = false;
2335 if (!folio_isolate_lru(folio))
2338 list_add_tail(&folio->lru, movable_folio_list);
2339 node_stat_mod_folio(folio,
2340 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2341 folio_nr_pages(folio));
2348 * Unpins all folios and migrates device coherent folios and movable_folio_list.
2349 * Returns -EAGAIN if all folios were successfully migrated or -errno for
2350 * failure (or partial success).
2352 static int migrate_longterm_unpinnable_folios(
2353 struct list_head *movable_folio_list,
2354 unsigned long nr_folios,
2355 struct folio **folios)
2360 for (i = 0; i < nr_folios; i++) {
2361 struct folio *folio = folios[i];
2363 if (folio_is_device_coherent(folio)) {
2365 * Migration will fail if the folio is pinned, so
2366 * convert the pin on the source folio to a normal
2371 gup_put_folio(folio, 1, FOLL_PIN);
2373 if (migrate_device_coherent_page(&folio->page)) {
2382 * We can't migrate folios with unexpected references, so drop
2383 * the reference obtained by __get_user_pages_locked().
2384 * Migrating folios have been added to movable_folio_list after
2385 * calling folio_isolate_lru() which takes a reference so the
2386 * folio won't be freed if it's migrating.
2388 unpin_folio(folios[i]);
2392 if (!list_empty(movable_folio_list)) {
2393 struct migration_target_control mtc = {
2394 .nid = NUMA_NO_NODE,
2395 .gfp_mask = GFP_USER | __GFP_NOWARN,
2396 .reason = MR_LONGTERM_PIN,
2399 if (migrate_pages(movable_folio_list, alloc_migration_target,
2400 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2401 MR_LONGTERM_PIN, NULL)) {
2407 putback_movable_pages(movable_folio_list);
2412 unpin_folios(folios, nr_folios);
2413 putback_movable_pages(movable_folio_list);
2419 * Check whether all folios are *allowed* to be pinned indefinitely (longterm).
2420 * Rather confusingly, all folios in the range are required to be pinned via
2421 * FOLL_PIN, before calling this routine.
2423 * If any folios in the range are not allowed to be pinned, then this routine
2424 * will migrate those folios away, unpin all the folios in the range and return
2425 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2426 * call this routine again.
2428 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2429 * The caller should give up, and propagate the error back up the call stack.
2431 * If everything is OK and all folios in the range are allowed to be pinned,
2432 * then this routine leaves all folios pinned and returns zero for success.
2434 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2435 struct folio **folios)
2437 unsigned long collected;
2438 LIST_HEAD(movable_folio_list);
2440 collected = collect_longterm_unpinnable_folios(&movable_folio_list,
2445 return migrate_longterm_unpinnable_folios(&movable_folio_list,
2450 * This routine just converts all the pages in the @pages array to folios and
2451 * calls check_and_migrate_movable_folios() to do the heavy lifting.
2453 * Please see the check_and_migrate_movable_folios() documentation for details.
2455 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2456 struct page **pages)
2458 struct folio **folios;
2461 folios = kmalloc_array(nr_pages, sizeof(*folios), GFP_KERNEL);
2465 for (i = 0; i < nr_pages; i++)
2466 folios[i] = page_folio(pages[i]);
2468 ret = check_and_migrate_movable_folios(nr_pages, folios);
2474 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2475 struct page **pages)
2480 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2481 struct folio **folios)
2485 #endif /* CONFIG_MIGRATION */
2488 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2489 * allows us to process the FOLL_LONGTERM flag.
2491 static long __gup_longterm_locked(struct mm_struct *mm,
2492 unsigned long start,
2493 unsigned long nr_pages,
2494 struct page **pages,
2496 unsigned int gup_flags)
2499 long rc, nr_pinned_pages;
2501 if (!(gup_flags & FOLL_LONGTERM))
2502 return __get_user_pages_locked(mm, start, nr_pages, pages,
2505 flags = memalloc_pin_save();
2507 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2510 if (nr_pinned_pages <= 0) {
2511 rc = nr_pinned_pages;
2515 /* FOLL_LONGTERM implies FOLL_PIN */
2516 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2517 } while (rc == -EAGAIN);
2518 memalloc_pin_restore(flags);
2519 return rc ? rc : nr_pinned_pages;
2523 * Check that the given flags are valid for the exported gup/pup interface, and
2524 * update them with the required flags that the caller must have set.
