1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET An implementation of the SOCKET network access protocol.
5 * Version: @(#)socket.c 1.1.93 18/02/95
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
49 * This module is effectively the top level interface to the BSD socket
52 * Based upon Swansea University Computer Society NET3.039
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
92 #include <linux/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
97 #include <net/cls_cgroup.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/termios.h>
106 #include <linux/sockios.h>
107 #include <net/busy_poll.h>
108 #include <linux/errqueue.h>
109 #include <linux/ptp_clock_kernel.h>
110 #include <trace/events/sock.h>
112 #ifdef CONFIG_NET_RX_BUSY_POLL
113 unsigned int sysctl_net_busy_read __read_mostly;
114 unsigned int sysctl_net_busy_poll __read_mostly;
117 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
118 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
119 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121 static int sock_close(struct inode *inode, struct file *file);
122 static __poll_t sock_poll(struct file *file,
123 struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 static long compat_sock_ioctl(struct file *file,
127 unsigned int cmd, unsigned long arg);
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131 struct pipe_inode_info *pipe, size_t len,
133 static void sock_splice_eof(struct file *file);
135 #ifdef CONFIG_PROC_FS
136 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
138 struct socket *sock = f->private_data;
139 const struct proto_ops *ops = READ_ONCE(sock->ops);
141 if (ops->show_fdinfo)
142 ops->show_fdinfo(m, sock);
145 #define sock_show_fdinfo NULL
149 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
150 * in the operation structures but are done directly via the socketcall() multiplexor.
153 static const struct file_operations socket_file_ops = {
154 .owner = THIS_MODULE,
156 .read_iter = sock_read_iter,
157 .write_iter = sock_write_iter,
159 .unlocked_ioctl = sock_ioctl,
161 .compat_ioctl = compat_sock_ioctl,
164 .release = sock_close,
165 .fasync = sock_fasync,
166 .splice_write = splice_to_socket,
167 .splice_read = sock_splice_read,
168 .splice_eof = sock_splice_eof,
169 .show_fdinfo = sock_show_fdinfo,
172 static const char * const pf_family_names[] = {
173 [PF_UNSPEC] = "PF_UNSPEC",
174 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
175 [PF_INET] = "PF_INET",
176 [PF_AX25] = "PF_AX25",
178 [PF_APPLETALK] = "PF_APPLETALK",
179 [PF_NETROM] = "PF_NETROM",
180 [PF_BRIDGE] = "PF_BRIDGE",
181 [PF_ATMPVC] = "PF_ATMPVC",
183 [PF_INET6] = "PF_INET6",
184 [PF_ROSE] = "PF_ROSE",
185 [PF_DECnet] = "PF_DECnet",
186 [PF_NETBEUI] = "PF_NETBEUI",
187 [PF_SECURITY] = "PF_SECURITY",
189 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
190 [PF_PACKET] = "PF_PACKET",
192 [PF_ECONET] = "PF_ECONET",
193 [PF_ATMSVC] = "PF_ATMSVC",
196 [PF_IRDA] = "PF_IRDA",
197 [PF_PPPOX] = "PF_PPPOX",
198 [PF_WANPIPE] = "PF_WANPIPE",
201 [PF_MPLS] = "PF_MPLS",
203 [PF_TIPC] = "PF_TIPC",
204 [PF_BLUETOOTH] = "PF_BLUETOOTH",
205 [PF_IUCV] = "PF_IUCV",
206 [PF_RXRPC] = "PF_RXRPC",
207 [PF_ISDN] = "PF_ISDN",
208 [PF_PHONET] = "PF_PHONET",
209 [PF_IEEE802154] = "PF_IEEE802154",
210 [PF_CAIF] = "PF_CAIF",
213 [PF_VSOCK] = "PF_VSOCK",
215 [PF_QIPCRTR] = "PF_QIPCRTR",
218 [PF_MCTP] = "PF_MCTP",
222 * The protocol list. Each protocol is registered in here.
225 static DEFINE_SPINLOCK(net_family_lock);
226 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
230 * Move socket addresses back and forth across the kernel/user
231 * divide and look after the messy bits.
235 * move_addr_to_kernel - copy a socket address into kernel space
236 * @uaddr: Address in user space
237 * @kaddr: Address in kernel space
238 * @ulen: Length in user space
240 * The address is copied into kernel space. If the provided address is
241 * too long an error code of -EINVAL is returned. If the copy gives
242 * invalid addresses -EFAULT is returned. On a success 0 is returned.
245 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
247 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
251 if (copy_from_user(kaddr, uaddr, ulen))
253 return audit_sockaddr(ulen, kaddr);
257 * move_addr_to_user - copy an address to user space
258 * @kaddr: kernel space address
259 * @klen: length of address in kernel
260 * @uaddr: user space address
261 * @ulen: pointer to user length field
263 * The value pointed to by ulen on entry is the buffer length available.
264 * This is overwritten with the buffer space used. -EINVAL is returned
265 * if an overlong buffer is specified or a negative buffer size. -EFAULT
266 * is returned if either the buffer or the length field are not
268 * After copying the data up to the limit the user specifies, the true
269 * length of the data is written over the length limit the user
270 * specified. Zero is returned for a success.
273 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
274 void __user *uaddr, int __user *ulen)
279 BUG_ON(klen > sizeof(struct sockaddr_storage));
280 err = get_user(len, ulen);
288 if (audit_sockaddr(klen, kaddr))
290 if (copy_to_user(uaddr, kaddr, len))
294 * "fromlen shall refer to the value before truncation.."
297 return __put_user(klen, ulen);
300 static struct kmem_cache *sock_inode_cachep __ro_after_init;
302 static struct inode *sock_alloc_inode(struct super_block *sb)
304 struct socket_alloc *ei;
306 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
309 init_waitqueue_head(&ei->socket.wq.wait);
310 ei->socket.wq.fasync_list = NULL;
311 ei->socket.wq.flags = 0;
313 ei->socket.state = SS_UNCONNECTED;
314 ei->socket.flags = 0;
315 ei->socket.ops = NULL;
316 ei->socket.sk = NULL;
317 ei->socket.file = NULL;
319 return &ei->vfs_inode;
322 static void sock_free_inode(struct inode *inode)
324 struct socket_alloc *ei;
326 ei = container_of(inode, struct socket_alloc, vfs_inode);
327 kmem_cache_free(sock_inode_cachep, ei);
330 static void init_once(void *foo)
332 struct socket_alloc *ei = (struct socket_alloc *)foo;
334 inode_init_once(&ei->vfs_inode);
337 static void init_inodecache(void)
339 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
340 sizeof(struct socket_alloc),
342 (SLAB_HWCACHE_ALIGN |
343 SLAB_RECLAIM_ACCOUNT |
344 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
346 BUG_ON(sock_inode_cachep == NULL);
349 static const struct super_operations sockfs_ops = {
350 .alloc_inode = sock_alloc_inode,
351 .free_inode = sock_free_inode,
352 .statfs = simple_statfs,
356 * sockfs_dname() is called from d_path().
358 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
360 return dynamic_dname(buffer, buflen, "socket:[%lu]",
361 d_inode(dentry)->i_ino);
364 static const struct dentry_operations sockfs_dentry_operations = {
365 .d_dname = sockfs_dname,
368 static int sockfs_xattr_get(const struct xattr_handler *handler,
369 struct dentry *dentry, struct inode *inode,
370 const char *suffix, void *value, size_t size)
373 if (dentry->d_name.len + 1 > size)
375 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
377 return dentry->d_name.len + 1;
380 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
381 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
382 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
384 static const struct xattr_handler sockfs_xattr_handler = {
385 .name = XATTR_NAME_SOCKPROTONAME,
386 .get = sockfs_xattr_get,
389 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
390 struct mnt_idmap *idmap,
391 struct dentry *dentry, struct inode *inode,
392 const char *suffix, const void *value,
393 size_t size, int flags)
395 /* Handled by LSM. */
399 static const struct xattr_handler sockfs_security_xattr_handler = {
400 .prefix = XATTR_SECURITY_PREFIX,
401 .set = sockfs_security_xattr_set,
404 static const struct xattr_handler *sockfs_xattr_handlers[] = {
405 &sockfs_xattr_handler,
406 &sockfs_security_xattr_handler,
410 static int sockfs_init_fs_context(struct fs_context *fc)
412 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
415 ctx->ops = &sockfs_ops;
416 ctx->dops = &sockfs_dentry_operations;
417 ctx->xattr = sockfs_xattr_handlers;
421 static struct vfsmount *sock_mnt __read_mostly;
423 static struct file_system_type sock_fs_type = {
425 .init_fs_context = sockfs_init_fs_context,
426 .kill_sb = kill_anon_super,
430 * Obtains the first available file descriptor and sets it up for use.