2526 static bool is_valid_gup_args(struct page **pages, int *locked,
2527 unsigned int *gup_flags_p, unsigned int to_set)
2529 unsigned int gup_flags = *gup_flags_p;
2532 * These flags not allowed to be specified externally to the gup
2534 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2535 * - FOLL_REMOTE is internal only and used on follow_page()
2536 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2538 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2541 gup_flags |= to_set;
2543 /* At the external interface locked must be set */
2544 if (WARN_ON_ONCE(*locked != 1))
2547 gup_flags |= FOLL_UNLOCKABLE;
2550 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2551 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2552 (FOLL_PIN | FOLL_GET)))
2555 /* LONGTERM can only be specified when pinning */
2556 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2559 /* Pages input must be given if using GET/PIN */
2560 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2563 /* We want to allow the pgmap to be hot-unplugged at all times */
2564 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2565 (gup_flags & FOLL_PCI_P2PDMA)))
2568 *gup_flags_p = gup_flags;
2574 * get_user_pages_remote() - pin user pages in memory
2575 * @mm: mm_struct of target mm
2576 * @start: starting user address
2577 * @nr_pages: number of pages from start to pin
2578 * @gup_flags: flags modifying lookup behaviour
2579 * @pages: array that receives pointers to the pages pinned.
2580 * Should be at least nr_pages long. Or NULL, if caller
2581 * only intends to ensure the pages are faulted in.
2582 * @locked: pointer to lock flag indicating whether lock is held and
2583 * subsequently whether VM_FAULT_RETRY functionality can be
2584 * utilised. Lock must initially be held.
2586 * Returns either number of pages pinned (which may be less than the
2587 * number requested), or an error. Details about the return value:
2589 * -- If nr_pages is 0, returns 0.
2590 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2591 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2592 * pages pinned. Again, this may be less than nr_pages.
2594 * The caller is responsible for releasing returned @pages, via put_page().
2596 * Must be called with mmap_lock held for read or write.
2598 * get_user_pages_remote walks a process's page tables and takes a reference
2599 * to each struct page that each user address corresponds to at a given
2600 * instant. That is, it takes the page that would be accessed if a user
2601 * thread accesses the given user virtual address at that instant.
2603 * This does not guarantee that the page exists in the user mappings when
2604 * get_user_pages_remote returns, and there may even be a completely different
2605 * page there in some cases (eg. if mmapped pagecache has been invalidated
2606 * and subsequently re-faulted). However it does guarantee that the page
2607 * won't be freed completely. And mostly callers simply care that the page
2608 * contains data that was valid *at some point in time*. Typically, an IO
2609 * or similar operation cannot guarantee anything stronger anyway because
2610 * locks can't be held over the syscall boundary.
2612 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2613 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2614 * be called after the page is finished with, and before put_page is called.
2616 * get_user_pages_remote is typically used for fewer-copy IO operations,
2617 * to get a handle on the memory by some means other than accesses
2618 * via the user virtual addresses. The pages may be submitted for
2619 * DMA to devices or accessed via their kernel linear mapping (via the
2620 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2622 * See also get_user_pages_fast, for performance critical applications.