432 * These functions create file structures and maps them to fd space
433 * of the current process. On success it returns file descriptor
434 * and file struct implicitly stored in sock->file.
435 * Note that another thread may close file descriptor before we return
436 * from this function. We use the fact that now we do not refer
437 * to socket after mapping. If one day we will need it, this
438 * function will increment ref. count on file by 1.
440 * In any case returned fd MAY BE not valid!
441 * This race condition is unavoidable
442 * with shared fd spaces, we cannot solve it inside kernel,
443 * but we take care of internal coherence yet.
447 * sock_alloc_file - Bind a &socket to a &file
449 * @flags: file status flags
450 * @dname: protocol name
452 * Returns the &file bound with @sock, implicitly storing it
453 * in sock->file. If dname is %NULL, sets to "".
455 * On failure @sock is released, and an ERR pointer is returned.
457 * This function uses GFP_KERNEL internally.
460 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
465 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
467 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
468 O_RDWR | (flags & O_NONBLOCK),
475 file->f_mode |= FMODE_NOWAIT;
477 file->private_data = sock;
478 stream_open(SOCK_INODE(sock), file);
481 EXPORT_SYMBOL(sock_alloc_file);
483 static int sock_map_fd(struct socket *sock, int flags)
485 struct file *newfile;
486 int fd = get_unused_fd_flags(flags);
487 if (unlikely(fd < 0)) {
492 newfile = sock_alloc_file(sock, flags, NULL);
493 if (!IS_ERR(newfile)) {
494 fd_install(fd, newfile);
499 return PTR_ERR(newfile);
503 * sock_from_file - Return the &socket bounded to @file.
506 * On failure returns %NULL.
509 struct socket *sock_from_file(struct file *file)
511 if (file->f_op == &socket_file_ops)
512 return file->private_data; /* set in sock_alloc_file */
516 EXPORT_SYMBOL(sock_from_file);
519 * sockfd_lookup - Go from a file number to its socket slot
521 * @err: pointer to an error code return
523 * The file handle passed in is locked and the socket it is bound
524 * to is returned. If an error occurs the err pointer is overwritten
525 * with a negative errno code and NULL is returned. The function checks
526 * for both invalid handles and passing a handle which is not a socket.
528 * On a success the socket object pointer is returned.
531 struct socket *sockfd_lookup(int fd, int *err)
542 sock = sock_from_file(file);
549 EXPORT_SYMBOL(sockfd_lookup);
551 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
553 struct fd f = fdget(fd);
558 sock = sock_from_file(f.file);
560 *fput_needed = f.flags & FDPUT_FPUT;
569 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
575 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
585 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
590 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
597 static int sockfs_setattr(struct mnt_idmap *idmap,
598 struct dentry *dentry, struct iattr *iattr)
600 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
602 if (!err && (iattr->ia_valid & ATTR_UID)) {
603 struct socket *sock = SOCKET_I(d_inode(dentry));
606 sock->sk->sk_uid = iattr->ia_uid;
614 static const struct inode_operations sockfs_inode_ops = {
615 .listxattr = sockfs_listxattr,
616 .setattr = sockfs_setattr,
620 * sock_alloc - allocate a socket
622 * Allocate a new inode and socket object. The two are bound together
623 * and initialised. The socket is then returned. If we are out of inodes
624 * NULL is returned. This functions uses GFP_KERNEL internally.
627 struct socket *sock_alloc(void)
632 inode = new_inode_pseudo(sock_mnt->mnt_sb);
636 sock = SOCKET_I(inode);
638 inode->i_ino = get_next_ino();
639 inode->i_mode = S_IFSOCK | S_IRWXUGO;
640 inode->i_uid = current_fsuid();
641 inode->i_gid = current_fsgid();
642 inode->i_op = &sockfs_inode_ops;
646 EXPORT_SYMBOL(sock_alloc);
648 static void __sock_release(struct socket *sock, struct inode *inode)
650 const struct proto_ops *ops = READ_ONCE(sock->ops);
653 struct module *owner = ops->owner;
665 if (sock->wq.fasync_list)
666 pr_err("%s: fasync list not empty!\n", __func__);
669 iput(SOCK_INODE(sock));
676 * sock_release - close a socket
677 * @sock: socket to close
679 * The socket is released from the protocol stack if it has a release
680 * callback, and the inode is then released if the socket is bound to
681 * an inode not a file.
683 void sock_release(struct socket *sock)
685 __sock_release(sock, NULL);
687 EXPORT_SYMBOL(sock_release);
689 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
691 u8 flags = *tx_flags;
693 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
694 flags |= SKBTX_HW_TSTAMP;
696 /* PTP hardware clocks can provide a free running cycle counter
697 * as a time base for virtual clocks. Tell driver to use the
698 * free running cycle counter for timestamp if socket is bound
701 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
702 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
705 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
706 flags |= SKBTX_SW_TSTAMP;
708 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
709 flags |= SKBTX_SCHED_TSTAMP;
713 EXPORT_SYMBOL(__sock_tx_timestamp);
715 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
717 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
720 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
723 trace_sock_send_length(sk, ret, 0);
726 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
728 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
729 inet_sendmsg, sock, msg,
731 BUG_ON(ret == -EIOCBQUEUED);
733 if (trace_sock_send_length_enabled())
734 call_trace_sock_send_length(sock->sk, ret, 0);
739 * sock_sendmsg - send a message through @sock
741 * @msg: message to send
743 * Sends @msg through @sock, passing through LSM.
744 * Returns the number of bytes sent, or an error code.
746 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
748 int err = security_socket_sendmsg(sock, msg,
751 return err ?: sock_sendmsg_nosec(sock, msg);
753 EXPORT_SYMBOL(sock_sendmsg);
756 * kernel_sendmsg - send a message through @sock (kernel-space)
758 * @msg: message header
760 * @num: vec array length
761 * @size: total message data size
763 * Builds the message data with @vec and sends it through @sock.
764 * Returns the number of bytes sent, or an error code.
767 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
768 struct kvec *vec, size_t num, size_t size)
770 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
771 return sock_sendmsg(sock, msg);
773 EXPORT_SYMBOL(kernel_sendmsg);
776 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
778 * @msg: message header
779 * @vec: output s/g array
780 * @num: output s/g array length
781 * @size: total message data size
783 * Builds the message data with @vec and sends it through @sock.
784 * Returns the number of bytes sent, or an error code.
785 * Caller must hold @sk.
788 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
789 struct kvec *vec, size_t num, size_t size)
791 struct socket *sock = sk->sk_socket;
792 const struct proto_ops *ops = READ_ONCE(sock->ops);
794 if (!ops->sendmsg_locked)
795 return sock_no_sendmsg_locked(sk, msg, size);
797 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
799 return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
801 EXPORT_SYMBOL(kernel_sendmsg_locked);
803 static bool skb_is_err_queue(const struct sk_buff *skb)
805 /* pkt_type of skbs enqueued on the error queue are set to
806 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
807 * in recvmsg, since skbs received on a local socket will never
808 * have a pkt_type of PACKET_OUTGOING.
810 return skb->pkt_type == PACKET_OUTGOING;
813 /* On transmit, software and hardware timestamps are returned independently.
814 * As the two skb clones share the hardware timestamp, which may be updated
815 * before the software timestamp is received, a hardware TX timestamp may be
816 * returned only if there is no software TX timestamp. Ignore false software
817 * timestamps, which may be made in the __sock_recv_timestamp() call when the
818 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
819 * hardware timestamp.