2624 * get_user_pages_remote should be phased out in favor of
2625 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2626 * should use get_user_pages_remote because it cannot pass
2627 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2629 long get_user_pages_remote(struct mm_struct *mm,
2630 unsigned long start, unsigned long nr_pages,
2631 unsigned int gup_flags, struct page **pages,
2634 int local_locked = 1;
2636 if (!is_valid_gup_args(pages, locked, &gup_flags,
2637 FOLL_TOUCH | FOLL_REMOTE))
2640 return __get_user_pages_locked(mm, start, nr_pages, pages,
2641 locked ? locked : &local_locked,
2644 EXPORT_SYMBOL(get_user_pages_remote);
2646 #else /* CONFIG_MMU */
2647 long get_user_pages_remote(struct mm_struct *mm,
2648 unsigned long start, unsigned long nr_pages,
2649 unsigned int gup_flags, struct page **pages,
2654 #endif /* !CONFIG_MMU */
2657 * get_user_pages() - pin user pages in memory
2658 * @start: starting user address
2659 * @nr_pages: number of pages from start to pin
2660 * @gup_flags: flags modifying lookup behaviour
2661 * @pages: array that receives pointers to the pages pinned.
2662 * Should be at least nr_pages long. Or NULL, if caller
2663 * only intends to ensure the pages are faulted in.
2665 * This is the same as get_user_pages_remote(), just with a less-flexible
2666 * calling convention where we assume that the mm being operated on belongs to
2667 * the current task, and doesn't allow passing of a locked parameter. We also
2668 * obviously don't pass FOLL_REMOTE in here.
2670 long get_user_pages(unsigned long start, unsigned long nr_pages,
2671 unsigned int gup_flags, struct page **pages)
2675 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2678 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2679 &locked, gup_flags);
2681 EXPORT_SYMBOL(get_user_pages);
2684 * get_user_pages_unlocked() is suitable to replace the form:
2686 * mmap_read_lock(mm);
2687 * get_user_pages(mm, ..., pages, NULL);
2688 * mmap_read_unlock(mm);
2692 * get_user_pages_unlocked(mm, ..., pages);
2694 * It is functionally equivalent to get_user_pages_fast so
2695 * get_user_pages_fast should be used instead if specific gup_flags
2696 * (e.g. FOLL_FORCE) are not required.
2698 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2699 struct page **pages, unsigned int gup_flags)
2703 if (!is_valid_gup_args(pages, NULL, &gup_flags,
2704 FOLL_TOUCH | FOLL_UNLOCKABLE))
2707 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2708 &locked, gup_flags);
2710 EXPORT_SYMBOL(get_user_pages_unlocked);
2715 * get_user_pages_fast attempts to pin user pages by walking the page
2716 * tables directly and avoids taking locks. Thus the walker needs to be
2717 * protected from page table pages being freed from under it, and should
2718 * block any THP splits.
2720 * One way to achieve this is to have the walker disable interrupts, and
2721 * rely on IPIs from the TLB flushing code blocking before the page table
2722 * pages are freed. This is unsuitable for architectures that do not need
2723 * to broadcast an IPI when invalidating TLBs.
2725 * Another way to achieve this is to batch up page table containing pages
2726 * belonging to more than one mm_user, then rcu_sched a callback to free those
2727 * pages. Disabling interrupts will allow the gup_fast() walker to both block
2728 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2729 * (which is a relatively rare event). The code below adopts this strategy.
2731 * Before activating this code, please be aware that the following assumptions
2732 * are currently made:
2734 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2735 * free pages containing page tables or TLB flushing requires IPI broadcast.
2737 * *) ptes can be read atomically by the architecture.
2739 * *) access_ok is sufficient to validate userspace address ranges.
2741 * The last two assumptions can be relaxed by the addition of helper functions.
2743 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2745 #ifdef CONFIG_HAVE_GUP_FAST
2747 * Used in the GUP-fast path to determine whether GUP is permitted to work on
2750 * This call assumes the caller has pinned the folio, that the lowest page table
2751 * level still points to this folio, and that interrupts have been disabled.
2753 * GUP-fast must reject all secretmem folios.
2755 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2756 * (see comment describing the writable_file_mapping_allowed() function). We
2757 * therefore try to avoid the most egregious case of a long-term mapping doing
2760 * This function cannot be as thorough as that one as the VMA is not available
2761 * in the fast path, so instead we whitelist known good cases and if in doubt,
2762 * fall back to the slow path.
2764 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2766 bool reject_file_backed = false;
2767 struct address_space *mapping;
2768 bool check_secretmem = false;
2769 unsigned long mapping_flags;
2772 * If we aren't pinning then no problematic write can occur. A long term
2773 * pin is the most egregious case so this is the one we disallow.