821 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
823 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
826 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
828 bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
829 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
830 struct net_device *orig_dev;
834 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
836 *if_index = orig_dev->ifindex;
837 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
839 hwtstamp = shhwtstamps->hwtstamp;
846 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
849 struct scm_ts_pktinfo ts_pktinfo;
850 struct net_device *orig_dev;
852 if (!skb_mac_header_was_set(skb))
855 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
859 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
861 if_index = orig_dev->ifindex;
864 ts_pktinfo.if_index = if_index;
866 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
867 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
868 sizeof(ts_pktinfo), &ts_pktinfo);
872 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
874 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
877 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
878 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
879 struct scm_timestamping_internal tss;
881 int empty = 1, false_tstamp = 0;
882 struct skb_shared_hwtstamps *shhwtstamps =
887 /* Race occurred between timestamp enabling and packet
888 receiving. Fill in the current time for now. */
889 if (need_software_tstamp && skb->tstamp == 0) {
890 __net_timestamp(skb);
894 if (need_software_tstamp) {
895 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
897 struct __kernel_sock_timeval tv;
899 skb_get_new_timestamp(skb, &tv);
900 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
903 struct __kernel_old_timeval tv;
905 skb_get_timestamp(skb, &tv);
906 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
911 struct __kernel_timespec ts;
913 skb_get_new_timestampns(skb, &ts);
914 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
917 struct __kernel_old_timespec ts;
919 skb_get_timestampns(skb, &ts);
920 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
926 memset(&tss, 0, sizeof(tss));
927 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
928 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
931 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
932 !skb_is_swtx_tstamp(skb, false_tstamp)) {
934 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
935 hwtstamp = get_timestamp(sk, skb, &if_index);
937 hwtstamp = shhwtstamps->hwtstamp;
939 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
940 hwtstamp = ptp_convert_timestamp(&hwtstamp,
943 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
946 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
947 !skb_is_err_queue(skb))
948 put_ts_pktinfo(msg, skb, if_index);
952 if (sock_flag(sk, SOCK_TSTAMP_NEW))
953 put_cmsg_scm_timestamping64(msg, &tss);
955 put_cmsg_scm_timestamping(msg, &tss);
957 if (skb_is_err_queue(skb) && skb->len &&
958 SKB_EXT_ERR(skb)->opt_stats)
959 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
960 skb->len, skb->data);
963 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
965 #ifdef CONFIG_WIRELESS
966 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
971 if (!sock_flag(sk, SOCK_WIFI_STATUS))
973 if (!skb->wifi_acked_valid)
976 ack = skb->wifi_acked;
978 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
980 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
983 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
986 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
987 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
988 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
991 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
994 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
995 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
996 __u32 mark = skb->mark;
998 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1002 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1003 struct sk_buff *skb)
1005 sock_recv_timestamp(msg, sk, skb);
1006 sock_recv_drops(msg, sk, skb);
1007 sock_recv_mark(msg, sk, skb);
1009 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1011 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1013 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1016 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1018 trace_sock_recv_length(sk, ret, flags);
1021 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1024 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1026 inet_recvmsg, sock, msg,
1027 msg_data_left(msg), flags);
1028 if (trace_sock_recv_length_enabled())
1029 call_trace_sock_recv_length(sock->sk, ret, flags);
1034 * sock_recvmsg - receive a message from @sock
1036 * @msg: message to receive
1037 * @flags: message flags
1039 * Receives @msg from @sock, passing through LSM. Returns the total number
1040 * of bytes received, or an error.
1042 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1044 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1046 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1048 EXPORT_SYMBOL(sock_recvmsg);
1051 * kernel_recvmsg - Receive a message from a socket (kernel space)
1052 * @sock: The socket to receive the message from
1053 * @msg: Received message
1054 * @vec: Input s/g array for message data
1055 * @num: Size of input s/g array
1056 * @size: Number of bytes to read
1057 * @flags: Message flags (MSG_DONTWAIT, etc...)
1059 * On return the msg structure contains the scatter/gather array passed in the
1060 * vec argument. The array is modified so that it consists of the unfilled
1061 * portion of the original array.
1063 * The returned value is the total number of bytes received, or an error.
1066 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1067 struct kvec *vec, size_t num, size_t size, int flags)
1069 msg->msg_control_is_user = false;
1070 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1071 return sock_recvmsg(sock, msg, flags);
1073 EXPORT_SYMBOL(kernel_recvmsg);
1075 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1076 struct pipe_inode_info *pipe, size_t len,
1079 struct socket *sock = file->private_data;
1080 const struct proto_ops *ops;
1082 ops = READ_ONCE(sock->ops);
1083 if (unlikely(!ops->splice_read))
1084 return copy_splice_read(file, ppos, pipe, len, flags);
1086 return ops->splice_read(sock, ppos, pipe, len, flags);
1089 static void sock_splice_eof(struct file *file)
1091 struct socket *sock = file->private_data;
1092 const struct proto_ops *ops;
1094 ops = READ_ONCE(sock->ops);
1095 if (ops->splice_eof)
1096 ops->splice_eof(sock);
1099 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1101 struct file *file = iocb->ki_filp;
1102 struct socket *sock = file->private_data;
1103 struct msghdr msg = {.msg_iter = *to,
1107 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1108 msg.msg_flags = MSG_DONTWAIT;
1110 if (iocb->ki_pos != 0)
1113 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1116 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1123 struct file *file = iocb->ki_filp;
1124 struct socket *sock = file->private_data;
1125 struct msghdr msg = {.msg_iter = *from,
1129 if (iocb->ki_pos != 0)
1132 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1133 msg.msg_flags = MSG_DONTWAIT;
1135 if (sock->type == SOCK_SEQPACKET)
1136 msg.msg_flags |= MSG_EOR;
1138 res = sock_sendmsg(sock, &msg);
1139 *from = msg.msg_iter;
1144 * Atomic setting of ioctl hooks to avoid race
1145 * with module unload.
1148 static DEFINE_MUTEX(br_ioctl_mutex);
1149 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1150 unsigned int cmd, struct ifreq *ifr,
1153 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1154 unsigned int cmd, struct ifreq *ifr,
1157 mutex_lock(&br_ioctl_mutex);
1158 br_ioctl_hook = hook;
1159 mutex_unlock(&br_ioctl_mutex);
1161 EXPORT_SYMBOL(brioctl_set);
1163 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1164 struct ifreq *ifr, void __user *uarg)
1169 request_module("bridge");
1171 mutex_lock(&br_ioctl_mutex);
1173 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1174 mutex_unlock(&br_ioctl_mutex);
1179 static DEFINE_MUTEX(vlan_ioctl_mutex);
1180 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1182 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1184 mutex_lock(&vlan_ioctl_mutex);
1185 vlan_ioctl_hook = hook;
1186 mutex_unlock(&vlan_ioctl_mutex);
1188 EXPORT_SYMBOL(vlan_ioctl_set);
1190 static long sock_do_ioctl(struct net *net, struct socket *sock,
1191 unsigned int cmd, unsigned long arg)
1193 const struct proto_ops *ops = READ_ONCE(sock->ops);
1197 void __user *argp = (void __user *)arg;
1200 err = ops->ioctl(sock, cmd, arg);
1203 * If this ioctl is unknown try to hand it down
1204 * to the NIC driver.
1206 if (err != -ENOIOCTLCMD)
1209 if (!is_socket_ioctl_cmd(cmd))
1212 if (get_user_ifreq(&ifr, &data, argp))
1214 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1215 if (!err && need_copyout)
1216 if (put_user_ifreq(&ifr, argp))
1223 * With an ioctl, arg may well be a user mode pointer, but we don't know
1224 * what to do with it - that's up to the protocol still.
1227 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1229 const struct proto_ops *ops;
1230 struct socket *sock;
1232 void __user *argp = (void __user *)arg;
1236 sock = file->private_data;
1237 ops = READ_ONCE(sock->ops);
1240 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1244 if (get_user_ifreq(&ifr, &data, argp))
1246 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1247 if (!err && need_copyout)
1248 if (put_user_ifreq(&ifr, argp))
1251 #ifdef CONFIG_WEXT_CORE
1252 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1253 err = wext_handle_ioctl(net, cmd, argp);
1260 if (get_user(pid, (int __user *)argp))
1262 err = f_setown(sock->file, pid, 1);
1266 err = put_user(f_getown(sock->file),
1267 (int __user *)argp);
1273 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1278 if (!vlan_ioctl_hook)
1279 request_module("8021q");
1281 mutex_lock(&vlan_ioctl_mutex);
1282 if (vlan_ioctl_hook)
1283 err = vlan_ioctl_hook(net, argp);
1284 mutex_unlock(&vlan_ioctl_mutex);
1288 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1291 err = open_related_ns(&net->ns, get_net_ns);
1293 case SIOCGSTAMP_OLD:
1294 case SIOCGSTAMPNS_OLD:
1295 if (!ops->gettstamp) {
1299 err = ops->gettstamp(sock, argp,
1300 cmd == SIOCGSTAMP_OLD,
1301 !IS_ENABLED(CONFIG_64BIT));
1303 case SIOCGSTAMP_NEW:
1304 case SIOCGSTAMPNS_NEW:
1305 if (!ops->gettstamp) {
1309 err = ops->gettstamp(sock, argp,
1310 cmd == SIOCGSTAMP_NEW,
1315 err = dev_ifconf(net, argp);
1319 err = sock_do_ioctl(net, sock, cmd, arg);
1326 * sock_create_lite - creates a socket
1327 * @family: protocol family (AF_INET, ...)
1328 * @type: communication type (SOCK_STREAM, ...)
1329 * @protocol: protocol (0, ...)
1332 * Creates a new socket and assigns it to @res, passing through LSM.