2775 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2776 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2777 reject_file_backed = true;
2779 /* We hold a folio reference, so we can safely access folio fields. */
2781 /* secretmem folios are always order-0 folios. */
2782 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2783 check_secretmem = true;
2785 if (!reject_file_backed && !check_secretmem)
2788 if (WARN_ON_ONCE(folio_test_slab(folio)))
2791 /* hugetlb neither requires dirty-tracking nor can be secretmem. */
2792 if (folio_test_hugetlb(folio))
2796 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2797 * cannot proceed, which means no actions performed under RCU can
2800 * inodes and thus their mappings are freed under RCU, which means the
2801 * mapping cannot be freed beneath us and thus we can safely dereference
2804 lockdep_assert_irqs_disabled();
2807 * However, there may be operations which _alter_ the mapping, so ensure
2808 * we read it once and only once.
2810 mapping = READ_ONCE(folio->mapping);
2813 * The mapping may have been truncated, in any case we cannot determine
2814 * if this mapping is safe - fall back to slow path to determine how to
2820 /* Anonymous folios pose no problem. */
2821 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2823 return mapping_flags & PAGE_MAPPING_ANON;
2826 * At this point, we know the mapping is non-null and points to an
2827 * address_space object.
2829 if (check_secretmem && secretmem_mapping(mapping))
2831 /* The only remaining allowed file system is shmem. */
2832 return !reject_file_backed || shmem_mapping(mapping);
2835 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2836 unsigned int flags, struct page **pages)
2838 while ((*nr) - nr_start) {
2839 struct folio *folio = page_folio(pages[--(*nr)]);
2841 folio_clear_referenced(folio);
2842 gup_put_folio(folio, 1, flags);
2846 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2848 * GUP-fast relies on pte change detection to avoid concurrent pgtable
2851 * To pin the page, GUP-fast needs to do below in order:
2852 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2854 * For the rest of pgtable operations where pgtable updates can be racy
2855 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2858 * Above will work for all pte-level operations, including THP split.
2860 * For THP collapse, it's a bit more complicated because GUP-fast may be
2861 * walking a pgtable page that is being freed (pte is still valid but pmd
2862 * can be cleared already). To avoid race in such condition, we need to
2863 * also check pmd here to make sure pmd doesn't change (corresponds to
2864 * pmdp_collapse_flush() in the THP collapse code path).
2866 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2867 unsigned long end, unsigned int flags, struct page **pages,
2870 struct dev_pagemap *pgmap = NULL;
2871 int nr_start = *nr, ret = 0;
2874 ptem = ptep = pte_offset_map(&pmd, addr);
2878 pte_t pte = ptep_get_lockless(ptep);
2880 struct folio *folio;
2883 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2884 * pte_access_permitted() better should reject these pages
2885 * either way: otherwise, GUP-fast might succeed in
2886 * cases where ordinary GUP would fail due to VMA access
2889 if (pte_protnone(pte))
2892 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2895 if (pte_devmap(pte)) {
2896 if (unlikely(flags & FOLL_LONGTERM))
2899 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2900 if (unlikely(!pgmap)) {
2901 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2904 } else if (pte_special(pte))
2907 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2908 page = pte_page(pte);
2910 folio = try_grab_folio_fast(page, 1, flags);
2914 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2915 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2916 gup_put_folio(folio, 1, flags);
2920 if (!gup_fast_folio_allowed(folio, flags)) {
2921 gup_put_folio(folio, 1, flags);
2925 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2926 gup_put_folio(folio, 1, flags);
2931 * We need to make the page accessible if and only if we are
2932 * going to access its content (the FOLL_PIN case). Please
2933 * see Documentation/core-api/pin_user_pages.rst for
2936 if (flags & FOLL_PIN) {
2937 ret = arch_make_page_accessible(page);
2939 gup_put_folio(folio, 1, flags);
2943 folio_set_referenced(folio);
2946 } while (ptep++, addr += PAGE_SIZE, addr != end);
2952 put_dev_pagemap(pgmap);
2959 * If we can't determine whether or not a pte is special, then fail immediately
2960 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2963 * For a futex to be placed on a THP tail page, get_futex_key requires a
2964 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2965 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2967 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2968 unsigned long end, unsigned int flags, struct page **pages,