1333 * The new socket initialization is not complete, see kernel_accept().
1334 * Returns 0 or an error. On failure @res is set to %NULL.
1335 * This function internally uses GFP_KERNEL.
1338 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1341 struct socket *sock = NULL;
1343 err = security_socket_create(family, type, protocol, 1);
1347 sock = sock_alloc();
1354 err = security_socket_post_create(sock, family, type, protocol, 1);
1366 EXPORT_SYMBOL(sock_create_lite);
1368 /* No kernel lock held - perfect */
1369 static __poll_t sock_poll(struct file *file, poll_table *wait)
1371 struct socket *sock = file->private_data;
1372 const struct proto_ops *ops = READ_ONCE(sock->ops);
1373 __poll_t events = poll_requested_events(wait), flag = 0;
1378 if (sk_can_busy_loop(sock->sk)) {
1379 /* poll once if requested by the syscall */
1380 if (events & POLL_BUSY_LOOP)
1381 sk_busy_loop(sock->sk, 1);
1383 /* if this socket can poll_ll, tell the system call */
1384 flag = POLL_BUSY_LOOP;
1387 return ops->poll(file, sock, wait) | flag;
1390 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1392 struct socket *sock = file->private_data;
1394 return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1397 static int sock_close(struct inode *inode, struct file *filp)
1399 __sock_release(SOCKET_I(inode), inode);
1404 * Update the socket async list
1406 * Fasync_list locking strategy.
1408 * 1. fasync_list is modified only under process context socket lock
1409 * i.e. under semaphore.
1410 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1411 * or under socket lock
1414 static int sock_fasync(int fd, struct file *filp, int on)
1416 struct socket *sock = filp->private_data;
1417 struct sock *sk = sock->sk;
1418 struct socket_wq *wq = &sock->wq;
1424 fasync_helper(fd, filp, on, &wq->fasync_list);
1426 if (!wq->fasync_list)
1427 sock_reset_flag(sk, SOCK_FASYNC);
1429 sock_set_flag(sk, SOCK_FASYNC);
1435 /* This function may be called only under rcu_lock */
1437 int sock_wake_async(struct socket_wq *wq, int how, int band)
1439 if (!wq || !wq->fasync_list)
1443 case SOCK_WAKE_WAITD:
1444 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1447 case SOCK_WAKE_SPACE:
1448 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1453 kill_fasync(&wq->fasync_list, SIGIO, band);
1456 kill_fasync(&wq->fasync_list, SIGURG, band);
1461 EXPORT_SYMBOL(sock_wake_async);
1464 * __sock_create - creates a socket
1465 * @net: net namespace
1466 * @family: protocol family (AF_INET, ...)
1467 * @type: communication type (SOCK_STREAM, ...)
1468 * @protocol: protocol (0, ...)
1470 * @kern: boolean for kernel space sockets
1472 * Creates a new socket and assigns it to @res, passing through LSM.
1473 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1474 * be set to true if the socket resides in kernel space.
1475 * This function internally uses GFP_KERNEL.
1478 int __sock_create(struct net *net, int family, int type, int protocol,
1479 struct socket **res, int kern)
1482 struct socket *sock;
1483 const struct net_proto_family *pf;
1486 * Check protocol is in range
1488 if (family < 0 || family >= NPROTO)
1489 return -EAFNOSUPPORT;
1490 if (type < 0 || type >= SOCK_MAX)
1495 This uglymoron is moved from INET layer to here to avoid
1496 deadlock in module load.
1498 if (family == PF_INET && type == SOCK_PACKET) {
1499 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1504 err = security_socket_create(family, type, protocol, kern);
1509 * Allocate the socket and allow the family to set things up. if
1510 * the protocol is 0, the family is instructed to select an appropriate
1513 sock = sock_alloc();
1515 net_warn_ratelimited("socket: no more sockets\n");
1516 return -ENFILE; /* Not exactly a match, but its the
1517 closest posix thing */
1522 #ifdef CONFIG_MODULES
1523 /* Attempt to load a protocol module if the find failed.
1525 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1526 * requested real, full-featured networking support upon configuration.
1527 * Otherwise module support will break!
1529 if (rcu_access_pointer(net_families[family]) == NULL)
1530 request_module("net-pf-%d", family);
1534 pf = rcu_dereference(net_families[family]);
1535 err = -EAFNOSUPPORT;
1540 * We will call the ->create function, that possibly is in a loadable
1541 * module, so we have to bump that loadable module refcnt first.
1543 if (!try_module_get(pf->owner))
1546 /* Now protected by module ref count */
1549 err = pf->create(net, sock, protocol, kern);
1551 goto out_module_put;
1554 * Now to bump the refcnt of the [loadable] module that owns this
1555 * socket at sock_release time we decrement its refcnt.
1557 if (!try_module_get(sock->ops->owner))
1558 goto out_module_busy;
1561 * Now that we're done with the ->create function, the [loadable]
1562 * module can have its refcnt decremented
1564 module_put(pf->owner);
1565 err = security_socket_post_create(sock, family, type, protocol, kern);
1567 goto out_sock_release;
1573 err = -EAFNOSUPPORT;
1576 module_put(pf->owner);
1583 goto out_sock_release;
1585 EXPORT_SYMBOL(__sock_create);
1588 * sock_create - creates a socket
1589 * @family: protocol family (AF_INET, ...)
1590 * @type: communication type (SOCK_STREAM, ...)
1591 * @protocol: protocol (0, ...)
1594 * A wrapper around __sock_create().
1595 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1598 int sock_create(int family, int type, int protocol, struct socket **res)
1600 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1602 EXPORT_SYMBOL(sock_create);
1605 * sock_create_kern - creates a socket (kernel space)
1606 * @net: net namespace
1607 * @family: protocol family (AF_INET, ...)
1608 * @type: communication type (SOCK_STREAM, ...)
1609 * @protocol: protocol (0, ...)
1612 * A wrapper around __sock_create().
1613 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1616 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1618 return __sock_create(net, family, type, protocol, res, 1);
1620 EXPORT_SYMBOL(sock_create_kern);
1622 static struct socket *__sys_socket_create(int family, int type, int protocol)
1624 struct socket *sock;
1627 /* Check the SOCK_* constants for consistency. */
1628 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1629 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1630 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1631 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1633 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1634 return ERR_PTR(-EINVAL);
1635 type &= SOCK_TYPE_MASK;
1637 retval = sock_create(family, type, protocol, &sock);
1639 return ERR_PTR(retval);
1644 struct file *__sys_socket_file(int family, int type, int protocol)
1646 struct socket *sock;
1649 sock = __sys_socket_create(family, type, protocol);
1651 return ERR_CAST(sock);
1653 flags = type & ~SOCK_TYPE_MASK;
1654 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1655 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1657 return sock_alloc_file(sock, flags, NULL);
1660 /* A hook for bpf progs to attach to and update socket protocol.
1662 * A static noinline declaration here could cause the compiler to
1663 * optimize away the function. A global noinline declaration will
1664 * keep the definition, but may optimize away the callsite.
1665 * Therefore, __weak is needed to ensure that the call is still
1666 * emitted, by telling the compiler that we don't know what the
1667 * function might eventually be.
1669 * __diag_* below are needed to dismiss the missing prototype warning.
1673 __diag_ignore_all("-Wmissing-prototypes",
1674 "A fmod_ret entry point for BPF programs");
1676 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1683 int __sys_socket(int family, int type, int protocol)
1685 struct socket *sock;
1688 sock = __sys_socket_create(family, type,
1689 update_socket_protocol(family, type, protocol));
1691 return PTR_ERR(sock);
1693 flags = type & ~SOCK_TYPE_MASK;
1694 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1695 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1697 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1700 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1702 return __sys_socket(family, type, protocol);
1706 * Create a pair of connected sockets.
1709 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1711 struct socket *sock1, *sock2;
1713 struct file *newfile1, *newfile2;
1716 flags = type & ~SOCK_TYPE_MASK;
1717 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1719 type &= SOCK_TYPE_MASK;
1721 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1722 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1725 * reserve descriptors and make sure we won't fail
1726 * to return them to userland.
1728 fd1 = get_unused_fd_flags(flags);
1729 if (unlikely(fd1 < 0))
1732 fd2 = get_unused_fd_flags(flags);
1733 if (unlikely(fd2 < 0)) {
1738 err = put_user(fd1, &usockvec[0]);
1742 err = put_user(fd2, &usockvec[1]);
1747 * Obtain the first socket and check if the underlying protocol
1748 * supports the socketpair call.