2973 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2975 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2976 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
2977 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2980 struct dev_pagemap *pgmap = NULL;
2983 struct folio *folio;
2984 struct page *page = pfn_to_page(pfn);
2986 pgmap = get_dev_pagemap(pfn, pgmap);
2987 if (unlikely(!pgmap)) {
2988 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2992 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2993 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2997 folio = try_grab_folio_fast(page, 1, flags);
2999 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3002 folio_set_referenced(folio);
3006 } while (addr += PAGE_SIZE, addr != end);
3008 put_dev_pagemap(pgmap);
3012 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3013 unsigned long end, unsigned int flags, struct page **pages,
3016 unsigned long fault_pfn;
3019 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
3020 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3023 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3024 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3030 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3031 unsigned long end, unsigned int flags, struct page **pages,
3034 unsigned long fault_pfn;
3037 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
3038 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3041 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3042 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3048 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3049 unsigned long end, unsigned int flags, struct page **pages,
3056 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3057 unsigned long end, unsigned int flags, struct page **pages,
3065 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3066 unsigned long end, unsigned int flags, struct page **pages,
3070 struct folio *folio;
3073 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
3076 if (pmd_devmap(orig)) {
3077 if (unlikely(flags & FOLL_LONGTERM))
3079 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3083 page = pmd_page(orig);
3084 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
3086 folio = try_grab_folio_fast(page, refs, flags);
3090 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3091 gup_put_folio(folio, refs, flags);
3095 if (!gup_fast_folio_allowed(folio, flags)) {
3096 gup_put_folio(folio, refs, flags);
3099 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3100 gup_put_folio(folio, refs, flags);
3105 folio_set_referenced(folio);
3109 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3110 unsigned long end, unsigned int flags, struct page **pages,
3114 struct folio *folio;
3117 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3120 if (pud_devmap(orig)) {
3121 if (unlikely(flags & FOLL_LONGTERM))
3123 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3127 page = pud_page(orig);
3128 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3130 folio = try_grab_folio_fast(page, refs, flags);
3134 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3135 gup_put_folio(folio, refs, flags);
3139 if (!gup_fast_folio_allowed(folio, flags)) {
3140 gup_put_folio(folio, refs, flags);
3144 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3145 gup_put_folio(folio, refs, flags);
3150 folio_set_referenced(folio);
3154 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr,
3155 unsigned long end, unsigned int flags, struct page **pages,
3160 struct folio *folio;
3162 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
3165 BUILD_BUG_ON(pgd_devmap(orig));
3167 page = pgd_page(orig);
3168 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr);
3170 folio = try_grab_folio_fast(page, refs, flags);
3174 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3175 gup_put_folio(folio, refs, flags);
3179 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3180 gup_put_folio(folio, refs, flags);
3184 if (!gup_fast_folio_allowed(folio, flags)) {
3185 gup_put_folio(folio, refs, flags);
3190 folio_set_referenced(folio);
3194 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3195 unsigned long end, unsigned int flags, struct page **pages,
3201 pmdp = pmd_offset_lockless(pudp, pud, addr);
3203 pmd_t pmd = pmdp_get_lockless(pmdp);
3205 next = pmd_addr_end(addr, end);
3206 if (!pmd_present(pmd))
3209 if (unlikely(pmd_leaf(pmd))) {
3210 /* See gup_fast_pte_range() */
3211 if (pmd_protnone(pmd))
3214 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3218 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3221 } while (pmdp++, addr = next, addr != end);
3226 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3227 unsigned long end, unsigned int flags, struct page **pages,
3233 pudp = pud_offset_lockless(p4dp, p4d, addr);
3235 pud_t pud = READ_ONCE(*pudp);
3237 next = pud_addr_end(addr, end);
3238 if (unlikely(!pud_present(pud)))
3240 if (unlikely(pud_leaf(pud))) {
3241 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3244 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3247 } while (pudp++, addr = next, addr != end);
3252 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3253 unsigned long end, unsigned int flags, struct page **pages,
3259 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3261 p4d_t p4d = READ_ONCE(*p4dp);
3263 next = p4d_addr_end(addr, end);
3264 if (!p4d_present(p4d))
3266 BUILD_BUG_ON(p4d_leaf(p4d));
3267 if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3270 } while (p4dp++, addr = next, addr != end);
3275 static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3276 unsigned int flags, struct page **pages, int *nr)
3281 pgdp = pgd_offset(current->mm, addr);
3283 pgd_t pgd = READ_ONCE(*pgdp);
3285 next = pgd_addr_end(addr, end);
3288 if (unlikely(pgd_leaf(pgd))) {
3289 if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags,
3292 } else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3295 } while (pgdp++, addr = next, addr != end);
3298 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3299 unsigned int flags, struct page **pages, int *nr)
3302 #endif /* CONFIG_HAVE_GUP_FAST */
3304 #ifndef gup_fast_permitted
3306 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3307 * we need to fall back to the slow version:
3309 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3315 static unsigned long gup_fast(unsigned long start, unsigned long end,
3316 unsigned int gup_flags, struct page **pages)
3318 unsigned long flags;
3322 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3323 !gup_fast_permitted(start, end))
3326 if (gup_flags & FOLL_PIN) {
3327 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
3333 * Disable interrupts. The nested form is used, in order to allow full,
3334 * general purpose use of this routine.
3336 * With interrupts disabled, we block page table pages from being freed
3337 * from under us. See struct mmu_table_batch comments in
3338 * include/asm-generic/tlb.h for more details.
3340 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3341 * that come from THPs splitting.
3343 local_irq_save(flags);
3344 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3345 local_irq_restore(flags);
3348 * When pinning pages for DMA there could be a concurrent write protect
3349 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3351 if (gup_flags & FOLL_PIN) {
3352 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
3353 gup_fast_unpin_user_pages(pages, nr_pinned);
3356 sanity_check_pinned_pages(pages, nr_pinned);
3362 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3363 unsigned int gup_flags, struct page **pages)
3365 unsigned long len, end;
3366 unsigned long nr_pinned;
3370 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3371 FOLL_FORCE | FOLL_PIN | FOLL_GET |
3372 FOLL_FAST_ONLY | FOLL_NOFAULT |
3373 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3376 if (gup_flags & FOLL_PIN)
3377 mm_set_has_pinned_flag(¤t->mm->flags);
3379 if (!(gup_flags & FOLL_FAST_ONLY))
3380 might_lock_read(¤t->mm->mmap_lock);
3382 start = untagged_addr(start) & PAGE_MASK;
3383 len = nr_pages << PAGE_SHIFT;
3384 if (check_add_overflow(start, len, &end))
3386 if (end > TASK_SIZE_MAX)
3388 if (unlikely(!access_ok((void __user *)start, len)))
3391 nr_pinned = gup_fast(start, end, gup_flags, pages);
3392 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3395 /* Slow path: try to get the remaining pages with get_user_pages */
3396 start += nr_pinned << PAGE_SHIFT;
3398 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3400 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3403 * The caller has to unpin the pages we already pinned so
3404 * returning -errno is not an option
3410 return ret + nr_pinned;
3414 * get_user_pages_fast_only() - pin user pages in memory
3415 * @start: starting user address
3416 * @nr_pages: number of pages from start to pin
3417 * @gup_flags: flags modifying pin behaviour
3418 * @pages: array that receives pointers to the pages pinned.
3419 * Should be at least nr_pages long.
3421 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3424 * If the architecture does not support this function, simply return with no
3427 * Careful, careful! COW breaking can go either way, so a non-write
3428 * access can get ambiguous page results. If you call this function without
3429 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3431 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3432 unsigned int gup_flags, struct page **pages)
3435 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3436 * because gup fast is always a "pin with a +1 page refcount" request.