1751 err = sock_create(family, type, protocol, &sock1);
1752 if (unlikely(err < 0))
1755 err = sock_create(family, type, protocol, &sock2);
1756 if (unlikely(err < 0)) {
1757 sock_release(sock1);
1761 err = security_socket_socketpair(sock1, sock2);
1762 if (unlikely(err)) {
1763 sock_release(sock2);
1764 sock_release(sock1);
1768 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1769 if (unlikely(err < 0)) {
1770 sock_release(sock2);
1771 sock_release(sock1);
1775 newfile1 = sock_alloc_file(sock1, flags, NULL);
1776 if (IS_ERR(newfile1)) {
1777 err = PTR_ERR(newfile1);
1778 sock_release(sock2);
1782 newfile2 = sock_alloc_file(sock2, flags, NULL);
1783 if (IS_ERR(newfile2)) {
1784 err = PTR_ERR(newfile2);
1789 audit_fd_pair(fd1, fd2);
1791 fd_install(fd1, newfile1);
1792 fd_install(fd2, newfile2);
1801 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1802 int __user *, usockvec)
1804 return __sys_socketpair(family, type, protocol, usockvec);
1808 * Bind a name to a socket. Nothing much to do here since it's
1809 * the protocol's responsibility to handle the local address.
1811 * We move the socket address to kernel space before we call
1812 * the protocol layer (having also checked the address is ok).
1815 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1817 struct socket *sock;
1818 struct sockaddr_storage address;
1819 int err, fput_needed;
1821 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1823 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1825 err = security_socket_bind(sock,
1826 (struct sockaddr *)&address,
1829 err = READ_ONCE(sock->ops)->bind(sock,
1833 fput_light(sock->file, fput_needed);
1838 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1840 return __sys_bind(fd, umyaddr, addrlen);
1844 * Perform a listen. Basically, we allow the protocol to do anything
1845 * necessary for a listen, and if that works, we mark the socket as
1846 * ready for listening.
1849 int __sys_listen(int fd, int backlog)
1851 struct socket *sock;
1852 int err, fput_needed;
1855 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1857 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1858 if ((unsigned int)backlog > somaxconn)
1859 backlog = somaxconn;
1861 err = security_socket_listen(sock, backlog);
1863 err = READ_ONCE(sock->ops)->listen(sock, backlog);
1865 fput_light(sock->file, fput_needed);
1870 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1872 return __sys_listen(fd, backlog);
1875 struct file *do_accept(struct file *file, unsigned file_flags,
1876 struct sockaddr __user *upeer_sockaddr,
1877 int __user *upeer_addrlen, int flags)
1879 struct socket *sock, *newsock;
1880 struct file *newfile;
1882 struct sockaddr_storage address;
1883 const struct proto_ops *ops;
1885 sock = sock_from_file(file);
1887 return ERR_PTR(-ENOTSOCK);
1889 newsock = sock_alloc();
1891 return ERR_PTR(-ENFILE);
1892 ops = READ_ONCE(sock->ops);
1894 newsock->type = sock->type;
1898 * We don't need try_module_get here, as the listening socket (sock)
1899 * has the protocol module (sock->ops->owner) held.
1901 __module_get(ops->owner);
1903 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1904 if (IS_ERR(newfile))
1907 err = security_socket_accept(sock, newsock);
1911 err = ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1916 if (upeer_sockaddr) {
1917 len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1919 err = -ECONNABORTED;
1922 err = move_addr_to_user(&address,
1923 len, upeer_sockaddr, upeer_addrlen);
1928 /* File flags are not inherited via accept() unlike another OSes. */
1932 return ERR_PTR(err);
1935 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1936 int __user *upeer_addrlen, int flags)
1938 struct file *newfile;
1941 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1944 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1945 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1947 newfd = get_unused_fd_flags(flags);
1948 if (unlikely(newfd < 0))
1951 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1953 if (IS_ERR(newfile)) {
1954 put_unused_fd(newfd);
1955 return PTR_ERR(newfile);
1957 fd_install(newfd, newfile);
1962 * For accept, we attempt to create a new socket, set up the link
1963 * with the client, wake up the client, then return the new
1964 * connected fd. We collect the address of the connector in kernel
1965 * space and move it to user at the very end. This is unclean because
1966 * we open the socket then return an error.
1968 * 1003.1g adds the ability to recvmsg() to query connection pending
1969 * status to recvmsg. We need to add that support in a way thats
1970 * clean when we restructure accept also.
1973 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1974 int __user *upeer_addrlen, int flags)
1981 ret = __sys_accept4_file(f.file, upeer_sockaddr,
1982 upeer_addrlen, flags);
1989 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1990 int __user *, upeer_addrlen, int, flags)
1992 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1995 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1996 int __user *, upeer_addrlen)
1998 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2002 * Attempt to connect to a socket with the server address. The address
2003 * is in user space so we verify it is OK and move it to kernel space.
2005 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2008 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2009 * other SEQPACKET protocols that take time to connect() as it doesn't
2010 * include the -EINPROGRESS status for such sockets.
2013 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2014 int addrlen, int file_flags)
2016 struct socket *sock;
2019 sock = sock_from_file(file);
2026 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2030 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2031 addrlen, sock->file->f_flags | file_flags);
2036 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2043 struct sockaddr_storage address;
2045 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2047 ret = __sys_connect_file(f.file, &address, addrlen, 0);
2054 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2057 return __sys_connect(fd, uservaddr, addrlen);
2061 * Get the local address ('name') of a socket object. Move the obtained
2062 * name to user space.
2065 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2066 int __user *usockaddr_len)
2068 struct socket *sock;
2069 struct sockaddr_storage address;
2070 int err, fput_needed;
2072 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2076 err = security_socket_getsockname(sock);
2080 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2083 /* "err" is actually length in this case */
2084 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2087 fput_light(sock->file, fput_needed);
2092 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2093 int __user *, usockaddr_len)
2095 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2099 * Get the remote address ('name') of a socket object. Move the obtained
2100 * name to user space.
2103 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2104 int __user *usockaddr_len)
2106 struct socket *sock;
2107 struct sockaddr_storage address;
2108 int err, fput_needed;
2110 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2112 const struct proto_ops *ops = READ_ONCE(sock->ops);
2114 err = security_socket_getpeername(sock);
2116 fput_light(sock->file, fput_needed);
2120 err = ops->getname(sock, (struct sockaddr *)&address, 1);
2122 /* "err" is actually length in this case */
2123 err = move_addr_to_user(&address, err, usockaddr,
2125 fput_light(sock->file, fput_needed);
2130 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2131 int __user *, usockaddr_len)
2133 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2137 * Send a datagram to a given address. We move the address into kernel
2138 * space and check the user space data area is readable before invoking
2141 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2142 struct sockaddr __user *addr, int addr_len)
2144 struct socket *sock;
2145 struct sockaddr_storage address;
2151 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2154 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2158 msg.msg_name = NULL;
2159 msg.msg_control = NULL;
2160 msg.msg_controllen = 0;
2161 msg.msg_namelen = 0;
2162 msg.msg_ubuf = NULL;
2164 err = move_addr_to_kernel(addr, addr_len, &address);
2167 msg.msg_name = (struct sockaddr *)&address;
2168 msg.msg_namelen = addr_len;
2170 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2171 if (sock->file->f_flags & O_NONBLOCK)
2172 flags |= MSG_DONTWAIT;
2173 msg.msg_flags = flags;
2174 err = sock_sendmsg(sock, &msg);
2177 fput_light(sock->file, fput_needed);
2182 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2183 unsigned int, flags, struct sockaddr __user *, addr,
2186 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2190 * Send a datagram down a socket.
2193 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2194 unsigned int, flags)
2196 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2200 * Receive a frame from the socket and optionally record the address of the
2201 * sender. We verify the buffers are writable and if needed move the
2202 * sender address from kernel to user space.
2204 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2205 struct sockaddr __user *addr, int __user *addr_len)
2207 struct sockaddr_storage address;
2208 struct msghdr msg = {
2209 /* Save some cycles and don't copy the address if not needed */
2210 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2212 struct socket *sock;
2217 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2220 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2224 if (sock->file->f_flags & O_NONBLOCK)
2225 flags |= MSG_DONTWAIT;
2226 err = sock_recvmsg(sock, &msg, flags);
2228 if (err >= 0 && addr != NULL) {
2229 err2 = move_addr_to_user(&address,
2230 msg.msg_namelen, addr, addr_len);
2235 fput_light(sock->file, fput_needed);
2240 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2241 unsigned int, flags, struct sockaddr __user *, addr,
2242 int __user *, addr_len)
2244 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2248 * Receive a datagram from a socket.
2251 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2252 unsigned int, flags)
2254 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2257 static bool sock_use_custom_sol_socket(const struct socket *sock)
2259 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2263 * Set a socket option. Because we don't know the option lengths we have
2264 * to pass the user mode parameter for the protocols to sort out.