3438 * FOLL_FAST_ONLY is required in order to match the API description of
3439 * this routine: no fall back to regular ("slow") GUP.
3441 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3442 FOLL_GET | FOLL_FAST_ONLY))
3445 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3447 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3450 * get_user_pages_fast() - pin user pages in memory
3451 * @start: starting user address
3452 * @nr_pages: number of pages from start to pin
3453 * @gup_flags: flags modifying pin behaviour
3454 * @pages: array that receives pointers to the pages pinned.
3455 * Should be at least nr_pages long.
3457 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3458 * If not successful, it will fall back to taking the lock and
3459 * calling get_user_pages().
3461 * Returns number of pages pinned. This may be fewer than the number requested.
3462 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3465 int get_user_pages_fast(unsigned long start, int nr_pages,
3466 unsigned int gup_flags, struct page **pages)
3469 * The caller may or may not have explicitly set FOLL_GET; either way is
3470 * OK. However, internally (within mm/gup.c), gup fast variants must set
3471 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3474 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3476 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3478 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3481 * pin_user_pages_fast() - pin user pages in memory without taking locks
3483 * @start: starting user address
3484 * @nr_pages: number of pages from start to pin
3485 * @gup_flags: flags modifying pin behaviour
3486 * @pages: array that receives pointers to the pages pinned.
3487 * Should be at least nr_pages long.
3489 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3490 * get_user_pages_fast() for documentation on the function arguments, because
3491 * the arguments here are identical.
3493 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3494 * see Documentation/core-api/pin_user_pages.rst for further details.
3496 * Note that if a zero_page is amongst the returned pages, it will not have
3497 * pins in it and unpin_user_page() will not remove pins from it.
3499 int pin_user_pages_fast(unsigned long start, int nr_pages,
3500 unsigned int gup_flags, struct page **pages)
3502 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3504 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3506 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3509 * pin_user_pages_remote() - pin pages of a remote process
3511 * @mm: mm_struct of target mm
3512 * @start: starting user address
3513 * @nr_pages: number of pages from start to pin
3514 * @gup_flags: flags modifying lookup behaviour
3515 * @pages: array that receives pointers to the pages pinned.
3516 * Should be at least nr_pages long.
3517 * @locked: pointer to lock flag indicating whether lock is held and
3518 * subsequently whether VM_FAULT_RETRY functionality can be
3519 * utilised. Lock must initially be held.
3521 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3522 * get_user_pages_remote() for documentation on the function arguments, because
3523 * the arguments here are identical.
3525 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3526 * see Documentation/core-api/pin_user_pages.rst for details.
3528 * Note that if a zero_page is amongst the returned pages, it will not have
3529 * pins in it and unpin_user_page*() will not remove pins from it.
3531 long pin_user_pages_remote(struct mm_struct *mm,
3532 unsigned long start, unsigned long nr_pages,
3533 unsigned int gup_flags, struct page **pages,
3536 int local_locked = 1;
3538 if (!is_valid_gup_args(pages, locked, &gup_flags,
3539 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3541 return __gup_longterm_locked(mm, start, nr_pages, pages,
3542 locked ? locked : &local_locked,
3545 EXPORT_SYMBOL(pin_user_pages_remote);
3548 * pin_user_pages() - pin user pages in memory for use by other devices
3550 * @start: starting user address
3551 * @nr_pages: number of pages from start to pin
3552 * @gup_flags: flags modifying lookup behaviour
3553 * @pages: array that receives pointers to the pages pinned.
3554 * Should be at least nr_pages long.
3556 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3559 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3560 * see Documentation/core-api/pin_user_pages.rst for details.
3562 * Note that if a zero_page is amongst the returned pages, it will not have
3563 * pins in it and unpin_user_page*() will not remove pins from it.
3565 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3566 unsigned int gup_flags, struct page **pages)
3570 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3572 return __gup_longterm_locked(current->mm, start, nr_pages,
3573 pages, &locked, gup_flags);
3575 EXPORT_SYMBOL(pin_user_pages);
3578 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3579 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3580 * FOLL_PIN and rejects FOLL_GET.
3582 * Note that if a zero_page is amongst the returned pages, it will not have
3583 * pins in it and unpin_user_page*() will not remove pins from it.
3585 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3586 struct page **pages, unsigned int gup_flags)
3590 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3591 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3594 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3595 &locked, gup_flags);
3597 EXPORT_SYMBOL(pin_user_pages_unlocked);
3600 * memfd_pin_folios() - pin folios associated with a memfd
3601 * @memfd: the memfd whose folios are to be pinned
3602 * @start: the first memfd offset
3603 * @end: the last memfd offset (inclusive)
3604 * @folios: array that receives pointers to the folios pinned
3605 * @max_folios: maximum number of entries in @folios
3606 * @offset: the offset into the first folio
3608 * Attempt to pin folios associated with a memfd in the contiguous range
3609 * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3610 * the folios can either be found in the page cache or need to be allocated
3611 * if necessary. Once the folios are located, they are all pinned via
3612 * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3613 * And, eventually, these pinned folios must be released either using
3614 * unpin_folios() or unpin_folio().
3616 * It must be noted that the folios may be pinned for an indefinite amount
3617 * of time. And, in most cases, the duration of time they may stay pinned
3618 * would be controlled by the userspace. This behavior is effectively the
3619 * same as using FOLL_LONGTERM with other GUP APIs.
3621 * Returns number of folios pinned, which could be less than @max_folios
3622 * as it depends on the folio sizes that cover the range [start, end].
3623 * If no folios were pinned, it returns -errno.
3625 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3626 struct folio **folios, unsigned int max_folios,
3629 unsigned int flags, nr_folios, nr_found;
3630 unsigned int i, pgshift = PAGE_SHIFT;
3631 pgoff_t start_idx, end_idx, next_idx;
3632 struct folio *folio = NULL;
3633 struct folio_batch fbatch;
3637 if (start < 0 || start > end || !max_folios)
3643 if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3646 if (end >= i_size_read(file_inode(memfd)))
3649 if (is_file_hugepages(memfd)) {
3650 h = hstate_file(memfd);
3651 pgshift = huge_page_shift(h);
3654 flags = memalloc_pin_save();
3657 start_idx = start >> pgshift;
3658 end_idx = end >> pgshift;
3659 if (is_file_hugepages(memfd)) {
3660 start_idx <<= huge_page_order(h);
3661 end_idx <<= huge_page_order(h);
3664 folio_batch_init(&fbatch);
3665 while (start_idx <= end_idx && nr_folios < max_folios) {
3667 * In most cases, we should be able to find the folios
3668 * in the page cache. If we cannot find them for some
3669 * reason, we try to allocate them and add them to the
3672 nr_found = filemap_get_folios_contig(memfd->f_mapping,
3682 for (i = 0; i < nr_found; i++) {
3684 * As there can be multiple entries for a
3685 * given folio in the batch returned by
3686 * filemap_get_folios_contig(), the below
3687 * check is to ensure that we pin and return a
3688 * unique set of folios between start and end.
3691 next_idx != folio_index(fbatch.folios[i]))
3694 folio = page_folio(&fbatch.folios[i]->page);
3696 if (try_grab_folio(folio, 1, FOLL_PIN)) {
3697 folio_batch_release(&fbatch);
3703 *offset = offset_in_folio(folio, start);
3705 folios[nr_folios] = folio;
3706 next_idx = folio_next_index(folio);
3707 if (++nr_folios == max_folios)
3712 folio_batch_release(&fbatch);
3714 folio = memfd_alloc_folio(memfd, start_idx);
3715 if (IS_ERR(folio)) {
3716 ret = PTR_ERR(folio);
3723 ret = check_and_migrate_movable_folios(nr_folios, folios);
3724 } while (ret == -EAGAIN);
3726 memalloc_pin_restore(flags);
3727 return ret ? ret : nr_folios;
3729 memalloc_pin_restore(flags);
3730 unpin_folios(folios, nr_folios);
3734 EXPORT_SYMBOL_GPL(memfd_pin_folios);