2266 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2269 sockptr_t optval = USER_SOCKPTR(user_optval);
2270 const struct proto_ops *ops;
2271 char *kernel_optval = NULL;
2272 int err, fput_needed;
2273 struct socket *sock;
2278 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2282 err = security_socket_setsockopt(sock, level, optname);
2286 if (!in_compat_syscall())
2287 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2288 user_optval, &optlen,
2298 optval = KERNEL_SOCKPTR(kernel_optval);
2299 ops = READ_ONCE(sock->ops);
2300 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2301 err = sock_setsockopt(sock, level, optname, optval, optlen);
2302 else if (unlikely(!ops->setsockopt))
2305 err = ops->setsockopt(sock, level, optname, optval,
2307 kfree(kernel_optval);
2309 fput_light(sock->file, fput_needed);
2313 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2314 char __user *, optval, int, optlen)
2316 return __sys_setsockopt(fd, level, optname, optval, optlen);
2319 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2323 * Get a socket option. Because we don't know the option lengths we have
2324 * to pass a user mode parameter for the protocols to sort out.
2326 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2329 int max_optlen __maybe_unused;
2330 const struct proto_ops *ops;
2331 int err, fput_needed;
2332 struct socket *sock;
2334 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2338 err = security_socket_getsockopt(sock, level, optname);
2342 if (!in_compat_syscall())
2343 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2345 ops = READ_ONCE(sock->ops);
2346 if (level == SOL_SOCKET)
2347 err = sock_getsockopt(sock, level, optname, optval, optlen);
2348 else if (unlikely(!ops->getsockopt))
2351 err = ops->getsockopt(sock, level, optname, optval,
2354 if (!in_compat_syscall())
2355 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2356 optval, optlen, max_optlen,
2359 fput_light(sock->file, fput_needed);
2363 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2364 char __user *, optval, int __user *, optlen)
2366 return __sys_getsockopt(fd, level, optname, optval, optlen);
2370 * Shutdown a socket.
2373 int __sys_shutdown_sock(struct socket *sock, int how)
2377 err = security_socket_shutdown(sock, how);
2379 err = READ_ONCE(sock->ops)->shutdown(sock, how);
2384 int __sys_shutdown(int fd, int how)
2386 int err, fput_needed;
2387 struct socket *sock;
2389 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2391 err = __sys_shutdown_sock(sock, how);
2392 fput_light(sock->file, fput_needed);
2397 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2399 return __sys_shutdown(fd, how);
2402 /* A couple of helpful macros for getting the address of the 32/64 bit
2403 * fields which are the same type (int / unsigned) on our platforms.
2405 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2406 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2407 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2409 struct used_address {
2410 struct sockaddr_storage name;
2411 unsigned int name_len;
2414 int __copy_msghdr(struct msghdr *kmsg,
2415 struct user_msghdr *msg,
2416 struct sockaddr __user **save_addr)
2420 kmsg->msg_control_is_user = true;
2421 kmsg->msg_get_inq = 0;
2422 kmsg->msg_control_user = msg->msg_control;
2423 kmsg->msg_controllen = msg->msg_controllen;
2424 kmsg->msg_flags = msg->msg_flags;
2426 kmsg->msg_namelen = msg->msg_namelen;
2428 kmsg->msg_namelen = 0;
2430 if (kmsg->msg_namelen < 0)
2433 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2434 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2437 *save_addr = msg->msg_name;
2439 if (msg->msg_name && kmsg->msg_namelen) {
2441 err = move_addr_to_kernel(msg->msg_name,
2448 kmsg->msg_name = NULL;
2449 kmsg->msg_namelen = 0;
2452 if (msg->msg_iovlen > UIO_MAXIOV)
2455 kmsg->msg_iocb = NULL;
2456 kmsg->msg_ubuf = NULL;
2460 static int copy_msghdr_from_user(struct msghdr *kmsg,
2461 struct user_msghdr __user *umsg,
2462 struct sockaddr __user **save_addr,
2465 struct user_msghdr msg;
2468 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2471 err = __copy_msghdr(kmsg, &msg, save_addr);
2475 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2476 msg.msg_iov, msg.msg_iovlen,
2477 UIO_FASTIOV, iov, &kmsg->msg_iter);
2478 return err < 0 ? err : 0;
2481 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2482 unsigned int flags, struct used_address *used_address,
2483 unsigned int allowed_msghdr_flags)
2485 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2486 __aligned(sizeof(__kernel_size_t));
2487 /* 20 is size of ipv6_pktinfo */
2488 unsigned char *ctl_buf = ctl;
2494 if (msg_sys->msg_controllen > INT_MAX)
2496 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2497 ctl_len = msg_sys->msg_controllen;
2498 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2500 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2504 ctl_buf = msg_sys->msg_control;
2505 ctl_len = msg_sys->msg_controllen;
2506 } else if (ctl_len) {
2507 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2508 CMSG_ALIGN(sizeof(struct cmsghdr)));
2509 if (ctl_len > sizeof(ctl)) {
2510 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2511 if (ctl_buf == NULL)
2515 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2517 msg_sys->msg_control = ctl_buf;
2518 msg_sys->msg_control_is_user = false;
2520 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2521 msg_sys->msg_flags = flags;
2523 if (sock->file->f_flags & O_NONBLOCK)
2524 msg_sys->msg_flags |= MSG_DONTWAIT;
2526 * If this is sendmmsg() and current destination address is same as
2527 * previously succeeded address, omit asking LSM's decision.
2528 * used_address->name_len is initialized to UINT_MAX so that the first
2529 * destination address never matches.
2531 if (used_address && msg_sys->msg_name &&
2532 used_address->name_len == msg_sys->msg_namelen &&
2533 !memcmp(&used_address->name, msg_sys->msg_name,
2534 used_address->name_len)) {
2535 err = sock_sendmsg_nosec(sock, msg_sys);
2538 err = sock_sendmsg(sock, msg_sys);
2540 * If this is sendmmsg() and sending to current destination address was
2541 * successful, remember it.
2543 if (used_address && err >= 0) {
2544 used_address->name_len = msg_sys->msg_namelen;
2545 if (msg_sys->msg_name)
2546 memcpy(&used_address->name, msg_sys->msg_name,
2547 used_address->name_len);
2552 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2557 int sendmsg_copy_msghdr(struct msghdr *msg,
2558 struct user_msghdr __user *umsg, unsigned flags,
2563 if (flags & MSG_CMSG_COMPAT) {
2564 struct compat_msghdr __user *msg_compat;
2566 msg_compat = (struct compat_msghdr __user *) umsg;
2567 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2569 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2577 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2578 struct msghdr *msg_sys, unsigned int flags,
2579 struct used_address *used_address,
2580 unsigned int allowed_msghdr_flags)
2582 struct sockaddr_storage address;
2583 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2586 msg_sys->msg_name = &address;
2588 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2592 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2593 allowed_msghdr_flags);
2599 * BSD sendmsg interface
2601 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2604 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2607 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2608 bool forbid_cmsg_compat)
2610 int fput_needed, err;
2611 struct msghdr msg_sys;
2612 struct socket *sock;
2614 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2617 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2621 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2623 fput_light(sock->file, fput_needed);
2628 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2630 return __sys_sendmsg(fd, msg, flags, true);
2634 * Linux sendmmsg interface
2637 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2638 unsigned int flags, bool forbid_cmsg_compat)
2640 int fput_needed, err, datagrams;
2641 struct socket *sock;
2642 struct mmsghdr __user *entry;
2643 struct compat_mmsghdr __user *compat_entry;
2644 struct msghdr msg_sys;
2645 struct used_address used_address;
2646 unsigned int oflags = flags;
2648 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2651 if (vlen > UIO_MAXIOV)
2656 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2660 used_address.name_len = UINT_MAX;
2662 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2666 while (datagrams < vlen) {
2667 if (datagrams == vlen - 1)
2670 if (MSG_CMSG_COMPAT & flags) {
2671 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2672 &msg_sys, flags, &used_address, MSG_EOR);
2675 err = __put_user(err, &compat_entry->msg_len);
2678 err = ___sys_sendmsg(sock,
2679 (struct user_msghdr __user *)entry,
2680 &msg_sys, flags, &used_address, MSG_EOR);
2683 err = put_user(err, &entry->msg_len);
2690 if (msg_data_left(&msg_sys))
2695 fput_light(sock->file, fput_needed);
2697 /* We only return an error if no datagrams were able to be sent */
2704 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2705 unsigned int, vlen, unsigned int, flags)
2707 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2710 int recvmsg_copy_msghdr(struct msghdr *msg,
2711 struct user_msghdr __user *umsg, unsigned flags,
2712 struct sockaddr __user **uaddr,
2717 if (MSG_CMSG_COMPAT & flags) {
2718 struct compat_msghdr __user *msg_compat;
2720 msg_compat = (struct compat_msghdr __user *) umsg;
2721 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2723 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2731 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2732 struct user_msghdr __user *msg,
2733 struct sockaddr __user *uaddr,
2734 unsigned int flags, int nosec)
2736 struct compat_msghdr __user *msg_compat =
2737 (struct compat_msghdr __user *) msg;
2738 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2739 struct sockaddr_storage addr;
2740 unsigned long cmsg_ptr;
2744 msg_sys->msg_name = &addr;
2745 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2746 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2748 /* We assume all kernel code knows the size of sockaddr_storage */
2749 msg_sys->msg_namelen = 0;
2751 if (sock->file->f_flags & O_NONBLOCK)
2752 flags |= MSG_DONTWAIT;
2754 if (unlikely(nosec))
2755 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2757 err = sock_recvmsg(sock, msg_sys, flags);
2763 if (uaddr != NULL) {
2764 err = move_addr_to_user(&addr,
2765 msg_sys->msg_namelen, uaddr,
2770 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2774 if (MSG_CMSG_COMPAT & flags)
2775 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2776 &msg_compat->msg_controllen);
2778 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2779 &msg->msg_controllen);
2787 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2788 struct msghdr *msg_sys, unsigned int flags, int nosec)
2790 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2791 /* user mode address pointers */
2792 struct sockaddr __user *uaddr;
2795 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2799 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2805 * BSD recvmsg interface
2808 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2809 struct user_msghdr __user *umsg,
2810 struct sockaddr __user *uaddr, unsigned int flags)
2812 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2815 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2816 bool forbid_cmsg_compat)
2818 int fput_needed, err;
2819 struct msghdr msg_sys;
2820 struct socket *sock;
2822 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2825 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2829 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2831 fput_light(sock->file, fput_needed);
2836 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2837 unsigned int, flags)
2839 return __sys_recvmsg(fd, msg, flags, true);
2843 * Linux recvmmsg interface
2846 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2847 unsigned int vlen, unsigned int flags,
2848 struct timespec64 *timeout)
2850 int fput_needed, err, datagrams;
2851 struct socket *sock;
2852 struct mmsghdr __user *entry;
2853 struct compat_mmsghdr __user *compat_entry;
2854 struct msghdr msg_sys;
2855 struct timespec64 end_time;
2856 struct timespec64 timeout64;
2859 poll_select_set_timeout(&end_time, timeout->tv_sec,
2865 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2869 if (likely(!(flags & MSG_ERRQUEUE))) {
2870 err = sock_error(sock->sk);
2878 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2880 while (datagrams < vlen) {
2882 * No need to ask LSM for more than the first datagram.
2884 if (MSG_CMSG_COMPAT & flags) {
2885 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2886 &msg_sys, flags & ~MSG_WAITFORONE,
2890 err = __put_user(err, &compat_entry->msg_len);
2893 err = ___sys_recvmsg(sock,
2894 (struct user_msghdr __user *)entry,
2895 &msg_sys, flags & ~MSG_WAITFORONE,
2899 err = put_user(err, &entry->msg_len);
2907 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2908 if (flags & MSG_WAITFORONE)
2909 flags |= MSG_DONTWAIT;
2912 ktime_get_ts64(&timeout64);
2913 *timeout = timespec64_sub(end_time, timeout64);
2914 if (timeout->tv_sec < 0) {
2915 timeout->tv_sec = timeout->tv_nsec = 0;
2919 /* Timeout, return less than vlen datagrams */
2920 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2924 /* Out of band data, return right away */
2925 if (msg_sys.msg_flags & MSG_OOB)
2933 if (datagrams == 0) {
2939 * We may return less entries than requested (vlen) if the
2940 * sock is non block and there aren't enough datagrams...
2942 if (err != -EAGAIN) {
2944 * ... or if recvmsg returns an error after we
2945 * received some datagrams, where we record the
2946 * error to return on the next call or if the
2947 * app asks about it using getsockopt(SO_ERROR).
2949 WRITE_ONCE(sock->sk->sk_err, -err);
2952 fput_light(sock->file, fput_needed);
2957 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2958 unsigned int vlen, unsigned int flags,
2959 struct __kernel_timespec __user *timeout,
2960 struct old_timespec32 __user *timeout32)
2963 struct timespec64 timeout_sys;
2965 if (timeout && get_timespec64(&timeout_sys, timeout))
2968 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2971 if (!timeout && !timeout32)
2972 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2974 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2979 if (timeout && put_timespec64(&timeout_sys, timeout))
2980 datagrams = -EFAULT;
2982 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2983 datagrams = -EFAULT;
2988 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2989 unsigned int, vlen, unsigned int, flags,
2990 struct __kernel_timespec __user *, timeout)
2992 if (flags & MSG_CMSG_COMPAT)
2995 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2998 #ifdef CONFIG_COMPAT_32BIT_TIME
2999 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3000 unsigned int, vlen, unsigned int, flags,
3001 struct old_timespec32 __user *, timeout)
3003 if (flags & MSG_CMSG_COMPAT)
3006 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3010 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3011 /* Argument list sizes for sys_socketcall */
3012 #define AL(x) ((x) * sizeof(unsigned long))
3013 static const unsigned char nargs[21] = {
3014 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3015 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3016 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3023 * System call vectors.
3025 * Argument checking cleaned up. Saved 20% in size.
3026 * This function doesn't need to set the kernel lock because
3027 * it is set by the callees.
3030 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3032 unsigned long a[AUDITSC_ARGS];
3033 unsigned long a0, a1;
3037 if (call < 1 || call > SYS_SENDMMSG)
3039 call = array_index_nospec(call, SYS_SENDMMSG + 1);
3042 if (len > sizeof(a))
3045 /* copy_from_user should be SMP safe. */
3046 if (copy_from_user(a, args, len))
3049 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3058 err = __sys_socket(a0, a1, a[2]);
3061 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3064 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3067 err = __sys_listen(a0, a1);
3070 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3071 (int __user *)a[2], 0);
3073 case SYS_GETSOCKNAME:
3075 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3076 (int __user *)a[2]);
3078 case SYS_GETPEERNAME:
3080 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3081 (int __user *)a[2]);
3083 case SYS_SOCKETPAIR:
3084 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3087 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3091 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3092 (struct sockaddr __user *)a[4], a[5]);
3095 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3099 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3100 (struct sockaddr __user *)a[4],
3101 (int __user *)a[5]);
3104 err = __sys_shutdown(a0, a1);
3106 case SYS_SETSOCKOPT:
3107 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3110 case SYS_GETSOCKOPT:
3112 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3113 (int __user *)a[4]);
3116 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3120 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3124 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3128 if (IS_ENABLED(CONFIG_64BIT))
3129 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3131 (struct __kernel_timespec __user *)a[4],
3134 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3136 (struct old_timespec32 __user *)a[4]);
3139 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3140 (int __user *)a[2], a[3]);
3149 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3152 * sock_register - add a socket protocol handler
3153 * @ops: description of protocol
3155 * This function is called by a protocol handler that wants to
3156 * advertise its address family, and have it linked into the
3157 * socket interface. The value ops->family corresponds to the
3158 * socket system call protocol family.
3160 int sock_register(const struct net_proto_family *ops)
3164 if (ops->family >= NPROTO) {
3165 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3169 spin_lock(&net_family_lock);
3170 if (rcu_dereference_protected(net_families[ops->family],
3171 lockdep_is_held(&net_family_lock)))
3174 rcu_assign_pointer(net_families[ops->family], ops);
3177 spin_unlock(&net_family_lock);
3179 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3182 EXPORT_SYMBOL(sock_register);
3185 * sock_unregister - remove a protocol handler
3186 * @family: protocol family to remove
3188 * This function is called by a protocol handler that wants to
3189 * remove its address family, and have it unlinked from the
3190 * new socket creation.
3192 * If protocol handler is a module, then it can use module reference
3193 * counts to protect against new references. If protocol handler is not
3194 * a module then it needs to provide its own protection in
3195 * the ops->create routine.
3197 void sock_unregister(int family)
3199 BUG_ON(family < 0 || family >= NPROTO);
3201 spin_lock(&net_family_lock);
3202 RCU_INIT_POINTER(net_families[family], NULL);
3203 spin_unlock(&net_family_lock);
3207 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3209 EXPORT_SYMBOL(sock_unregister);
3211 bool sock_is_registered(int family)
3213 return family < NPROTO && rcu_access_pointer(net_families[family]);
3216 static int __init sock_init(void)
3220 * Initialize the network sysctl infrastructure.
3222 err = net_sysctl_init();
3227 * Initialize skbuff SLAB cache
3232 * Initialize the protocols module.
3237 err = register_filesystem(&sock_fs_type);
3240 sock_mnt = kern_mount(&sock_fs_type);
3241 if (IS_ERR(sock_mnt)) {
3242 err = PTR_ERR(sock_mnt);
3246 /* The real protocol initialization is performed in later initcalls.
3249 #ifdef CONFIG_NETFILTER
3250 err = netfilter_init();
3255 ptp_classifier_init();
3261 unregister_filesystem(&sock_fs_type);
3265 core_initcall(sock_init); /* early initcall */
3267 #ifdef CONFIG_PROC_FS
3268 void socket_seq_show(struct seq_file *seq)
3270 seq_printf(seq, "sockets: used %d\n",
3271 sock_inuse_get(seq->private));
3273 #endif /* CONFIG_PROC_FS */
3275 /* Handle the fact that while struct ifreq has the same *layout* on
3276 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3277 * which are handled elsewhere, it still has different *size* due to
3278 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3279 * resulting in struct ifreq being 32 and 40 bytes respectively).
3280 * As a result, if the struct happens to be at the end of a page and
3281 * the next page isn't readable/writable, we get a fault. To prevent
3282 * that, copy back and forth to the full size.
3284 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3286 if (in_compat_syscall()) {
3287 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3289 memset(ifr, 0, sizeof(*ifr));
3290 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3294 *ifrdata = compat_ptr(ifr32->ifr_data);
3299 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3303 *ifrdata = ifr->ifr_data;
3307 EXPORT_SYMBOL(get_user_ifreq);
3309 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3311 size_t size = sizeof(*ifr);
3313 if (in_compat_syscall())
3314 size = sizeof(struct compat_ifreq);
3316 if (copy_to_user(arg, ifr, size))
3321 EXPORT_SYMBOL(put_user_ifreq);
3323 #ifdef CONFIG_COMPAT
3324 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3326 compat_uptr_t uptr32;
3331 if (get_user_ifreq(&ifr, NULL, uifr32))
3334 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3337 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3338 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3340 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3342 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3343 if (put_user_ifreq(&ifr, uifr32))
3349 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3350 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3351 struct compat_ifreq __user *u_ifreq32)
3356 if (!is_socket_ioctl_cmd(cmd))
3358 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3360 ifreq.ifr_data = data;
3362 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3365 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3366 unsigned int cmd, unsigned long arg)
3368 void __user *argp = compat_ptr(arg);
3369 struct sock *sk = sock->sk;
3370 struct net *net = sock_net(sk);
3371 const struct proto_ops *ops;
3373 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3374 return sock_ioctl(file, cmd, (unsigned long)argp);
3378 return compat_siocwandev(net, argp);
3379 case SIOCGSTAMP_OLD:
3380 case SIOCGSTAMPNS_OLD:
3381 ops = READ_ONCE(sock->ops);
3382 if (!ops->gettstamp)
3383 return -ENOIOCTLCMD;
3384 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3385 !COMPAT_USE_64BIT_TIME);
3388 case SIOCBONDSLAVEINFOQUERY:
3389 case SIOCBONDINFOQUERY:
3392 return compat_ifr_data_ioctl(net, cmd, argp);
3403 case SIOCGSTAMP_NEW:
3404 case SIOCGSTAMPNS_NEW:
3408 return sock_ioctl(file, cmd, arg);
3427 case SIOCSIFHWBROADCAST:
3429 case SIOCGIFBRDADDR:
3430 case SIOCSIFBRDADDR:
3431 case SIOCGIFDSTADDR:
3432 case SIOCSIFDSTADDR:
3433 case SIOCGIFNETMASK:
3434 case SIOCSIFNETMASK:
3446 case SIOCBONDENSLAVE:
3447 case SIOCBONDRELEASE:
3448 case SIOCBONDSETHWADDR:
3449 case SIOCBONDCHANGEACTIVE:
3456 return sock_do_ioctl(net, sock, cmd, arg);
3459 return -ENOIOCTLCMD;
3462 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3465 struct socket *sock = file->private_data;
3466 const struct proto_ops *ops = READ_ONCE(sock->ops);
3467 int ret = -ENOIOCTLCMD;
3474 if (ops->compat_ioctl)
3475 ret = ops->compat_ioctl(sock, cmd, arg);
3477 if (ret == -ENOIOCTLCMD &&
3478 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3479 ret = compat_wext_handle_ioctl(net, cmd, arg);
3481 if (ret == -ENOIOCTLCMD)
3482 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3489 * kernel_bind - bind an address to a socket (kernel space)
3492 * @addrlen: length of address
3494 * Returns 0 or an error.
3497 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3499 return READ_ONCE(sock->ops)->bind(sock, addr, addrlen);
3501 EXPORT_SYMBOL(kernel_bind);
3504 * kernel_listen - move socket to listening state (kernel space)
3506 * @backlog: pending connections queue size
3508 * Returns 0 or an error.
3511 int kernel_listen(struct socket *sock, int backlog)
3513 return READ_ONCE(sock->ops)->listen(sock, backlog);
3515 EXPORT_SYMBOL(kernel_listen);
3518 * kernel_accept - accept a connection (kernel space)
3519 * @sock: listening socket
3520 * @newsock: new connected socket
3523 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3524 * If it fails, @newsock is guaranteed to be %NULL.
3525 * Returns 0 or an error.
3528 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3530 struct sock *sk = sock->sk;
3531 const struct proto_ops *ops = READ_ONCE(sock->ops);
3534 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3539 err = ops->accept(sock, *newsock, flags, true);
3541 sock_release(*newsock);
3546 (*newsock)->ops = ops;
3547 __module_get(ops->owner);
3552 EXPORT_SYMBOL(kernel_accept);
3555 * kernel_connect - connect a socket (kernel space)
3558 * @addrlen: address length
3559 * @flags: flags (O_NONBLOCK, ...)
3561 * For datagram sockets, @addr is the address to which datagrams are sent
3562 * by default, and the only address from which datagrams are received.
3563 * For stream sockets, attempts to connect to @addr.
3564 * Returns 0 or an error code.
3567 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3570 return READ_ONCE(sock->ops)->connect(sock, addr, addrlen, flags);
3572 EXPORT_SYMBOL(kernel_connect);
3575 * kernel_getsockname - get the address which the socket is bound (kernel space)
3577 * @addr: address holder
3579 * Fills the @addr pointer with the address which the socket is bound.
3580 * Returns the length of the address in bytes or an error code.
3583 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3585 return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3587 EXPORT_SYMBOL(kernel_getsockname);
3590 * kernel_getpeername - get the address which the socket is connected (kernel space)
3592 * @addr: address holder
3594 * Fills the @addr pointer with the address which the socket is connected.
3595 * Returns the length of the address in bytes or an error code.
3598 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3600 return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3602 EXPORT_SYMBOL(kernel_getpeername);
3605 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3607 * @how: connection part
3609 * Returns 0 or an error.
3612 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3614 return READ_ONCE(sock->ops)->shutdown(sock, how);
3616 EXPORT_SYMBOL(kernel_sock_shutdown);
3619 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3622 * This routine returns the IP overhead imposed by a socket i.e.
3623 * the length of the underlying IP header, depending on whether
3624 * this is an IPv4 or IPv6 socket and the length from IP options turned
3625 * on at the socket. Assumes that the caller has a lock on the socket.
3628 u32 kernel_sock_ip_overhead(struct sock *sk)
3630 struct inet_sock *inet;
3631 struct ip_options_rcu *opt;
3633 #if IS_ENABLED(CONFIG_IPV6)
3634 struct ipv6_pinfo *np;
3635 struct ipv6_txoptions *optv6 = NULL;
3636 #endif /* IS_ENABLED(CONFIG_IPV6) */
3641 switch (sk->sk_family) {
3644 overhead += sizeof(struct iphdr);
3645 opt = rcu_dereference_protected(inet->inet_opt,
3646 sock_owned_by_user(sk));
3648 overhead += opt->opt.optlen;
3650 #if IS_ENABLED(CONFIG_IPV6)
3653 overhead += sizeof(struct ipv6hdr);
3655 optv6 = rcu_dereference_protected(np->opt,
3656 sock_owned_by_user(sk));
3658 overhead += (optv6->opt_flen + optv6->opt_nflen);
3660 #endif /* IS_ENABLED(CONFIG_IPV6) */
3661 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3665 EXPORT_SYMBOL(kernel_sock_ip_overhead);